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Abstract. We investigate Ulam stability of a general delayed differential
equation of a fractional order. We provide formulas showing how to gener-
ate the exact solutions of the equation using functions that satisfy it only
approximately. Namely, the approximate solution φ generates the exact
solution as a pointwise limit of the sequence Λnφ with some integral (pos-
sibly, nonlinear) operator Λ. We estimate the speed of convergence and
the distance between those approximate and exact solutions. Moreover,
we provide some exemplary calculations, involving the Chebyshev and Bi-
elecki norms and some semigauges, that could help to obtain reasonable
outcomes for such estimations in some particular cases. The main tool is
the Diaz–Margolis fixed point alternative.
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1. Introduction

The differential equations of a fractional order have numerous applications
in the modeling of various physical phenomena and processes in economics,
chemistry, aerodynamics, etc. (for further information see [12–19,21]). They
are also an excellent tool for the description of hereditary properties of many
materials. For details concerning the fractional calculus we refer to [12,15,19,
20].

Unfortunately, quite often we only have a description of approximate
solutions to such equations and it is very difficult to get any sufficient infor-
mation on the exact solutions to them. So, the natural question is how big
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is the difference between those approximate and exact solutions and whether
it is possible to generate somehow the exact solutions by the means of those
approximate ones. Some convenient tools to study such issues provides the
theory of Ulam (often also called the Hyers–Ulam) type stability. It has been
motivated by a problem of Ulam, concerning approximate homomorphisms of
groups, and an answer to it provided by Hyers [6] (see [3,7,11,22] for more
details and references).

The main idea of such stability can be very roughly expressed in the
following way: When a function satisfying an equation approximately (in some
sense) must be near an exact solution to the equation?

The following definition (cf. [3, p. 119, Ch. 5, Definition 8]) makes that
notion a bit more precise (R+ stands for the set of all nonnegative reals and
CD denotes the family of all functions mapping a set D �= ∅ into a set C �= ∅).

Definition 1. Let A be a nonempty set, (X, d) be a metric space, E ⊂ C ⊂ R+
A

be nonempty, T be an operator mapping C into R+
A and F1,F2 be operators

mapping nonempty set D ⊂ XA into XA. We say that the equation

F1ϕ(x) = F2ϕ(x) (1)

is (E , T )—stable provided for any ε ∈ E and ϕ0 ∈ D with

d
(
F1ϕ0(x),F2ϕ0(x)

)
≤ ε(x), x ∈ A (2)

there exists a solution ϕ ∈ D of Eq. (1) such that

d
(
ϕ(x), ϕ0(x)

)
≤ T ε(x), x ∈ A. (3)

Roughly speaking, (E , T )—stability of (1) means that every approximate
(in the sense of (2)) solution of (1) is always close (in the sense of (3)) to
an exact solution of (1). For some recent results in this area, concerning the
fractional-order differential equations, see [8–10,18,23–30]. We continue those
investigations for Eq. (4) given a bit later.

In what follows, R stands for the field of real numbers. Moreover, for
every positive integer n, Cn(D1,D2) always denotes (as usual) the family of
all functions from a real interval D1 into a real interval D2, that are n-times
continuously differentiable. Analogously, C(D1,D2) means the family of all
functions from an interval D1 ⊂ R into an interval D2 ⊂ R, that are continu-
ous.

2. Preliminaries

The derivatives of a fractional order can be defined in various ways, but we
only use the Caputo fractional derivative, which in a simplified way will be
denoted by Dα for α ∈ R+. Below we remind the definition of it (Γ denotes
the usual Gamma function, and [α] means the integer part of a real number
α, i.e., [α] := max {n ∈ Z : n ≤ α}, where Z is the set of integers).
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Definition 2. Let α ∈ R, n = [α]+1 and D be a real interval with −∞ < d :=
min D. The Caputo fractional derivative, of order α, is given by

Dαη(s) = cDα
d+η(s) =

1
Γ (n − α)

∫ s

d

η(n)(r)dr

(s − r)α+1−n
, s ∈ D,

for every function η ∈ Cn(D,R).

The advantage of the Caputo derivative is that (contrary to the Riemann-
Liouville fractional derivative) it does not involve any initial conditions of
fractional order while solving differential equations including it.

In this paper, α ∈ (0, 1) and h > 0 are fixed, I ⊂ R is an interval,
which has one of the following three forms: [t0, a), [t0, a], [t0,∞) (for some
a, t0 ∈ R, a > t0), H := [−h, 0], Ht0 := [t0 − h, t0] and Ih := I ∪ Ht0 . Next,
ξ : Ih → Ih, ω : Ht0 → R and f : I × R × C(H,R) → R are fixed functions
satisfying appropriate regularity conditions (specified later).

If y ∈ C(Ih,R) and t ∈ I, then we define the function yt ∈ C(H,R) by

yt(τ) = y(t + τ), τ ∈ H.

We consider approximate solutions y ∈ C1(Ih,R) for the following general
delayed fractional differential equation

Dα
(
y(s)g(s)

)
= f(s, y(ξ(s)), ys), s ∈ I, y(s) = ω(s), s ∈ Ht0 , (4)

with a fixed function g ∈ C1(Ih,R). That is we study functions y ∈ C1(Ih,R)
satisfying the inequality

∣
∣
∣Dα[y(s)g(s)] − f(s, y(ξ(s)), ys)

∣
∣
∣ ≤ Φ(s), s ∈ I,

y(s) = ω(s), s ∈ Ht0 , (5)

with a given function Φ : I → R+ satisfying some natural restrictions.
Solutions to a particular case of (4) have been investigated in [13] for

g(t) = eγt, f(t, y(t), yt) = f0(t, yt)eγt,

with a fixed real number γ > 0 and the function f0 : I × C(H,R) → R,
satisfying some regularity conditions. In such a case Eq. (4) is equivalent (cf.
[5,13]) to the following integral equation

y(s) = y(t0)eγ(t0−s) +
1

Γ (α)

∫ s

t0

f0(r, yr)dr

(s − r)1−αeγ(s−r)
, s ∈ I,

y(s) = ω(s), s ∈ Ht0 . (6)

We refer to [13] for results on solutions to (6).
In [1] the authors investigated Ulam’s type stability of a simplified version

of (4) with the Chebyshev (supremum) norm ‖ · ‖∞ in C(H,R). Namely, the
following outcome has been proved in [1, Theorem 2.4] (R0

+ stands for the set
of positive reals).
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Theorem 1. Let τ0 ∈ R+, κ0 ∈ (0, 1), functions f1 : I ×C(H,R) → R, λ : I →
R+ and Φ : Ih → R

0
+ be continuous, g ∈ C1(Ih,R) be fixed, and the following

three inequalities be valid:

|f1(s, vs) − f1(s, us)| ≤ λ(s)‖vs − us‖∞, v, u ∈ C(Ih,R), s ∈ I, (7)

1
Γ (α)g(s)

∫ s

t0

Φ(r)dr

(s − r)1−α
≤ τ0Φ(s), s ∈ I, (8)

1
Γ (α)g(s)

∫ s

t0

λ(r)Φh(r)dr

(s − r)1−α
≤ κ0Φ(s), s ∈ I, (9)

where Φh(r) := supt∈[r−h,r] Φ(t). Let y ∈ C1(Ih,R) be such that
∣
∣
∣Dα[y(s)g(s)] − f1(s, ys)

∣
∣
∣ ≤ Φ(s), s ∈ I, (10)

y(s) = ω(s), s ∈ Ht0 . (11)

Then there exists a unique function ŷ ∈ C1(Ih,R) with

Dα[ŷ(s)g(s)] = f1(s, ŷs), s ∈ I, ŷ(s) = ω(s), s ∈ Ht0 ,

| y(s) − ŷ(s) | ≤ (1 − κ0)−1τ0Φ(s), s ∈ I. (12)

Please note that no regularity conditions on ω in Theorem 1 have been
assumed explicitly, but actually from the assumption that y is continuously
differentiable and (11) it follows that ω must be continuously differentiable.

In this paper we present a significant generalization of Theorem 1, because
we consider Eq. (4), which is much more general than (12). Moreover, we admit
a wider range of ways of measuring the distance in C(H,R). Namely, instead
of the supremum norm as in (7), we use semigauges depicted in the subsequent
Definition 3 (cf., e.g., [2]), which include the cases of various norms, seminorms,
quasinorms, semi-quasinorms etc. We provide some suitable examples at the
end of this paper.

Furthermore, we provide formulas showing how to generate the exact
solutions of the equation from the functions that satisfy it only approximately.
Namely, some approximate solutions φ of (4) generate the exact solutions as
the pointwise limits of the sequence Λnφ with an integral operator Λ, given
by (26). We estimate the speed of this convergence and the distance between
φ and that generated exact solution. In the second part of the paper, we
provide some exemplary calculations, involving in particular the Chebyshev
and Bielecki norms, that could help to obtain reasonable outcomes for such
estimations in several particular cases.

Let us introduce the following definition (cf., e.g., [2,3]).

Definition 3. Let A be a real linear space. A function ρ : A → [0,+∞] (i.e., ρ
may take the infinite value +∞) is a semigauge on A if ρ(0) = 0 and

ρ(λx) = |λ| ρ(x), λ ∈ R, x ∈ A, ρ(x) < ∞. (13)

A gauge on A is any semigauge ρ on A such that ρ(x) �= 0 for x �= 0.
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Note that if ρ is a semigauge on a real linear space A, x ∈ A and ρ(λx) <
∞ for some λ ∈ R \ {0}, then ρ(ηx) < ∞ for every η ∈ R, because (13) yields
ρ(ηx) = |ηλ−1|ρ(λx).

Remark 1. Clearly, the norms and extended norms are gauges. Let us recall
that an extended norm, on a real (or complex) linear space X, is a function
‖ · ‖ : X → [0,+∞] (i.e., ‖ · ‖ may also take the value +∞) such that, for every
scalar α and every x, y ∈ X with ‖x‖, ‖y‖ ∈ [0,+∞),

‖x + y‖ ≤ ‖x‖ + ‖y‖, ‖αx‖ = |α| ‖x‖,

and the equality ‖x‖ = 0 holds if and only if x is the zero vector.
If Y is a real or complex normed space and S is a nonempty set, then an

extended norm in Y S can be defined by:

‖f‖ = sup
s∈S

‖f(s)‖, f ∈ Y S .

Further, if f is a linear functional on a real or complex linear space X,
then the formula:

ρ(x) = |f(x)|, x ∈ X,

defines a semigauge on X.

Finally, let us recall the Diaz–Margolis fixed point alternative (see [4]),
which will be useful in the proof of our main result. To this end we need the
following definition.

Definition 4. An extended metric on a set X �= ∅ is a function d : X2 →
[0,+∞] satisfying the following three conditions:

(1) d(x, y) = 0 if and only if x = y;
(2) d(x, y) = d(y, x) for all x, y ∈ X;
(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

In the sequel, given a set X �= ∅ and L : X → X, we sometimes write
for simplicity Lx := L(x) for x ∈ X. Moreover, as usual, L0x := x and
Lnx := L(Ln−1x) for x ∈ X, n ∈ N (positive integers). The Diaz–Margolis
fixed point alternative [4] can be formulated as follows (N0 := N ∪ {0}).

Theorem 2. Let d be an extended complete metric on a nonempty set X and
L : X → X be contractive with the Lipschitz constant L < 1 (i.e., d(Lx,Ly) ≤
Ld(x, y) for x, y ∈ X with d(x, y) ∈ (0,+∞)). Assume that x ∈ X is such
that there exists k ∈ N with d(Lk−1x,Lkx) < ∞. Then the sequence (Lnx)n∈N

converges to a fixed point x∗ ∈ X of L, x∗ is the unique fixed point of L in the
set X∗ = {y ∈ X : d(x∗, y) < ∞} and

d(Lnx, x∗) ≤ Ln−k+1d(Lk−1x,Lkx)
1 − L

, n ∈ N0, n ≥ k − 1. (14)
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Proof. The convergence of Lnx to a fixed point x∗ of L results from [4, Theo-
rem]. The uniqueness of x∗ follows from the subsequent simple inequality

d(u, x∗) = d(Lnu,Lnx∗) ≤ Lnd(u, x∗), n ∈ N,

which is true for every fixed point u ∈ X∗ of L.
Also the proof of (14) is a routine, but for the convenience of readers, we

present it. So, note that, for each m ∈ N, m ≥ k,

d(Lk−1x,Lmx) ≤
m∑

i=k

d(Li−1x,Lix)

≤ d(Lk−1x,Lkx)
m−k∑

i=0

Li ≤ d(Lk−1x,Lkx)
1 − L

and consequently

d(Lk−1x, x∗) ≤ d(Lk−1x,Lmx) + d(Lmx, x∗)

≤ d(Lk−1x,Lkx)
1 − L

+ d(Lmx, x∗).

Since limm→∞ d(Lmx, x∗) = 0, this implies that

d(Lk−1x, x∗) ≤ d(Lk−1x,Lkx)
1 − L

.

Now (14) results from the above inequality and from the fact that, for
every n ∈ N0 with n ≥ k − 1,

d(Lnx, x∗) = d(Ln−k+1(Lk−1x),Ln−k+1x∗) ≤ Ln−k+1d(Lk−1x, x∗).

�

Remark 2. Assume that k = 1 in Theorem 2. Clearly, in such a case, (14)
(with n = 0) implies that d(x, x∗) < +∞, whence x ∈ X∗. Let z ∈ X be a
fixed point of L with d(x, z) < +∞. Then d(x∗, z) ≤ d(x∗, x) + d(x, z) < +∞
and consequently z ∈ X∗, which means that z = x∗, because x∗ is the unique
fixed point of L in X∗.

So, if there is a fixed point z ∈ X \ {x∗}, then d(x, z) = +∞.

3. The Main Result

In the sequel, ρ is a semigauge on C(H,R), U ⊂ C(I,R+) is nonempty and
G : U → R

I
+ is given. Next, ξ : Ih → Ih and f : I ×R× C(H,R) → R are such

that the function fw : I → R+, given by:

fw(s) = f(s, w(ξ(s)), ws), s ∈ I, (15)

is continuous for every w ∈ C(Ih,R).
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Moreover, we assume that there is a nondecreasing sequence (rn)n∈N in
I such that

I =
⋃

n∈N

[t0, rn], ξ([t0, rn]) ⊂ [t0, rn], n ∈ N. (16)

Remark 3. Clearly, if ξ(t) ≤ t for t ∈ I, then any nondecreasing sequence
(rn)n∈N in I, with supn∈N rn = sup I, fulfils (16). Moreover, if I = [t0, b] with
some b > t0, then (16) holds with the constant sequence rn := b for n ∈ N.

We write

In := [t0, rn], Ih
n := [t0 − h, rn], n ∈ N.

Next, g : I → R \ {0} is an arbitrarily fixed function that is continuously
differentiable. We define T : C(I,R+) → C(I,R+) by

(T χ)(t) :=
1

Γ (α)|g(t)|

∫ t

t0

χ(s)
(t − s)1−α

ds, t ∈ I, χ ∈ CI(R+). (17)

We also need the following two hypotheses (with n ∈ N) concerning
functions Φ ∈ U .

(Hn) If w ∈ C(Ih
n ,R) is such that |w(s)| ≤ Φ(s) for s ∈ In and w(s) = 0 for

s ∈ Ht0 , then ρ(wt) ≤
(
GΦ

)
(t) for every t ∈ In.

(H) There is a continuous function L : I → R+ with (T Φ)(t) ≤ L(t)Φ(t) for
t ∈ I.

Examples of functions Φ satisfying the hypotheses, with suitable opera-
tors G (cf., e.g., (47)), are given in the further parts of the paper.

Remark 4. If the semigauge ρ is nondecreasing, i.e., when ρ(φ1) ≤ ρ(φ2) for
every φ1, φ2 ∈ C(H,R) with |φ1(t)| ≤ |φ2(t)| for every t ∈ H, then (Hn) holds
for each n ∈ N with (GΦ)(t) = ρ(Φt) for t ∈ I and Φ ∈ U , where Φt : H → R

is given by

Φt(s) =

{
Φ(t + s), if s ≥ t0 − t;
Φ(t0), otherwise .

(18)

Unfortunately not all semigauges on C(H,R) must be nondecreasing. For
instance, it is easily seen that the semigauge ρ given by

ρ(φ) = sup
s∈H

|φ(s)| − inf
s∈H

|φ(s)|, φ ∈ C(H,R),

is not nondecreasing, because it equals zero on each constant function.
Some further examples of semigauges, both nondecreasing and not, can

be found in Sect. 6.

Now we have all tools to prove the next theorem, which is the main result
of this paper.
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Theorem 3. Let Φ ∈ U fulfil hypotheses (H) and (Hn) for all n ∈ N. Let λ : I×
R

2
+ → R+ be such that the functions λ(x, ·, v) and λ(x, v, ·) are nondecreasing

for every x ∈ I and v ∈ R+, the function

I � s → λ
(
s, μΦ(ξ(s)), μ

(
GΦ

)
(s)

)
∈ R+

is locally integrable for each μ ∈ R
0
+, and there is a function K : I → [0, 1)

with
1

Γ (α)|g(t)|

∫ t

t0

λ
(
s, μΦ(ξ(s)), μ

(
GΦ

)
(s)

)

(t − s)1−αμ
ds ≤ K(t)Φ(t), t ∈ I, μ ∈ R

0
+. (19)

Assume also that

|f(t, s1, zt) − f(t, s2, wt)| ≤ λ
(
t, |s1 − s2|, ρ(zt − wt)

)
,

t ∈ I, s1, s2 ∈ R, z, w ∈ C(Ih,R), ρ(zt − wt) < ∞, (20)

and K is continuous or nondecreasing.
If y ∈ C1(Ih,R) is such that

∣
∣
∣Dα[y(s)g(s)] − f(s, y(ξ(s)), ys)

∣
∣
∣ ≤ Φ(s), s ∈ I,

y(s) = ω(s), s ∈ Ht0 , (21)

then there is a unique function ŷ ∈ C1(Ih,R), which fulfils the conditions

Dα[ŷ(s)g(s)] = f(s, ŷ(ξ(s)), ŷs), s ∈ I, ŷ(s) = ω(s), s ∈ Ht0 , (22)

| y(s) − ŷ(s) | ≤ (T Φ)(s)
1 − Kn

, s ∈ In, n ∈ N, (23)

where Kn := supt∈In K(t) for n ∈ N. Moreover,

ŷ(s) = lim
k→∞

(Λky)(s), s ∈ Ih, (24)

|ŷ(s) − (Λky)(s)| ≤ Kk
n(T Φ)(s)
1 − Kn

, s ∈ In, n, k ∈ N, (25)

where, for each w ∈ C(Ih,R), Λ : C(Ih,R) → C(Ih,R) is given by the formula

(Λw)(s) = w(t0)
g(t0)
g(s)

+
1

Γ (α)g(s)

∫ s

t0

f(r, w(ξ(r)), wr)
(s − r)1−α

dr, s ∈ I,

(Λw)(s) = ω(s), s ∈ Ht0 . (26)

Proof. Let y ∈ C1(Ih,R) fulfil (21). Fix n ∈ N and denote by Xn the space of
all continuous functions w : Ih

n → R such that w(t) = ω(t) for t ∈ Ht0 . Define
an extended complete metric in Xn by

dn(z, w) = inf {C ∈ [0,∞) : |z(t) − w(t)| ≤ CΦ(t) for t ∈ In }, z, w ∈ Xn.

The metric may take the infinite value +∞ (i.e., can be an extended
metric), because we do not exclude the situation where Φ(t) = 0 for some
t ∈ In and assume that inf ∅ = ∞. The completeness of dn follows from the
fact that Φ is continuous on In and therefore bounded, which means that the
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convergence in Xn, with respect to dn, is actually the uniform convergence on
In (with regard to the natural distance in R).

Let p ∈ (1,∞) be such that (1 − α)p < 1 and q := p/(p − 1). Then
1/p + 1/q = 1 and p(α − 1) + 1 > 0. Since for every w ∈ C(Ih,R) the function
fw (defined by (15)) is continuous, the functions

I � s →
∣
∣fw(s)

∣
∣q, I � s → fw(s)(t − s)p(α−1)

are continuous and, by the Hölder inequality, we have

∣
∣
∣
∫ t

t0

fw(s)ds

(t − s)1−α

∣
∣
∣ ≤

(∫ t

t0

∣
∣fw(s)

∣
∣qds

)1/q(∫ t

t0

(t − s)p(α−1)ds

)1/p

< +∞

for every t ∈ I, whence the improper integral
∫ t

t0

f(s, w(ξ(s)), ws)ds

(t − s)1−α

is convergent for every t ∈ I. This means that we can define operator Λn :
Xn → Xn by the formula

(Λnw)(t) = w(t0)
g(t0)
g(t)

+
1

Γ (α)g(t)

∫ t

t0

f(s, w(ξ(s)), ws)ds

(t − s)1−α
, t ∈ In,

(Λnw)(t) = ω(t), t ∈ Ht0 ,

for each w ∈ Xn (see (16)).
Take z, w ∈ Xn with Czw := d(z, w) < +∞, which means

|z(t) − w(t)| ≤ CzwΦ(t), t ∈ In.

Write

z̃ :=
1

Czw
z, w̃ :=

1
Czw

w.

Since |z̃(t) − w̃(t)| ≤ Φ(t) for t ∈ In, by (Hn), we have

ρ(z̃t − w̃t) ≤
(
GΦ

)
(t), t ∈ In,

and consequently

ρ(zt − wt) = ρ(Czwz̃t − Czww̃t) ≤ Czwρ(z̃t − w̃t) ≤ Czw

(
GΦ

)
(t), t ∈ In.

So, (20) and the monotonicity assumptions on λ yield

|f(t, z(ξ(t)), zt) − f(t, w(ξ(t)), wt)| ≤ λ
(
t, |z(ξ(t)) − w(ξ(t))|, ρ(zt − wt)

)

≤ λ
(
t, CzwΦ(ξ(t)), Czw

(
GΦ

)
(t)

)
, t ∈ In,
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whence (19) implies that

|(Λnz)(t) − (Λnw)(t)| ≤ 1
Γ (α)|g(t)|

∫ t

t0

|f(s, z(ξ(s)), zs) − f(s, w(ξ(s)), ws)|
(t − s)1−α

ds

≤ 1
Γ (α)|g(t)|

∫ t

t0

λ
(
s, CzwΦ(ξ(s)), Czw

(
GΦ

)
(s)

)

(t − s)1−α
ds

≤ CzwK(t)Φ(t) ≤ KnCzwΦ(t), t ∈ In,

because z(t0) = ω(t0) = w(t0). This means that

d(Λnz, Λnw) ≤ KnCzw.

Since K is continuous or nondecreasing, so Kn < 1 and consequently Λn

is contractive on Xn. Next, integrating the inequality in (21) from t0 to t, we
get

∣
∣
∣y(t)g(t) − y(t0)g(t0) − 1

Γ (α)

∫ t

t0

f(s, y(ξ(s)), ys)
(t − s)1−α

ds
∣
∣
∣

=
∣
∣
∣

1
Γ (α)

∫ t

t0

Dα[ŷ(t)g(t)] − f(s, y(ξ(s)), ys)
(t − s)1−α

ds
∣
∣
∣

≤ 1
Γ (α)

∫ t

t0

|Dα[ŷ(t)g(t)] − f(s, y(ξ(s)), ys)|
(t − s)1−α

ds

≤ 1
Γ (α)

∫ t

t0

Φ(s)
(t − s)1−α

ds, t ∈ I,

so
∣
∣
∣y(t) − y(t0)

g(t0)
g(t)

− 1
Γ (α)g(t)

∫ t

t0

f(s, y(ξ(s)), ys)
(t − s)1−α

ds
∣
∣
∣

≤ 1
Γ (α)|g(t)|

∫ t

t0

Φ(s)
(t − s)1−α

ds = (T Φ)(t), t ∈ I,

whence in view of hypothesis (H)
∣
∣
∣yn(t) − (Λnyn)(t)

∣
∣
∣ ≤ (T Φ)(t) ≤ L(t)Φ(t), t ∈ In, (27)

where yn(t) = y(t) for t ∈ In. That is we have the inequality:

d
(
yn, Λnyn

)
≤ Ln := sup

t∈In

L(t) < +∞.

Consequently, by Theorem 2 (with k = 1, L = Λn and L = Kn) and
Remark 2, there is a unique fixed point ŷn ∈ C(Ih

n ,R) of Λn with d(ŷn, yn) <
∞,

ŷn(t) = lim
k→∞

(Λk
nyn)(t), t ∈ Ih

n , (28)

and

d(ŷn, Λm
n yn) ≤ Km

n d(Λnyn, yn)
1 − Kn

, m ∈ N0.
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Clearly, ŷn as a fixed point of Λn is continuously differentiable on the
interval [t0, tn). Further, since the uniqueness means in this case that

ŷn(t) = ŷl(t), n, l ∈ N, l ≤ n, t ∈ Il,

we can define ŷ ∈ C(Ih,R) by

ŷ(t) := ŷn(t), t ∈ In, n ∈ N. (29)

It is easily seen that ŷ is continuously differentiable and it is the unique
solution to (22) fulfilling

|ŷ(t) − y(t)| ≤ d(Λnyn(t), yn(t))
1 − Kn

≤ (T Φ)(t)
1 − Kn

, t ∈ In, n ∈ N, (30)

because of the uniqueness of ŷn and the definition of Λn.
Finally, notice that (28) and (29) imply (24). �

Remark 5. Assume that ξ(t) ≤ t for each t ∈ I. Then the points rn can be
selected quite arbitrarily and, for a given t ∈ I, we can assume that t = rj

with some j ∈ N (see Remark 3). As ŷ in Theorem 3 is unique and its form
(given by (24)) in this situation does not depend on the choice of points rn,
this means that, for such ξ, (23) can be actually replaced by the following
inequality

| y(t) − ŷ(t) | ≤ (T Φ)(t)
1 − K(t)

, t ∈ I, (31)

where K(t) := sups∈[t0,t] K(s) for t ∈ I. Clearly, if K is nondecreasing, then
K = K.

Remark 6. Assume that Φ(t) �= 0 for each t ∈ I. Then hypothesis (H) holds
with L given by

L(t) =
(T Φ)(t)

Φ(t)
, t ∈ I.

Remark 7. It can be very difficult to calculate precisely the form of the func-
tion T Φ occurring in (23) and (25). Therefore we show below some very easy
approaches that might help to obtain some useful estimations of it.

Let t ∈ I, m ∈ N, m > 1, and s1, . . . , sm ∈ I be such that s1 := t0 <
s2 < . . . < sm := t. Write Ji := [si, si+1] for i = 1, . . . , m − 1. Then it is
easily seen that

(T Φ)(t) =
m−1∑

k=1

1
Γ (α)g(t)

∫

Jk

(t − s)α−1Φ(s)ds, (32)
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and we have the subsequent two estimations:

m−2∑

k=1

(t − sk+1)α−1

Γ (α)g(t)

∫

Jk

Φ(s)ds ≤
m−2∑

k=1

(t − sk+1)α−1Φk

Γ (α)g(t)
, (33)

(T Φ)(t) ≤
m−1∑

k=1

Φk

Γ (α)g(t)

∫

Jk

(t − s)α−1ds

≤
m−1∑

k=1

Φk

(
(t − sk)α − (t − sk+1)α

)

Γ (α + 1)g(t)
, (34)

where Φk := sups∈Jk
Φ(s) for k = 1, . . . , m − 1. Also, if m > 2, then (32)

implies that

(T Φ)(t) ≤
m−2∑

k=1

(t − sk+1)α−1

Γ (α)g(t)

∫

Jk

Φ(s)ds +
Φm−1(t − sm−1)α

Γ (α + 1)g(t)
. (35)

If Φ is nondecreasing, then Φk = Φ(sk+1) for k = 1, . . . ,m − 1 and (34)
yields the inequality

(T Φ)(t) ≤
m−1∑

k=1

Φ(sk+1)
(
(t − sk)α − (t − sk+1)α

)

Γ (α + 1)g(t)
, (36)

whence for m = 2 we get the following very simple form

(T Φ)(t) ≤ Φ(t)(t − t0)α

Γ (α + 1)g(t)
, (37)

while for m = 3 we have

Γ (α)g(t)(T Φ)(t) ≤ Φ(s2)
∫ s2

t0

(t − s)α−1ds + Φ(t)
∫ t

s2

(t − s)α−1ds

≤ (s2 − t0)Φ(s2)
s1−α
2

+
Φ(t)(t − s2)α

α
, (38)

which gives the estimation

(T Φ)(t) ≤ 1
Γ (α)g(t)

inf
s∈(t0,t)

(
(s − t0)Φ(s)

s1−α
+

(t − s)αΦ(t)
α

)

. (39)

Clearly, we can argue analogously when Φ is nonincreasing, because then
Φk = Φ(sk). Also, we can choose for estimations (34) and (35) points sk such
that Φ is nondecreasing or nonincreasing on each interval Jk.
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Note also that we can use the following Hölder type inequality:

(T Φ)(t) =
1

Γ (α)g(t)

∫ t

t0

(t − s)α−1Φ(s)ds

≤ 1
Γ (α)g(t)

(∫ t

t0

(t − s)p(α−1)ds

)1/p(∫ t

t0

(Φ(s))qds

)1/q

=
(t − t0)α−1+1/p

(pα − p + 1)Γ (α)g(t)

(∫ t

t0

(Φ(s))qds

)1/q

, t ∈ I, (40)

for any p, q ∈ (1,∞) such that 1/p + 1/q = 1 and p(1 − α) < 1.
Clearly, we may also combine those approaches, applying different esti-

mations in different intervals Jk and for different values of t.

4. Consequence of Theorem 3

Now, we show how to use Theorem 3 to easily generate solutions of some
differential equations of fractional order. Namely, let Φ ∈ U , λ : I ×R

2
+ → R+

and K : I → [0, 1) be as in Theorem 3. Let f : I × R × C(H,R) → R be such
that

|f(t, s1, zt) − f(t, s2, wt)| ≤ λ
(
t, |s1 − s2|, ρ(zt − wt)

)
,

t ∈ I, z, w ∈ C(Ih,R), s1, s2 ∈ R, (41)

and the function fw : I → R+ is continuous for every w ∈ C(Ih,R), where

fw(s) := f(s, w(ξ(s)), ws), s ∈ I.

We have the following corollary.

Corollary 1. Let y ∈ C1(Ih,R), y(s) = ω(s) for s ∈ Ht0 , and

Ψ(t) := Dα[y(t)g(t)] − f(t, y(ξ(t)), yt), t ∈ I. (42)

Then, for each function Δ ∈ CI(R) with |Ψ(t) − Δ(t)| ≤ Φ(t) for t ∈ I,
there is a unique ŷ ∈ C1(Ih,R) satisfying the conditions

Dα[ŷ(t)g(t)] = f(t, ŷ(ξ(t)), ŷt) + Δ(t), t ∈ I,

ŷ(s) = ω(s), s ∈ Ht0 , (43)

such that

| y(t) − ŷ(t) | ≤ (T Φ)(t)
1 − Kn

, t ∈ In, n ∈ N, (44)
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where Kn := supt∈In K(t) for n ∈ N. Moreover,

ŷ(t) = lim
k→∞

(Λk
0y)(t), t ∈ Ih, (45)

|ŷ(t) − (Λk
0y)(t)| ≤ Kk

n(T Φ)(t)
1 − Kn

, t ∈ In, n, k ∈ N, (46)

where, for each w ∈ C(Ih,R), Λ0 : C(Ih,R) → C(Ih,R) is given by the
formula

(Λ0w)(t) = w(t0)
g(t0)
g(t)

+
1

Γ (α)g(t)

∫ t

t0

f(s, w(ξ(s)), ws) + Δ(t)
(t − s)1−α

ds, t ∈ I,

(Λ0w)(t) = ω(t), t ∈ Ht0 .

Proof. Take Δ ∈ C(I,R) with |Ψ(t) − Δ(t)| ≤ Φ(t) for t ∈ I. Note that

|Dα[y(t)g(t)] − f(t, y(ξ(t)), yt) − Δ(t)| = |Ψ(t) − Δ(t)| ≤ Φ(t), t ∈ I.

Hence, it is enough to use Theorem 3 with f(t, s, w) = f(t, s, w) + Δ(t)
for t ∈ I, s ∈ R and w ∈ C(H,R). �

5. The Chebyshev Norm

Let ρ = ‖ · ‖∞ be the Chebyshev (supremum) norm on C(H,R), i.e.,

ρ(u) := sup
s∈H

|u(s)|, u ∈ C(H,R).

Then it is easily seen that, if U = C(I,R+), then (see Remark 4) hypoth-
esis (Hn) is valid for every n ∈ N and every function Φ ∈ U with G defined by
the formula

(Gφ)(t) := sup
s∈I∩[t−h,t]

φ(s), φ ∈ U , t ∈ I. (47)

Consequently, Theorem 3 implies Theorem 1; it is enough to take the
functions K and L constant, ξ(t) ≡ t, and

λ(t, r, s) := λ0(t)s, t ∈ I, r, s ∈ R+, (48)

f(t, s, z) := f1(t, z), t ∈ I, z ∈ C(H,R), s ∈ R,

with some continuous λ0 : I → R+ and f1 : I × C(Ih,R) → R.
If Φ ∈ U is a nondecreasing function and G is given by (47), then it is

easily seen that GΦ = Φ. Next, for ξ(t) ≡ t and f given by

f(t, r, s) := f0(t)(a1r + a2s) + Δ(t), t ∈ I, r, s ∈ R+, (49)

with some fixed a1, a2 ∈ R and continuous Δ, f0 : I → R, the function λ can
be defined by

λ(t, r, s) := |f0(t)|(|a1|r + |a2|s), t ∈ I, r, s ∈ R+. (50)
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For such a case we can derive from Theorem 3 and Remarks 5 and 6 the
following simple result.

Corollary 2. Let K : I → [0, 1) be nondecreasing, Φ : I → R
0
+ be continuous

and nondecreasing, and

|f(t, s1, zt) − f(t, s2, wt)| ≤ |f0(t)|
(
a1|s1 − s2| + a2‖zt − wt)‖∞

)
,

t ∈ I, z, w ∈ C(Ih,R), s1, s2 ∈ R, (51)

a1 + a2

Γ (α)g(t)

∫ t

t0

|f0(s)|Φ(s)
(t − s)1−α

ds ≤ K(t)Φ(t), t ∈ I. (52)

If y ∈ C1(Ih,R) is such that
∣
∣
∣Dα[y(t)g(t)] − f(t, y(t), yt)

∣
∣
∣ ≤ Φ(t), t ∈ I,

y(s) = ω(s), s ∈ Ht0 , (53)

then there exists a unique function ŷ ∈ C1(Ih,R) with

Dα[ŷ(t)g(t)] = f(t, ŷ(t), ŷt), t ∈ I, ŷ(s) = ω(s), s ∈ Ht0 ,

| y(t) − ŷ(t) | ≤ (T Φ)(t)
1 − K(t)

, t ∈ I. (54)

Moreover, (24) holds with Λ : C(Ih,R) → C(Ih,R) defined by (26) and

|ŷ(t) − (Λky)(t)| ≤ K(t)k(T Φ)(t)
1 − K(t)

, t ∈ I, k ∈ N. (55)

It is desirable to know how to determine the function K occurring in (19)
and (52), because of the forms of (22), (54) and (55). Certainly, we can use
the methods proposed in Remark 7. Unfortunately, in some cases this can lead
to quite involved calculations. For the convenience of the readers, we present
below a simple observation.

Remark 8. Let Φ : I → R+ be such that (52) holds with some K : I → [0, 1).
Clearly, this means that

a1 + a2

Φ(t)Γ (α)g(t)

∫ t

t0

|f0(s)|Φ(s)
(t − s)1−α

ds < 1, t ∈ I, Φ(t) �= 0.

Hence, in the case 0 �∈ Φ(I) (as in Corollary 2), we can define the function
K simply by

K(t) =
a1 + a2

Φ(t)Γ (α)g(t)

∫ t

t0

|f0(s)|Φ(s)
(t − s)1−α

ds, t ∈ I.

Now, consider the case 0 ∈ Φ(I), 0 �∈ f0(I). If s ∈ I is such that Φ(s) = 0,
then (52) implies that [t0, s) ⊂ Φ−1({0}). Hence the case sup Φ−1({0}) = sup I
is trivial, because Φ(t) = 0 for each t ∈ I and K can be any nondecreasing
function mapping I into [0, 1).
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So, assume that t′ := supΦ−1({0}) < sup I. Then Φ(t) = 0 for every
t ∈ I with t ≤ t′ and Φ(t) �= 0 for every t ∈ I with t > t′, whence it is enough
to take

K(t) =

⎧
⎨

⎩

sup
s∈[t0,t]

χ(s), if t > t′,

0 if t ≤ t′,

where

χ(t) :=
a1 + a2

Φ(t)Γ (α)g(t)

∫ t

t0

|f0(s)|Φ(s)
(t − s)1−α

ds, t ∈ I.

The value of the integral
∫ t

t0

|f0(s)|Φ(s)
(t − s)1−α

ds

can be estimated with the methods proposed in Remark 7.

6. Nondecreasing Semigauges

In this last section of the paper we discuss some possible forms of semigauges.
Assume that semigauge ρ is nondecreasing. As we have noticed in Re-

mark 4, then we can take (GΦ)(t) = ρ(Φt) for t ∈ I and Φ ∈ U , where
Φt : H → R is given by (18). Consequently, condition (19) has the follow-
ing form

1
Γ (α)|g(t)|

∫ t

t0

λ
(
s, μΦ(ξ(s)), μ ρ(Φs)

)

(t − s)1−αμ
ds ≤ K(t)Φ(t), t ∈ I, μ ∈ R

0
+. (56)

Next, if ξ(t) ≡ t, f is given by (49) with some fixed a1, a2 ∈ R and
continuous Δ, f0 : I → R, and λ is defined by (50), then (56) simplifies further
to

1
Γ (α)|g(t)|

∫ t

t0

|f0(s)|
(
|a1|Φ(s) + |a2|ρ(Φs)

)

(t − s)1−α
ds ≤ K(t)Φ(t), t ∈ I. (57)

Now, we will give some examples of nondecreasing semigauges ρ. To this
end fix continuous functions Δ, f1, f2 : I → R and functions A1, A2 : R → R

satisfying the following Lipschitz conditions

|Ai(s) − Ai(t)| ≤ bi|s − t|, s, t ∈ R, i = 1, 2,

with some fixed b1, b2 ∈ R+. Define f and λ by

f(t, r, w) := f1(t)A1(r) + f2(t)A2

(
J (w)

)
+ Δ(t), t ∈ I, r ∈ R, w ∈ C(H,R),

(58)

λ(t, r, s) := |f1(t)|b1r + |f2(t)|b2s, t ∈ I, r, s ∈ R+, (59)

where J : C(H,R) → R is given and will be depicted a little later (according
to the form of ρ).
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First, take κ : H → R and consider the case where ρ has the Bielecki-type
form, that is

ρ(w) = sup
t∈H

|κ(t)w(t)|, w ∈ C(H,R).

Clearly, if κ(t) ≡ e−γt with some γ > 0, then ρ is the Bielecki norm ‖·‖B ,
given by

‖w‖B = sup
t∈H

e−γt |w(t)|, w ∈ C(H,R).

Note that, with such ρ (and λ given by (59)), condition (20) holds for f
defined by (58), e.g., with J ∈ {J1, . . . ,J11}, where J1, . . . ,J11 : C(H,R) →
R are given by

J1(w) = d +
1
h

∫ 0

−h

κ(s)w(s)ds, J2(w) = d +
1
h

∫ 0

−h

κ(s)|w(s)|ds,

J3(w) = d + ρ(w), J4(w) = d + sup
s∈H

κ(s)w(s),

J5(w) = d + sup
s∈H

κ(s)|w(s)|, J6(w) = d + inf
s∈H

|κ(s)w(s)|,

J7(w) = d + inf
s∈H

κ(s)|w(s)|, J8(w) = d + inf
s∈H

κ(s)w(s),

J9(w) =
8∑

k=1

dk|Jk(w)|, J10(w) =
8∑

k=1

dkJk(w),

J11(w) =
8∑

k=1

|dkJk(w)|,

with fixed d, d1, . . . , d8 ∈ R such that
∑8

k=1 |dk| ≤ 1 (in the case of J1 and
J2 we assume that κ is locally integrable and in any other case κ should have
adequate regularity for the integral in (56) to exist).

If κ is locally integrable and ρ has the form

ρ(w) =
1
h

∫ 0

−h

κ(s)|w(s)|ds, w ∈ C(H,R), (60)

then condition (20) holds for f and λ defined by (58) and (59), e.g., with
J ∈ {J1,J2}, where J1 and J2 are given as above. We also can define ρ by

ρ(w) =
∣
∣
∣
∣
1
h

∫ 0

−h

κ(s)w(s)ds

∣
∣
∣
∣, w ∈ C(H,R), (61)

and for such ρ condition (20) holds for f and λ defined by (58) and (59), with
J = J1, where J1 is again given as above. In this situation estimation (20)
is finer than with ρ given by (60), but it is easily seen that (61) defines a
semigauge that is not nondecreasing.
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Next, fix m ∈ N, s1, . . . , sm ∈ H and c1, . . . , cm, d ∈ R. If

ρ(w) =
m∑

k=1

|ciw(sk)|, w ∈ C(H,R),

then condition (20) holds for f and λ defined by (58) and (59), with J ∈
{J1, . . . ,J4}, where for all w ∈ C(H,R),

J1(w) = d + ρ(w), J2(w) = d +
m∑

k=1

ciw(sk),

J3(w) = d +
m∑

k=1

ci|w(sk)|, J4(w) = d +
∣
∣
∣

m∑

k=1

ciw(sk)
∣
∣
∣.

We also can define ρ by the formula

ρ(w) =
∣
∣
∣

m∑

k=1

ciw(sk)
∣
∣
∣, w ∈ C(H,R),

and then (20) holds for f and λ defined by (58) and (59), e.g., with J :
C(H,R) → R given by

J (w) = d +
m∑

k=1

ciw(sk), w ∈ C(H,R);

however, such semigauge ρ is not nondecreasing.
If

ρ(w) = max
k=1,...,m

|ciw(sk)|, w ∈ C(H,R),

then condition (20) holds for f and λ defined by (58) and (59), e.g., with
J ∈ {J1, . . . ,J6}, where

J1(w) = d + ρκ(w), J2(w) = d + max
k=1,...,m

ciw(sk),

J3(w) = d + max
k=1,...,m

ci|w(sk)|, J4(w) = d + min
k=1,...,m

ciw(sk),

J5(w) = d + min
k=1,...,m

|ciw(sk)|, J6(w) = d + min
k=1,...,m

ci|w(sk)|

for all w ∈ C(H,R).
The semigauge ρ can also be defined by the formula

ρm(w) =
∣
∣
∣ max

k=1,...,m
ciw(sk)

∣
∣
∣, w ∈ C(H,R),

and then (20) holds for f and λ defined by (58) and (59), with J : C(H,R) → R

given by

J (w) = d + max
k=1,...,m

ciw(sk), w ∈ C(H,R);
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however, ρ does not have to be nondecreasing then.
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