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Abstract. In this paper we deal with the class C of decomposable solvable
Lie groups having dimension six. We determine those Lie groups in C and
their subgroups which are the multiplication groups Mult(L) and the
inner mapping groups Inn(L) for three-dimensional connected simply
connected topological loops L. This result completes the classification
of the at most 6-dimensional solvable multiplication Lie groups of the
loops L. Moreover, we obtain that every at most 3-dimensional connected
topological proper loop having a solvable Lie group of dimension at most
six as its multiplication group is centrally nilpotent of class two.
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1. Introduction

The notion of the multiplication group Mult(L) and the inner mapping group
Inn(L) of a loop L was introduced and firstly investigated by A. A. Albert and
R. H. Bruck. Since their papers [1,2] much work has been done to study the
correspondences between the structure of the loop L and that of the groups
Mult(L) and Inn(L). In particular many results relate nilpotency and solvabil-
ity of loops to the analogous properties of their groups Mult(L) and Inn(L)
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([13,19,22,24,26]). M. Niemenmaa and T. Kepka established in [20] the neces-
sary and sufficient conditions for a group G to be the multiplication group of
L. In their criteria the existence of special transversals A and B with respect
to a subgroup K of G plays an important role. These transversals belong to
the sets of left and right translations of L whereas K corresponds to the in-
ner mapping group of L. For finite loops the importance of the permutation
groups Mult(L) and Inn(L) as well as the connected transversals A and B is
documented in many papers (cf. [3,4,16,18,21,25]).

Topological and differentiable loops are investigated thoroughly by P. T.
Nagy and K. Strambach in [17] as continuous and differentiable sections in Lie
groups. Part II of [17] is devoted to the explicit description and determina-
tion of topological and smooth loops on low dimensional manifolds. Following
their approach this article is a contribution to the study of connected topo-
logical loops L of dimension 3 having a solvable Lie group as their multipli-
cation group. Each 2-dimensional connected topological proper loop having a
Lie group as its multiplication group has nilpotency class two (cf. [5]). This
nilpotency property is valid for 3-dimensional connected topological loops L
having either a solvable Lie group of dimension at most 5 or a 6-dimensional
indecomposable solvable Lie group as their group Mult(L) (cf. [7,8,10,11]).
Furthermore, in the class of the at most 5-dimensional solvable non-nilpotent
Lie groups only decomposable groups occur as the multiplication group of L
(cf. [7]). In this paper we show that the centrally nilpotency of class two prop-
erty is satisfied for 3-dimensional topological loops L if the group Mult(L) is
a 6-dimensional decomposable solvable Lie group (cf. Propositions 3, 6).

The multiplication groups and the inner mapping groups of the connected
simply connected topological loops L with dim(L) = 3 in the class of the
solvable indecomposable Lie groups of dimension at most 6 are known (cf.
[8,9,11]). Theorems 1, 2 and Proposition 5 complete the classification of the
groups Mult(L) and Inn(L) for every solvable Lie group of dimension at most
6.

After the presentation of the necessary concepts, Proposition 2 shows
that the decomposable solvable Lie groups of dimension 6 with discrete cen-
tre are not the multiplication group of a 3-dimensional connected topological
loop. In section 4, respectively in 5 we treat the decomposable solvable Lie
groups having a 1-dimensional, respectively a 2-dimensional centre. Among
the 6-dimensional decomposable solvable Lie groups with 1-dimensional cen-
tre there are 18 families of Lie groups which are multiplication groups of 3-
dimensional connected simply connected topological loops L. In the class of
the 6-dimensional decomposable solvable Lie groups with 2-dimensional centre
9 families can be represented as the group Mult(L) of L. All these Lie groups
have 3-dimensional commutator subgroups (see Corollary 2) and depend on at
most two real parameters.
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2. Preliminaries

A set L with a binary operation (x, y) �→ x · y is called a loop if there exists
an element e ∈ L such that x = e · x = x · e holds for all x ∈ L and for each
x ∈ L the left translations λx : L → L, λx(y) = x · y and the right translations
ρx : L → L, ρx(y) = y · x are bijections of L. A loop L is proper if it is
not a group. The maps (x, y) �→ x\y = λ−1

x (y), respectively (x, y) �→ y/x =
ρ−1

x (y), x, y ∈ L are further binary operations on L. The permutation group
Mult(L) = 〈λx, ρx;x ∈ L〉 is called the multiplication group of L. The inner
mapping group Inn(L) of L is the stabilizer of the identity element e ∈ L in
Mult(L).

Let G be a group, let K be a subgroup of G, and let A and B be two left
transversals to K in G. We say that A and B are K-connected if a−1b−1ab ∈ K
for every a ∈ A and b ∈ B. The core CoG(K) of K in G is the largest normal
subgroup of G contained in K. If L is a loop, then Λ(L) = {λx;x ∈ L} and
P (L) = {ρx;x ∈ L} are Inn(L)-connected transversals in the group Mult(L).
Theorem 4.1 in [20] states the following necessary and sufficient conditions for
a group G to be the multiplication group of a loop L:

Proposition 1. A group G is isomorphic to the multiplication group of a loop
if and only if there exists a subgroup K with CoG(K) = 1 and K-connected
left transversals A and B satisfying G = 〈A,B〉.

The kernel of a homomorphism α : (L, ·) → (L′, ∗) of a loop L into a
loop L′ is a normal subloop N of L. The centre Z(L) of a loop L consists
of all elements z which satisfy the equations zx · y = z · xy, x · yz = xy ·
z, xz · y = x · zy, zx = xz for all x, y ∈ L. If we put Z0 = e, Z1 = Z(L)
and Zi/Zi−1 = Z(L/Zi−1), then we obtain a series of normal subloops of L.
If Zn−1 is a proper subloop of L but Zn = L, then L is centrally nilpotent of
class n.

A loop L is called classically solvable if there exists a series {e} = L0 ≤
L1 ≤ · · · ≤ Ln = L of subloops of L such that for every i = 1, 2, · · · , n, Li−1

is normal in Li and each factor loop Li/Li−1 is a commutative group.
We often use the following Lemma which is proved in Theorems 3, 4 and

5 of [1], in Lemma 1.3, IV.1 of [2], in Lemma 2.3 of [8] and in Proposition 2.7
of [20].

Lemma 1. Let L be a loop with multiplication group Mult(L), inner mapping
group Inn(L) and identity element e.

1. Let α be a homomorphism of the loop L onto the loop α(L) with kernel N .
Then α induces a homomorphism of the group Mult(L) onto the group
Mult(α(L)). The set M(N) = {m ∈ Mult(L); xN = m(x)N for all x ∈
L} is a normal subgroup of Mult(L) containing the multiplication group
Mult(N) of the loop N and the multiplication group of the factor loop
L/N is isomorphic to Mult(L)/M(N).
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2. For every normal subgroup N of Mult(L) the orbit N (e) is a normal
subloop of L and N ≤ M(N (e)).

3. The core of Inn(L) in Mult(L) is trivial and the normalizer of Inn(L)
in Mult(L) is the direct product Inn(L)×Z, where Z is the centre of the
group Mult(L).

A loop L is called topological if L is a topological space and the binary
operations (x, y) �→ x · y, (x, y) �→ x\y, (x, y) �→ y/x : L × L → L are continu-
ous. In general the multiplication group of a topological loop L is a topological
transformation group that does not have a natural (finite dimensional) differ-
entiable structure. We investigate a 3-dimensional connected topological loop
having a solvable Lie group as its multiplication group. The first assertion of
the following lemma is proved in [12], IX.1, the second assertion is showed in
[7], Lemma 5.

Lemma 2. For each connected topological loop there is a unique universal cov-
ering loop L. If L is a 3-dimensional connected simply connected topological
loop having a solvable Lie group as its multiplication group, then it is homeo-
morphic to R

3.

The elementary filiform Lie group Fn is the simply connected nilpotent
Lie group of dimension n ≥ 3 whose Lie algebra is elementary filiform, i.e. it
has a basis {e1, · · · , en} with [e1, ei] = ei+1 for 2 ≤ i ≤ n− 1. A 2-dimensional
simply connected topological loop LF is called an elementary filiform loop if
its multiplication group is an elementary filiform group Fn of dimension n ≥ 4
([6]).

A Lie algebra is called decomposable, if it is the direct sum of two proper
ideals. In this paper we assume that the multiplication group of L is a 6-
dimensional solvable decomposable Lie group or a nilpotent decomposable Lie
group of dimension ≤ 5. The next lemma summarizes the known results about
the 3-dimensional topological loops having solvable decomposable Lie groups
as their multiplication groups (cf. Lemmata 3.4, 3.5, 3.6 and Propositions 3.7,
3.8 in [6], pp. 390-393, Theorem 11 in [1], Theorem 6, Sections 4 and 5 in [7],
Propositions 2.6, 2.7 in [8], Lemma 6 (d) in [11], Chapter I in [2]) which are
often used in the paper.

Lemma 3. Let L be a 3-dimensional proper connected simply connected topolog-
ical loop such that its multiplication group Mult(L) is a 6-dimensional solvable
decomposable Lie group.
a) The centre Z of the group Mult(L) and the centre Z(L) = Z(e) of the

loop L, where e is the identity element of L, are isomorphic. Moreover,
the centre Z has dimension ≤ 2.

b) The loop L is classically solvable and it has a 1-dimensional connected
normal subloop N . Every such subloop N of L is isomorphic to R and
lies in a 2-dimensional connected normal subloop M of L. The factor
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loop L/M is isomorphic to R, whereas the loop M and the factor loop
L/N are isomorphic either to the Lie group R

2 or to the 2-dimensional
non-abelian Lie group L2 or to an elementary filiform loop LF .

c) If Mult(L) has discrete centre, then for every normal subloop N ∼= R of L
the factor loop L/N is isomorphic either to the group L2 or to a loop LF .
The group Mult(L) has a normal subgroup S containing Mult(N) ∼= R

such that the factor group Mult(L)/S is isomorphic to the direct product
L2 × L2 if L/I(e) ∼= L2, or to an elementary filiform Lie group Fn, n =
4, 5 if L/I(e) ∼= LF . The normal subloop M containing N is isomorphic
either to R

2 or to L2 or to LF . The group Mult(L) has a normal subgroup
V such that the orbit V (e) is the loop M , Mult(L)/V ∼= R, V contains
the inner mapping group Inn(L) of L, the group Mult(M) of M and the
commutator subgroup of Mult(L).

d) If dim(Z(L)) = 1, then for every normal subloop N ∼= R of L we have
one of the following possibilities:
(i) The factor loop L/N is isomorphic to R

2. Then L is centrally nilpo-
tent of class 2, N coincides with the centre Z(L) of L and the
group Mult(L) is a semidirect product of the normal subgroup P =
Z × Inn(L) ∼= R

4 by a group Q ∼= R
2 such that the orbit P (e) is

Z(L).
(ii) The factor loop L/N is isomorphic either to the Lie group L2 or

to a loop LF . Then case c) is fulfilled. In particular, if N = Z(L),
then M is not isomorphic to the group L2.

e) If dim(Z(L)) = 2, then L is centrally nilpotent of class 2 and the group
Mult(L) is a semidirect product of the normal subgroup V = Z×Inn(L) ∼=
R

5 by a group Q ∼= R, where R
2 = Z ∼= Z(L). V contains the commuta-

tor subgroup Mult(L)′ of Mult(L). The group Mult(L) is either nilpo-
tent or its Lie algebra has a 5-dimensional abelian nilradical. For every
1-dimensional connected subgroup I of Z the orbit I(e) is a connected
central subgroup of L isomorphic to R and the factor loop L/I(e) is iso-
morphic either to the group R

2 or to an elementary filiform loop LF . If
L/I(e) ∼= R

2, then case d) (i) holds. If L/I(e) ∼= LF , then the group
Mult(L) has a normal subgroup S containing I ∼= R such that one has
S(e) = I(e) and the factor group Mult(L)/S is isomorphic either to F4

or to F5. The case Mult(L)/S ∼= F5 occurs only if Mult(L) = R × F5.
f) If the group Mult(L) is nilpotent, then L is centrally nilpotent.

The next lemma, which is proved in [10], Proposition 3.3, is a useful tool
to exclude those Lie algebras which are not the Lie algebra of the multiplication
group of a 3-dimensional topological loop.

Lemma 4. Let L be a 3-dimensional proper connected simply connected topo-
logical loop having a 6-dimensional solvable Lie algebra g as the Lie algebra of
its multiplication group.
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a) For each 1-dimensional ideal i of g the orbit I(e), where I is the simply
connected Lie group of i, is a normal subgroup of L isomorphic to R. We
have one of the following possibilities:
(i) The factor loop L/I(e) is isomorphic to R

2. Then g contains the
ideal p = z ⊕ inn(L) ∼= R

4 such that the commutator ideal g′ of g
lies in p. Here z is the 1-dimensional centre of g and inn(L) is the
Lie algebra of the inner mapping group Inn(L).

(ii) The factor loop L/I(e) is isomorphic either to the group L2 or to a
loop LF . Then there exists an ideal s of g such that i ≤ s and the
factor Lie algebra g/s is isomorphic either to l2 ⊕ l2, where l2 is the
2-dimensional solvable non-abelian Lie algebra, or to an elementary
filiform Lie algebra fn, n = 4, 5.

b) Let a be an ideal of g such that dim(a) = 2, a ⊆ g′ and the factor Lie
algebra g/a is isomorphic neither to l2⊕l2 nor to f4. Then the orbit A(e),
where A is the simply connected Lie group of a, is either a 2-dimensional
connected normal subloop M of L or the factor loop L/A(e) is isomorphic
to R

2.

If A(e) = M , then there exists a 5-dimensional ideal v of g containing the
Lie algebra inn(L), the Lie algebra mult(M) of the multiplication group of M
and the commutator ideal g′ of g. Let b be an ideal of g such that dim(b) ≥ 3,
a ⊂ b ⊆ g′. Then the orbit B(e), where B is the simply connected Lie group of
b, coincides with M . One has a∩inn(L) = {0} and the intersection b∩inn(L)
has dimension dim(b) − 2.

If the factor loop L/A(e) is isomorphic to R
2, then we have case (i).

3. The Case dim(Z)=0

This section is devoted to prove the following:

Proposition 2. The 6-dimensional decomposable solvable Lie algebras with triv-
ial centre are not the Lie algebra of the multiplication group of a connected
topological loop L of dimension 3.

Proof. We may assume that the loop L is simply connected and hence it is
homeomorphic to R

3 (cf. Lemma 2). Since the Lie algebra mult(L) of the group
Mult(L) of L is a 6-dimensional decomposable solvable Lie algebra with trivial
centre, for mult(L) we have the following possibilities: l2 ⊕ l2 ⊕ l2, g3,i ⊕ g3,j ,
l2 ⊕ g4,k, where g3,i, g3,j , i, j ∈ {2, 3, 4, 5}, are the 3-dimensional solvable Lie
algebras with trivial centre (cf. §4 in [14], p. 119), g4,k, k = 2, 4, 5, 6, 7, 10,
gh�=−1
4,8 , gp�=0

4,9 are the 4-dimensional solvable Lie algebras with trivial centre
(see §5 in [14], pp. 120-121). These Lie algebras have trivial centre and neither
a subalgebra nor a factor Lie algebra is isomorphic to an elementary filiform
Lie algebra fn, n = 4, 5.
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The Lie algebras mult(L) = l2 ⊕ g4,k, k = 2, 4, 5, 6, 7, 10, l2 ⊕ gh�=−1
4,8 ,

l2 ⊕ gp�=0
4,9 , where l2 = 〈f1, f2〉, have the 1-dimensional ideal i = 〈f1〉. There

does not exist any ideal s of mult(L) such that i ⊆ s and mult(L)/s is
isomorphic to the Lie algebra l2 ⊕ l2. By Lemma 3 c) these Lie algebras are
not the Lie algebra of the multiplication group of a loop L.

Now we treat the Lie algebras gi,j = g3,i ⊕g3,j = 〈e1, e2, e3〉⊕〈e4, e5, e6〉,
i, j ∈ {2, 3, 4, 5}. Let be j = 5. The Lie algebra g3,5, respectively g4,5 is defined
by [e1, e3] = e1, [e2, e3] = he2, [e4, e6] = pe4 − e5, [e5, e6] = e4 + pe5, p ≥ 0,
where h = 1, respectively −1 ≤ h < 1, whereas the Lie algebra g2,5 is given
by [e1, e3] = e1, [e2, e3] = e1 + e2, [e4, e6] = pe4 − e5, [e5, e6] = e4 + pe5, p ≥ 0.
They have the 1-dimensional ideal i = 〈e1〉. There does not exist any ideal s
of gi,5, i = 2, 3, 4, such that i ⊆ s and gi,5/s is isomorphic to the Lie algebra
l2 ⊕ l2. The Lie algebra g5,5 defined by [e1, e3] = p1e1 − e2, [e2, e3] = e1 +p1e2,
[e4, e6] = p2e4 − e5, [e5, e6] = e4 + p2e5 with p1, p2 ≥ 0 has the minimal ideals
s1 = 〈e1, e2〉, s2 = 〈e4, e5〉. Let Si, i = 1, 2, be the simply connected Lie
groups of si. If g5,5 were the Lie algebra of the multiplication group of L, then
by Lemma 3 b) and c) at least one of the orbits Si(e), i = 1, 2, would be a
normal subloop of L isomorphic to R. For this orbit the factor loop L/Si(e) is
isomorphic to the group L2. Since the factor Lie algebras g5,5/si, i = 1, 2, are
not isomorphic to the Lie algebra l2 ⊕ l2 the Lie algebra g5,5 is excluded (cf.
Lemma 4 (ii)).

The Lie algebras g3,3, g3,4, g4,4 are defined by [e1, e3] = e1, [e2, e3] =
h1e2, [e4, e6] = e4, [e5, e6] = h2e5 such that for g3,3 one has h1 = h2 = 1, for
g3,4 one has h1 = 1, −1 ≤ h2 < 1 and for g4,4 one has −1 ≤ h1, h2 < 1. The
Lie algebra g2,3, respectively g2,4 is given by [e1, e3] = e1, [e2, e3] = e1 + e2,
[e4, e6] = e4, [e5, e6] = h2e5, where h2 = 1, respectively −1 ≤ h2 < 1. The
Lie algebra g2,2 is defined by [e1, e3] = e1, [e2, e3] = e1 + e2, [e4, e6] = e4,
[e5, e6] = e4 + e5. All these Lie algebras have the ideals i1 = 〈e1〉, i2 = 〈e4〉.
Additionally, the Lie algebra g3,3 has the ideals i3 = 〈e2+l1e1〉, i4 = 〈e5+l2e4〉,
l1, l2 ∈ R, the Lie algebra g4,4 has the ideals i5 = 〈e2〉, i6 = 〈e5〉, the Lie algebra
g2,3 has the ideal i4, the Lie algebra g2,4 has the ideal i6, and the Lie algebra
g3,4 has the ideals i3, i6. All Lie algebras have the ideal s1 = 〈e1, e4〉 containing
i1, i2, such that the factor Lie algebras gi,j/s1, i, j ∈ {2, 3, 4} are isomorphic to
l2⊕l2. Furthermore, the Lie algebra g3,3 has the ideal s2 = 〈e2+l1e1, e5+l2e4〉,
the Lie algebra g4,4 has the ideal s3 = 〈e2, e5〉, the Lie algebra g2,3 has the
ideal s4 = 〈e1, e5 + l2e4〉, the Lie algebra g2,4 has the ideal s5 = 〈e1, e5〉 and
the Lie algebra g3,4 has the ideal s6 = 〈e2 + l1e1, e5〉 such that the factor Lie
algebras g3,3/s2, g4,4/s3, g2,3/s4, g2,4/s5, g3,4/s6 are isomorphic to l2 ⊕ l2.
If gi,j , i, j ∈ {2, 3, 4}, is the Lie algebra of the multiplication group of a 3-
dimensional topological loop L, then the orbits Ik(e), k = 1, · · · , 6, where
Ik = exp(ik) and e is the identity element of L, are 1-dimensional normal
subgroups of L isomorphic to R and the factor loops L/Ik(e) are isomorphic
to L2 (cf. Lemma 4 (ii)). All Lie algebras gi,j , i, j ∈ {2, 3, 4}, have the ideals
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s7 = 〈e1, e2〉, s8 = 〈e4, e5〉 such that the factor Lie algebras gi,j/sl, l = 7, 8, are
not isomorphic to l2 ⊕ l2. Hence the orbits Sl(e), where Sl = exp(sl), l = 7, 8,
and e is the identity element of L, are 2-dimensional normal subloops of L and
therefore one has sl ∩ inn(L) = {0}, l = 7, 8 (cf. Lemma 4). All Lie algebras
gi,j , i, j ∈ {2, 3, 4}, have the commutator subalgebra n1 = 〈e1, e2, e4, e5〉. Their
5-dimensional ideals are v1 = 〈e1, e2, e4, e5, e3〉, v2,k = 〈e1, e2, e4, e5, e6 + ke3〉,
k ∈ R. Denote by N1 the simply connected Lie group of n1. By Lemma 4
b) we have N1(e) = Sl(e), l = 7, 8. Therefore the intersection n1 ∩ inn(L)
has dimension 2. Hence the Lie algebra inn(L) has the basis elements r1 =
e4 + a1e1 + a2e2, r2 = e5 + b1e1 + b2e2 such that at least one of a1, a2 as well
as b1, b2 are different from 0 and a1b2 − a2b1 �= 0.

All Lie algebras gi,j , i, j ∈ {2, 3, 4}, have the ideals n2 = 〈e1, e2, e3〉,
n3 = 〈e4, e5, e6〉. As s7 < n2 and s8 < n3 the orbits Nj(e), where Nj =
exp(nj), j = 2, 3, have dimension 2 or 3. If S7(e) = N2(e) or S8(e) = N3(e),
then one has dim(n2 ∩ inn(L)) = 1 or dim(n3 ∩ inn(L)) = 1. Hence the Lie
algebra inn(L) has the basis element either r3 = e3 + c1e1 + c2e2 or r′

3 = e6 +
d1e4 + d2e5, ci, di ∈ R, i = 1, 2. Since [r1, r3], respectively [r2, r′

3] is a non-zero
element of the ideal s7, respectively s8, the subspaces 〈r1, r2, r3〉, 〈r1, r2, r′

3〉
are not 3-dimensional subalgebras of gi,j , i, j ∈ {2, 3, 4}. This contradiction
gives that N2(e) = L and N3(e) = L. As n2 < v1 and n3 < v2,0 we obtain
that N2(e) = V1(e) = V2,0(e) = N3(e) = L. By Lemma 3 c) there exists a
parameter k ∈ R \ {0} such that V2,k(e) is the 2-dimensional normal subloop
S7(e) = S8(e). Hence one has dim(v2,k∩inn(L)) = 3. Therefore the Lie algebra
inn(L) has the basis element r4 = e6 + ke3 + l1e1 + l2e2 for some k ∈ R \ {0},
li ∈ R, i = 1, 2.

The subspace 〈r1, r2, r4〉 is not a 3-dimensional subalgebra of the Lie
algebras g2,3, g2,4, g3,4. Hence these Lie algebras cannot be the Lie algebra of
the group Mult(L) of L.

The subspace 〈r1, r2, r4〉 forms a 3-dimensional subalgebra of g2,2 if and
only if k = 1, a2 = 0 and b2 = a1 �= 0. Hence the subalgebra inn(L) < g2,2 has
the form inn(L) = 〈e4 + a1e1, e5 + b1e1 + a1e2, e6 + e3 + l1e1 + l2e2〉, a1 �= 0,
b1, li ∈ R.

The subspace 〈r1, r2, r4〉 forms a 3-dimensional subalgebra of g3,3 if and
only if k = 1. Hence the subalgebra inn(L) < g3,3 has the form inn(L) =
〈e4 + a1e1 + a2e2, e5 + b1e1 + b2e2, e6 + e3 + l1e1 + l2e2〉 such that at least one
of a1, a2 as well as b1, b2 are different from 0 and a1b2 − a2b1 �= 0.

The subspace 〈r1, r2, r4〉 forms a 3-dimensional subalgebra of g4,4 if and
only if one has either a1 = 0 = b2, k = h2 = 1

h1
, or a2 = 0 = b1, k = 1,

h2 = h1. Therefore the subalgebra inn(L) < g4,4 has either the form inn(L) =
〈e4 + a2e2, e5 + b1e1, e6 + ke3 + l1e1 + l2e2〉 such that a2b1 �= 0, k = h2 = 1

h1
,

or inn(L) = 〈e4 + a1e1, e5 + b2e2, e6 + e3 + l1e1 + l2e2〉 such that a1b2 �= 0,
h1 = h2.
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Using the automorphism φ(e1) = b2e1−a2e2
a1b2−a2b1

, φ(e2) = b1e1−a1e2
a2b1−a1b2

, φ(e3) =
e3 − l1φ(e1)− l2φ(e2), φ(ei) = ei, i = 4, 5, 6, of the Lie algebras gi,i, i = 2, 3, 4,
such that for g2,2 one has a2 = 0, b2 = a1 �= 0 and for g4,4 we have a2 = b1 = 0,
h2 = h1, we can reduce inn(L) to inn(L)1 = 〈e4+e1, e5+e2, e6+e3〉. Moreover,
the automorphism φ(e1) = 1

b1
e1, φ(e2) = 1

a2
e2, φ(e3) = e3 − h1l1

b1
e1 − h1l2

a2
e2,

φ(ei) = ei, i = 4, 5, 6, of the Lie algebra g4,4 with h2 = 1
h1

reduces inn(L) to
inn(L)2 = 〈e4 + e2, e5 + e1, e6 + 1

h1
e3〉. Linear representations of the simply

connected Lie groups Gi,i, i = 2, 3, 4, are given as follows: for G2,2 one has

g(x1, x2, x3, x4, x5, x6)g(y1, y2, y3, y4, y5, y6)
= g(x1 + (y1 + x3y2)ex3 , x2 + y2e

x3 , x3 + y3, x4

+(y4 + x6y5)ex6 , x5 + y5e
x6 , x6 + y6),

for G3,3, where h1 = 1, and for G4,4 with h2 = h1 we have

g(x1 + y1e
x3 , x2 + y2e

h1x3 , x3 + y3, x4 + y4e
x6 , x5 + y5e

h1x6 , x6 + y6),

for G4,4, where h2 = 1
h1

, one has

g(x1 + y1e
x3 , x2 + y2e

h1x3 , x3 + y3, x4 + y4e
x6 , x5 + y5e

x6
h1 , x6 + y6).

We get that the subgroup Inn(L)1 of G2,2, G3,3 and G4,4 with h2 = h1 has the
form Inn(L)1 = {g(u1, u2, u3, u1, u2, u3);ui ∈ R}, i = 1, 2, 3, and the subgroup
Inn(L)2 of G4,4 with h2 = 1

h1
is Inn(L)2 = {g(u2, u1,

1
h1

u3, u1, u2, u3);ui ∈
R}, i = 1, 2, 3. Two arbitrary left transversals to the groups Inn(L)1 and
Inn(L)2 in Gi,i, i = 2, 3, 4, are

A = {g(u, v, w, f1(u, v, w), f2(u, v, w), f3(u, v, w)) : u, v, w ∈ R},

B = {g(k, l,m, g1(k, l,m), g2(k, l,m), g3(k, l,m)) : k, l,m ∈ R},

where fi(u, v, w) : R3 → R and gi(k, l,m) : R3 → R, i = 1, 2, 3, are continuous
functions with fi(0, 0, 0) = gi(0, 0, 0) = 0. For all a ∈ A, b ∈ B the condition
a−1b−1ab ∈ Inn(L)1 holds if and only if in the cases G2,2, G3,3 with h1 = 1
and G4,4 with h2 = h1 the equation

le−h1m(1 − e−h1w) + ve−h1w(e−h1m − 1)

= g2(k, l,m)e−h1g3(k,l,m)(1 − e−h1f3(u,v,w))

+f2(u, v, w)e−h1f3(u,v,w)(e−h1g3(k,l,m) − 1), (1)

and additionally for G2,2 the equation

e−m(1 − e−w)(k − lm) + e−w(e−m − 1)(u − vw) + (wl − mv)e−w−m

= e−g3(k,l,m)(1 − e−f3(u,v,w))(g1(k, l,m) − g2(k, l,m)g3(k, l,m))

+e−f3(u,v,w)(e−g3(k,l,m) − 1)(f1(u, v, w) − f2(u, v, w)f3(u, v, w))

+(g2(k, l,m)f3(u, v, w) − f2(u, v, w)g3(k, l,m))e−f3(u,v,w)−g3(k,l,m),

(2)
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for G3,3 with h1 = 1 and for G4,4 with h2 = h1 the equation

ke−m(1 − e−w) + ue−w(e−m − 1)

= g1(k, l,m)e−g3(k,l,m)(1 − e−f3(u,v,w))

+f1(u, v, w)e−f3(u,v,w)(e−g3(k,l,m) − 1) (3)

are satisfied for all k, l,m, u, v, w ∈ R. The products a−1b−1ab are contained
in Inn(L)2 if and only if the equations

le−h1m(1 − e−h1w) + ve−h1w(e−h1m − 1)

= g1(k, l,m)e−g3(k,l,m)(1 − e−f3(u,v,w))

+f1(u, v, w)e−f3(u,v,w)(e−g3(k,l,m) − 1), (4)
ke−m(1 − e−w) + ue−w(e−m − 1)

= g2(k, l,m)e− 1
h1

g3(k,l,m)(1 − e− 1
h1

f3(u,v,w))

+f2(u, v, w)e− 1
h1

f3(u,v,w)(e− 1
h1

g3(k,l,m) − 1) (5)

are satisfied for all u, v, w, k, l,m ∈ R. Equation (1), respectively (4) is sat-
isfied precisely if one has f3(u, v, w) = w, f2(u, v, w) = v, g3(k, l,m) = m,
g2(k, l,m) = l, respectively f3(u, v, w) = h1w, f1(u, v, w) = v, g3(k, l,m) =
h1m, g1(k, l,m) = l. Then A ∪ B does not generate the groups Gi,i, i = 2, 3,
G4,4 with h2 = h1 and G4,4 with h2 = 1

h1
. By Proposition 1 the Lie algebras

gi,i, i = 2, 3, g4,4 with h2 = h1 and with h2 = 1
h1

, are not the Lie algebras of
the groups Mult(L) of 3-dimensional topological loops L.

Hence it remains to deal with the Lie algebra g = l2 ⊕ l2 ⊕ l2 = 〈f1, f2〉⊕
〈f3, f4〉⊕〈f5, f6〉 with the Lie brackets [f1, f2] = f1, [f3, f4] = f3, [f5, f6] = f5.
The Lie algebra g has the 1-dimensional ideals i1 = 〈f1〉, i2 = 〈f3〉, i3 = 〈f5〉.
The ideals s1 = 〈f1, f2〉, s2 = 〈f3, f4〉, s3 = 〈f5, f6〉 have the properties ij ⊂ sj

and g/sj , j = 1, 2, 3, are isomorphic to l2 ⊕ l2. If g is the Lie algebra of
the multiplication group of L, then the orbits Ij(e), j = 1, 2, 3, where Ij is
the simply connected Lie group of ij and e is the identity element of L, are
1-dimensional normal subloops of L such that the factor loops L/Ij(e) are
isomorphic to the 2-dimensional non-abelian Lie group L2 (cf. Lemma 4 a)
(ii)).

For the ideals a1 = 〈f1, f3〉, a2 = 〈f1, f5〉, a3 = 〈f3, f5〉 the factor Lie
algebras g/aj , j = 1, 2, 3, are not isomorphic to l2 ⊕ l2. Hence these ideals
and the commutator ideal g′ = 〈f1, f3, f5〉 satisfy the condition of Lemma
4 b). Therefore the orbits Aj(e) and G′(e), where Aj , respectively G′ is the
simply connected Lie group of aj , j = 1, 2, 3, respectively g′, are the same 2-
dimensional normal subloop M of L. Furthermore, one has inn(L) ∩ aj = {0}
for all j = 1, 2, 3 and dim(g′ ∩ inn(L)) = 1. The commutator subalgebra
inn(L)′ of inn(L) is the intersection g′ ∩ inn(L). As every element of inn(L)′

is contained in one of the ideals aj and inn(L) ∩ aj = {0} for all j = 1, 2, 3,
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the Lie algebra inn(L) is abelian. The 5-dimensional ideals of g are:

v1 = 〈f1, f3, f5, f2 + k1f6, f4 + k2f6〉, v2 = 〈f1, f3, f5, f2 + k3f4, f6 + k4f4〉,
v3 = 〈f1, f3, f5, f4 + k5f2, f6 + k6f2〉, ki ∈ R, i = 1, . . . , 6.

Each 3-dimensional abelian subalgebra of a 5-dimensional ideal vj , j = 1, 2, 3,
contains a non-trivial ideal of g. Hence the Lie algebra g = l2 ⊕ l2 ⊕ l2 is
not the Lie algebra of the multiplication group of a 3-dimensional topological
loop. �

Corollary 1. There does not exist any connected topological proper loop L of
dimension ≤ 3 having a solvable Lie group of dimension ≤ 6 with discrete
centre as the multiplication group of L.

Proof. A nilpotent multiplication Lie group has always non-discrete centre
(cf. [5], Theorem 1 and [8], Theorem). Let dim(L) = 3. If the multiplication
group of L is solvable and has dimension ≤ 5, then it is decomposable having
1- or 2-dimensional centre (see Propositions 12, 13, 14, 15, 17 in [7]). For 6-
dimensional solvable Lie groups the assertion follows from Theorems 3.6, 3.7
in [8], Proposition 13 in [11] and Proposition 2. �

4. The Case dim(Z)=1

In this section we determine the 6-dimensional decomposable solvable Lie
groups with 1-dimensional centre which are the multiplication group Mult(L)
of a 3-dimensional connected simply connected topological loop L. These loops
have a centre Z(L) ∼= R such that the factor loop L/Z(L) is isomorphic to R

2.

Proposition 3. Let L be a connected topological loop of dimension 3 such that
its multiplication group Mult(L) is a 6-dimensional decomposable solvable Lie
group with 1-dimensional centre. Then L has nilpotency class 2. Moreover, the
following Lie algebra pairs can occur as the Lie algebra g of the group Mult(L)
and the subalgebra k of the subgroup Inn(L):
If g has the form g = R ⊕ h = 〈f1〉 ⊕ 〈e1, e2, e3, e4, e5〉, where h is a 5-
dimensional solvable indecomposable Lie algebra with trivial centre, then:

– g1 = R⊕gα=0,β �=0
5,19 : [e2, e3] = e1, [e1, e5] = e1, [e2, e5] = e2, [e4, e5] = βe4,

k1,ε = 〈e1 + f1, e2 + εf1, e4 + f1〉, ε = 0, 1,
– g2 = R⊕gα=0

5,20 : [e2, e3] = e1, [e1, e5] = e1, [e2, e5] = e2, [e4, e5] = e1 + e4,
k2,ε = 〈e1 + f1, e2 + εf1, e4 + a3f1〉, a3 ∈ R, ε = 0, 1,

– g3 = R ⊕ g5,27: [e2, e3] = e1, [e1, e5] = e1, [e3, e5] = e3 + e4, [e4, e5] =
e1 + e4, k3 = 〈e1 + f1, e3, e4 + a3f1〉, a3 ∈ R,

– g4 = R⊕gα=0
5,28 : [e2, e3] = e1, [e1, e5] = e1, [e3, e5] = e3 + e4, [e4, e5] = e4,

k4 = 〈e1 + a1f1, e3, e4 + f1〉, a1 ∈ R\{0},
– g5 = R ⊕ g5,32: [e2, e4] = e1, [e3, e4] = e2, [e1, e5] = e1, [e2, e5] = e2,

[e3, e5] = he1 + e3, k5 = 〈e1 + f1, e2 + a2f1, e3〉, h, a2 ∈ R,
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– g6 = R ⊕ g5,33: [e1, e4] = e1, [e3, e4] = βe3, [e2, e5] = e2, [e3, e5] = γe3,
β2 + γ2 �= 0, k6 = 〈e1 + f1, e2 + f1, e3 + f1〉,

– g7 = R ⊕ g5,34: [e1, e4] = αe1, [e2, e4] = e2, [e3, e4] = e3, [e1, e5] = e1,
[e3, e5] = e2, k7 = 〈e1 + f1, e2 + f1, e3 + a3f1〉, α, a3 ∈ R,

– g8 = R ⊕ g5,35: [e1, e4] = he1, [e2, e4] = e2, [e3, e4] = e3, [e1, e5] = αe1,
[e2, e5] = −e3, [e3, e5] = e2, h2+α2 �= 0, k8,1 = 〈e1+f1, e2+f1, e3+a3f1〉,
a3 ∈ R, k8,2 = 〈e1 + f1, e2, e3 + f1〉.

If g is the Lie algebra l2 ⊕ n = 〈f1, f2〉 ⊕ 〈e1, e2, e3, e4〉, where n is a 4-
dimensional solvable Lie algebra with 1-dimensional centre 〈e1〉, then:

– g9 = l2 ⊕g4,1: [f1, f2] = f1, [e2, e4] = e1, [e3, e4] = e2, k9 = 〈f1 +e1, e2 +
a2e1, e3〉, a2 ∈ R,

– g10 = l2 ⊕ g4,3: [f1, f2] = f1, [e1, e4] = e1, [e3, e4] = e2, k10 = 〈f1 +
e2, e1 + e2, e3〉.

If g is either the Lie algebras g3,1 ⊕ g3,i or l2 ⊕ R ⊕ g3,i, i = 2, 3, 4, 5, where
g3,1 = 〈e1, e2, e3〉 is the 3-dimensional nilpotent Lie algebra having the centre
〈e1〉 and g3,i = 〈e4, e5, e6〉 is a 3-dimensional solvable Lie algebra with trivial
centre, then:

– g11 = g3,1 ⊕ g3,2: [e2, e3] = e1, [e4, e6] = e4, [e5, e6] = e4 + e5, k11,1 =
〈e2, e4 + e1, e5〉, k11,2 = 〈e3, e4 + e1, e5〉,

– g12 = g3,1 ⊕ g3,3: [e2, e3] = e1, [e4, e6] = e4, [e5, e6] = e5, k12,1 =
〈e2, e4 + e1, e5 + e1〉, k12,2 = 〈e3, e4 + e1, e5 + e1〉,

– g13 = g3,1 ⊕ g3,4: [e2, e3] = e1, [e4, e6] = e4, [e5, e6] = he5, −1 ≤ h < 1,
h �= 0, k13,1 = 〈e2, e4 + e1, e5 + e1〉, k13,2 = 〈e3, e4 + e1, e5 + e1〉,

– g14 = g3,1 ⊕ g3,5: [e2, e3] = e1, [e4, e6] = pe4 − e5, [e5, e6] = e4 + pe5,
p ≥ 0, k14,1 = 〈e2, e4 + e1, e5 + a3e1〉, k14,2 = 〈e3, e4 + e1, e5 + a3e1〉,
a3 ∈ R\{0}, k14,3 = 〈e2, e4, e5 + e1〉, k14,4 = 〈e3, e4, e5 + e1〉,

– g15 = l2 ⊕ R ⊕ g3,2: [f1, f2] = f1, [e4, e6] = e4, [e5, e6] = e4 + e5, k15 =
〈f1 + e3, e4 + e3, e5〉,

– g16 = l2 ⊕ R ⊕ g3,3: [f1, f2] = f1, [e4, e6] = e4, [e5, e6] = e5, k16 =
〈f1 + e3, e4 + e3, e5 + e3〉,

– g17 = l2⊕R⊕g3,4: [f1, f2] = f1, [e4, e6] = e4, [e5, e6] = he5, −1 ≤ h < 1,
h �= 0, k17 = 〈f1 + e3, e4 + e3, e5 + e3〉,

– g18 = l2⊕R⊕g3,5: [f1, f2] = f1, [e4, e6] = pe4−e5, [e5, e6] = e4+pe5, p ≥
0, k18,1 = 〈f1+e3, e4+e3, e5+a3e3〉, a3 ∈ R, k18,2 = 〈f1+e3, e4, e5+e3〉.

Proof. By Lemma 2 we may assume that the loop L is simply connected and
hence it is homeomorphic to R

3. Every 6-dimensional decomposable solvable
Lie algebra with 1-dimensional centre has one of the following forms: R ⊕ h,
l2⊕n, g3,1⊕g3,i, and l2⊕R⊕g3,i, where h, n, g3,i are described in the assertion.
For h we have the possibilities: g5,i, i = 7, 9, 11, 12, 13, 16, 17, 18, 21, 23, 24,
27, 31, 32, 33, 34, 35, 36, 37 and gγ �=0

5,15 , gα=0
5,j , j = 19, 20, 28, gp�=0

5,k , k = 25, 26,
gh�=−2
5,30 . For n one has the following Lie algebras g4,i, i = 1, 3, gh=−1

4,8 , gp=0
4,9 and
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for the 3-dimensional solvable Lie algebras with trivial centre we have g3,i,
i = 2, 3, 4, 5 (cf. [14], §4, §5, and [15], §10, p. 105-106).

To prove the first assertion we have to show that L has a normal subloop
N isomorphic to R such that the factor loop L/N is isomorphic to R

2 (cf.
Lemma 3 b) and d)). Assume first that the Lie algebra of the multiplication
group of L has the form R⊕h = 〈f1〉⊕〈e1, e2, e3, e4, e5〉. If h �= g5,i, i = 33, 34,
then there does not exist any ideal s containing the centre z = 〈f1〉 such
that the factor Lie algebras (R ⊕ h)/s are isomorphic to fn, n = 4, 5 or to
l2 ⊕ l2. According to Lemma 4 a) the factor loop L/Z(e), where Z = exp(z),
is isomorphic to R

2 and the orbit Z(e) is the normal subloop N .
The Lie algebras R⊕ g5,i, i = 33, 34, have no factor Lie algebras isomor-

phic to fn, n = 4, 5. The Lie algebra R ⊕ g5,34 has the 1-dimensional ideal
i = 〈e1〉. None of the factor Lie algebras R ⊕ g5,34/s, where s is any ideal
containing i, is isomorphic to l2 ⊕ l2. Therefore the orbit I(e), where I is the
simply connected Lie group of i, can be chosen as the normal subloop N .

The Lie algebra R⊕g5,33, β2+γ2 �= 0, have the ideals i1 = 〈f1〉, i2 = 〈e1〉,
i3 = 〈e2〉, i4 = 〈e3〉. If R⊕g5,33 is the Lie algebra of the multiplication group of
L, then the orbits Ij(e), j ∈ {1, 2, 3, 4}, are normal subgroups of L isomorphic
to R. The factor loops L/Ij(e), j ∈ {1, 2, 3, 4}, are isomorphic either to L2 or to
R

2 (cf. Lemma 4 a). If all factor loops L/Ij(e), j ∈ {1, 2, 3, 4}, are isomorphic
to L2, then by Lemma 4 a) (ii) there are 2-dimensional ideals sj , j ∈ {1, 2, 3, 4},
such that ij ⊂ sj and the factor Lie algebras R ⊕ g5,33/sj are isomorphic to
l2 ⊕ l2. For the ideal s1 = s4 = 〈f1, e3〉 one has R⊕ g5,33/sl

∼= l2 ⊕ l2, l = 1, 4.
The factor Lie algebra R⊕ g5,33/〈f1, e1〉 is isomorphic to l2 ⊕ l2 if and only if
γ = 0 and R ⊕ g5,33/〈f1, e2〉 is isomorphic to l2 ⊕ l2 precisely if β = 0. This
contradiction to β2+γ2 �= 0 yields that at least one of the factor loops L/Ij(e),
j ∈ {1, 2, 3, 4}, is isomorphic to R

2. For such j ∈ {1, 2, 3, 4} the orbit Ij(e) is
the requested normal subgroup N of L.

Hence L is centrally nilpotent of class 2. By Lemma 4 a) (i) the Lie
algebra R ⊕ h has a 4-dimensional abelian ideal p = z ⊕ k, where z = 〈f1〉
and k is the Lie algebra of the group Inn(L) and p contains the commutator
subalgebra of R ⊕ h. According to 3. of Lemma 1 the subalgebra k does not
contain any non-zero ideal of g and the normalizer Ng(k) of k in g is p. The
commutator subalgebra of R⊕h coincides with the commutator subalgebra h′

of h. The intersection of z and h′ is trivial. Since h′ ⊂ p the Lie algebra h has
a 3-dimensional abelian commutator subalgebra. Then for the triples (g,p,k)
we obtain:

(a) The Lie algebras R⊕gα=0
5,j , j = 19, 20, have the ideal p = 〈f1, e1, e2, e4〉,

the subalgebra k has the form: ka1,a2,a3 = 〈e1 + a1f1, e2 + a2f1, e4 + a3f1〉,
ai ∈ R, i = 1, 2, 3, such that:
in the case R⊕gα=0

5,19 one has a1a3 �= 0 since 〈e1〉 and 〈e4〉 are ideals of R⊕gα=0
5,19 ,

in the case R ⊕ gα=0
5,20 we have a1 �= 0 since 〈e1〉 is an ideal of R ⊕ gα=0

5,20 .
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Applying the automorphism φ(f1) = f1, φ(e1) = a1e1, φ(e2) = e2,
φ(e3) = a1e3, φ(e4) = a3e4, φ(e5) = e5 for the Lie algebra R ⊕ gα=0

5,19 if
a2 = 0, respectively φ(e2) = a2e2, φ(e3) = a1

a2
e3 if a2 �= 0 we can reduce

ka1,a2,a3 to k1,ε, where ε is equal to 0, respectively to 1. Using the automor-
phism φ(f1) = 1

a1
f1, φ(ei) = ei, i = 1, 2, 3, 4, 5, for the Lie algebra R ⊕ gα=0

5,20

if a2 = 0, respectively φ(f1) = f1, φ(ej) = a1ej , j = 1, 4, φ(e2) = a2e2,
φ(e3) = a1

a2
e3, φ(e5) = e5 if a2 �= 0 the Lie algebra ka1,a2,a3 reduces to k2,ε,

where ε is equal to 0, respectively to 1.
(b) For the Lie algebras R⊕g5,27 and R⊕gα=0

5,28 we have p = 〈f1, e1, e3, e4〉,
the subalgebra k has the form: ka1,a2,a3 = 〈e1 + a1f1, e3 + a2f1, e4 + a3f1〉,
ai ∈ R, i = 1, 2, 3, such that:

in the case R ⊕ g5,27 one has a1 �= 0, since 〈e1〉 is an ideal of R ⊕ g5,27,

in the case R⊕gα=0
5,28 one has a1a3 �= 0 since 〈e1〉 and 〈e4〉 are ideals of R⊕gα=0

5,28 .
Using the automorphism φ(f1) = f1, φ(ei) = a1ei, i = 1, 4, φ(ej) = ej , j = 2, 5,
φ(e3) = a1e3 + a2e1 for R ⊕ g5,27, respectively φ(e1) = a1a3e1, φ(e2) = a1e2,
φ(e3) = a3e3 + a2e4, φ(e4) = a3e4 for R⊕ gα=0

5,28 we can reduce ka1,a2,a3 to k3,
respectively to k4 in the assertion.

(c) The Lie algebras R ⊕ g5,i, i = 32, 33, 34, 35, have p = 〈f1, e1, e2, e3〉
and the subalgebra k has the form: ka1,a2,a3 = 〈e1 +a1f1, e2 +a2f1, e3 +a3f1〉,
ai ∈ R, i = 1, 2, 3, such that:

in the case R ⊕ g5,32 we have a1 �= 0 since 〈e1〉 is an ideal of R ⊕ g5,32,

in the case R⊕ g5,33 we have a1a2a3 �= 0 since 〈e1〉, 〈e2〉 and 〈e3〉 are ideals of
R ⊕ g5,33,

in the case R ⊕ g5,34 we have a1a2 �= 0 since 〈e1〉, 〈e2〉 are ideals of R ⊕ g5,34,
in the case R ⊕ g5,35 we have a1 �= 0 and at least one of {a2, a3} is different
from 0 since 〈e1〉 and 〈e2, e3〉 are ideals of R ⊕ g5,35.
The automorphism φ(f1) = f1, φ(ei) = a1ei, i = 1, 2, φ(e3) = a1e3 + a3e1
and φ(ej) = ej , j = 4, 5 for R ⊕ g5,32, respectively φ(e2) = a2e2, φ(e3) = a3e3
for R ⊕ g5,33, respectively φ(es) = a2es, s = 2, 3 for R ⊕ g5,34 reduces the Lie
algebra ka1,a2,a3 to k5, respectively to k6, respectively to k7 in the assertion.
Applying the automorphism φ(f1) = f1, φ(e1) = a1e1, φ(ei) = a2ei, i = 2, 3
and φ(ej) = ej , j = 4, 5, for the Lie algebra R⊕ g5,35 if a1a2 �= 0, respectively
φ(es) = a3es, s = 2, 3 if a1a3 �= 0 and a2 = 0 we can reduce ka1,a2,a3 to k8,1,
respectively ka1,0,a3 to k8,2 in the assertion.

Secondly, assume that the Lie algebra of the multiplication group of L
has the shape: l2 ⊕n = 〈f1, f2〉⊕ 〈e1, e2, e3, e4〉 as in the assertion. If n �= g4,1,
then there does not exist any ideal s containing the ideal i = 〈f1〉 such that
the factor Lie algebra (l2 ⊕n)/s is isomorphic to fn, n = 4, 5 or to l2 ⊕ l2. The
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Lie algebra l2 ⊕ g4,1 has the centre i = 〈e1〉, but it has no factor Lie algebra
isomorphic to l2⊕ l2. None of the factor Lie algebras l2⊕g4,1/s, where s is any
ideal containing i, is isomorphic to fn, n = 4, 5. Hence in both cases the orbit
I(e), where I is the simply connected Lie group of i, is a normal subgroup of
L isomorphic to R with the property that the factor loop L/I(e) is isomorphic
to R

2 (cf. Lemma 4 a). According to Lemma 3 a) and d), in both cases the
orbit I(e) coincides with the centre Z(L) of L and L has nilpotency class 2.

Moreover, the Lie algebra l2 ⊕ n has a 4-dimensional abelian ideal p =
z⊕k, where z is the 1-dimensional centre of l2 ⊕n and k is the Lie algebra of
the group Inn(L) such that p contains the commutator subalgebra of l2 ⊕ n.
The commutator subalgebra of l2 ⊕ g4,i, i = 1, 3, 8, 9, is the direct sum 〈f1〉 ⊕
g′
4,i where g′

4,i is the commutator subalgebra of g4,i. Since the commutator
subalgebras g′

4,j , j = 8, 9, are not abelian, the Lie algebras l2 ⊕ g4,j , j = 8, 9,
are excluded. Now we deal with the Lie algebras l2 ⊕ g4,k, k = 1, 3.

(d) The Lie algebra l2 ⊕ g4,1 has the centre z = 〈e1〉 and p is the ideal
〈f1, e1, e2, e3〉. The subalgebra k has the form: ka1,a2,a3 = 〈f1 + a1e1, e2 +
a2e1, e3 + a3e1〉, ai ∈ R, i = 1, 2, 3, such that a1 �= 0 since 〈f1〉 is an ideal
of l2 ⊕ g4,1. The centre of the Lie algebra l2 ⊕ g4,3 is z = 〈e2〉 and the ideal
p is again 〈f1, e1, e2, e3〉. The subalgebra k has the form: ka1,a2,a3 = 〈f1 +
a1e2, e1 + a2e2, e3 + a3e2〉, ai ∈ R, i = 1, 2, 3, such that a1 �= 0 and a2 �= 0
since 〈f1〉 and 〈e1〉 are ideals of l2 ⊕ g4,3. The automorphism φ(f1) = a1f1,
φ(f2) = f2, φ(e3) = e3 − a3e1, φ(ei) = ei, i = 1, 2, 4, of l2 ⊕ g4,1, respectively
φ(e1) = a2e1, φ(e3) = e3 − a3e2 of l2 ⊕ g4,3 reduces the Lie algebra ka1,a2,a3

to k9, respectively to k10 in the assertion.
Finally, for the Lie algebras g3,1 ⊕ g3,i = 〈e1, e2, e3〉 ⊕ 〈e4, e5, e6〉, respec-

tively l2 ⊕ R ⊕ g3,i = 〈f1, f2〉 ⊕ 〈e3〉 ⊕ 〈e4, e5, e6〉, i = 2, 3, 4, 5, there does
not exist any ideal s1, respectively s2 containing the ideal i1 = 〈e1〉, respec-
tively i2 = 〈f1〉 such that the factor Lie algebras g3,1 ⊕ g3,i/s1, respectively,
l2 ⊕R⊕ g3,i/s2 are isomorphic to fn, n = 4, 5 or to l2 ⊕ l2. Hence if g3,1 ⊕ g3,i

or l2 ⊕ R ⊕ g3,i, i = 2, 3, 4, 5, is the Lie algebra of the multiplication group
of L, then the orbits Ii(e), i = 1, 2, are the centre of L such that the factor
loop L/Ii(e), i = 1, 2, are isomorphic to R

2 (cf. Lemma 3 a), d)). Hence L is
centrally nilpotent of class 2.

According to Lemma 4 a) (i) we have to find an ideal p = z ⊕ k ∼= R
4

of the Lie algebras g3,1 ⊕ g3,i and l2 ⊕ R ⊕ g3,i, i = 2, 3, 4, 5, where z is their
1-dimensional centre, p contains their commutator subalgebra, and k is the
Lie algebra of the group Inn(L) satisfying the assertion 3. of Lemma 1.

(e) The Lie algebras g3,1 ⊕ g3,i, i = 2, 3, 4, 5, have the centre z = 〈e1〉,
and the ideal p has one of the forms : pr = 〈e1, e2 + re3, e4, e5〉, r ∈ R, and
p̃ = 〈e1, e3, e4, e5〉. With respect to the ideals pr, p̃ we obtain the subalgebras
kr = 〈e2+re3+a1e1, e4+a2e1, e5+a3e1〉, ka1,a2,a3 = 〈e3+a1e1, e4+a2e1, e5+
a3e1〉, r, ai ∈ R, i = 1, 2, 3, such that:
in the case g3,1 ⊕ g3,2 one has a2 �= 0 since 〈e4〉 is an ideal of g3,1 ⊕ g3,2,
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in the cases g3,1 ⊕ g3,i, i = 3, 4, one has a2a3 �= 0 since 〈e4〉, 〈e5〉 are ideals of
g3,1 ⊕ g3,i,
in the case g3,1 ⊕ g3,5 one has a2 �= 0 or a3 �= 0 since 〈e4, e5〉 is an ideal of
g3,1 ⊕ g3,5.
The automorphism φ(e2) = e2 − re3 − a1e1, φ(e4) = a2e4, φ(e5) = a2e5 + a3e4
and φ(ej) = ej , j = 1, 3, 6, respectively φ(e2) = e2, φ(e3) = e3 − a1e1 of
g3,1 ⊕g3,2 maps the subalgebra kr onto k11,1, respectively ka1,a2,a3 onto k11,2.
The automorphism φ(e2) = e2 − re3 − a1e1, φ(e4) = a2e4, φ(e5) = a3e5 and
φ(ej) = ej , j = 1, 3, 6, respectively φ(e2) = e2 and φ(e3) = e3 − a1e1 of
g3,1 ⊕ g3,i, i = 3, 4, maps the subalgebra kr onto k12,1 = k13,1, respectively
ka1,a2,a3 onto k12,2 = k13,2 in the assertion. For the Lie algebra g3,1 ⊕ g3,5

the automorphism φ(e2) = e2 − re3 − a1e1, φ(ej) = a2ej , j = 4, 5, φ(ei) = ei,
i = 1, 3, 6, respectively φ(e2) = e2, φ(e3) = e3 − a1e1 if a2 �= 0 reduces kr

to k14,1, respectively ka1,a2,a3 to k14,2. Moreover, if a3 �= 0 and a2 = 0, then
the automorphism φ(e2) = e2 − re3 − a1e1, φ(ej) = a3ej , j = 4, 5, φ(ei) = ei,
i = 1, 3, 6, respectively φ(e2) = e2, φ(e3) = e3 − a1e1, changes the Lie algebra
kr to k14,3, respectively ka1,a2,a3 to k14,4 in the assertion.

The centre of the Lie algebras l2 ⊕R⊕ g3,i with i = 2, 3, 4, 5, is z = 〈e3〉
and their ideal p is 〈f1, e4, e5, e3〉. The subalgebra k has the form: ka1,a2,a3 =
〈f1 + a1e3, e4 + a2e3, e5 + a3e3〉, ai ∈ R, i = 1, 2, 3, such that:
in the case l2 ⊕ R ⊕ g3,2 one has a1a2 �= 0 since 〈f1〉 and 〈e4〉 are ideals of
l2 ⊕ R ⊕ g3,2,
in the cases l2 ⊕R⊕g3,i, i = 3, 4, one has a1a2a3 �= 0 since 〈f1〉, 〈e4〉 and 〈e5〉
are ideals of l2 ⊕ R ⊕ g3,i,
in the case l2 ⊕R⊕g3,5 one has a1 �= 0 and at least one of {a2, a3} is different
from 0 since 〈f1〉 and 〈e4, e5〉 are ideals of l2 ⊕ R ⊕ g3,5.
Using the automorphism φ(f1) = a1f1, φ(f2) = f2, φ(e4) = a2e4, φ(e5) =
a2e5+a3e4 and φ(ej) = ej , j = 3, 6, for l2⊕R⊕g3,2, respectively φ(e5) = a3e5
for l2 ⊕R⊕ g3,i, i = 3, 4, the Lie algebra ka1,a2,a3 reduces to k15, respectively
to k16 = k17. Applying the automorphism φ(f1) = a1f1, φ(f2) = f2, φ(e4) =
a2e4, φ(e5) = a2e5 and φ(ej) = ej , j = 3, 6, for l2 ⊕ R ⊕ g3,5 if a1a2 �= 0,
respectively φ(e4) = a3e4 and φ(e5) = a3e5 if a1a3 �= 0 and a2 = 0 we can
reduce ka1,a2,a3 to k18,1, respectively ka1,0,a3 to k18,2. �

Using ([23], §4) we obtain:

Lemma 5. The simply connected Lie group Gi and its subgroup Ki, with Lie
algebra gi, and its subalgebra ki, i = 1, ..., 18, are isomorphic to the linear
groups the multiplication of which is given by:

for i = 1

g(x1, x2, x3, x4, x5, x6)g(y1, y2, y3, y4, y5, y6)
= g(x1 + (y1 − x3y2)ex5 , x2 + y2e

x5 , (x3 + y3)ex5+y5 , x4

+y4e
bx5 , x5 + y5, x6 + y6),
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K1,ε = {g(u1, u2, 0, u3, 0, u1+εu2 + u3);ui ∈R, i = 1, 2, 3}, b∈R\{0}, ε = 0, 1,

for i = 2

g(x1, x2, x3, x4, x5, x6)g(y1, y2, y3, y4, y5, y6) = g(x1 + (y1 − x3y2 + x5y4)ex5 ,

x2 + y2e
x5 , (x3 + y3)ex5+y5 , x4 + y4e

x5 , x5 + y5, x6 + y6),
K2,ε = {g(u1, u2, 0, u3, 0, u1+εu2 + a3u3);ui ∈R, i = 1, 2, 3}, ε = 0, 1, a3∈R,

for i = 3

g(x1, x2, x3, x4, x5, x6)g(y1, y2, y3, y4, y5, y6)

= g(x1 + (y1 + x5y4 +
1
2
(2x2 + x2

5)y3)e
x5 , (x2 + y2 +

1
2
(x5 + y5)2)ex5+y5 ,

x3 + y3e
x5 , x4 + (y4 + x5y3)ex5 , x5 + y5, x6 + y6),

K3 = {g(u1, 0, u2, u3, 0, u1 + a3u3);ui ∈ R, i = 1, 2, 3}, a3 ∈ R,

for i = 4

g(x1, x2, x3, x4, x5, x6)g(y1, y2, y3, y4, y5, y6) = g(x1 + (y1 + x2y3)ex5 ,

(x2 + y2)ex5+y5 , x3 + y3e
x5 , x4 + (y4 + x5y3)ex5 , x5 + y5, x6 + y6),

K4 = {g(u1, 0, u2, u3, 0, a1u1 + u3);ui ∈ R, i = 1, 2, 3}, a1 ∈ R\{0},

for i = 5

g(x1, x2, x3, x4, x5, x6)g(y1, y2, y3, y4, y5, y6)

= g(x1 + (y1 + x4y2 + ax5y3 +
1
2
x2
4y3)e

x5 , x2 + (y2 + x4y3)ex5 ,

x3 + y3e
x5 , (x4 + y4)ex5+y5 , x5 + y5, x6 + y6), a ∈ R,

K5 = {g(u1, u2, u3, 0, 0, u1 + a2u2);ui ∈ R, i = 1, 2, 3}, a2 ∈ R,

for i = 6

g(x1, x2, x3, x4, x5, x6)g(y1, y2, y3, y4, y5, y6)

= g(x1 + y1e
x4 , x2 + y2e

x5 , x3 + y3e
ax5+bx4 , x4 + y4, x5 + y5, x6 + y6),

K6 = {g(u1, u2, u3, 0, 0, u1 + u2 + u3);ui ∈ R, i = 1, 2, 3}, a2 + b2 �= 0,

for i = 7

g(x1, x2, x3, x4, x5, x6)g(y1, y2, y3, y4, y5, y6) = g(x1 + y1e
ax4+x5 ,

x2 + (y2 + x5y3)ex4 , x3 + y3e
x4 , x4 + y4e

ax4+x5 , (x5 + y5)ex4+y4 , x6 + y6),
K7 = {g(u1, u2, u3, 0, 0, u1 + u2 + a3u3);ui ∈ R, i = 1, 2, 3}, a, a3 ∈ R,

for i = 8

g(x1, x2, x3, x4, x5, x6)g(y1, y2, y3, y4, y5, y6) = g(x1 + y1e
ax5+bx4 ,

x2 + (y2 cos(x5) − y3 sin(x5))ex4 , x3 + (y3 cos(x5) + y2 sin(x5))ex4 ,

x4 + y4, x5 + y5, x6 + y6), a2 + b2 �= 0,

K8,1 = {g(u1, u2, u3, 0, 0, u1 + u2 + a3u3);ui ∈ R, i = 1, 2, 3}, a3 ∈ R,

K8,2 = {g(u1, u2, u3, 0, 0, u1 + u3);ui ∈ R, i = 1, 2, 3},
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for i = 9

g(x1, x2, x3, x4, x5, x6)g(y1, y2, y3, y4, y5, y6)

= g(x1+y1+x4y2+
1
2
x2
4y3, x2+y2+x4y3, x3+y3, x4+y4, x5+y5e

x6 , x6+y6),

K9 = {g(u1 + a2u2, u2, u3, 0, u1, 0);ui ∈ R, i = 1, 2, 3}, a2 ∈ R,

for i = 10

g(x1, x2, x3, x4, x5, x6)g(y1, y2, y3, y4, y5, y6)
= g(x1 + y1e

x4 , x2 + y2 + x4y3, x3 + y3, x4 + y4, x5 + y5e
x6 , x6 + y6),

K10 = {g(u1, u1 + u3, u2, 0, u3, 0);ui ∈ R, i = 1, 2, 3},

for i = 11

g(x1, x2, x3, x4, x5, x6)g(y1, y2, y3, y4, y5, y6) = g(x1 + y1 + x2y3,

x2 + y2, x3 + y3, x4 + (y4 + x6y5)ex6 , x5 + y5e
x6 , x6 + y6),

K11,1 = {g(u2, u1, 0, u2, u3, 0);ui ∈ R, i = 1, 2, 3},

K11,2 = {g(u2, 0, u1, u2, u3, 0);ui ∈ R, i = 1, 2, 3},

for i = 12

g(x1, x2, x3, x4, x5, x6)g(y1, y2, y3, y4, y5, y6)

= g(x1 + y1 + x2y3, x2 + y2, x3 + y3, x4 + y4e
x6 , x5 + y5e

x6 , x6 + y6),
K12,1 = {g(u2 + u3, u1, 0, u2, u3, 0);ui ∈ R, i = 1, 2, 3},

K12,2 = {g(u2 + u3, 0, u1, u2, u3, 0);ui ∈ R, i = 1, 2, 3},

for i = 13

g(x1, x2, x3, x4, x5, x6)g(y1, y2, y3, y4, y5, y6) = g(x1 + y1 + x2y3,

x2 + y2, x3 + y3, x4 + y4e
x6 , x5 + y5e

hx6 , x6 + y6),−1 ≤ h < 1, h �= 0,

K13,1 = {g(u2 + u3, u1, 0, u2, u3, 0);ui ∈ R, i = 1, 2, 3},

K13,2 = {g(u2 + u3, 0, u1, u2, u3, 0);ui ∈ R, i = 1, 2, 3},

for i = 14

g(x1, x2, x3, x4, x5, x6)g(y1, y2, y3, y4, y5, y6)=g(x1+y1+x2y3, x2+y2, x3+y3,

x4 + (y4 cos(x6) + y5 sin(x6))epx6 , x5 + (y5 cos(x6) − y4 sin(x6))epx6 , x6 + y6),
p ≥ 0,K14,1 = {g(u2 + a3u3, u1, 0, u2, u3, 0);ui ∈ R, i = 1, 2, 3, }, a3 ∈ R\{0},

K14,2 = {g(u2 + a3u3, 0, u1, u2, u3, 0);ui ∈ R, i = 1, 2, 3, }, a3 ∈ R\{0},

K14,3 = {g(u3, u1, 0, u2, u3, 0);ui ∈ R, i = 1, 2, 3},

K14,4 = {g(u3, 0, u1, u2, u3, 0);ui ∈ R, i = 1, 2, 3},

for i = 15

g(x1, x2, x3, x4, x5, x6)g(y1, y2, y3, y4, y5, y6)
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= g(x1 + y1e
x2 , x2+y2, x3+y3e

x2 , x4+(y4+x6y5)ex6 , x5+y5e
x6 , x6 + y6),

K15 = {g(u1, 0, u1 + u2, u2, u3, 0);ui ∈ R, i = 1, 2, 3},

for i = 16

g(x1, x2, x3, x4, x5, x6)g(y1, y2, y3, y4, y5, y6)
= g(x1 + y1e

x2 , x2 + y2, x3 + y3e
x2 , x4 + y4e

x6 , x5 + y5e
x6 , x6 + y6),

K16 = {g(u1, 0, u1 + u2 + u3, u2, u3, 0);ui ∈ R, i = 1, 2, 3},

for i = 17

g(x1, x2, x3, x4, x5, x6)g(y1, y2, y3, y4, y5, y6) = g(x1 + y1e
x2 ,

x2 + y2, x3 + y3e
x2 , x4 + y4e

x6 , x5 + y5e
hx6 , x6 + y6),−1 ≤ h < 1, h �= 0,

K17 = {g(u1, 0, u1 + u2 + u3, u2, u3, 0);ui ∈ R, i = 1, 2, 3},

for i = 18

g(x1, x2, x3, x4, x5, x6)g(y1, y2, y3, y4, y5, y6)=g(x1+y1e
x2 , x2+y2, x3+y3e

x2 ,

x4 + (y4 cos(x6) + y5 sin(x6))epx6 , x5 + (y5 cos(x6) − y4 sin(x6))epx6 , x6 + y6),
p ≥ 0, K18,1 = {g(u1, 0, u1 + u2 + a3u3, u2, u3, 0);ui ∈ R, i = 1, 2, 3}, a3 ∈ R,

K18,2 = {g(u1, 0, u1 + u3, u2, u3, 0);ui ∈ R, i = 1, 2, 3}.

Proposition 4. There does not exist any 3-dimensional connected topological
proper loop L such that the Lie algebra g of the multiplication group of L is
one of the Lie algebras gi, i = 14, 18, with p = 0.

Proof. We may assume that L is simply connected and hence it is homeomor-
phic to R

3 (cf. Lemma 2). We show that none of the groups Gi, i = 14, 18,
such that p = 0 allows the existence of continuous left transversals A and B to
Ki in Gi such that for all a ∈ A and b ∈ B one has a−1b−1ab ∈ Ki and A ∪ B
generates Gi. Hence Proposition 1 yields that the groups Gi, i = 14, 18, with
p = 0 are not the multiplication group of a loop L. This proves the assertion.
Two arbitrary left transversals to the groups K14,i, i = 1, 3, in G14 are:

A = {g(u, f1(u, v, w), v, f2(u, v, w), f3(u, v, w), w);u, v, w ∈ R},

B = {g(k, g1(k, l,m), l, g2(k, l,m), g3(k, l,m),m); k, l,m ∈ R},

those to the groups K14,j , j = 2, 4, in G14 are:

A = {g(u, v, f1(u, v, w), f2(u, v, w), f3(u, v, w), w);u, v, w ∈ R},

B = {g(k, l, g1(k, l,m), g2(k, l,m), g3(k, l,m),m); k, l,m ∈ R},

and those to the groups K18,j , j = 1, 2, in G18 are:

A = {g(f1(u, v, w), u, v, f2(u, v, w), f3(u, v, w), w);u, v, w ∈ R},

B = {g(g1(k, l,m), k, l, g2(k, l,m), g3(k, l,m),m); k, l,m ∈ R},

where fi(u, v, w) : R3 → R and gi(k, l,m) : R3 → R, i = 1, 2, 3, are continuous
functions such that fi(0, 0, 0) = gi(0, 0, 0) = 0. The products a−1b−1ab, a ∈ A,
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b ∈ B are elements in K14,1, respectively in K14,2, respectively in K18,1 if and
only if

(cos(m) − 1)(f2(u, v, w)(cos(w) + a3 sin(w))+f3(u, v, w)(a3 cos(w)−sin(w)))
+(cos(w)−1)(g3(k, l,m)(sin(m)−a3 cos(m))−g2(k, l,m)(cos(m)+a3 sin(m)))
− sin(m)(f2(u, v, w)(sin(w) − a3 cos(w)) + f3(u, v, w)(cos(w) + a3 sin(w)))
+ sin(w)(g3(k, l,m)(cos(m) + a3 sin(m)) + g2(k, l,m)(sin(m) − a3 cos(m)))
= f1(u, v, w)l − g1(k, l,m)v, (6)

respectively
g1(k, l,m)v − f1(u, v, w)l, (7)

respectively

e−u(1 − e−k)(f1(u, v, w) − v) − e−k(1 − e−u)(g1(k, l,m) − l) (8)

are satisfied for all k, l,m, u, v, w ∈ R, with a3 ∈ R. Moreover, the products
a−1b−1ab, a ∈ A, b ∈ B are elements in K14,3, respectively in K14,4, respec-
tively in K18,2 precisely if

(cos(m) − 1)(f2(u, v, w) sin(w) + f3(u, v, w) cos(w))
−(cos(w) − 1)(g2(k, l,m) sin(m) + g3(k, l,m) cos(m))
+ sin(m)(f2(u, v, w) cos(w) − f3(u, v, w) sin(w))
+ sin(w)(g3(k, l,m) sin(m) − g2(k, l,m) cos(m))
= f1(u, v, w)l − g1(k, l,m)v, (9)

respectively
g1(k, l,m)v − f1(u, v, w)l, (10)

respectively

e−u(1 − e−k)(f1(u, v, w) − v) − e−k(1 − e−u)(g1(k, l,m) − l) (11)

hold for all k, l,m, u, v, w ∈ R. The equations (6), (7), (8), (9), (10) and (11) are
satisfied precisely if their left hand side as well as their right hand side are zero.
The right hand side of these equations is zero if and only if f1(u, v, w) = v and
g1(k, l,m) = l. In that case the set A ∪ B does not generate G14, respectively
G18. �

Theorem 1. Let L be a 3-dimensional simply connected topological proper loop
such that its multiplication group is a 6-dimensional solvable decomposable Lie
group having 1-dimensional centre. Then the pairs of the Lie groups (Gi,Ki),
i = 1, · · · , 18, given in Lemma 5 such that for i = 14, 18 one has p �= 0 are the
multiplication group Mult(L) and the inner mapping group Inn(L) of L.

Proof. Taking into account Propositions 3 and 4 it remains to find for each
group Gi, i = 1, · · · , 18, in Lemma 5, such that for i = 14, 18 one has p �= 0,
Ki-connected left transversals Ai, Bi (cf. Proposition 1). The sets

A1,0 = {g(1 − ev − uev(1 − e−bv), ev(1 − e−bv), u, uebv−v, v, w);u, v, w ∈ R},
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B1,0 = {g(1 − el − kel(e−bl − 1), el(e−bl − 1), k,−kebl−l, l,m); k, l,m ∈ R},

respectively

A1,1={g(1−ev(2+u−e−bv−ue−bv), ev(1−e−bv), u, uebv−v, v, w);u, v, w∈R},

B1,1 = {g(1 − el(e−bl + ke−bl − k), el(e−bl − 1), k,−kebl−l, l,m); k, l,m ∈ R}
are K1,0-, respectively K1,1-connected left transversals in Gb�=0

1 . The sets

A2,0 = B2,0 = {g(v2 − u2 − a3v + ev − 1, u, u, v, v, w);u, v, w ∈ R},

respectively

A2,1 = B2,1 = {g(v2 − u2 − u − a3v + ev − 1, u, u, v, v, w);u, v, w ∈ R},

a3 ∈ R, are K2,0-, respectively K2,1-connected left transversals in G2. The sets

A3 = B3 = {g(ev − 1 + (v − a3)v(1 + u + a3v − 1
2
v2) + (u + a3v − 1

2
v2)2,

u, u + a3v − 1
2
v2, v(1 + u + a3v − 1

2
v2), v, w);u, v, w ∈ R}, a3 ∈ R,

respectively

A4 = B4 = {g(−w, u, a1u+v, 1−ev+a1w+(a1u+v)2, v, w);u, v, w ∈ R}, a1 �= 0,

are K3-connected, respectively K4-connected left transversals in G3, respec-
tively in G4. The sets A5 = B5 =

{g(1−ev +2auv − 1
2
a2u

2 −aa2v +ua2
2, av +

1
2
u2 −ua2, u, u, v, w);u, v, w ∈ R},

a2 ∈ R, are K5-connected left transversals in Ga
5 . The sets

A6 = {g(eu − eu−av−bu, ev − ev−u, eav+bu−v − eav+bu, u, v, w);u, v, w ∈ R},

B6 = {g(ek − ek−l, el−al−bk − el, eal+bk − eal+bk−k, k, l,m); k, l,m ∈ R}
are K6-connected left transversals in Ga2+b2 �=0

6 . The sets A7 = B7 =

{g(veau+v−u, 1−eu−(a3−v)(eu−eu−au−v), eu−eu−au−v, u, v, w);u, v, w ∈ R},

a3 ∈ R, are K7-connected left transversals in Ga
7 . The sets

A8,1 = B8,1 = {g(eav+bu−u sin(v),
1

1+a2
3

(eu(1−e−av−bu)(sin(v)+a3 cos(v))+(eu−cos(v))(cos(v)−a3 sin(v))),

1
1+a2

3

((eu−cos(v))(sin(v)+a3 cos(v))−(eu−eu−av−bu)(cos(v)−a3 sin(v))),

u, v, w);u, v, w ∈ R}, a3 ∈ R,

respectively

A8,2=B8,2={g(eav+bu−u sin(v), (eu−eu−av−bu) cos(v) − (eu−cos(v)) sin(v),

(eu − eu−av−bu) sin(v) + (eu − cos(v)) cos(v), u, v, w);u, v, w ∈ R},
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are K8,1-, respectively K8,2-connected left transversals in Ga2+b2 �=0
8 . The sets

A9 = {g(u, v + (1 − e−w)(a2 + v), 1 − e−w, v,−1
2
v2ew, w), u, v, w ∈ R},

B9 = {g(k, l + (e−m − 1)(a2 + l), e−m − 1, l,
1
2
l2em,m), k, l,m ∈ R},

a2 ∈ R, respectively

A10 = {g(vev, u, 1 − e−w, v, ew − ew−v, w), u, v, w ∈ R},

B10 = {g(el − el−m, k, e−l − 1, l,−lem,m), k, l,m ∈ R}
are K9-connected, respectively K10-connected left transversals in G9, respec-
tively in G10. The sets

A11,1 = {g(u,−we−w, v, ew + vwew − 1, vew, w), u, v, w ∈ R},

B11,1 = {g(k,me−m, l, em − mlem − 1,−lem,m), k, l,m ∈ R},

respectively

A11,2 = {g(u, v, we−w, ew + vwew − 1, vew, w), u, v, w ∈ R},

B11,2 = {g(k, l,−me−m, em − mlem − 1,−lem,m), k, l,m ∈ R}
are K11,1-, respectively K11,2-connected left transversals in G11. The sets

A12,1 = {g(u, e−w − 1, v, vew − u, u, w), u, v, w ∈ R},

B12,1 = {g(k, 1 − e−m, l,−lem − k, k,m), k, l,m ∈ R},

respectively

A12,2 = {g(u, v, 1 − e−w, vew − u, u, w), u, v, w ∈ R},

B12,2 = {g(k, l, e−m − 1,−lem − k, k,m), k, l,m ∈ R}
are K12,1-, respectively K12,2-connected left transversals in G12. The sets

A13,1 = {g(u, 1 − ew, v,−vew, e−w − e−2w, w);u, v, w ∈ R},

B13,1 = {g(k, e−m − 1, l, em − e2m, le−m,m); k, l,m ∈ R},

respectively

A13,2 = {g(u, v, ew − 1,−vew, e−w − e−2w, w);u, v, w ∈ R},

B13,2 = {g(k, l, 1 − e−m, em − e2m, le−m,m); k, l,m ∈ R}
are K13,1-, respectively K13,2-connected left transversals in Gh=−1

13 and the
sets

A13,3 = {g(u, 1 − e−w, v, ew − ew−hw,−vehw, w);u, v, w ∈ R},

B13,3 = {g(k, e−hm − 1, l, lem, ehm − ehm−m,m); k, l,m ∈ R},

respectively

A13,4 = {g(u, v, e−w − 1, ew − ew−hw,−vehw, w);u, v, w ∈ R},

B13,4 = {g(k, l, 1 − e−hm, lem, ehm − ehm−m,m); k, l,m ∈ R}
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are K13,1-, respectively K13,2-connected left transversals in G−1<h<1
13 . The sets

A14,1 = B14,1 = {g(u, e−pw sin(w), v,

1
a2
3 + 1

(epwv(sin(w) − a3 cos(w)) + (cos(w) − epw)(cos(w) + a3 sin(w))),

1
a2
3 + 1

(epwv(a3 sin(w) + cos(w)) + (cos(w) − epw)(a3 cos(w) − sin(w))), w);

u, v, w ∈ R},

respectively

A14,2 = B14,2 = {g(u, v,−e−pw sin(w),
1

a2
3 + 1

(epwv(sin(w) − a3 cos(w)) + (cos(w) − epw)(cos(w) + a3 sin(w))),

1
a2
3 + 1

(epwv(a3 sin(w) + cos(w)) + (cos(w) − epw)(a3 cos(w) − sin(w))), w);

u, v, w ∈ R}, a3 �= 0,

are K14,1-, respectively K14,2-connected left transversals in Gp�=0
14 , and the sets

A14,3 = B14,3 = {g(u, e−pw sin(w), v, sin(w)(cos(w) − epw) − epwv cos(w),
epwv sin(w) + cos(w)(cos(w) − epw), w);u, v, w ∈ R},

respectively

A14,4 = B14,4 = {g(u, v,−e−pw sin(w), sin(w)(cos(w) − epw) − epwv cos(w),
epwv sin(w) + cos(w)(cos(w) − epw), w);u, v, w ∈ R}

are K14,3-, respectively K14,4-connected left transversals in Gp�=0
14 . The sets

A15 = {g(eu−w − eu + v, u, v, ew − ew−u + w2, w, w), u, v, w ∈ R},

B15 = {g(ek − ek−m + l, k, l, em−k − em + m2,m,m), k, l,m ∈ R}
are K15-connected left transversals in G15. The sets

A16 = B16 = {g(eu + v − 1, u, v, ew − u − 1, u, w), u, v, w ∈ R}
are K16-connected left transversals in G16. The sets

A17 = {g(eu−hw − eu + v, u, v, ew − ew−u, ehw − ehw−w, w);u, v, w ∈ R},

B17 = {g(ek − ek−m + l, k, l, em − em−hm, ehm−k − ehm,m); k, l,m ∈ R}
are K17-connected left transversals in G−1≤h<1

17 . The sets

A18,1 = B18,1 = {g(eu + v − 1, u, v,
1

1 + a2
3

(1 − epw(a3 sin(w) + cos(w))),

1
1 + a2

3

(a3 − epw(a3 cos(w) − sin(w))), w);u, v, w ∈ R}, a3 ∈ R,

respectively

A18,2 = B18,2 = {g(eu + v − 1, u, v, epw sin(w) − 2 cos(w) sin(w),
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sin(w)2 + cos(w)(epw − cos(w)), w);u, v, w ∈ R},

are K18,1-, respectively K18,2-connected left transversals in Gp�=0
18 .

For all i = 1, · · · , 18, the set Ai ∪ Bi generates the group Gi. By Propo-
sition 1 the assertion is proved. �

5. The Case dim(Z)=2

In this section we obtain the 6-dimensional decomposable solvable Lie groups
with 2-dimensional centre which can be represented as multiplication groups of
3-dimensional connected simply connected topological proper loops L. These
loops have a 2-dimensional centre Z(L) isomorphic to R

2 such that the factor
loops L/Z(L) are isomorphic to R.

Proposition 5. Let L be a simply connected topological proper loop of dimension
3 such that its multiplication group is an at most 6-dimensional decomposable
nilpotent Lie group. Then the loop L is centrally nilpotent of class 2 and either
the group R × F4 or R × F5 is the multiplication group of L.

Proof. Each nilpotent Lie group has a centre of dimension ≥ 1. Hence, if
the group Mult(L) is decomposable and nilpotent, then it has a 2-dimensional
centre and the loop L has nilpotency class 2 (cf. Lemma 3 a), e)). According to
the list of Lie algebras in [14], §5, and [15], p. 100, the Lie algebra of the group
Mult(L) is either the direct sum g3,1 ⊕ g3,1, where g3,1 is the 3-dimensional
nilpotent non-abelian Lie algebra, or R ⊕ fn, n = 4, 5, or R ⊕ g5,i, i = 4, 5, 6.
By Lemma 3 e) the Lie algebra of Mult(L) has a 5-dimensional abelian ideal
containing its centre and its commutator subalgebra. Since there does not exist
any such ideal for the Lie algebras g3,1 ⊕ g3,1 and R ⊕ g5,i, i = 4, 5, 6, these
Lie algebras are excluded. Now the assertion follows from Proposition 5.1. in
[6], pp. 400-406. �

Proposition 6. Let L be a connected topological loop of dimension 3 such that
the Lie algebra g of its multiplication group is a 6-dimensional decomposable
solvable non-nilpotent Lie algebra with 2-dimensional centre. Then L is cen-
trally nilpotent of class 2. Moreover, the following Lie algebra pairs can occur
as the Lie algebra g of the group Mult(L) and the subalgebra k of the subgroup
Inn(L):

If gi = R
2 ⊕ ni = 〈f1, f2〉 ⊕ 〈e1, · · · , e4〉 such that ni, i = 1, · · · , 4, is a

4-dimensional solvable indecomposable Lie algebra with trivial centre, then one
has

– n1 = gα�=0
4,2 : [e1, e4] = αe1, [e2, e4] = e2, [e3, e4] = e2 + e3, k1 = 〈e1 +

f1, e2 + f1, e3〉,
– n2 = g4,4: [e1, e4] = e1, [e2, e4] = e1 + e2, [e3, e4] = e2 + e3, k2 = 〈e1 +

f1, e2 + a2f1, e3 + a3f1〉, a2, a3 ∈ R,
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– n3 = g−1≤γ≤β≤1,γβ �=0
4,5 : [e1, e4] = e1, [e2, e4] = βe2, [e3, e4] = γe3, k3 =

〈e1 + f1, e2 + f1, e3 + f1〉,
– n4 = gp≥0,α�=0

4,6 : [e1, e4] = αe1, [e2, e4] = pe2 − e3, [e3, e4] = e2 + pe3,
k4,1 = 〈e1 + f1, e2 + f1, e3 + a3f1〉, a3 ∈ R, k4,2 = 〈e1 + f1, e2, e3 + f1〉.

If gj = R ⊕ hj = 〈f1〉 ⊕ 〈e1, e2, e3, e4, e5〉, where hj, j = 5, · · · , 8, is a 5-
dimensional solvable indecomposable Lie algebra with 1-dimensional centre,
then one has

– h5 = g0<|γ|≤1
5,8 : [e2, e5] = e1, [e3, e5] = e3, [e4, e5] = γe4, k5,ε = 〈e2 +

εf1, e3 + e1, e4 + e1〉, ε = 0, 1,
– h6 = g5,10: [e2, e5] = e1, [e3, e5] = e2, [e4, e5] = e4, k6,ε = 〈e2, e3 +

εf1, e4+e1〉, ε = 0, 1, k6,2 = 〈e2+b1f1, e3+b2f1, e4+f1+ae1〉, b1, b2 ∈ R,
a �= 0,

– h7 = gp�=0
5,14: [e2, e5] = e1, [e3, e5] = pe3 − e4, [e4, e5] = e3 + pe4, kε

7,1 =
〈e2+εf1, e3+e1, e4+a3e1〉, kε

7,2 = 〈e2+εf1, e3, e4+e1〉, ε = 0, 1, a3 ∈ R,
– h8 = gγ=0

5,15 : [e1, e5] = e1, [e2, e5] = e1 + e2, [e4, e5] = e3, k8,ε = 〈e1 +
e3, e2, e4 + εf1〉, ε = 0, 1.

Proof. By Lemma 2 we may assume that the loop L is simply connected and
hence it is homeomorphic to R

3. As the multiplication group Mult(L) of L
is a 6-dimensional decomposable solvable Lie group with 2-dimensional centre
the loop L has nilpotency class 2 (cf. Lemma 3 a), e)). Furthermore, for the
Lie algebra of Mult(L) we have the following possibilities: R

2 ⊕ n, R ⊕ h,
l2⊕R⊕g3,1, and l2⊕ l2⊕R

2, where n and h are characterized in the assertion.
By [14], §5, for n we have the Lie algebras g4,i, i = 2, 4, 5, 6, 7, 10, gh�=−1

4,8 , gp�=0
4,9 .

Moreover, the Lie algebras g5,j , j = 8, 10, 22, 29, 38, 39, gp�=0
5,14, g

γ=0
5,15 , gα=−1

5,19 ,
gα=−1
5,20 , gα=−1

5,28 , gp=0
5,25, g

p=0
5,26 and gh=−2

5,30 can be considered as h (cf. [15], §10, p.
105-106).

If these Lie algebras were the Lie algebra of the multiplication group
of L, then they would have a 5-dimensional abelian ideal containing their
commutator ideal and their centre (cf. Lemma 3 e)). Since the Lie algebras
l2⊕R⊕g3,1, l2⊕l2⊕R

2, R2⊕g4,j , j = 7, 10, R2⊕gh�=−1
4,8 , R2⊕gp�=0

4,9 , R⊕gα=−1
5,r ,

r = 19, 20, 28, R ⊕ gp=0
5,l , l = 25, 26, R ⊕ gh=−2

5,30 , R ⊕ g5,p, p = 22, 29, 38, 39,
do not contain any 5-dimensional abelian ideal, these Lie algebras are not the
Lie algebra of the group Mult(L) of L. Hence it remains to deal with the Lie
algebras gi, i = 1, · · · , 8 in the assertion.

The 1-dimensional central subalgebras of gi, i = 1, 2, 3, 4, are i1 = 〈f2〉
and i2 = 〈f1 + af2〉, a ∈ R, those of gj , j = 5, 6, 7, are i3 = 〈f1 + be1〉, b ∈ R,
and i4 = 〈e1〉, whereas those of g8 are i5 = 〈f1 + ce3〉, c ∈ R, and i6 = 〈e3〉.
With the exception of the Lie algebra g6, for every ideal s of each Lie algebra
gi, i = 1, · · · , 8, such that s contains a 1-dimensional central subalgebra of gi

the factor Lie algebras gi/s are not isomorphic to f4. The Lie algebra g6 has
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the ideal s = 〈f1 + be1, e4〉 containing i3 such that the factor Lie algebra g6/s
is isomorphic to f4.

According to Lemma 3 e) the simply connected Lie groups Gi of gi,
i = 1, · · · , 8, has a 1-dimensional connected central subgroup Nd = expnd,
d = 1, 2, 4, · · · , 6, such that the orbit Nd(e) is isomorphic to R and the factor
loop L/Nd(e) is isomorphic to R

2. By Lemma 4 a) (i) the Lie algebras gi, i =
1, · · · , 8, have a 4-dimensional abelian ideal p containing only a 1-dimensional
central subalgebra nd of gi and the Lie algebra k of the inner mapping group
Inn(L) of L such that g′

i ⊂ p and k has the properties as in 3. of Lemma 1.
Then for the triples (gi,p,k) we obtain:

(a) For the Lie algebras gi, i = 1, 2, 3, 4, the ideal p has one of the
following forms pa = 〈f1 +af2, e1, e2, e3〉, a ∈ R and p̃ = 〈f2, e1, e2, e3〉. Hence
for the subalgebra k one has ka = 〈e1 + a1(f1 + af2), e2 + a2(f1 + af2), e3 +
a3(f1 + af2)〉, a ∈ R and ˜k = 〈e1 + a1f2, e2 + a2f2, e3 + a3f2〉, where ai ∈ R,
i = 1, 2, 3. Using the automorphism φ(f1) = f2, φ(f2) = f1 + af2, φ(ei) = ei,
i = 1, 2, 3, 4, the Lie algebra ˜k reduces to ka. So it remains to consider the
subalgebra ka, such that
in the case of the Lie algebra g1: a1a2 �= 0 since 〈e1〉 and 〈e2〉 are ideals of g1,
in the case of g2: a1 �= 0 because 〈e1〉 is an ideal of g2,
in the case of g3: a1a2a3 �= 0 since 〈e1〉, 〈e2〉 and 〈e3〉 are ideals of g3,
in the case of g4: a1 �= 0 and at least one of {a2, a3} is different from 0 because
〈e1〉 and 〈e2, e3〉 are ideals of g4.
Using the automorphism φ(f1) = f1 − af2, φ(f2) = f2, φ(e1) = a1e1, φ(e2) =
a2e2, φ(e3) = a2e3 + a3e2 and φ(e4) = e4 for g1, respectively φ(ej) = a1ej ,
j = 2, 3 for g2, respectively φ(e3) = a3e3 for g3, the Lie algebra ka reduces to
k1, respectively to k2, a2, a3 ∈ R, respectively to k3 in the assertion. Applying
the automorphism φ(f1) = f1 − af2, φ(f2) = f2, φ(e1) = a1e1, φ(ej) = a2ej ,
j = 2, 3 and φ(e4) = e4 for g4 if a2 �= 0, respectively φ(ej) = a3ej , j = 2, 3 if
a2 = 0 and a3 �= 0, we can reduce ka to k4,1, a3 ∈ R, respectively to k4,2 in
the assertion.

(b) For the Lie algebras gj , j = 5, 7, the ideal p has one of the following
shapes pa = 〈e1, f1 + ae2, e3, e4〉, a ∈ R\{0}, p̃ = 〈e1, e2, e3, e4〉. Hence the
subalgebras k are ka = 〈f1 + ae2 + a1e1, e3 + a2e1, e4 + a3e1〉, a ∈ R\{0}, and
˜k = 〈e2 + a1e1, e3 + a2e1, e4 + a3e1〉, ai ∈ R, i = 1, 2, 3, such that
for g5: a2a3 �= 0 since 〈e3〉, 〈e4〉 are ideals of g5, and
for g7: a2 �= 0 or a3 �= 0 because 〈e3, e4〉 is an ideal of g7.
The automorphism φ(f1) = f1, φ(ei) = ei, i = 1, 5, φ(e2) = e2 − a1e1, φ(e3) =
a2e3 and φ(e4) = a3e4, respectively φ(f1) = af1 − a1e1, φ(e2) = e2 of g5 maps
the subalgebra ˜k onto k5,0, respectively the subalgebra ka onto k5,1 in the
assertion. If a2 �= 0, then the automorphism φ(f1) = f1, φ(ei) = ei, i = 1, 5,
φ(e2) = e2 − a1e1, φ(ej) = a2ej , j = 3, 4, respectively φ(f1) = af1 − a1e1,
φ(e2) = e2 of the Lie algebra g7 reduces the subalgebra ˜k to k0

7,1, respectively
the subalgebra ka to k1

7,1 in the assertion. If a2 = 0 and a3 �= 0, then using the
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automorphism φ(f1) = f1, φ(ei) = ei, i = 1, 5, φ(e2) = e2−a1e1, φ(ej) = a3ej ,
j = 3, 4, respectively φ(f1) = af1 − a1e1, φ(e2) = e2 of g7 we can change the
subalgebra ˜k to k0

7,2, respectively the subalgebra ka to k1
7,2 in the assertion.

(c) For the Lie algebra g8 the ideal p has one of the following forms
p̃ = 〈e1, e2, e3, e4〉, pa = 〈e1, e2, e3, f1 + ae4〉, a ∈ R\{0}. Therefore for the
subalgebra k one has ˜k = 〈e1+a1e3, e2+a2e3, e4+a3e3〉, ka = 〈e1+a1e3, e2+
a2e3, f1 + ae4 + a3e3〉, a ∈ R\{0}, ai ∈ R, i = 1, 2, 3, such that a1 �= 0 since
〈e1〉 is an ideal of g8. The automorphism φ(f1) = f1, φ(ei) = ei, i = 3, 5,
φ(e1) = a1e1, φ(e2) = a1e2 −a2e1, and φ(e4) = e4 −a3e3, respectively φ(f1) =
af1 − a3e3, φ(e4) = e4, maps the subalgebra ˜k onto k8,0, respectively ka onto
k8,1 of the assertion.

(d) If the Lie algebra g6 is the Lie algebra of the group Mult(L) of L, then
the factor loop L/I4(e), where I4 = exp(i4), is isomorphic to R

2. Hence the Lie
algebra k of the group Inn(L) of L is a subalgebra of the ideal p having one of
the following forms p̃ = 〈e1, e2, e4, e3〉, pa = 〈e1, e2, e4, f1 + ae3〉, a ∈ R\{0}.
Therefore we obtain the subalgebras ˜k = 〈e2 + a1e1, e3 + a2e1, e4 + a3e1〉,
ka = 〈e2 + a1e1, f1 + ae3 + a2e1, e4 + a3e1〉, where a ∈ R\{0}, ai ∈ R, i = 1, 2,
and a3 �= 0 since 〈e4〉 is an ideal of g6. With the automorphism φ(f1) = f1,
φ(ei) = ei, i = 1, 5, φ(e2) = e2 − a1e1, φ(e3) = e3 − a1e2 − a2e1 and φ(e4) =
a3e4, respectively φ(f1) = af1 − a2e1, φ(e3) = e3 − a1e2, we can change the
subalgebra ˜k onto k6,0, respectively ka onto k6,1 in the assertion.

Since for the ideal s = 〈f1 + be1, e4〉, b ∈ R, of g6, the factor Lie algebra
g6/s is isomorphic to f4, the factor loop L/I3(e), where I3 = exp(i3), is iso-
morphic to an elementary filiform loop LF . The orbit S(e), where S = exp(s),
coincides with I3(e) (cf. Lemma 3 e). Hence the Lie algebra k contains the
basis element e4 + a3(f1 + ae1), a3 ∈ R\{0}. Since k is a 3-dimensional sub-
algebra of the 5-dimensional abelian ideal v = 〈f1, e1, e2, e3, e4〉, it has the
form k = 〈e2 + b1f1 + a1e1, e3 + b2f1 + a2e1, e4 + a3(f1 + ae1)〉, a, ai, bi ∈ R,
i = 1, 2, 3, aa3 �= 0. Using the automorphism φ(f1) = f1, φ(ei) = ei, i = 1, 5,
φ(e2) = e2 −a1e1, φ(e3) = e3 −a1e2 −a2e1 and φ(e4) = a3e4, the subalgebra k
reduces to k6,2 = 〈e2 +b1f1, e3 +b2f1, e4 +f1 +ae1〉. This proves the assertion.
�

Using ([23], §4) we obtain:

Lemma 6. The linear representation of the simply connected Lie group Gi and
its subgroup Ki corresponding to the Lie algebra gi and its subalgebra ki, i =
1, ..., 8, is given by the multiplication:

For i = 1

g(x1, x2, x3, x4, x5, x6)g(y1, y2, y3, y4, y5, y6)
=g(x1+y1e

ax4 , x2+(y2+x4y3)ex4 , x3+y3e
x4 , x4+y4, x5+y5, x6+y6), a �=0,

K1 = {g(u1, u2, u3, 0, u1 + u2, 0);ui ∈ R, i = 1, 2, 3},



20 Page 28 of 34 A. Al-Abayechi and Á. Figula Results Math

For i = 2

g(x1, x2, x3, x4, x5, x6)g(y1, y2, y3, y4, y5, y6)=g(x1+(y1 + x4y2 +
1
2
x2
4y3)e

x4 ,

x2 + (y2 + x4y3)ex4 , x3 + y3e
x4 , x4 + y4, x5 + y5, x6 + y6),

K2 = {g(u1, u2, u3, 0, u1 + a2u2 + a3u3, 0);ui ∈ R, i = 1, 2, 3}, a2, a3 ∈ R,

For i = 3

g(x1, x2, x3, x4, x5, x6)g(y1, y2, y3, y4, y5, y6)
= g(x1 + y1e

x4 , x2 + y2e
ax4 , x3

+y3e
bx4 , x4 + y4, x5 + y5, x6 + y6),−1 ≤ a ≤ b ≤ 1,

ab �= 0,K3 = {g(u1, u2, u3, 0, u1 + u2 + u3, 0);ui ∈ R, i = 1, 2, 3},

For i = 4

g(x1, x2, x3, x4, x5, x6)g(y1, y2, y3, y4, y5, y6) = g(x1 + y1e
ax4 ,

x2 + (y2 cos(x4) + y3 sin(x4))ebx4 , x3 + (y3 cos(x4) − y2 sin(x4))ebx4 ,

x4 + y4, x5 + y5, x6 + y6), a �= 0, b ≥ 0,

K4,1 = {g(u1, u2, u3, 0, u1 + u2 + a3u3, 0);ui ∈ R, i = 1, 2, 3}, a3 ∈ R,

K4,2 = {g(u1, u2, u3, 0, u1 + u3, 0);ui ∈ R, i = 1, 2, 3},

For i = 5

g(x1, x2, x3, x4, x5, x6)g(y1, y2, y3, y4, y5, y6)
= g(x1 + y1 + x5y2, x2 + y2, x3 + y3e

x5 , x4

+y4e
cx5 , x5 + y5, x6 + y6), 0 < |c| ≤ 1,

K5,ε = {g(u2 + u3, u1, u2, u3, 0, εu1);ui ∈ R, i = 1, 2, 3}, ε = 0, 1,

For i = 6

g(x1, x2, x3, x4, x5, x6)g(y1, y2, y3, y4, y5, y6)

g(x1 + y1 + x5y2+
1
2
x2
5y3, x2+y2+x5y3, x3+y3, x4+y4e

x5 , x5+y5, x6 + y6),

K6,ε = {g(u3, u1, u2, u3, 0, εu2);ui ∈ R, i = 1, 2, 3}, ε = 0, 1,

K6,2 ={g(au3, u1, u2, u3, 0, b1u1+b2u2+u3);ui ∈ R, i=1, 2, 3}, bj ∈R, a �=0,

For i = 7

g(x1, x2, x3, x4, x5, x6)g(y1, y2, y3, y4, y5, y6) = g(x1 + y1 + x2y5, x2 + y2,

x3 + (y3 cos(x5) − y4 sin(x5))epx5 , x4 + (y4 cos(x5) + y3 sin(x5))epx5 ,

x5 + y5, x6 + y6), p �= 0,

Kε
7,1 = {g(u2 + a3u3, u1, u2, u3, 0, εu1);ui ∈ R, i = 1, 2, 3},

Kε
7,2 = {g(u3, u1, u2, u3, 0, εu1);ui ∈ R, i = 1, 2, 3}, ε = 0, 1, a3 ∈ R,

For i = 8

g(x1, x2, x3, x4, x5, x6)g(y1, y2, y3, y4, y5, y6)
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=g(x1+(y1+y2x5)ex5 , x2+y2e
x5 , x3+y3 + x5y4, x4 + y4, x5 + y5, x6 + y6),

K8,ε = {g(u1, u2, u1, u3, 0, εu3);ui ∈ R, i = 1, 2, 3}, ε = 0, 1,

Proposition 7. There does not exist any 3-dimensional connected topological
proper loop L having g6 as the Lie algebra of its multiplication group and the
Lie algebra k6,2 as the Lie algebra of its inner mapping group.

Proof. We may assume that L is simply connected and hence it is homeomor-
phic to R

3 (cf. Lemma 2). We show that the Lie group G6 does not allow
continuous left transversals S and T to the subgroup K6,2 such that for all
s ∈ S and t ∈ T one has s−1t−1st ∈ K6,2 and the set S ∪ T generates G6.

Two arbitrary left transversals to the group K6,2 in G6 are:

S = {g(u, h1(u, v, w), h2(u, v, w), h3(u, v, w), v, w);u, v, w ∈ R},

T = {g(k, g1(k, l,m), g2(k, l,m), g3(k, l,m), l,m); k, l,m ∈ R},

where hi(u, v, w) : R3 → R and gi(k, l,m) : R3 → R, i = 1, 2, 3, are continuous
functions with hi(0, 0, 0) = gi(0, 0, 0) = 0. The products s−1t−1st, s ∈ S,
t ∈ T , are elements of K6,2 if and only if the equations

a(g3(k, l,m)e−l(1 − e−v) − h3(u, v, w)e−v(1 − e−l)) = vg1(k, l,m)
vlg2(k, l,m) − lh1(u, v, w) + lvh2(u, v, w)

+
1
2
l2h2(u, v, w) − 1

2
v2g2(k, l,m), (12)

g3(k, l,m)e−l(1 − e−v) − h3(u, v, w)e−v(1 − e−l)
= b1lh2(u, v, w) − b1vg2(k, l,m) (13)

are satisfied for all k, l,m, u, v, w ∈ R. Applying equation (13), equation (12)
becomes simplified to

vg1(k, l,m) + ab1vg2(k, l,m) − vlg2(k, l,m) − 1
2
v2g2(k, l,m)

= lh1(u, v, w) + ab1lh2(u, v, w) − lvh2(u, v, w) − 1
2
l2h2(u, v, w). (14)

Using the new functions g′
1(k, l,m) = g1(k, l,m) + ab1g2(k, l,m) − lg2(k, l,m),

h′
1(u, v, w) = h1(u, v, w) + ab1h2(u, v, w) − vh2(u, v, w), equation (14) reduces

to
vg′

1(k, l,m) − 1
2
v2g2(k, l,m) = lh′

1(u, v, w) − 1
2
l2h2(u, v, w). (15)

Equation (15) holds precisely if the functions g′
1(k, l,m) and g2(k, l,m), re-

spectively h′
1(u, v, w) and h2(u, v, w) are polynomials of l, respectively of v

with order at most 2. Using this, equation (13) is satisfied if and only if its
left hand side and its right hand side are 0. This holds precisely if one has
g3(l) = c(el − 1) and h3(v) = c(ev − 1), where c is a real constant. In this
case the set S ∪ T does not generate the group G6. Hence by Proposition 1
the group G6 and the subgroup K6,2 are not the multiplication group and the
inner mapping group of L. This proves the assertion. �
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Theorem 2. Let L be a simply connected topological proper loop of dimension
3 such that its multiplication group is a 6-dimensional solvable non-nilpotent
decomposable Lie group having 2-dimensional centre. Then the pairs of Lie
groups (Gi,Ki), i = 1, · · · , 8, given in Lemma 6 are the multiplication groups
Mult(L) and the inner mapping groups Inn(L) of L with the only exception
(G6,K6,2).

Proof. The pairs (Gi,Ki), i = 1, · · · , 8, in Lemma 6 can occur as the group
Mult(L) and the subgroup Inn(L) of L. According to Proposition 7 the pair
(G6,K6,2) is excluded. In all other cases we give continuous left transversals
Ai, Bi to the subgroup Ki, i = 1, · · · , 8, which fulfill the requirements of
Proposition 1.

Appropriate K1-connected left transversals in the group Ga
1 are: for a <

−1 and for a > 1 the sets

A1,1 = {g(eau(e−u − 1), eu(1 − e−au) + u2, u, u, v, w);u, v, w ∈ R},

B1,1 = {g(eak(1 − e−k), k2 − ek(1 − e−ak), k, k, l,m); k, l,m ∈ R},

for 0 < a < 1 and for −1 < a < 0 the sets

A1,2={g(−ueau−u, 1−eu(1−u(1 − e−au)), eu − e−au+u, u, v, w);u, v, w ∈ R},

B1,2 = {g(keak−k, 1 − ek(1 − k(e−ak − 1)), e−ak+k − ek, k, l,m); k, l,m ∈ R},

for a = 1 the sets

A1,3 = {g(w, eu − 1 − w + u2, u, u, v, w);u, v, w ∈ R},

B1,3 = {g(l2, ek − 1 − l2 + k2, k, k, l,m); k, l,m ∈ R},

for a = −1 the sets

A1,4 = {g(ue−2u, eu − 1 − ueu + ue2u, e2u − eu, u, v, w);u, v, w ∈ R},

B1,4 = {g(−ke−2k, ek − 1 + kek − ke2k, ek − e2k, k, l,m); k, l,m ∈ R}.

Appropriate K2-connected left transversals in G2 are the sets

A2={g(eu−1−u3+
3
2
a2u

2+u(a3−a2
2), a2u− 3

2
u2,−u, u, v, w);u, v, w ∈ R},

B2={g(ek − 1+k3 − 3
2
k2a2+k(a2

2 − a3),
3
2
k2−a2k, k, k, l,m); k, l,m ∈ R},

a2, a3 ∈ R. Appropriate K3-connected left transversals in Ga,b
3 are: for −1 ≤

a = b ≤ 1 the sets

A3,1 = {g(eu(e−au − 1), eau(1 − e−u) − w,w, u, v, w);u, v, w ∈ R},

B3,1 = {g(ek(1 − e−ak), eak(e−k − 1) − m,m, k, l,m); k, l,m ∈ R},

for −1 ≤ a < b ≤ 1 the sets

A3,2 = {g(eu−au − eu−bu, eau − eau−u, ebu−u − ebu, u, v, w);u, v, w ∈ R},

B3,2 = {g(ek−bk − ek−ak, eak−k − eak, ebk − ebk−k, k, l,m); k, l,m ∈ R},
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where ab �= 0. Appropriate K4,1-connected left transversals in Ga,b
4 are the

sets

A4,1 = B4,1 = {g(eau−bu sin(u),
1

a2
3+1

((ebu−ebu−au)(sin(u)−a3 cos(u))+(ebu−cos(u))(cos(u) + a3 sin(u))),

1
a2
3+1

((ebu−ebu−au)(a3 sin(u)+cos(u))+(ebu−cos(u))(a3 cos(u)−sin(u))),

u, v, w);u, v, w ∈ R}, a3 ∈ R.

Appropriate K4,2-connected left transversals in Ga,b
4 are the sets

A4,2 = B4,2 = {g(eau−bu sin(u), (ebu−au − ebu) cos(u) + sin(u)(ebu − cos(u)),

cos(u)(ebu − cos(u)) − (ebu−au − ebu) sin(u), u, v, w);u, v, w ∈ R},

a �= 0, b ≥ 0. Appropriate K5,ε-connected left transversals, ε = 0, 1, in Gc
5 are:

for c = 1 the sets

A5,1 = {g(u, 1 − e−v, u, vev − u, v, w);u, v, w ∈ R},

B5,1 = {g(k, e−l − 1, k,−lel − k, l,m); k, l,m ∈ R},

for c �= 1 the sets

A5,2 = {g(u, e−v − e−cv,−vev, vecv, v, w);u, v, w ∈ R},

B5,2 = {g(k, e−cl − e−l, lel,−lecl, l,m); k, l,m ∈ R}.

Appropriate K6,ε-connected left transversals in G6, where ε = 0, 1, are the
sets

A6 = {g(u, 1 − v2 − e−v,−v,
1
2
v2ev, v, w);u, v, w ∈ R},

B6 = {g(k, l +
1
2
l2 − le−l, 1 − e−l,−lel, l,m); k, l,m ∈ R}.

Appropriate Kε
7,1-connected left transversals in Gp�=0

7 , ε = 0, 1, are the sets

A7,1 = B7,1 = {g(u, e−pv sin(v),
1

a2
3 + 1

(epvv(sin(v) + a3 cos(v)) + (epv − cos(v))(cos(v) − a3 sin(v))),

1
a2
3 + 1

(epvv(a3 sin(v) − cos(v)) + (epv − cos(v))(a3 cos(v) + sin(v))),

v, w);u, v, w ∈ R}, a3 ∈ R.

Appropriate Kε
7,2-connected left transversals in Gp�=0

7 , where ε = 0, 1, are the
sets

A7,2 = B7,2 = {g(u, e−pv sin(v), epvv cos(v) + sin(v)(epv − cos(v)),
epvv sin(v) − cos(v)(epv − cos(v)), v, w);u, v, w ∈ R}.
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Appropriate K8,ε-connected left transversals in G8 with ε = 0, 1 are the sets

A8 = {g(vev + v2, v, u, 1 − e−v, v, w);u, v, w ∈ R},

B8 = {g(l2 − lel, l, k, e−l − 1, l,m); k, l,m ∈ R}.

Hence the assertion follows from Proposition 1. �

Corollary 2. Each 6-dimensional solvable decomposable Lie group which is the
group Mult(L) of a 3-dimensional connected topological loop L has 1- or 2-
dimensional centre and 3-dimensional commutator subgroup.

Proof. If L has 1-dimensional centre, then the assertion follows from Proposi-
tion 3. If L has 2-dimensional centre, then Proposition 6 yields the assertion.
�

Corollary 3. Each solvable Lie group of dimension 6 which is realized as the
group Mult(L) of a 3-dimensional connected topological proper loop L has 1-
or 2-dimensional centre and 2- or 3-dimensional commutator subgroup.

Proof. If L has a 6-dimensional solvable indecomposable Lie group as its mul-
tiplication group, then the assertion is proved in Corollary 3.4 in [9]. If L has
a 6-dimensional solvable decomposable Lie group as its multiplication group,
then Corollary 2 gives the assertion. �
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