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Abstract. In this paper we deal with the class C of decomposable solvable
Lie groups having dimension six. We determine those Lie groups in C and
their subgroups which are the multiplication groups Mult(L) and the
inner mapping groups Inn(L) for three-dimensional connected simply
connected topological loops L. This result completes the classification
of the at most 6-dimensional solvable multiplication Lie groups of the
loops L. Moreover, we obtain that every at most 3-dimensional connected
topological proper loop having a solvable Lie group of dimension at most
six as its multiplication group is centrally nilpotent of class two.
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1. Introduction

The notion of the multiplication group Mult(L) and the inner mapping group
Inn(L) of aloop L was introduced and firstly investigated by A. A. Albert and
R. H. Bruck. Since their papers [1,2] much work has been done to study the
correspondences between the structure of the loop L and that of the groups
Mult(L) and Inn(L). In particular many results relate nilpotency and solvabil-
ity of loops to the analogous properties of their groups Mult(L) and Inn(L)
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([13,19,22,24,26]). M. Niemenmaa and T. Kepka established in [20] the neces-
sary and sufficient conditions for a group G to be the multiplication group of
L. In their criteria the existence of special transversals A and B with respect
to a subgroup K of G plays an important role. These transversals belong to
the sets of left and right translations of L whereas K corresponds to the in-
ner mapping group of L. For finite loops the importance of the permutation
groups Mult(L) and Inn(L) as well as the connected transversals A and B is
documented in many papers (cf. [3,4,16,18,21,25]).

Topological and differentiable loops are investigated thoroughly by P. T.
Nagy and K. Strambach in [17] as continuous and differentiable sections in Lie
groups. Part IT of [17] is devoted to the explicit description and determina-
tion of topological and smooth loops on low dimensional manifolds. Following
their approach this article is a contribution to the study of connected topo-
logical loops L of dimension 3 having a solvable Lie group as their multipli-
cation group. Each 2-dimensional connected topological proper loop having a
Lie group as its multiplication group has nilpotency class two (cf. [5]). This
nilpotency property is valid for 3-dimensional connected topological loops L
having either a solvable Lie group of dimension at most 5 or a 6-dimensional
indecomposable solvable Lie group as their group Mult(L) (cf. [7,8,10,11]).
Furthermore, in the class of the at most 5-dimensional solvable non-nilpotent
Lie groups only decomposable groups occur as the multiplication group of L
(cf. [7]). In this paper we show that the centrally nilpotency of class two prop-
erty is satisfied for 3-dimensional topological loops L if the group Mult(L) is
a 6-dimensional decomposable solvable Lie group (cf. Propositions 3, 6).

The multiplication groups and the inner mapping groups of the connected
simply connected topological loops L with dim(L) = 3 in the class of the
solvable indecomposable Lie groups of dimension at most 6 are known (cf.
[8,9,11]). Theorems 1, 2 and Proposition 5 complete the classification of the
groups Mult(L) and Inn(L) for every solvable Lie group of dimension at most
6.

After the presentation of the necessary concepts, Proposition 2 shows
that the decomposable solvable Lie groups of dimension 6 with discrete cen-
tre are not the multiplication group of a 3-dimensional connected topological
loop. In section 4, respectively in 5 we treat the decomposable solvable Lie
groups having a 1-dimensional, respectively a 2-dimensional centre. Among
the 6-dimensional decomposable solvable Lie groups with 1-dimensional cen-
tre there are 18 families of Lie groups which are multiplication groups of 3-
dimensional connected simply connected topological loops L. In the class of
the 6-dimensional decomposable solvable Lie groups with 2-dimensional centre
9 families can be represented as the group Mult(L) of L. All these Lie groups
have 3-dimensional commutator subgroups (see Corollary 2) and depend on at
most two real parameters.
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2. Preliminaries

A set L with a binary operation (x,y) — x - y is called a loop if there exists
an element e € L such that x = e -2 = - e holds for all x € L and for each
x € L the left translations A, : L — L, A\, (y) = = -y and the right translations
pz : L — L, p,(y) = y-x are bijections of L. A loop L is proper if it is
not a group. The maps (z,y) — z\y = \; '(y), respectively (z,y) — y/z =
0. (y), z,y € L are further binary operations on L. The permutation group
Mult(L) = (Mg, pz; @ € L) is called the multiplication group of L. The inner
mapping group Inn(L) of L is the stabilizer of the identity element e € L in
Mult(L).

Let G be a group, let K be a subgroup of G, and let A and B be two left
transversals to K in G. We say that A and B are K-connected if a='b~'ab € K
for every a € A and b € B. The core Cog(K) of K in G is the largest normal
subgroup of G contained in K. If L is a loop, then A(L) = {A;;z € L} and
P(L) = {pz;x € L} are Inn(L)-connected transversals in the group Mult(L).
Theorem 4.1 in [20] states the following necessary and sufficient conditions for
a group G to be the multiplication group of a loop L:

Proposition 1. A group G is isomorphic to the multiplication group of a loop
if and only if there exists a subgroup K with Cog(K) = 1 and K-connected
left transversals A and B satisfying G = (A, B).

The kernel of a homomorphism « : (L,-) — (L/,*) of a loop L into a
loop L’ is a normal subloop N of L. The centre Z(L) of a loop L consists
of all elements z which satisfy the equations zx -y = z -2y, x -yz = xy -
z, xz-y = x -2y, za = xz for all z,y € L. If we put Zy = e, Z; = Z(L)
and Z;/Z; 1 = Z(L/Z;_1), then we obtain a series of normal subloops of L.
If Z,,_1 is a proper subloop of L but Z, = L, then L is centrally nilpotent of
class n.

A loop L is called classically solvable if there exists a series {e} = Ly <
L, <--- <L, =L of subloops of L such that for every i = 1,2,--- ,n, L;_4
is normal in L; and each factor loop L;/L;_1 is a commutative group.

We often use the following Lemma which is proved in Theorems 3, 4 and
5 of [1], in Lemma 1.3, IV.1 of [2], in Lemma 2.3 of [8] and in Proposition 2.7
of [20].

Lemma 1. Let L be a loop with multiplication group Mult(L), inner mapping
group Inn(L) and identity element e.

1. Let « be a homomorphism of the loop L onto the loop o(L) with kernel N.
Then « induces a homomorphism of the group Mult(L) onto the group
Mult(a(L)). The set M(N) ={m € Mult(L); N = m(z)N for all x €
L} is a normal subgroup of Mult(L) containing the multiplication group
Mult(N) of the loop N and the multiplication group of the factor loop
L/N is isomorphic to Mult(L)/M(N).
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2. For every normal subgroup N of Mult(L) the orbit N(e) is a normal
subloop of L and N < M(N (e)).

3. The core of Inn(L) in Mult(L) is trivial and the normalizer of Inn(L)
in Mult(L) is the direct product Inn(L) x Z, where Z is the centre of the
group Mult(L).

A loop L is called topological if L is a topological space and the binary
operations (z,y) — x -y, (x,y) — z\y, (x,y) — y/x : L Xx L — L are continu-
ous. In general the multiplication group of a topological loop L is a topological
transformation group that does not have a natural (finite dimensional) differ-
entiable structure. We investigate a 3-dimensional connected topological loop
having a solvable Lie group as its multiplication group. The first assertion of
the following lemma is proved in [12], IX.1, the second assertion is showed in
[7], Lemma 5.

Lemma 2. For each connected topological loop there is a unique universal cov-
ering loop L. If L is a 3-dimensional connected simply connected topological
loop having a solvable Lie group as its multiplication group, then it is homeo-
morphic to R3.

The elementary filiform Lie group F,, is the simply connected nilpotent
Lie group of dimension n > 3 whose Lie algebra is elementary filiform, i.e. it
has a basis {e1, - , e, } with [e1,e;] = e¢;41 for 2 < i <n—1. A 2-dimensional
simply connected topological loop L is called an elementary filiform loop if
its multiplication group is an elementary filiform group F,, of dimension n > 4
(l6)).

A Lie algebra is called decomposable, if it is the direct sum of two proper
ideals. In this paper we assume that the multiplication group of L is a 6-
dimensional solvable decomposable Lie group or a nilpotent decomposable Lie
group of dimension < 5. The next lemma summarizes the known results about
the 3-dimensional topological loops having solvable decomposable Lie groups
as their multiplication groups (cf. Lemmata 3.4, 3.5, 3.6 and Propositions 3.7,
3.8 in [6], pp. 390-393, Theorem 11 in [1], Theorem 6, Sections 4 and 5 in [7],
Propositions 2.6, 2.7 in [8], Lemma 6 (d) in [11], Chapter I in [2]) which are
often used in the paper.

Lemma 3. Let L be a 3-dimensional proper connected simply connected topolog-
ical loop such that its multiplication group Mult(L) is a 6-dimensional solvable
decomposable Lie group.

a) The centre Z of the group Mult(L) and the centre Z(L) = Z(e) of the
loop L, where e is the identity element of L, are isomorphic. Moreover,
the centre Z has dimension < 2.

b) The loop L is classically solvable and it has a 1-dimensional connected
normal subloop N. Every such subloop N of L is isomorphic to R and
lies in a 2-dimensional connected normal subloop M of L. The factor
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d)

)

loop L/M s isomorphic to R, whereas the loop M and the factor loop
L/N are isomorphic either to the Lie group R? or to the 2-dimensional
non-abelian Lie group Lo or to an elementary filiform loop L.

If Mult(L) has discrete centre, then for every normal subloop N 2 R of L
the factor loop L/N s isomorphic either to the group Lo or to a loop Lg.

The group Mult(L) has a normal subgroup S containing Mult(N) = R

such that the factor group Mult(L)/S is isomorphic to the direct product
Lo x Lo if L/1(e) = Lo, or to an elementary filiform Lie group F,,, n =
4,5 if L/I(e) = Lz. The normal subloop M containing N is isomorphic
either to R? or to Ly or to L. The group Mult(L) has a normal subgroup
V' such that the orbit V(e) is the loop M, Mult(L)/V =2 R, V contains
the inner mapping group Inn(L) of L, the group Mult(M) of M and the
commutator subgroup of Mult(L).

If dim(Z(L)) = 1, then for every normal subloop N = R of L we have
one of the following possibilities:

(i) The factor loop L/N is isomorphic to R%. Then L is centrally nilpo-
tent of class 2, N coincides with the centre Z(L) of L and the
group Mult(L) is a semidirect product of the normal subgroup P =
Z x Inn(L) = R* by a group Q = R? such that the orbit P(e) is
Z(L).

(i) The factor loop L/N is isomorphic either to the Lie group Lo or
to a loop Lg. Then case c) is fulfilled. In particular, if N = Z(L),
then M is not isomorphic to the group Lo.

If dim(Z(L)) = 2, then L is centrally nilpotent of class 2 and the group
Mult(L) is a semidirect product of the normal subgroup V.= ZxInn(L) =
R5 by a group Q = R, where R?2 = Z = Z(L). V contains the commuta-
tor subgroup Mult(L)" of Mult(L). The group Mult(L) is either nilpo-
tent or its Lie algebra has a 5-dimensional abelian nilradical. For every
1-dimensional connected subgroup I of Z the orbit I(e) is a connected
central subgroup of L isomorphic to R and the factor loop L/I(e) is iso-
morphic either to the group R? or to an elementary filiform loop Lr. If
L/I(e) = R?, then case d) (i) holds. If L/I(e) = Ly, then the group
Mult(L) has a normal subgroup S containing I = R such that one has
S(e) = I(e) and the factor group Mult(L)/S is isomorphic either to Fyu
or to Fs. The case Mult(L)/S = F5 occurs only if Mult(L) = R x Fs.
If the group Mult(L) is nilpotent, then L is centrally nilpotent.

The next lemma, which is proved in [10], Proposition 3.3, is a useful tool

to exclude those Lie algebras which are not the Lie algebra of the multiplication
group of a 3-dimensional topological loop.

Lemma 4. Let L be a 3-dimensional proper connected simply connected topo-
logical loop having a 6-dimensional solvable Lie algebra g as the Lie algebra of
its multiplication group.
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a) For each 1-dimensional ideal i of g the orbit I(e), where I is the simply
connected Lie group of i, is a normal subgroup of L isomorphic to R. We
have one of the following possibilities:

(i) The factor loop L/I(e) is isomorphic to R?. Then g contains the
ideal p = z @ inn(L) = R* such that the commutator ideal g' of g
lies in p. Here z is the 1-dimensional centre of g and inn(L) is the
Lie algebra of the inner mapping group Inn(L).

(i) The factor loop L/I(e) is isomorphic either to the group Lo or to a
loop Lg. Then there exists an ideal s of g such that i < s and the
factor Lie algebra g/s is isomorphic either to 1o ® s, where 1y is the
2-dimensional solvable non-abelian Lie algebra, or to an elementary
filiform Lie algebra f,,, n = 4,5.

b) Let a be an ideal of g such that dim(a) = 2, a C g’ and the factor Lie
algebra g/a is isomorphic neither to 1,1y nor to fy. Then the orbit A(e),
where A is the simply connected Lie group of a, is either a 2-dimensional
connected normal subloop M of L or the factor loop L/A(e) is isomorphic
to R?.

If A(e) = M, then there exists a 5-dimensional ideal v of g containing the
Lie algebra inn(L), the Lie algebra mult(M) of the multiplication group of M
and the commutator ideal g’ of g. Let b be an ideal of g such that dim(b) > 3,
a Cb Cg'. Then the orbit B(e), where B is the simply connected Lie group of
b, coincides with M. One has aninn(L) = {0} and the intersection bNinn(L)
has dimension dim(b) — 2.

If the factor loop L/A(e) is isomorphic to R?, then we have case (i).

3. The Case dim(Z)=0

This section is devoted to prove the following:

Proposition 2. The 6-dimensional decomposable solvable Lie algebras with triv-
1al centre are not the Lie algebra of the multiplication group of a connected
topological loop L of dimension 3.

Proof. We may assume that the loop L is simply connected and hence it is
homeomorphic to R? (cf. Lemma 2). Since the Lie algebra mult(L) of the group
Mult(L) of L is a 6-dimensional decomposable solvable Lie algebra with trivial
centre, for mult(L) we have the following possibilities: 1o &1 ® 12, g3.; B 83,5,
lo & ga i, where g3, 83, 1,7 € {2,3,4,5}, are the 3-dimensional solvable Lie
algebras with trivial centre (cf. §4 in [14], p. 119), g4k, k = 2,4,5,6,7,10,
gfg*l, gféo are the 4-dimensional solvable Lie algebras with trivial centre
(see §5 in [14], pp. 120-121). These Lie algebras have trivial centre and neither
a subalgebra nor a factor Lie algebra is isomorphic to an elementary filiform
Lie algebra f,, n = 4,5.
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The Lie algebras mult(L) = L @ ga s, k = 2,4,5,6,7,10, I, & gi% ",
L, ® gfﬁgo, where 1o = (f1, f2), have the 1-dimensional ideal i = (f1). There
does not exist any ideal s of mult(L) such that i C s and mult(L)/s is
isomorphic to the Lie algebra 1o @ 1. By Lemma 3 c) these Lie algebras are
not the Lie algebra of the multiplication group of a loop L.

Now we treat the Lic algebras g; ; = g3, B 8s,; = (€1, €2, €3) P (e, €5, €6),
1,7 € {2,3,4,5}. Let be j = 5. The Lie algebra g3 5, respectively g4 5 is defined
by [e1,e3] = e1, [e2,e3] = hea, [e4,e6] = pes — es5, [e5,e6] = e + pes, p > 0,
where h = 1, respectively —1 < h < 1, whereas the Lie algebra gs 5 is given
by [e1,e3] = e1, [e2,e3] = e1 + ea, [eq, e6] = peq —e5, [e5,e6] = e4 + pes, p > 0.
They have the 1-dimensional ideal i = (e;). There does not exist any ideal s
of g5, % =2,3,4, such that i C s and g; 5/s is isomorphic to the Lie algebra
12 @12 The Lie algebra 85,5 defined by [617 63] = p1€1 — €2, [627 63] = €1 +p162,
[es, e6] = poes — e5, [e5,€6] = eq + paes with pr, pa > 0 has the minimal ideals
s1 = (e1,ea), so = (eq,e5). Let S;, i = 1,2, be the simply connected Lie
groups of s;. If g5 5 were the Lie algebra of the multiplication group of L, then
by Lemma 3 b) and ¢) at least one of the orbits S;(e), i« = 1,2, would be a
normal subloop of L isomorphic to R. For this orbit the factor loop L/S;(e) is
isomorphic to the group Ls. Since the factor Lie algebras gs 5/s:, @ = 1,2, are
not isomorphic to the Lie algebra 1y @ 15 the Lie algebra gs 5 is excluded (cf.
Lemma 4 (ii)).

The Lie algebras g3 3, 834, 84,4 are defined by [e1,e3] = e1, [ea,e3] =
h1€2, [64,66] = €4, [65,66] = h265 such that for g3,3 one has hl = hg = 1, for
g3,4 one has hy =1, =1 < hy < 1 and for g4 4 one has —1 < hq,ho < 1. The
Lie algebra gs 3, respectively gs 4 is given by [e1,e3] = e1, [e2,e3] = €1 + ea,
[es, e6] = e, [e5,e6] = haes, where hy = 1, respectively —1 < hy < 1. The
Lie algebra go o is defined by [e1,e3] = e1, [ea,e3] = e1 + €2, [e4,e6] = eq,
[es,e6] = e + e5. All these Lie algebras have the ideals i; = (e1), iz = (e4).
Additionally, the Lie algebra g3 3 has the ideals i3 = (ea+l1e1), s = (e5+1se4),
l1,1l2 € R, the Lie algebra g4 4 has the ideals i5 = (e2), is = (e5), the Lie algebra
g3 has the ideal iy, the Lie algebra go 4 has the ideal ig, and the Lie algebra
g3.4 has the ideals i3, ig. All Lie algebras have the ideal s; = (e1, e4) containing
iy, iz, such that the factor Lie algebras g; ;/s1, 4, j € {2,3,4} are isomorphic to
l,®1,. Furthermore, the Lie algebra gs 3 has the ideal so = (ea+1ie1, e5+1zes),
the Lie algebra g4 4 has the ideal s3 = (e2,e5), the Lie algebra go 3 has the
ideal s4 = (e1,e5 + l2e4), the Lie algebra gs 4 has the ideal s5 = (eg, e5) and
the Lie algebra gs 4 has the ideal s = (e + l1e1, e5) such that the factor Lie
algebras g373/52, g474/53, g273/S4, g274/S5, g374/S6 are isomorphic to 12 (&) 12.
If g, 4,7 € {2,3,4}, is the Lie algebra of the multiplication group of a 3-
dimensional topological loop L, then the orbits Ix(e), k = 1,---,6, where
I, = exp(ix) and e is the identity element of L, are 1-dimensional normal
subgroups of L isomorphic to R and the factor loops L/Ij(e) are isomorphic

to Ly (cf. Lemma 4 (ii)). All Lie algebras g; ;, i,j € {2,3,4}, have the ideals



20 Page 8 of 34 A. Al-Abayechi and A. Figula Results Math

s7 = (e1, e2), ss = (eu, e5) such that the factor Lie algebras g; ;/s;, | = 7,8, are
not isomorphic to ly @ ly. Hence the orbits Sj(e), where S; = exp(s;), [ = 7,8,
and e is the identity element of L, are 2-dimensional normal subloops of L and
therefore one has s; Ninn(L) = {0}, I = 7,8 (cf. Lemma 4). All Lie algebras
i, 1,7 € {2,3,4}, have the commutator subalgebra n; = (e1, €2, €4, e5). Their
5-dimensional ideals are vi = (e1, €2, €4, €5, €3), Vo = (€1, €2, €4, €5, €6 + ke3),
k € R. Denote by N; the simply connected Lie group of n;. By Lemma 4
b) we have Nj(e) = Si(e), | = 7,8. Therefore the intersection n; N inn(L)
has dimension 2. Hence the Lie algebra inn(L) has the basis elements r =
e4 + are; + ases, 7o = e5 + biey + boes such that at least one of aq,as as well
as by, by are different from 0 and a1by — agby # 0.

All Lie algebras g; ;, i,j € {2,3,4}, have the ideals ny = (e, ez, €3),
n3 = (e4,e5,66). As sy < ng and sg < ng the orbits N;(e), where N; =
exp(n;), j = 2,3, have dimension 2 or 3. If S7(e) = Na(e) or Sg(e) = N3(e),
then one has dim(ns Ninn(L)) = 1 or dim(ns Ninn(L)) = 1. Hence the Lie
algebra inn(L) has the basis element either r3 = e5 + c1e1 + caeg or 1§ = €5+
dyeq + daes, ¢;,d; € R, i =1,2. Since [ry, r3], respectively [rq, r5] is a non-zero
element of the ideal s7, respectively sg, the subspaces (ry,72,r3), (r1,r2,75)
are not 3-dimensional subalgebras of g; ;, ¢, € {2,3,4}. This contradiction
gives that Na(e) = L and N3(e) = L. As ny < vy and n3 < va o we obtain
that Na(e) = Vi(e) = Vao(e) = Nz(e) = L. By Lemma 3 c) there exists a
parameter k € R\ {0} such that V5 (e) is the 2-dimensional normal subloop
S7(e) = Sg(e). Hence one has dim(va yNinn(L)) = 3. Therefore the Lie algebra
inn(L) has the basis element r4 = eg + kes + l1e1 + laeg for some k € R\ {0},
L eR,i=1,2.

The subspace (ri,r2,74) is not a 3-dimensional subalgebra of the Lie
algebras g2 3, 82,4, 83,4. Hence these Lie algebras cannot be the Lie algebra of
the group Mult(L) of L.

The subspace (r1,72,74) forms a 3-dimensional subalgebra of gs » if and
only if k =1, az = 0 and by = a1 # 0. Hence the subalgebra inn(L) < g2 2 has
the form inn(L) = (e4 + aje1,e5 + bie; + area, eg + e3 + lie1 + laes), a1 # 0,
bi,l; € R.

The subspace (r1,72,74) forms a 3-dimensional subalgebra of gs 5 if and
only if & = 1. Hence the subalgebra inn(L) < g3 3 has the form inn(L) =
(e4 + arer + ageq, €5+ brey + baea, e + €3 + l1e1 + laes) such that at least one
of a1, ay as well as by, by are different from 0 and a1bs — asby # 0.

The subspace (ry,r2,74) forms a 3-dimensional subalgebra of g4 4 if and

only if one has either a1 = 0 = by, k = ho = h%’ oras; =0 =205, k=1,

ho = hy. Therefore the subalgebra inn(L) < g4 4 has either the form inn(L) =
<€4 + as€g, €5 + b1€1,€6 + keg + l1€1 + 1262> such that (12[)1 74— 0, k= hg = %,

or inn(L) = (eq + aje1,e5 + baea, e6 + e3 + l1eg + laea) such that a1by # 0,
h1 = ho.
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Using the automorphism ¢(e;) = %, o(e2) = %, o(es) =

es —lid(er) —ladp(e2), d(e;) = e;, 1 = 4,5,6, of the Lie algebras g; ;, ¢ = 2, 3,4,
such that for g 2 one has as = 0,b2 = a; # 0 and for g4 4 we have ag = b; =0,

hs = hy, we can reduce inn(L) to inn(L); = (e4+e1, e5+€2, eg+e3). Moreover,

the automorphism ¢(e;) = %61, o(eq) = éeg, o(es) = ez — hg—flel - %62,

o(e;) = e;, i =4,5,6, of the Lie algebra g4 4 with hy = h% reduces inn(L) to
inn(L)y = (eq + ea,e5 + €1,66 + hile;),). Linear representations of the simply

connected Lie groups G ;, i = 2, 3,4, are given as follows: for G2 5 one has
9(w1, 22,73, 4,75, %6)9(Y1, Y2, Y3, Y4, Y5, Yo)
= g(z1 + (Y1 + T3y2)e™, 2 + y2e™, T3 + Y3, 74
+(ya + T6ys5)e™®, v5 + yse™, z6 + Yo),

for G's 3, where hy =1, and for G4 4 with hy = hy we have
9(T1 + y1€™%, T + Y273 w5 + Y3, T4 + y2€™®, 15 + Y57, 16 + Yp),

for G4,4, where hy = h%, one has

g(x1 + y1€™, 23 + Y273 15 + y3, w4 + ys€™, 15 + ysert g + Y6)-
We get that the subgroup Inn(L); of Ga 2, G 3 and G4 4 with hy = hq has the
form Imn(L), = {g(u1,us, us, uy, us,us); u; € R}, i =1,2,3, and the subgroup
Inn(L)y of Gy4 with hy = h% is Inn(L)2 = {g(uz,u1, h—llu;),,ul,ug,ug);ui €
R}, i = 1,2,3. Two arbitrary left transversals to the groups Inn(L); and
Inn(L)s in G, @ = 2, 3,4, are
A= {g(u,v,w,fl(u,v,w), f2(u,v,w),f3(u,v,w)) U, w € R}a
B ={g(k,l,m,g1(k,l,m), ga(k,l,m), g3(k,l,m)) : k,l,m € R},
where fi(u,v,w) : R — R and g;(k,l,m) : R® = R, i = 1,2, 3, are continuous
functions with f;(0,0,0) = ¢;(0,0,0) = 0. For all a« € A, b € B the condition
a~'b~lab € Inn(L); holds if and only if in the cases Ga 2, G 3 with hy = 1
and G4 4 with hy = hy the equation
le~mm(1 — e=Mw) 4 ge=Mw(e=mm _q)
= go(k, 1, m)eihl%(k’l’m)(l _ e*hlfs(u,vvw))
+fo(u, v, w)e M fslwvw) (e=tags(bbm) 1), (1)
and additionally for Gz 2 the equation
el —e")k—=Im)+e (™ —1)(u—ovw)+ (wl —mv)e”™" ™"
= 7Bt — eIl ) (gy (1, m) — ga(k, 1,m)gs(k, 1, m))
e f3lwvw) (emosbm) 1) (fy (u, v, w) = fa(u, v,w) f3(u, v, w))
+(g2(k, 1L,m) fa(u, v,w) = fau,v,w)g3(k, 1,m))e” F2(erw)mastbtm)
(2)
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for G3 3 with hy =1 and for G44 with he = h; the equation

Fe (1= )+ ue (e ™ — 1)
= gl(k, l,m)e—%(k,l,m)(l _ e—f?,(u,v,w))
+f1 (u, v, w)e—fa(u,v,w) (e—gs(k,l,m) _ 1) (3)

are satisfied for all k,I, m,u,v,w € R. The products a~*b~'ab are contained
in Inn(L)y if and only if the equations

le—hlm(l . e_h”“) + ve_hlw(e_hlm _1)
= gl(k7 l, m)e_gg'(k’l’m)(l _ e—fa(u,v,w))
—|—f1 (U, v, w)e_fls(u,vﬂv) (e—gg(k,l,7n) o 1)7 (4)
ke_m(l _ e—’w) + ue—w(e_m _ 1)

= 92(]97 l,m)e_hillg:’(kwl’m)(]_ _ e—ﬁfs(u,v,w))
1

+ falu, v, w)e—ﬁfs(uw,w)(e—ﬂgs(k,hm) —1) (5)

are satisfied for all u,v,w,k,l,m € R. Equation (1), respectively (4) is sat-
isfied precisely if one has f3(u,v,w) = w, fa(u,v,w) = v, gs3(k,l,m) = m,
g2(k,l,;m) = 1, respectively f3(u,v,w) = hjw, fi(u,v,w) = v, g3(k,l,m) =
him, g1(k,l,m) = l. Then AU B does not generate the groups G, ;, i = 2,3,
G4 with hy = hy and G4 4 with hy = ﬁ By Proposition 1 the Lie algebras
8ii, 1 = 2,3, 8a.4 With hg = hy and with hy = h%’ are not the Lie algebras of
the groups Mult(L) of 3-dimensional topological loops L.

Hence it remains to deal with the Lie algebra g = lo @ 1o @1y = (f1, f2) @
(f3, f1) ® (f5, f6) with the Lie brackets [f1, f2] = f1, [f3, fa] = f3, [f5, fo] = f5.
The Lie algebra g has the 1-dimensional ideals i1 = (f1), ia = (f3), i3 = (f5).
The ideals s1 = (f1, f2), s2 = (f3, f1), s3 = (f5, f6) have the properties i; C s;
and g/s;, j = 1,2,3, are isomorphic to ly @ l,. If g is the Lie algebra of
the multiplication group of L, then the orbits I;(e), j = 1,2,3, where I; is
the simply connected Lie group of i; and e is the identity element of L, are
1-dimensional normal subloops of L such that the factor loops L/I;(e) are
isomorphic to the 2-dimensional non-abelian Lie group Lo (cf. Lemma 4 a)
(i)

For the ideals a; = (f1, f3), a2 = (f1, f5), a3 = (fs, f5) the factor Lie
algebras g/a;, j = 1,2,3, are not isomorphic to 1o & l,. Hence these ideals
and the commutator ideal g’ = (f1, f3, f5) satisfy the condition of Lemma
4 b). Therefore the orbits Aj(e) and G’(e), where Aj, respectively G’ is the
simply connected Lie group of a;, j = 1,2, 3, respectively g’, are the same 2-
dimensional normal subloop M of L. Furthermore, one has inn(L) Na; = {0}
for all j = 1,2,3 and dim(g’ N inn(L)) = 1. The commutator subalgebra
inn(L)’ of inn(L) is the intersection g’ Ninn(L). As every element of inn(L)’
is contained in one of the ideals a; and inn(L) Na; = {0} for all j = 1,2,3,
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the Lie algebra inn(L) is abelian. The 5-dimensional ideals of g are:

vi = (f1, f3, f5, fa + ki fe, fa + kafe), Vo= (f1.[f3, f5, fo + k3fa, fo + kafa),
V3:<f17f3af57f4+k5f27f6+k6f2>a kl€R7 7':1”6

Each 3-dimensional abelian subalgebra of a 5-dimensional ideal v;, j = 1,2, 3,
contains a non-trivial ideal of g. Hence the Lie algebra g = 1, @& 1o & 1y is
not the Lie algebra of the multiplication group of a 3-dimensional topological
loop. O

Corollary 1. There does not exist any connected topological proper loop L of
dimension < 3 having a solvable Lie group of dimension < 6 with discrete
centre as the multiplication group of L.

Proof. A nilpotent multiplication Lie group has always non-discrete centre
(cf. [5], Theorem 1 and [8], Theorem). Let dim(L) = 3. If the multiplication
group of L is solvable and has dimension < 5, then it is decomposable having
1- or 2-dimensional centre (see Propositions 12, 13, 14, 15, 17 in [7]). For 6-
dimensional solvable Lie groups the assertion follows from Theorems 3.6, 3.7
in [8], Proposition 13 in [11] and Proposition 2. O

4. The Case dim(Z)=1

In this section we determine the 6-dimensional decomposable solvable Lie
groups with 1-dimensional centre which are the multiplication group Mult(L)
of a 3-dimensional connected simply connected topological loop L. These loops
have a centre Z(L) = R such that the factor loop L/Z(L) is isomorphic to R2.

Proposition 3. Let L be a connected topological loop of dimension 3 such that
its multiplication group Mult(L) is a 6-dimensional decomposable solvable Lie
group with 1-dimensional centre. Then L has nilpotency class 2. Moreover, the
following Lie algebra pairs can occur as the Lie algebra g of the group Mult(L)
and the subalgebra k of the subgroup Inn(L):

If g has the form g = R& h = (f1) & (e1,e2,e3,€4,€5), where h is a 5-
dimensional solvable indecomposable Lie algebra with trivial centre, then:

- g1 = R@g?fgo’ﬁ#o: le2, e3] = €1, [e1, e5] = €1, [e2, e5] = e2, [ea, €5] = Pey,

kic=(e1+ fi,ea+efi,ea+ f1), e=0,1,

- 82 = R@g?fgi [e2,e3] = e1, [e1,e5] = e1, [ea, e5] = ea, [ea, e5] = €1 + ey,
kg,e = <61 + f1,62 +€f1,64 —|—a3f1>, az €R, e=0,1,

— g3 = R®gsor: [e2,e3] = ey, [e1,e5] = e1, [e3,e5] = e3 + ey, [es,e5] =
e1 +eq, ks = (e1 + fi,e3,e4 +azf1), a3 €R,

~ g =R®gggd: [ea,es] = eq, [e1,e5] = €1, [es, 5] = es+ ey, [ea,e5] = ey,
ky = (e1 +a1fi,e3,eq + f1), a1 € R\{0},

— 85 = RD g5 [e2,e4] = €1, [e3,e4] = €2, [e1,65] = €1, [ea, e5] = ea,
les,e5] = heir +e3, ks = (e1 + fi,ea +azf1,e3), h,az € R,
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— g6 = R®gs33: [e1,e4] = €1, [e3,e4] = Pes, [e2,e5] = €2, [es,e5] = ves,
B2 +~2#0, kg = (e1 + f1,e2 + fi,e3 + f1),

- g7 = R®gsaar [61764] = «eq, [62764] = ég, [63764} = es3, [61765} = e,
les, e5] = e, kr = (e1 + fi,e2 + fi,e3 +asf1), a,a3 € R,

— 88 = R® gs35: [e1,e4] = he, [ez,e4] = €2, [e3,e4] = €3, [e1,65] = ey,
[e2,e5] = —es, [es, e5] = €2, h2+a® # 0, kg1 = (e1+f1, e+ f1, e3+az f1),
a3 €R, kg = (e1 + fi,e2,e3+ f1).

If g is the Lie algebra lo @ n = (f1, fa) ® (e1,e2,€3,€4), where n is a 4-
dimensional solvable Lie algebra with 1-dimensional centre {e1), then:

— go=L@®gsi:[f1, f2] = f1, [e2,ea] = €1, [e3,e4] = €2, kg = (f1 +e1,e2+
a261,63>, as GR,

— g0 = b ®gas: [f1,f2] = fi, [e1,ea] = €1, [es,eq] = €2, kig = (f1 +
e, e1 + e2,€3).

If g is either the Lie algebras g3 1 @ g3,; orlo PR P gs,, 1 = 2,3,4,5, where
g3.1 = (e1,e2,e3) is the 3-dimensional nilpotent Lie algebra having the centre
(e1) and g3,; = (ea, es5,¢e6) s a 3-dimensional solvable Lie algebra with trivial
centre, then:

— 811 = 831D g32: [e2,e3] = €1, [ea,e6] = ea, [e5,66] = eq + €5, k111 =
(e2,e4+e€1,e5), k112 = (e3,eq + €1, €5),

— 812 = 831 D 833 [62,63} = e, [64,66} = €4, [65,66} = €5, k12,1 =
(e2,e4 +e1,e5+e€1), Kioo = (e3,e4 +e1,e5 +€1),

— 813 = 83,1 D834’ [e2,e3] = €1, [es, 6] = €4, [e5,e6] = hes, =1 < h <1,
h#0, kiz1 = (ez,eq +e1,e5 +e€1), kizo = (es,eq +e1,e5 +€1),

— 814 = 831 P g3s5: [e2,e3] = e1, [ea, 6] = pes — e5, [e5,e6] = eq + pes,
p >0, kig1 = (e2,eq + e1,e5 + azer), kiao = (e3,eq + e1,e5 + azer),
az € R\{0}, kia 3 = (e2,eq,e5+€1), kiaa = (e3,e4,e5 + €1),

~ 85 =L ®R®g32: [f1, fo] = f1, [ea,e6] = eu, [e5,e6] = ea + €5, kis =
(f1 +e3,eq+e3,65),

- g6 = LR gs3: [f1,f2] = f1, [ea,e6] = ea, [es,e6] = €5, kig =
(fi +es,eq+e3,e5+e3),

— g7 = L®R®g34: [f1, f2] = f1, [ea,e6] = €4, [e5,66] = hes, =1 < h <1,
h#0, ki7 = (fi1 +e3,es4 +e3,e5 + e3),

— 818 = LOR®E35: [f1, f2] = f1. [es, e6] = pea—es, [es5,e6] = ea+pes, p >
0, kig,1 = (f1+es,eates, es+ases), az € R, kigo = (fi+es, eq,e5+€3).

Proof. By Lemma 2 we may assume that the loop L is simply connected and
hence it is homeomorphic to R3. Every 6-dimensional decomposable solvable
Lie algebra with 1-dimensional centre has one of the following forms: R & h,
l,®n, g3.1®g3,;, and 1L, RP g3 ;, where h, n, g3 ; are described in the assertion.
For h we have the possibilities: g5, ¢« = 7,9,11,12,13,16,17,18, 21,23, 24,
27,31,32,33,34,35,36,37 and gJ77, g25°, j = 19,20,28, gl7’, k = 25,26,

g?fgo_z. For n one has the following Lie algebras g4 ;, i = 1, 3, gffz_l, gffzo and
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for the 3-dimensional solvable Lie algebras with trivial centre we have g3 ;,
i =2,3,4,5 (cf. [14], §4, §5, and [15], §10, p. 105-106).

To prove the first assertion we have to show that L has a normal subloop
N isomorphic to R such that the factor loop L/N is isomorphic to R? (cf.
Lemma 3 b) and d)). Assume first that the Lie algebra of the multiplication
group of L has the form R&h = (f1) @ (e1, €2, e3,eq,e5). If h # g5 ;, i = 33, 34,
then there does not exist any ideal s containing the centre z = (f;) such
that the factor Lie algebras (R @ h)/s are isomorphic to f,, n = 4,5 or to
I, ® 1. According to Lemma 4 a) the factor loop L/Z(e), where Z = exp(z),
is isomorphic to R? and the orbit Z(e) is the normal subloop N.

The Lie algebras R @ g5 ;, ¢ = 33, 34, have no factor Lie algebras isomor-
phic to f,, n = 4,5. The Lie algebra R @ g5 34 has the 1-dimensional ideal
i = (e1). None of the factor Lie algebras R & g5 34/s, where s is any ideal
containing i, is isomorphic to 1y @ ly. Therefore the orbit I(e), where I is the
simply connected Lie group of i, can be chosen as the normal subloop N.

The Lie algebra R®gs 33, 32 +72 # 0, have the ideals i; = (f1), iz = (e1),
iz = (e2), iy = (e3). If R®gs 33 is the Lie algebra of the multiplication group of
L, then the orbits I;(e), j € {1,2, 3,4}, are normal subgroups of L isomorphic
to R. The factor loops L/I,(e), j € {1,2,3,4}, are isomorphic either to L, or to
R? (cf. Lemma 4 a). If all factor loops L/ (e), j € {1,2,3,4}, are isomorphic
to Lo, then by Lemma 4 a) (ii) there are 2-dimensional ideals s;, j € {1, 2,3, 4},
such that i; C s; and the factor Lie algebras R @ g5 33/s; are isomorphic to
I @ 15. For the ideal s; = s4 = <f1, 63> one has R @ g5’33/Sl 2ol l=1,4.
The factor Lie algebra R & g5 33/(f1, €1) is isomorphic to 1, & 15 if and only if
v =0 and R & g5 33/(f1,€e2) is isomorphic to 1, & 15 precisely if § = 0. This
contradiction to 32 ++% # 0 yields that at least one of the factor loops L/I;(e),
j € {1,2,3,4}, is isomorphic to R?. For such j € {1,2,3,4} the orbit [;(e) is
the requested normal subgroup N of L.

Hence L is centrally nilpotent of class 2. By Lemma 4 a) (i) the Lie
algebra R @ h has a 4-dimensional abelian ideal p = z @ k, where z = (f1)
and k is the Lie algebra of the group Inn(L) and p contains the commutator
subalgebra of R @ h. According to 3. of Lemma 1 the subalgebra k does not
contain any non-zero ideal of g and the normalizer Ng(k) of k in g is p. The
commutator subalgebra of R® h coincides with the commutator subalgebra h’
of h. The intersection of z and h’ is trivial. Since h’ C p the Lie algebra h has
a 3-dimensional abelian commutator subalgebra. Then for the triples (g, p, k)
we obtain:

(a) The Lie algebras Rogg5”, j = 19, 20, have the ideal p = (f1, e1, €2, e4),
the subalgebra k has the form: kg, 5,05 = (€1 + a1 f1,€2 + azf1,es + azfi),
a; € R, 1 =1,2,3, such that:
in the case R@g?i? one has ajaz # 0 since (e1) and (e4) are ideals ofR@gg’Tg,

in the case R @ gg3¢ we have a; # 0 since (e1) is an ideal of R & gg§3¢.
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Applying the automorphism ¢(f1) = fi, dler) = arer, dlez) = es,
odles) = ajes, d(eqs) = aszes, d(es) = es for the Lie algebra R @ gg‘fg if
az = 0, respectively ¢(e2) = azes, ¢(e3) = ¢les if az # 0 we can reduce
Koy ,a2,a5 t0 k1, where € is equal to 0, respectively to 1. Using the automor-
phism ¢(f1) = a—llfl, o(e;) = e;, i =1,2,3,4,5, for the Lie algebra R @ gg’jg
if ag = 0, respectively ¢(f1) = f1, ¢(e;) = arej, 7 = 1,4, ¢(e2) = azeq,
oles) = Z—;eg, ¢(es) = es if ag # 0 the Lie algebra kg, 4,,q, reduces to ko,
where € is equal to 0, respectively to 1.

(b) For the Lie algebras R@gs o7 and R@ggig we have p = (f1,e1,e3,€4),
the subalgebra k has the form: kg, ay.05, = (€1 + a1f1,€3 + a2f1,e4 + azfi1),
a; € R, i=1,2,3, such that:

in the case R @ g5 27 one has a; # 0, since (e1) is an ideal of R & g5 27,

in the case Rdgggg one has ajas # 0 since (e1) and (e4) are ideals of Rbgg5g.
Using the automorphism ¢(f1) = f1, ¢(e;) = are;, i = 1,4, ¢(ej) = e;, j = 2,5,
o(e3) = ares + ager for R @ g5 o7, respectively ¢(e1) = arazer, ¢(ez) = azeq,
o(es) = ases + ageq, d(eq) = agey for R® ggjg we can reduce kg, q4,.q5 to ks,
respectively to k4 in the assertion.

(c) The Lie algebras R @ g5, i = 32,33, 34,35, have p = (f1,e1,e2,€3)
and the subalgebra k has the form: kg, a,,0, = (€1 +a1f1,e2+a2f1,e3+asf1),
a; € R, 1 =1,2,3, such that:

in the case R @ g5 32 we have a; # 0 since (e1) is an ideal of R & g5 32,

in the case R & g5 33 we have ajasas # 0 since (e1), (e2) and (es) are ideals of
R & gs,33,

in the case R @ g5 34 we have ajas # 0 since (e1), (e2) are ideals of R & gp 34,
in the case R & g5 35 we have a1 # 0 and at least one of {a2, a3} is different
from 0 since (e1) and (ez, e3) are ideals of R @ g5 35.
The automorphism ¢(f1) = f1, ¢(e;) = are;, @ = 1,2, d(es) = ares + agey
and ¢(e;) = ej, j = 4,5 for R @ g5 30, respectively ¢(e2) = azea, ¢(es) = ases
for R & gs5.33, respectively ¢(es) = ages, s = 2,3 for R & gs 34 reduces the Lie
algebra kg, 4,,q5 to ks, respectively to kg, respectively to k7 in the assertion.
Applying the automorphism ¢(f1) = f1, ¢(e1) = arer, d(e;) = aze;, i = 2,3
and ¢(e;) = ej, j = 4,5, for the Lie algebra R @ g5 35 if a1a2 # 0, respectively
o(es) = ases, s = 2,3 if araz # 0 and a2 = 0 we can reduce kg, 4,05 t0 kg 1,
respectively Kq, 0,a; t0 kg2 in the assertion.

Secondly, assume that the Lie algebra of the multiplication group of L
has the shape: 1o ®n = (f1, f2) @ (€1, e2, €3, e4) as in the assertion. If n # g4 1,
then there does not exist any ideal s containing the ideal i = (f;) such that
the factor Lie algebra (1l @ n)/s is isomorphic to f,, n = 4,5 or to 1o ®15. The
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Lie algebra ly @ g4,1 has the centre i = (e1), but it has no factor Lie algebra
isomorphic to 1o @ 1. None of the factor Lie algebras 1o @ g4 1/s, where s is any
ideal containing i, is isomorphic to f,,, n = 4,5. Hence in both cases the orbit
I(e), where I is the simply connected Lie group of i, is a normal subgroup of
L isomorphic to R with the property that the factor loop L/I(e) is isomorphic
to R? (cf. Lemma 4 a). According to Lemma 3 a) and d), in both cases the
orbit I(e) coincides with the centre Z(L) of L and L has nilpotency class 2.

Moreover, the Lie algebra 15 & n has a 4-dimensional abelian ideal p =
z ® k, where z is the 1-dimensional centre of I & n and k is the Lie algebra of
the group Inn(L) such that p contains the commutator subalgebra of 1 @& n.
The commutator subalgebra of 1o & g44, ¢ = 1,3,8,9, is the direct sum (f;) ®
gﬁl,i where gﬁl,i is the commutator subalgebra of g4 ;. Since the commutator
subalgebras gﬁhj, J =28,9, are not abelian, the Lie algebras I, ® g4 ;, 7 = 8,9,
are excluded. Now we deal with the Lie algebras lo ® g4 1, £ =1, 3.

(d) The Lie algebra 1y & g4 1 has the centre z = (e1) and p is the ideal
(f1,€1,e2,e3). The subalgebra k has the form: ko, 4,05 = (f1 + a1€1,€2 +
asey,es + azer), a; € R, i = 1,2,3, such that a; # 0 since (f) is an ideal
of 1o ® g4,1. The centre of the Lic algebra 1o & g4 3 is z = (es) and the ideal
p is again (fi,e1,eq,e3). The subalgebra k has the form: kg, 45,05 = (f1 +
ajes, e + ases, ez + ases), a; € R, 1 = 1,2, 3, such that a; # 0 and ay # 0
since (f1) and (e1) are ideals of 1y @ g4 3. The automorphism ¢(f1) = a1 fi1,
d(f2) = fa, Pples) = es — ager, P(e;) = e;, i =1,2,4, of 1o @ g4 1, respectively
¢(e1) = ageq, P(es) = ez — ageg of 1y @ ga 3 reduces the Lie algebra kg, a4
to ko, respectively to kig in the assertion.

Finally, for the Lie algebras gz 1 © g3; = (e1, €2, e3) ® (ea, €5, €6), respec-
tively 1o ® R @ g3, = (f1, f2) ® (e3) @ (e, e5,¢6), i = 2,3,4,5, there does
not exist any ideal s, respectively s; containing the ideal i = (e1), respec-
tively iz = (f1) such that the factor Lie algebras gs 1 @ gs,;/s1, respectively,
l, BR @ g3 ;/s2 are isomorphic to f,, n = 4,5 or to I, &1s. Hence if g3 1 $ g3
orlh, R @ g3, 1 = 2,3,4,5, is the Lie algebra of the multiplication group
of L, then the orbits I;(e), i = 1,2, are the centre of L such that the factor
loop L/I;(e), i = 1,2, are isomorphic to R? (cf. Lemma 3 a), d)). Hence L is
centrally nilpotent of class 2.

According to Lemma 4 a) (i) we have to find an ideal p = z ® k = R*
of the Lie algebras g3 1 ® g3, and b, SR @ g3, © = 2,3,4,5, where z is their
1-dimensional centre, p contains their commutator subalgebra, and k is the
Lie algebra of the group Inn(L) satisfying the assertion 3. of Lemma 1.

(e) The Lie algebras gs1 ® g3, ¢ = 2,3,4,5, have the centre z = (1),
and the ideal p has one of the forms : p, = (e1,es + res, eq,e5), r € R, and
p = (e1, e3, eq, e5). With respect to the ideals p,., p we obtain the subalgebras
k, = (ea+7res+arer, es+aser, es+azer), Kay ay,0;, = (€3+arer, es+azer, es+
aser), r,a; € R, i =1,2,3, such that:
in the case g3 1 @ g32 one has as # 0 since (e4) is an ideal of g3 1 ® g3 2,
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in the cases g3.1 ® 834, ¢ = 3,4, one has azag # 0 since (e4), (e5) are ideals of
831 D 83,

in the case g31 @ gs,5 one has az # 0 or ag # 0 since (e4, e5) is an ideal of
23,1 D 83,5

The automorphism ¢(ez) = e3 —rez —ajer, d(eq) = azeq, d(es) = azes + azey
and ¢(e;) = e;, j = 1,3,6, respectively ¢(ea) = ea, ¢(e3) = ez — arer of
g3,1 @ g3,2 maps the subalgebra k, onto ki 1, respectively kq, 4, q; 0nto ki1 2.
The automorphism ¢(eq) = eq — res — ajeq, P(es) = aseq, ¢(es) = ases and
o(e;) = e, j = 1,3,6, respectively ¢(ez) = ez and ¢(e3) = ez — arey of
g3,1 P g3,i, © = 3,4, maps the subalgebra k, onto kis 1 = ki3 1, respectively
Ko, ,a2,a5 0nto Kiz o = ki in the assertion. For the Lie algebra gz 1 © g3 5
the automorphism ¢(e2) = e2 — res — arer, ¢e;) = asej, j =4,5, ¢(e;) = e,
1 = 1,3,6, respectively ¢(e2) = ea, ¢(e3) = es — are if as # 0 reduces k,
to kia,1, respectively Kq, 45,05 t0 kia,2. Moreover, if as # 0 and ap = 0, then
the automorphism ¢(e2) = e2 — reg — arer, ¢(e;) = asej, j = 4,5, ¢(e;) = e,
1 =1,3,6, respectively ¢(es) = ea, ¢(e3) = es — ajeq, changes the Lie algebra
k, to ki4 3, respectively Kq, 4,,a5 t0 K144 in the assertion.

The centre of the Lie algebras I ® R @ g3 ; with ¢ = 2,3,4,5, is z = (e3)
and their ideal p is (f1, €4, €5, e3). The subalgebra k has the form: ky, 4,05 =
(f1 + ares,eq + ages, es5 + azes), a; € R, i = 1,23, such that:
in the case lo ® R @ g3 2 one has ajaz # 0 since (f1) and (e4) are ideals of
l, DR P g3,2,
in the cases I, @R @ g3, ¢ = 3,4, one has ajazag # 0 since (f1), (es4) and (es)
are ideals of 1o @ R & g3 4,
in the case I B R @ g3 5 one has a1 # 0 and at least one of {az, as} is different
from O since (f1) and (e4, e5) are ideals of 1o B R & g3 5.

Using the automorphism ¢(f1) = a1f1, ¢(f2) = fo, d(es) = ageq, des) =
ases +aseqs and ¢(e;) = e;, j = 3,6, for L, BRB g3 o, respectively ¢(es) = ases
for I, R @ g3 i, ¢ = 3,4, the Lie algebra kg, 4,.4; reduces to ks, respectively
to kig = ki7. Applying the automorphism ¢(f1) = a1 f1, ¢(f2) = fo, ¢(es) =
aseq, ¢les) = ases and ¢(e;) = e, j = 3,6, for L, B R & g3 5 if aras # 0,
respectively ¢(es) = azeq and ¢(es5) = ases if ajaz # 0 and as = 0 we can
reduce Kg, 4,05 t0 Kig, 1, respectively kg, 0,4, t0 Kig 2. O

Using ([23], §4) we obtain:

Lemma 5. The simply connected Lie group G; and its subgroup K;, with Lie
algebra g;, and its subalgebra k;, i = 1,...,18, are isomorphic to the linear
groups the multiplication of which is given by:

fori=1

g(x17x27xSa$47$5,$6)g(y1,y27yg’y47y5’y6)
= g(x1 + (y1 — 23Y2)€™, 2o + y2e™, (x3 + y3)e™> ¥ 24

+y1€" 5 + ys, 76 + Ys),
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K. = {g9(u1, u2,0,us3,0,u; +eus + ug);u; €ER,i = 1,2,3}, beR\{0},e = 0, 1,
fori=2

9(w1, T2, T3, T4, T5,26)9(Y1, Y25 Y35 Y45 Y5, Yo) = 9(T1 + (Y1 — T3y2 + T5y4)e™,

Ty + Y2, (23 + y3)e™> TV gy + yse™® x5 4 s, T6 + Ys),

Ko ={g(u1,u2,0,u3,0,u1 +eug + azuz);u, €R,i =1,2,3},e = 0,1, a3 €R,
fori=3

9(w1, 2,73, 74,75, 76)9(Y1, Y2, Y3, Y4, Y5, Y6 )

1 1
= g(w1 + (y1 + r5y4 + 5(23?2 + 23)ys)e”™, (z2 + Y2 + 5(335 +y5)?)e"s T,

T3 +y3e™, x4 + (ya + T5Y3)e"™, T5 + Y5, T6 + Yo

K3 ={g(u1,0,us,u3,0,u1 + azug);u; € R,i =1,2,3},a3 € R,
fori=4
9(x1, 22, T3, T4, T5, T6) g (Y1, Y2, Y3, Y4, Y5, Y6) = g(@1 + (Y1 + 22y3)e™,
(2 + y2)e™ ¥, w3 4 y3e™, 24 + (Ya + 25Y3)e™, 25 + Ys, T6 + Yo),
Ky ={g(u1,0,uz,u3,0,a1us +uz);u; € Rji =1,2,3} a1 € R\{0},
fori=5

Q(xla332795373747%’356)9(91&2,y37y4vy57y6)
1
= g(z1 + (Y1 + Tay2 + avsys + ifﬁiys)emswz + (y2 + 24y3)e™,

x3 + y3e™, (x4 + y4)e™ TV 25 + y5, 26 + Y6 ), a € R,
K5 = {g(u1,us,u3,0,0,u1 + asus);u; € R,i =1,2,3}, a9 € R,
fori=6
g(x1, w2, 23,04, 25, 76)9 (Y1, Y2, Y3, Y4, Y5, Y6)
= g(x1 + Y1, 2 + Yo, 3 + y3e T 2y + ys, 25 + Y5, T + Ys),
K¢ = {g(u1,u2,u3,0,0,u; +us +uz);u; € Ryi =1,2,3},a% + b* # 0,
fori=17
9(x1, 22,23, 04, %5, 26) (Y1, Y2, Y3, Yas Y5, Yo) = g(a1 + yre® 1T,
Ty + (Y2 + T5y3)e™, w3 + y3e™, x4 + yae™ T (x5 + y5)e™ T 16 + y6),
K7 ={g(u1,u2,us3,0,0,u1 + uz + agus);u; € R;i=1,2,3},a,a3 € R,
fori=28
9(@1, @2, w3, 24, 5, 26) G (Y1, Y2, Y3, Yas Yss Ys) = g(a1 + yre®> 0™,
2o + (y2 cos(xs) — ys sin(xs))e™, x5 + (y3 cos(xs) + yo sin(xzs))e™,
T4+ Y, 5 + Ys, T6 + o), a’ + b* # 0,
Kg1 = {g(u1,uz,us3,0,0,u1 + ug + azuz);u; € R,i=1,2,3}, a3 € R,
Ks o = {g(u1,u2,us,0,0,u1 +us);u; € R,i =1,2,3},
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fori=9

g($1,$27$37$4,$5, $6)9(y17y27?/3,y47y57y6)

1 X
=g(x1+y +$4y2+§$3y37$2+y2+$4y37$3+ys,$4+y4,l’5+y56x°,$6+y6),
K9 = {g(ul + a2u27u27u3707u170);ui S sz = 1,2,3},(12 S Ru

fori1=10

9(w1, 22,73, 74, T5, 26)9(Y1, Y2, Y3, Y4, Y5, Y6)
= g(@1 + y1€™, T2 + y2 + Tay3, T3 + Y3, T4 + Ya, Ts + Y5€"®, T6 + Yo,
K9 = {g(u1,u1 + us,us,0,u3,0);u; € R,i =1,2,3},
fori=11
9(w1, 72,73, 74,75, %6)9(Y1, Y2, Y3, Y4, Ys, Y6 ) = g(T1 + Y1 + T2y3,
T2 + Y2, 3 + Y3, Ta + (Y4 + T6ys)e™®, v5 + ys€*, T6 + Y5),
K11 = {g(u2,u1,0,uz2,us3,0);u; € R,i =1,2,3},
K12 = {g(u2,0,u1,u2,us3,0);u; € R,i =1,2,3},
fori=12

9(55171'2,$3,$4,$5,$6)g(y1, y27y3ay47y57y6)

= g(x1 +y1 + 22y3, T2 + Y2, 73 + Y3, T4 + yae”®, w5 + yse”®, 16 + Y5),
K121 = {g(uz +ug, u1,0,uz,us3,0);u; € R,i=1,2,3},
K29 = {g(u2 + u3,0,u1,us,u3,0);u; € R,i =1,2,3},
fori=13
9(w1, 22, 23, 4, 5, 26)9 (Y1, Y2, Y3, Y4, Y5, Ys) = g(1 + Y1 + 2y3,
T2 + Y2, 3 + Y3, T4 + Y1, 15 + y5" ", w6 + y5), —1 < h < 1,h #0,
K31 = {g(u2 + us, u1,0,u2,u3,0);u; € R,i =1,2,3},
K39 = {g(u2 + us3,0,u1,u2,u3,0);u; € R,i =1,2,3},
fori =14
9(w1, 2, 23,74, 5, 26)9(Y1, Y2, Y3, Y4, Y5, Y6 ) = 9(T1 + Y1 +22y3, T2+ Y2, T3+ Y3,
T4 + (ya cos(z6) + ys sin(we))e’™®, x5 + (y5 cos(z) — yasin(we))e’™, z6 + Yo,
p>0,K141 = {g(uz + agus, u1,0,u2,us,0);u; € R,i=1,2,3,},a3 € R\{0},
K42 = {g(u2 + agus, 0, u1,uz,us,0);u; € R,i=1,2,3,}, a3 € R\{0},
K43 = {g(us,u1,0,u2,us,0);u; € R,i =1,2,3},
Kia4 = {g(us,0,u1,u2,us3,0);u; € R,i =1,2,3},
fori=15

9(3317332,563, m4,x5,x6)g(y1, y27y3,y4,y5,y6)
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= g(x1 + y1€"™, 22+ Y2, w3+ y3e”?, x4+ (ya+x6Ys)e”®, o5 +ys€*®, 6 + Ys ),
K15 = {g(u1,0,u1 + ua, uz,us,0);u; € R,i =1,2,3},
fori=16
9($171‘2,$37$47$57$6)9(y17y27y37y4ay5,y6)
= g(x1 +y1€", 2 + Yo, r3 + y3e™?, w4 + yse™®, x5 + Y5, 16 + Ys),
K16 = {g(u1,0,u1 +up + usz,uz,u3,0);u; € R,i =1,2,3},
fori =17
9($1a$2a$373347$5a$6)9(917y2a937y4ay5ay6) = g(xl + ylem2a
T + Yo, T3 + Y3€™?, T4 + yae™®, 15 + yse" 0 26 + y5), —1 < h < 1,h #0,
K17 - {g(ulvovul +’U,2 +’LL3,’UJ2,U370);’LLZ' S va - 17273}7
fori=18
g(frlaiUanBv93471'57zﬁ)g(yhy2ay37y4ay57y6):9(5171+916x271'2+y2a1’3+y36x2a
x4 4 (ya cos(x¢) + ys sin(we) )P, w5 + (y5 cos(we) — ya sin(ze))e’ e, x6 + y6),
p >0, Kig1 = {g(u1,0,u1 +up + azus, uz,us,0);u; € R,i =1,2,3},a3 € R,
K18,2 = {g(ulaoaul + U3,7_L2,’IL3,0);7.LZ‘ S RaZ = 17233}
Proposition 4. There does not exist any 3-dimensional connected topological

proper loop L such that the Lie algebra g of the multiplication group of L is
one of the Lie algebras g;, i = 14,18, with p = 0.

Proof. We may assume that L is simply connected and hence it is homeomor-
phic to R? (cf. Lemma 2). We show that none of the groups G, i = 14,18,
such that p = 0 allows the existence of continuous left transversals A and B to
K; in G; such that for all a € A and b € B one has a'b~'ab € K; and AUB
generates ;. Hence Proposition 1 yields that the groups G;, i = 14,18, with
p = 0 are not the multiplication group of a loop L. This proves the assertion.
Two arbitrary left transversals to the groups K14, ¢ = 1,3, in G4 are:

A ={g(u, fr(u,v,w), v, fo(u, v, w), f3(u, v, w), w);u, v,w € R},

B = {g(k,g1(k,1,m),1,g2(k,1,m), gs(k,l,m),m); k,l,m € R},
those to the groups K14, j = 2,4, in G4 are:

A = {g(u,v, fi(u,v,w), fa(u,v,w), f3(u,v,w),w);u,v,w € R},

B ={g(k,l,g1(k,l,m), g2(k,l,m), gs(k,l,m),m); k,l,m € R},
and those to the groups Kigj, 7 = 1,2, in Gz are:

A={g(f1(u,v,w),u,v, fa(u,v,w), f3(u,v,w),w);u,v,w € R},

B ={g(g1(k,l,m), k1, g2(k,l,m), gs(k,l,m),m); k,l,m € R},

where f;(u,v,w) : R* — R and g;(k,l,m) : R® — R, i = 1,2, 3, are continuous
functions such that f;(0,0,0) = g;(0,0,0) = 0. The products a~'b~tab, a € A,
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b € B are elements in K4 1, respectively in K4 2, respectively in Kjg if and
only if
(cos(m) — 1)(fa(u, v, w)(cos(w) + a3 sin(w))+ f3(u, v, w)(az cos(w) —sin(w)))
+(cos(w)—1)(g3(k, 1, m)(sin(m) —as cos(m)) —g2(k, 1, m)(cos(m)+asz sin(m)))
—sin(m) (f2(u, v, w)(sin(w) — ag cos(w)) + f3(u, v, w)(cos(w) + ag sin(w)))
)

+ sin(w)(gs(k, I, m)(cos(m) + as sin(m)) + ga(k, 1, m)(sin(m) — as cos(m)))
= fl( ’w)l_gl(k’lvm)vv (6)
respectively
g1k, l,m)v — fi(u,v,w)l, (7)
respectively

e_u(l - e_k)(fl (u7 v, w) - U) - e_k(l - e_u)(gl<kv l7 m) - l) (8)
are satisfied for all k,I,m,u,v,w € R, with ag € R. Moreover, the products
a b~ lab, a € A, b € B are elements in K43, respectively in Ky 4, respec-
tively in Kg o precisely if

(cos(m) - 1)(f2 (u7 v, w) sin(w) + f3 (ua v, w) COS(’LU))
—(cos(w) — 1)(g2(k, 1, m) sin(m) + g3(k, 1, m) cos(m))
- sin(m) (fa(u, v, w) cos(w) — f(u,v,w) sin(w))

)

+sin(w)(g3(k, I, m) sin(m) — g2(k,1,m) cos(m))
= f1(u,v,w)l — g1(k,l,m)v, (9)
respectively
g1(k, L, m)v — fi(u,v,w)l, (10)
respectively

e (1 —e ") (filu,v,w) —v) —e F(L—e ") (gi(k,l,m) = 1) (11)
hold for all k,1, m, u,v,w € R. The equations (6), (7), (8), (9), (10) and (11) are
satisfied precisely if their left hand side as well as their right hand side are zero.
The right hand side of these equations is zero if and only if fi(u,v,w) = v and

g1(k,l;m) = [. In that case the set AU B does not generate G4, respectively
Glg. O

Theorem 1. Let L be a 3-dimenstonal simply connected topological proper loop
such that its multiplication group is a 6-dimensional solvable decomposable Lie
group having 1-dimensional centre. Then the pairs of the Lie groups (G;, K;),
i=1,---,18, given in Lemma 5 such that for i = 14,18 one has p # 0 are the
multiplication group Mult(L) and the inner mapping group Inn(L) of L.

Proof. Taking into account Propositions 3 and 4 it remains to find for each
group G;, i = 1,--- ,18, in Lemma 5, such that for ¢ = 14,18 one has p # 0,
K;-connected left transversals A;, B; (cf. Proposition 1). The sets

A1p={g(1—¢€"—ue'(1— e_b”)7 e’ (1 — e_b”),u,ueb”_“, v,w);u,v,w € R},
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Bio={g9(1—- el —kel(e™® — 1), el (e — 1), k, —ke® 1, m); k,I,m € R},
respectively

Ar1={g(1—e" (24u—e " —ue ), e’ (1—e), u, ue® ™" v, w); u,v,w R},

B1i1={g(1- elle ™ 4 ke ® — k), el (e7® — 1), k, —ke" " 1, m); k,l,m € R}
are K o-, respectively K j-connected left transversals in Gll#o. The sets

Az = Bag = {g(v* —u® —azv+ e’ — 1,u,u,v,v,w);u,v,w € R},
respectively
As1=DBy1 = {g(v? —u? —u —azv + €’ — 1, u,u,v,v,w);u,v,w € R},

as € R, are Ky -, respectively K5 j-connected left transversals in G5. The sets

1 1
As = B3 ={g(e" — 14 (v —az)v(l +u+ azv — 5112) + (u+ agv — 5112)2,

1 1
U, U+ azv — 502,1)(1 +u+ agv — §v2),v,w);u,v,w € R}, a3 € R,

respectively

Ay = By = {g(—w, u, ayutv, 1 —e’ +ayw+(a utv)?, v, w); u, v,w € R}, ay # 0,
are K3-connected, respectively K4-connected left transversals in G, respec-
tively in G4. The sets A; = Bs =

2 2

1 1
{g(l—e”+2auv—§a2u —aa20+ua§,av+§u —uag, U, u, v, w); u, v, w € R},

as € R, are Ks-connected left transversals in Gg. The sets
AG _ {g(eu o eu—av—bu,ev o ev—u, e(w+bu—v _ eav+bu7u7v’w); u, v, W € R},
Bg = {g(ek _ ek—l7 el—al—bk _ €l, eal-‘rbk: o eal+bk—k7 k, lvm)7 k7 l, m e R}
. a®+b%#£0
are Kg-connected left transversals in G . The sets A; = By =
{g(ve™ V=" 1—e*—(az—v)(e*—e" "™ V), e%—e" 9" y v, w);u,v,w € R},
az € R, are K7-connected left transversals in G%. The sets

As1 = Bs1 = {g(e® " “sin(v),

1_:(13 (e%(1—e~ 1% (sin(v)+as cos(v) )+ (e —cos(v)) (cos(v) —as sin(v))),
Tra2 ((e*—cos(v))(sin(v)+as cos(v)) — (e —e*~ =0 (cos(v) —as sin(v))),

u,v,w);u,v,w € R}, az € R,
respectively

Ago=Bgo={g(e® T “sin(v), (" —e* ") cos(v) — (e* —cos(v)) sin(v),

(e — """ sin(v) 4 (e* — cos(v)) cos(v), u, v, w); u, v, w € R},
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2 2
are Ky 1-, respectively Kg o-connected left transversals in Gg 70 The sets

1
Ag = {g(u,v+ (1 —e “)(ag +v),l —e v, —§v26w,w),u,v,w € R},

By = {g(k,l+ (e™™ = 1)(as +1),e"™ — 1,1, %l%m,m),l@l,m € R},
as € R, respectively
Ao = {g(ve’,u,1 —e " v,e¥ — e’ " w),u,v,w € R},
Bio={g(e' — "™ ket — 1,1, —1e™,m), k,l,m € R}
are Kg-connected, respectively Kjg-connected left transversals in Gy, respec-
tively in G1g. The sets
A111 = {g9(u, —we™", v, e¥ + vwe” — 1,ve", w), u,v,w € R},
Bi11 = {g(k,me™™,1,e™ —mle™ — 1, —le™,m), k,l,m € R},
respectively
A2 ={g(u,v,we™™, " +vwe” — 1,ve”,w),u,v,w € R},
B2 ={g(k,l,—me™™, ™ —mle™ —1,—1le™,m), k,l,m € R}
are K1 1-, respectively K1 s-connected left transversals in G'11. The sets
Ar21 ={g9(u, e — 1,v,ve" —u,u,w),u,v,w € R},
Biag ={g(k,1—e ™, 1,=1le™ — k,k,m),k,l,m € R},
respectively
A1z ={g(u,v,1 —e ¥, ve" —u,u,w),u,v,w € R},
Biao ={g(k,l,e”™ —1,—le™ — k,k,m),k,l,m € R}
are Ko 1-, respectively K2 o-connected left transversals in G12. The sets
Az = {g(u, 1 — e, v,—ve”, e — e ?* w);u,v,w € R},
Biz1 = {g(k,e™™ —1,1,e™ — ™, le"™,m); k,l,m € R},
respectively
Azo = {g(u,v,e” — 1, —ve, e™ " — e 2¥ w);u,v,w € R},
Bigo = {g(k, 0,1 —e ™ e™ —e*™ le"™, m); k,I,m € R}
are K3 1-, respectively K3 9-connected left transversals in GTSZ ~1 and the
sets
Az ={g(u,1 —e ¥, v,e" — eVTh e w);u, v, w e RY,
Biss = {g(k, e ™ — 1,1, 1™, eM™ — ™= m); k1, m € R},
respectively
Az g ={g9(u,v,e” —1,e"¥ — e mhw _yehw, w); u,v,w € R},
Bis 4 ={g(k,1,1— e~m lem ehm — hm=m )k lm € R}
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are K3 1-, respectively K3 >-connected left transversals in Gl_31<h<l. The sets

A4 = Buag = {g(u, e P¥ sin(w), v,

poa 1(epwv(sin(w) — agz cos(w)) + (cos(w) — eP*)(cos(w) + ag sin(w))),
1

. 1(epwv(a3 sin(w) + cos(w)) + (cos(w) — e’*)(as cos(w) — sin(w))), w);
3
u,v,w € R},
respectively

Ajs2 = Biao = {g(u,v, —e " P" sin(w),

] (ePPv(sin(w) — as cos(w)) + (cos(w) — eP*)(cos(w) + ag sin(w))),

o 1(epwv(a3 sin(w) + cos(w)) + (cos(w) — eP*) (a3 cos(w) — sin(w))), w);
u,v,w € R}, az # 0,
are Kj4,1-, respectively K14 2-connected left transversals in G’ffo, and the sets
Ava3 = Bias = {g(u, e ¥ sin(w), v, sin(w) (cos(w) — ) — e’ v cos(w),
ePYv sin(w) + cos(w)(cos(w) — eP?), w); u, v, w € R},
respectively
Aisa = Braa = {g(u, v, —e ¥ sin(w), sin(w)(cos(w) — e¥*) — eP* v cos(w),
ePYv sin(w) + cos(w)(cos(w) — eP*), w); u, v, w € R}
are K4 3-, respectively K14 4-connected left transversals in foo. The sets
Ay = {g(e“™™ —e" +v,u,v,e¥ — e +w? w,w),u,v,w € R},
Bis = {g(e* — ™ £ 1k, 1,e™F —e™ 4+ m?, m,m), k,I,m € R}
are Kis-connected left transversals in G15. The sets
A1 = Big = {g(e" +v—1,u,v,e¥ —u—1,u,w),u,v,w € R}
are Kig-connected left transversals in GG14. The sets
Ay = {g(e*™ M — e 4 v, u,v, e — ¥4 M — P W) u, v, w € RY,
Bir = {g(e* — =™ £ 1k, 1 e™ —emm ehmek _ehm )k 1,m € R}

1<
are Kj7-connected left transversals in G171—h<1. The sets

Aig1 = Big1 = {g9(e" +v —1,u,v, 3 (1 — e’ (a3 sin(w) + cos(w))),

1+a3
1
— (az — e (a3 cos(w) — sin(w))), w); u,v,w € R}, a3 € R,
1+a3
respectively

Ais 2 = Big2 = {g(e" + v —1,u,v,eP” sin(w) — 2 cos(w) sin(w),
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sin(w)? + cos(w)(eP® — cos(w)), w); u,v,w € R},

are Kg 1-, respectively Kgs-connected left transversals in G’l’;éo.
For all i = 1,--- ,18, the set A; U B; generates the group G;. By Propo-
sition 1 the assertion is proved. O

5. The Case dim(Z)=2

In this section we obtain the 6-dimensional decomposable solvable Lie groups
with 2-dimensional centre which can be represented as multiplication groups of
3-dimensional connected simply connected topological proper loops L. These
loops have a 2-dimensional centre Z (L) isomorphic to R? such that the factor
loops L/Z(L) are isomorphic to R.

Proposition 5. Let L be a simply connected topological proper loop of dimension
3 such that its multiplication group is an at most 6-dimensional decomposable
nilpotent Lie group. Then the loop L is centrally nilpotent of class 2 and either
the group R x Fy or R x F5 is the multiplication group of L.

Proof. Each nilpotent Lie group has a centre of dimension > 1. Hence, if
the group Mult(L) is decomposable and nilpotent, then it has a 2-dimensional
centre and the loop L has nilpotency class 2 (cf. Lemma 3 a), e)). According to
the list of Lie algebras in [14], §5, and [15], p. 100, the Lie algebra of the group
Mult(L) is either the direct sum g3 1 @ g3,1, where gz 1 is the 3-dimensional
nilpotent non-abelian Lie algebra, or R@ f,, n =4,5, or R® g5, i = 4,5,6.
By Lemma 3 e) the Lie algebra of Mult(L) has a 5-dimensional abelian ideal
containing its centre and its commutator subalgebra. Since there does not exist
any such ideal for the Lie algebras g3, © g3,1 and R ® g5, 7 = 4,5,6, these
Lie algebras are excluded. Now the assertion follows from Proposition 5.1. in
[6], pp. 400-406. O

Proposition 6. Let L be a connected topological loop of dimension 3 such that
the Lie algebra g of its multiplication group is a 6-dimensional decomposable
solvable non-nilpotent Lie algebra with 2-dimensional centre. Then L s cen-
trally nilpotent of class 2. Moreover, the following Lie algebra pairs can occur
as the Lie algebra g of the group Mult(L) and the subalgebra k of the subgroup
Inn(L):

Ifgi=R?2@n; = (f1, f2) @ (e1, -+ ,eq) such thatm;, i = 1,--- 4, is a
4-dimensional solvable indecomposable Lie algebra with trivial centre, then one
has

- n; = gfff;o: [e1,eq] = aeq,ea,eq] = ea,[es,eq] = ea +e3, k1 = (e1 +
Ji,e2 + f1,e3),

— My =gy [e1,e4] = e1,[e2,e4] = €1 + €2, [e3,e4] = €3+ €3, ko = (€1 +
fi,e2 +asfi,es +asfi), az,a3 € R,
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—1<~y<B<1,78#£0

-3 =845 T T : ler,eq] = e1,[e2, ea] = Bez,[es,ea] = yes, ks =
(e1 + f1,e2 + f1,e3+ f1),
>
— Ny = gigo a?éo- [61;64] = a€17[€27€4] = pe2 — 63,[63764] = ey + pes,

ki = <61 + fi.ea+ fi,es +asfi), a3 €R, kao = (e1 + f1,€2,e3 + f1).

Ifg] =R hJ = <f1> D <€1,62,€3764,65>, where hj7 J = 57 78: s a 5-
dimensional solvable indecomposable Lie algebra with 1-dimensional centre,
then one has

—hs = gg;‘”‘glr [e2,e5] = e1,[es,e5] = es,[ea,e5] = yeq, kse = (e2 +

€f1,€3 + €1,€4 + €1>7 €= 07 17

— hg = g5,10° [e2,e5] = e1,[es,e5] = ez,[eq,e5] = ea, ke = (ea,e3 +
efi,eater), e=0,1,keo = (ea+bif1,e3+baf1,ea+ f1+aer), by, by € R,
a#0,

— hy = gﬁﬁ: [e2,e5] = e1,[es,e5] = peg — ea,[ea,e5] = e3 + pes, k5, =
(e2+efi,ezter,eatager), ks = (ea+efi,ez,eate1), € =0,1, a3 €R,

— hg = gQTS le1,es5] = e1,]ea,e5] = e1 + ez, [es,e5] = e3, kg = (e1 +
e3,ez,eq +€f1), €e=0,1.

Proof. By Lemma 2 we may assume that the loop L is simply connected and
hence it is homeomorphic to R3. As the multiplication group Mult(L) of L
is a 6-dimensional decomposable solvable Lie group with 2-dimensional centre
the loop L has nilpotency class 2 (cf. Lemma 3 a), e)). Furthermore, for the
Lie algebra of Mult(L) we have the following possibilities: R? ® n, R @ h,
LOoR®gs3 1, and 1, ®1, ®R2, where n and h are characterized in the assertion.
By [14], §5, for n we have the Lie algebras g4 ;, 7 = 2,4,5,6,7, 10, gh;‘é ' ngO.

a=-—1

Moreover, the Lie algebras gs ;, 7 = 8,10,22,29, 38, 39, g?fg, g5 15, 8519 -
8550 8o ggzg, g’gzg and g5, % can be considered as h (cf. [15], §10, p.
105-106).

If these Lie algebras were the Lie algebra of the multiplication group
of L, then they would have a 5-dimensional abelian ideal containing their
commutator ideal and their centre (cf. Lemma 3 e)). Since the Lie algebras
LOR®Es 1, LOLOR?, R2g,;, j = 7,10, R?agl3 ' R2@ghy’ Rogd s,
r = 19,20, 28, R@gglo, [ = 25,26, R@g535 ,R®gs,, p=22,29,38, 39,
do not contain any 5-dimensional abelian ideal, these Lie algebras are not the
Lie algebra of the group Mult(L) of L. Hence it remains to deal with the Lie
algebras g;, i =1, -- ,8 in the assertion.

The 1-dimensional central subalgebras of g;, i = 1,2,3,4, are i1y = (fa)
and is = (f1 + af2), a € R, those of g;, 7 =5,6,7, are i3 = (f1 + be1), b € R,
and iy = (e1), whereas those of gg are i5 = (f1 + ce3), ¢ € R, and ig = (e3).
With the exception of the Lie algebra gg, for every ideal s of each Lie algebra
g;,i=1,---,8, such that s contains a 1-dimensional central subalgebra of g;
the factor Lie algebras g;/s are not isomorphic to fy. The Lie algebra gg has
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the ideal s = (f1 + bey, e4) containing iz such that the factor Lie algebra gg/s
is isomorphic to fj.

According to Lemma 3 e) the simply connected Lie groups G; of g;,
i =1,---,8, has a 1-dimensional connected central subgroup Ny = expny,
d=1,2,4,---,6, such that the orbit N4(e) is isomorphic to R and the factor
loop L/Ny(e) is isomorphic to R?. By Lemma 4 a) (i) the Lie algebras g;, i =
1,---,8, have a 4-dimensional abelian ideal p containing only a 1-dimensional
central subalgebra ng of g; and the Lie algebra k of the inner mapping group
Inn(L) of L such that g/ C p and k has the properties as in 3. of Lemma 1.
Then for the triples (g;, p, k) we obtain:

(a) For the Lie algebras g;, i = 1,2,3,4, the ideal p has one of the

following forms p, = (f1 +afe,e1,ea,e3), a € Rand p = (fa, 1, 2, e3). Hence
for the subalgebra k one has k, = (e1 + a1(f1 + af2),ea + a2(f1 + af2),es +
as(fi + afz2)), a € R and k = (e1 + a; fa, €2 + azfa, €3 + a3 fa), where a; € R,
1 = 1,2,3. Using the automorphism ¢(f1) = fa, ¢(f2) = f1 + afa, dle;) = ey,
i = 1,2,3,4, the Lie algebra k reduces to k.. So it remains to consider the
subalgebra k,, such that
in the case of the Lie algebra g1: ajas # 0 since (e1) and (es) are ideals of g,
in the case of go: a; # 0 because (e;) is an ideal of go,
in the case of g3: ajazas # 0 since (e1), (e2) and (e3) are ideals of g,
in the case of g4: a1 # 0 and at least one of {ag, az} is different from 0 because
(e1) and (eg,e3) are ideals of gy4.
Using the automorphism ¢(f1) = fi — afs, ¢(f2) = fo, ¢(e1) = are1, ¢(e2) =
ases, ¢(es) = ases + azes and ¢(es) = eq for g1, respectively ¢(e;) = aqe;,
Jj = 2,3 for go, respectively ¢(es) = ases for g3, the Lie algebra k, reduces to
ki, respectively to ko, as,as € R, respectively to ks in the assertion. Applying
the automorphism ¢(f1) = fi — afz, ¢(f2) = f2, ¢le1) = arer, d(e;) = aze;,
Jj =2,3 and ¢(eq) = eq for gy if as # 0, respectively ¢(e;) = agej, j = 2,3 if
az = 0 and a3 # 0, we can reduce k, to k41, a3 € R, respectively to k42 in
the assertion.

(b) For the Lie algebras g;, j = 5,7, the ideal p has one of the following
shapes p, = (e1, f1 + aea,e3,¢e4), a € R\{0}, p = (e1,e2,€e3,¢e4). Hence the
subalgebras k are k, = (f1 + aea + ajer, e3 + azser, eq + ager), a € R\{0}, and
k= (e2 + ajey, ez + azeq,eq + aser), a; € R, i =1,2,3, such that
for gs: asas # 0 since (es), (e4) are ideals of g5, and
for g7: az # 0 or ag # 0 because (es, e4) is an ideal of g7.

The automorphism ¢(f1) = f1, d(e:) = ex, i = 1,5, ¢(ea) = €2 — ares, dles) =
ases and ¢(eq) = asey, respectively ¢(f1) = afi —arer, ¢p(e2) = ez of g5 maps
the subalgebra k onto ks,o, respectively the subalgebra k, onto ks, in the
assertion. If as # 0, then the automorphism ¢(f1) = f1, ¢(e;) = e;, ¢ = 1,5,
plez) = ez — arer, ¢(e;) = aze;, j = 3,4, respectively ¢(f1) = afi — arey,
@(e2) = eq of the Lie algebra g7 reduces the subalgebra k to k%l, respectively
the subalgebra k, to ki ; in the assertion. If ay = 0 and az # 0, then using the
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automorphism ¢(f1) = f1, ¢(e:) = i, i = 1,5, p(e2) = ea—aseq, ¢(e;) = aze;,
J = 3,4, respectively ¢(f1) = afi — arer, ¢(e2) = es of g7 we can change the
subalgebra k to k3 ,, respectively the subalgebra k, to kyj , in the assertion.

(¢) For the Lie algebra gg the ideal p has one of the following forms
p = (e1,ea,e3,¢e4), Pa = (€1,€a,e3, f1 + aeq), a € R\{0}. Therefore for the
subalgebra k one has k= (e14ares, ea+ases, eq+azes), k, = (e1+ajes, ea+
ases, f1 + aeq + ages), a € R\{0},a; € R, i = 1,2,3, such that a; # 0 since
(e1) is an ideal of gg. The automorphism ¢(f1) = f1, ¢(e;) = e;, i = 3,5,
d(e1) = are1, P(e2) = are2 —azer, and ¢(eq) = e4 — ages, respectively o(f1) =
afi —azes, ¢(es) = eq, maps the subalgebra k onto kg ¢, respectively k, onto
kg1 of the assertion.

(d) If the Lie algebra gg is the Lie algebra of the group Mult(L) of L, then
the factor loop L/I4(e), where I = exp(is), is isomorphic to R?. Hence the Lie
algebra k of the group Inn(L) of L is a subalgebra of the ideal p having one of
the following forms p = (e1, €2, €4, €3), Pa = (€1, €2, €4, f1 + aes), a € R\{0}.
Therefore we obtain the subalgebras k = (e2 + areq, e3 + azey,eq + asey),
k, = (ea + ajeq, f1 + aesz + azeq, eq + azey), where a € R\{0},a; € R, i = 1,2,
and az # 0 since (e4) is an ideal of gg. With the automorphism ¢(f1) = fi,
dei) = e, i = 1,5, ¢(e2) = e2 — areq, ¢e3) = e3 — areg — aze; and ¢(eq) =
asey, respectively ¢(f1) = afi — aser, ¢(es) = es — ajeq, we can change the
subalgebra k onto ke .0, respectively k, onto kg 1 in the assertion.

Since for the ideal s = (f; + bey, eq), b € R, of gg, the factor Lie algebra
gs/s is isomorphic to fy, the factor loop L/I3(e), where I3 = exp(is), is iso-
morphic to an elementary filiform loop Lx. The orbit S(e), where S = exp(s),
coincides with I3(e) (cf. Lemma 3 e). Hence the Lie algebra k contains the
basis element ey + a3(f1 + ae1), ag € R\{0}. Since k is a 3-dimensional sub-
algebra of the 5-dimensional abelian ideal v = (f1,e1,e2,€3,€4), it has the
form k = <€2 + b1 f1 +arer,es + bofi + aser,eq + (lg(fl + a€1)>, a,a;,b; € R,
i=1,2,3, aag # 0. Using the automorphism ¢(f1) = fi1, ¢(e;) = e;, i = 1,5,
d(e2) = ea —ajer, d(e3) = e3 —area —ageq and @(eq) = asey, the subalgebra k
reduces to kg o = (e2+b1 f1, e3+baf1, ea+ f1 +aeq). This proves the assertion.
O

Using ([23], §4) we obtain:

Lemma 6. The linear representation of the simply connected Lie group G; and
its subgroup K; corresponding to the Lie algebra g; and its subalgebra k;, © =
1,...,8, is given by the multiplication:

Fori=1

9($1,$279€37$4,565,556)9(2117y2a93,y4,y5,y6)
=g(z1+y1e™™, 2+ (Y2 +xay3)e™, 3 +yse™, T4 +Ya, T5+Ys, T6 +ys), a #0,
Kl = {g(ul,UQ,U/?,,O,U/l +U2,0);U2‘ S R7Z = 1a273}a
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Fori=2

1
9(171,962,503,I471175, $6)9(y17y2,y3,y4,y5,y6):9($1+(y1 + T4y2 + 51&21%)6147

xo + (y2 + ays)e™, w3 + y3e®™, 4 + ya, T5 + Y5, Te + Y6,
Ky = {g(u1,us,us3,0,u; + asus + azus,0);u; € R;i =1,2,3},az2,a3 € R,
Fori=3
9(x1, T2, 23, 04, T5, 26)9 (Y1, Y2, Y3, Y, Y5, Ys)
= g(w1 +y1e™, w2 + Y2 13
+yse”™, xq + ya, w5 + Y5, w6 + y6), —1 <a < b <1,
ab # 0, K3 = {g(u1, uz,us,0,u; + us + us, 0);u; € R,i=1,2,3},
Fori=4
9(w1, 22,73, 74, T5,76)9(Y1, Y2, Y3, Ya, Y5, Y6) = g(x1 + Y1,
xg + (ya cos(zy) + yzsin(xy))e?®, x5 + (y3 cos(zy) — yo sin(z4))eb®,
T4+ Y, T5 + Ys, T6 + ys),a # 0,0 > 0,
K1 = {g(u1,u2,us,0,u1 + uz + agus, 0);u; € R,i=1,2,3}, a3 € R,
Ky 0 = {g(u1,u2,us,0,u1 +usz,0);u; € R, =1,2,3},
Fori=15
9(w1, T2, 73,74, 5, 26)9(Y1, Y2, Y3, Y4, Y55 Y6)
= g(x1 +y1 + 52, T2 + Y2, T3 + y3e*, 14
+y4€°"5 x5 + Y5, 6 + Ys), 0 < |c| < 1,
K. = {g(u2 + us,u1,uz,us,0,euy);u; € R, =1,2,3},e=0,1,
Fori=26

g($1,$2,$3,1'4,$5, xﬁ)g(ylvaay37y4vy5a y6)

g(x1 +y1 + x5y2+%x§y3,x2+y2+x5y3,x3+y3, Tat+yse®™, r5+ys, Te + Vo),
Ko e = {g(us,u1,us,u3,0, eus);u; € R,i=1,2,3},e=0,1,
K2 ={g(aus, u1,uz,us,0,b1us +bous+us);u; € R,i=1,2,3},b; R, a#0,
Fori=17
9(x1, T2, 23, 04, T5, T6)9 (Y1, Y2, Y3, Y4, Y5, Y6) = 9(T1 + Y1 + Tays, T2 + Y2,
z3 + (y3 cos(xs) — yasin(xs))e’™, x4 + (ya cos(ws) + ys sin(xs)) e,
T5 +Ys, 6 + Ys),p # 0,
K3, = {g(ua + azuz,ui, uz,u3,0,euy );u; € Ryi =1,2,3},
K25 = {g(us,u1,uz,u3,0,eur);u; € Ryi =1,2,3},e=0,1,a3 € R,
Fori=28

g(mla $2,$37$47$5>$6)9(y17y27 y37y4ay57y6)



Vol. 77 (2022) Topological Loops with Decomposable... Page 29 of 34 20

=g(x1+(y1+y2xs5)e™, 2o+ y2e"®, w3 +ys + T5Ys, T4 + Y4, Ts + Y5, Te + Ys)s
KS,E = {Q(U17U27U17U3707€U3)5Ui € RaZ = 1a2a3}a€ = 07 17

Proposition 7. There does not exist any 3-dimensional connected topological
proper loop L having gg as the Lie algebra of its multiplication group and the
Lie algebra kg 2 as the Lie algebra of its inner mapping group.

Proof. We may assume that L is simply connected and hence it is homeomor-

phic to R? (cf. Lemma 2). We show that the Lie group Gg does not allow

continuous left transversals S and 7' to the subgroup Ks 2 such that for all

s€ SandteT onehas s™'t7!st € K¢ and the set S UT generates Gg.
Two arbitrary left transversals to the group Kg o in G are:

S = {g(u’ hl(u7 rlj’ w)7 h2(u7 v? w)7 hg(”? v’ w)7 v? w); u7 v’ w e R}?
T= {g(kvgl(k? la m)a QQ(k, l7 m)vg3(k7 l) m)a la m)7 ka la m € R}a
where h;(u,v,w) : R® — R and g;(k,l,m) : R® — R, i = 1,2, 3, are continuous
functions with h;(0,0,0) = ¢;(0,0,0) = 0. The products s~ 't~1st, s € 9,
t € T', are elements of Kg o if and only if the equations
a(gs(k,1,m)e (1 —e7?) — ha(u,v,w)e (1 — e ")) = vg1(k,1,m)
vlgs(k,1,m) — lhy (u, v, w) + lwhg(u, v, w)

1 1
+512h2(u,v,w) — ivng(kalvm)v (12)

g3(k,l,m)e (1 —e™) — ha(u,v,w)e (1 — e )
= bylho(u,v,w) — byvga(k,l, m) (13)

are satisfied for all k,1,m,u,v,w € R. Applying equation (13), equation (12)
becomes simplified to

1
vgr(k,1,m) + abyvga(k,1,m) — vlga(k,l,m) — §v2g2(k, I,m)

1
= lhy(u,v,w) + abylhs(u, v, w) — lvhs(u,v,w) — ilzhg(u, v,w). (14)

Using the new functions gj (k,l,m) = g1 (k,l,m) + abiga(k,l,m) — lga(k, 1, m),
b (u,v,w) = hy(u, v,w) + abyha(u, v, w) — vha(u, v, w), equation (14) reduces
to
1 1
Ugll(kvlym) - §U292(k7l7m) = lh/l(”?”yw) - 512h2(u,v,w). (15)

Equation (15) holds precisely if the functions ¢/ (k,I,m) and gs(k,l,m), re-
spectively hf(u,v,w) and ha(u,v,w) are polynomials of I, respectively of v
with order at most 2. Using this, equation (13) is satisfied if and only if its
left hand side and its right hand side are 0. This holds precisely if one has
g3(l) = c(e! — 1) and hz(v) = c(e¥ — 1), where c is a real constant. In this
case the set S UT does not generate the group Gg. Hence by Proposition 1
the group G and the subgroup Kg 2 are not the multiplication group and the
inner mapping group of L. This proves the assertion. U
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Theorem 2. Let L be a simply connected topological proper loop of dimension
3 such that its multiplication group is a 6-dimensional solvable non-nilpotent
decomposable Lie group having 2-dimensional centre. Then the pairs of Lie
groups (G, K;), it =1,---,8, given in Lemma 6 are the multiplication groups
Mult(L) and the inner mapping groups Inn(L) of L with the only exception
(Ge, Kg,2).

Proof. The pairs (G, K;), ¢ = 1,---,8, in Lemma 6 can occur as the group
Mult(L) and the subgroup Inn(L) of L. According to Proposition 7 the pair
(Gg, Kg 2) is excluded. In all other cases we give continuous left transversals
A;, B; to the subgroup K;, i = 1,---,8, which fulfill the requirements of
Proposition 1.

Appropriate Kj-connected left transversals in the group G are: for a <
—1 and for a > 1 the sets

Apg = {gle™ (e —1),e"(1 — e ™) + u?, u,u,v,w); u,v,w € R},
By = {g(e™®(1 —eF),k* — (1 — e %), k, k,1,m); k,I,m € R},
for 0 < a < 1 and for —1 < a < 0 the sets
Aro={g(—ue™ " 1—e"(1—u(l — e~ ")), e* — e~ """ w,v,w);u,v,w € R},
Bio = {g(ke®™™ % 1 —eF(1 —k(em* —1)),e " F ek K 1,m);k,1,m € R},
for a = 1 the sets
Arz = {g(w,e" — 1 —w+u? u,u,v,w);u,v,w € R},
Big={g(l®,e" =1 -1+ K k,k,1,m);k,l,m € R},

for a = —1 the sets

2u 2

Ayg = {g(ue ", " — 1 — ue" +ue?™, e** — ¥, u,v,w);u,v,w € R},
Bia= {g(—ke 2k &% — 1 + kek — ke?* eF — e K, 1,m); k,1,m € R}.

Appropriate Ky-connected left transversals in G5 are the sets
3 3
Agz{g(e“—l—u3+§a2u2+u(a3—a%), agu—§uQ7 —u, u, v, w);u, v, w € R},
3 3
By={g(e" = 1+k" = Sk?as+k(a3 — as), Sk* —azh, k, k.1, m); k,1,m € R},
ag, a3 € R. Appropriate Ks-connected left transversals in Gg’b are: for —1 <
a =0b <1 the sets
A371 = {g(eu(eiau - 1)5 eau(l - 67“) - w,w,u,v, w)7 U, v,w € R}a
B3,1 = {g(ek(l - eiak)a eak(eik - 1) —m,m, ka lv m)7 ka lv m € R}a
for —1 < a < b <1 the sets
A3,2 _ {g(eu—au _ eu—bu7 e _ eau—u7 ebu—u _ eb“7u,u,w); u,v,w € R},

Ba = {g(e" P — ehmak cak—k _ cak bk _ cbh=k )k | e RY,
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where ab # 0. Appropriate K, j-connected left transversals in GZ’b are the
sets

Ay = Bay = {g(e™ " sin(u),

a§1—|—1 ((eb" — ebu_““) (sin(u)—asz cos(u))+ (eb“ —cos(u))(cos(u) + agsin(uw))),
a§1—|—1 ((eb" - ebu_““) (as sin(u)+cos(u))+ (eb“ —cos(u))(as cos(u) —sin(u))),

u,v,w);u,v,w € R}, az € R.

Appropriate K4 2-connected left transversals in GZ’b are the sets
Ayn = Bao = {g(e® " sin(u), (e®~* — ") cos(u) + sin(u) (e’ — cos(u)),
cos(u) (e — cos(u)) — (e?*~% — et) sin(u), u, v, w); u,v,w € R},

a # 0, b > 0. Appropriate K5 .-connected left transversals, e = 0, 1, in G§ are:
for ¢ =1 the sets

As1={g9(u,1—e " u,ve’ —u,v,w);u,v,w € R},
Bs, = {g(k,e”t —1,k,—le! — k,1,m); k,1,m € R},
for ¢ # 1 the sets

(&

As 2 = {g(u, e — e ", —ve’,ve”, v, w);u,v,w € R},

Bso = {g(k,e " —e7t1e!, —1e 1, m); k,1,m € R}.
Appropriate Kg¢-connected left transversals in Gg, where € = 0,1, are the
sets

2

1
Ag = {g(u,1 —v? —e7?, v, 3V e’ v, w);u,v,w € R},

1
Bs = {g(k,1 + 5z2 —le7l 1 —et —le I,m); k,I,m € R}.

Appropriate K7 ;-connected left transversals in GI;#O, e = 0,1, are the sets
A71 = Br1 = {g(u,e " sin(v),

ﬁ(ep”v(sin(v) + ag cos(v)) + (eP¥ — cos(v))(cos(v) — ag sin(v))),
as

1
aj+1
v,w);u,v,w € R}, ag € R,

(eP?v(ag sin(v) — cos(v)) + (e — cos(v))(as cos(v) + sin(v))),

Appropriate K7 5-connected left transversals in G’féo, where € = 0,1, are the
sets

Az 9 = Bro = {g(u,e PVsin(v), e’ v cos(v) + sin(v) (e — cos(v)),

ePPusin(v) — cos(v)(eP” — cos(v)), v, w); u, v, w € R}.
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Appropriate Kg -connected left transversals in Gg with € = 0,1 are the sets
Ag = {g(ve’ +v*,v,u,1 — e %, v,w);u,v,w € R},
Bg = {g(I> —1e", 1, k,e™" —1,1,m); k,1,m € R}.

Hence the assertion follows from Proposition 1. O

Corollary 2. Fach 6-dimensional solvable decomposable Lie group which is the
group Mult(L) of a 3-dimensional connected topological loop L has 1- or 2-
dimensional centre and 3-dimensional commutator subgroup.

Proof. If L has 1-dimensional centre, then the assertion follows from Proposi-
tion 3. If L has 2-dimensional centre, then Proposition 6 yields the assertion.
O

Corollary 3. FEach solvable Lie group of dimension 6 which is realized as the
group Mult(L) of a 3-dimensional connected topological proper loop L has 1-
or 2-dimensional centre and 2- or 3-dimensional commutator subgroup.

Proof. If L has a 6-dimensional solvable indecomposable Lie group as its mul-
tiplication group, then the assertion is proved in Corollary 3.4 in [9]. If L has
a 6-dimensional solvable decomposable Lie group as its multiplication group,
then Corollary 2 gives the assertion. O
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