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Abstract. In this note we obtain some properties of the Cheeger set CΩ

associated to a k-rotationally symmetric planar convex body Ω. More
precisely, we prove that CΩ is also k-rotationally symmetric and that the
boundary of CΩ touches all the edges of Ω.
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1. Introduction

The Cheeger problem is a classical problem in Geometry widely studied in
literature, with connections in many different fields. The interested reader may
find in [50] some historical remarks on closely related questions (considered,
among others, by J. Steiner or A. S. Besicovitch), see also [18, Problem A23].
The origin of this problem can be traced back to a paper by J. Cheeger [17],
who proved in 1969 the following inequality for any bounded domain Ω in R

n

(in fact, this result was stated for any compact Riemannian manifold without
boundary):

λ1(Ω) ≥ h(Ω)2

4
, (1)
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where λ1(Ω) is the first eigenvalue of the Laplacian on Ω (under Dirichlet
conditions), and

h(Ω) = inf
X⊆Ω

P (X)
V (X)

, (2)

where the infimum in (2) is taken over all non-empty finite-perimeter sets X
contained in Ω, and P (X) and V (X) denote the perimeter and the volume of
X, respectively. This constant h(Ω) is usually called the Cheeger constant of
Ω, and any subset X contained in Ω providing the infimum in (2) is called a
Cheeger set of Ω. Determining the Cheeger constant and the Cheeger sets of
Ω, as well as their general properties, is the main core of the classical Cheeger
problem.

This question, intimately related to the classical isoperimetric problem
(see, for instance, the introductory texts [40,45]), has applications in very
numerous distinct settings. As a sample, we briefly enumerate some of them.
It is well known that the Cheeger constant is the limit of the sequence of first
eigenvalues of the p -Laplacian (with Dirichlet conditions) of a bounded domain
when p tends to 1, see [26]. This result was later extended to the sequence of
second eigenvalues in [41] by using the notion of higher Cheeger constants, see
[7]. In the field of image regularization, an approach for removing noise in a
given image [46] is strongly connected to the two-dimensional Cheeger problem,
as described in [32, §. 2.3], see also [3]. Additionally, the Cheeger constant
explicitly appears in the condition on the pressure needed for breaking down a
planar plate [29], and also in some maximal flow-minimal cuts planar problems
[51] (with further applications in the field of medical imaging). Moreover, for
the problem of finding hypersurfaces in R

n with prescribed (constant) mean
curvature [22], the Cheeger constant is involved and provides some equilibrium
capillary free-hypersurfaces in certain cases (see [32, §. 2.2]). The interested
reader may find more details of these (and some others) applications in [42,
§. 7] or [32, §. 2]. We can even find analogues to the Cheeger problem in graph
theory [53].

For a given bounded domain Ω in R
n, finding the Cheeger constant and

the Cheeger sets is, in general, a hard task. However, questions such as the
existence and uniqueness of the Cheeger sets, as well as intrinsic properties of
these sets, have been well studied in different works. Our Lemma 1 collects
some of the main results in this direction, but we mention here that the ex-
istence of Cheeger sets is assured in our setting due to the boundedness of
Ω, and therefore the infimum in (2) is always attained under this hypothesis.
Moreover, if Ω is convex, we have uniqueness of the associated Cheeger set,
which will be also convex with smooth boundary.

In the two-dimensional case, the Cheeger problem is more treatable, al-
though the complete determination of the Cheeger sets is only known for some
specific situations. Among all the papers in this context, we remark a partic-
ular one by B. Kawohl and T. Lachand-Robert [27], where we can find some
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interesting characterizations of the Cheeger sets for planar convex sets. One
of these results establishes a condition on a planar convex set Ω for assuring
that the Cheeger set of Ω is Ω itself (in other words, a condition on Ω to
be calibrable, see [4]), in terms of an inequality involving the curvature of the
boundary of Ω [27, Th. 2] (see also [47, Crit. 1.5], and [4, Co. 1]). This result
can be applied to the circle, as well as the stadium domain and certain ellipses.
On the other hand, [27, Th. 1] gives a useful description of the Cheeger set of
any planar convex set (specifying also the value of the Cheeger constant) as a
Minkowski sum in terms of the inner parallel set (see also [6], [52, Th. 3.32]).
We will use this result, which is stated in Theorem 1, in our Sect. 3.

The Cheeger problem in the class of convex polygons is another question
of particular interest, treated for instance in [27, §. 4 and §. 5] and in [10].
For a given convex polygon P , standard properties yield that its associated
Cheeger set CP will be bounded by certain line segments and certain circular
arcs, see Lemma 1. Taking into account this, it may happen that the boundary
∂CP of CP touches all the sides of the polygon P . In that case, P is called
Cheeger-regular polygon. Some examples of this situation are triangles and
rectangles, and a necessary and sufficient (analytic and geometrical) condition
is established in [27, Th. 3]. Otherwise, if ∂CP does not touch all the sides of P ,
then P is a Cheeger-irregular polygon (as commented in [27], a quadrilateral
with a very small side is Cheeger-irregular). Some remarkable consequences of
this are the following: for a Cheeger-regular convex polygon P , its associated
Cheeger set can be obtained by rounding all the corners of P , and for any
general convex polygon, a direct algorithm for determining its Cheeger set is
described in [27, §. 5].

In this note, we will focus on the class of k-rotationally symmetric planar
convex bodies. This class of sets has been considered in the last years for some
partitioning problems involving the maximum relative diameter functional (see
[12] and references therein). In this setting, we will introduce the notion of k-
Cheeger-regular set, which is inspired by the notion of Cheeger-regular polygon
treated in [27, §. 4]. We will see that we can properly define the concepts
of dots and edges for any k-rotationally symmetric planar convex body Ω,
which will play the role of the vertices and the sides of a polygon. We will
prove in Theorem 2 that any set in this class is k-Cheeger-regular (that is, the
boundary of the corresponding Cheeger set CΩ touches all the edges of Ω),
and additionally, we will see in Corollary 1 that the k-rotational symmetry
of Ω is inherited by CΩ . We finish this note with Sect. 4, where we list some
variants and open questions related to the Cheeger problem.

Notation. Throughout this paper, we will denote by d the Euclidean
distance in the plane. For a given planar bounded set X, P (X) will stand for
the perimeter of X (that is, the one-dimensional Hausdorff measure of ∂X
whenever X is convex), and A(X) will stand for the Euclidean area of X.
Moreover, the addition of two planar sets must be understood as the classical



9 Page 4 of 15 A. Cañete Results Math

Minkowski addition. We also recall that a planar body is, as usual, a planar
compact set.

2. Preliminaries

2.1. Some Generalities on the Cheeger Problem

As stated in the Introduction, the Cheeger problem has been deeply studied
in the literature. We collect in Lemma 1 some well-known results, which can
be found in many different texts (see for instance [2,32,42] and references
therein).

Lemma 1. Let Ω be a planar convex body. Then, there exists a Cheeger set CΩ

of Ω. Moreover,
i) CΩ is unique, convex and of class C1,1.
ii) CΩ touches the boundary of Ω.
iii) CΩ is an isoperimetric region in Ω for the area it encloses.
iv) The pieces of the boundary of CΩ in the interior of Ω are circular arcs

of curvature 1/h(Ω), where h(Ω) is the Cheeger constant of Ω.

We can find an interesting characterization of the Cheeger set for any
planar convex body Ω in [27]. For any t > 0, denote by Ωt the inner parallel
set of Ω at distance t, that is,

Ωt = {x ∈ Ω : dist(x, ∂Ω) > t}.

Then we have the following result.

Theorem 1. ([27, Th. 1]) Let Ω be a planar convex body. Then, there exists a
unique value s > 0 such that A(Ωs) = πs2. We also have that h(Ω) = 1/s and
the Cheeger set of Ω is CΩ = Ωs + sB1, where B1 is the Euclidean unit disk.

Theorem 1 gives a nice geometrical characterization of the Cheeger con-
stant in this convex setting, by means of the inner parallel set Ωs of Ω which
encloses the same area as the planar disk of radius s, and shows that CΩ is
precisely the Minkowski addition of that inner parallel set and that disk. From
this result we also deduce that the part of ∂CΩ contained in the interior of Ω
is a union of circular arcs of radius s, and hence h(Ω) (which coincides with
1/s) can be identified as the curvature of ∂CΩ in the interior of Ω (see [52,
Th. 3.32]).

2.2. The Class of k-Rotationally Symmetric Planar Convex Bodies

Given k ∈ N, k ≥ 2, a planar convex body Ω is said to be k-rotationally
symmetric if there exists a point p ∈ Ω such that Ω is invariant under the
rotation θk of angle 2π/k centered at p (the point p is usually called the center
of symmetry of Ω). Note that, in that case, θk(∂Ω) = ∂Ω. Some examples of
this type of sets are the regular polygons, or the regular Reuleaux polygons
with an odd number of vertices, see Figure 1.
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Figure 1. Some examples of k-rotationally symmetric planar
convex bodies: an equilateral triangle and a regular Reuleaux
triangle (k = 3), a regular Reuleaux pentagon (k = 5), and a
circle

Figure 2. Two k-rotationally symmetric planar convex bod-
ies, for k = 3 and k = 5

Figure 3. A 2-rotationally symmetric planar convex body

Figure 2 shows two interesting k-rotationally symmetric planar convex bodies,
for k = 3 and k = 5. They are obtained by interesecting the unit disk with
a certain equilateral triangle, and with a certain regular pentagon. These sets
appear as the optimal bodies for an optimization division problem involving
the maximum relative diameter functional [11, Th. 5.1]. Additionally, the set
from Figure 3 is another remarkable example of this type of sets for k = 2. It
provides an example where the standard bisection is not minimizing for the
maximum relative diameter functional, see details in [12, Ex. 3].
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Figure 4. Dots and edges of two different 5-rotationally sym-
metric planar convex bodies

We will now define the notions of dots and edges of a k-rotationally
symmetric planar convex body Ω (keeping certain analogy with the vertices
and the sides of polygons). Let R > 0 be the circumradius of Ω (that is, the
radius of the smallest ball containing Ω), and let p be the center of symmetry
of Ω. Then, there exist x1, . . . , xk ∈ ∂Ω such that d(xi, p) = R, which can be
further chosen to be k-rotationally symmetric (observe that the circumradius
is necessarily attained by a point x1 ∈ ∂Ω, and by applying repeatedly the
rotation θk we will obtain the rest of the points. More precisely, xi = θi−1

k (x1),
for i = 2, . . . , k). We will call dots of Ω any choice of these points (notice
that the set of dots may not be unique for Ω). Moreover, for a given set of
dots x1, . . . , xk of Ω, an edge of Ω will be any piece of ∂Ω delimited by two
consecutive dots. This implies that Ω will have k edges, namely Li = [xi, xi+1],
i = 1, . . . , k, with the convention that xk+1 = x1, see Figure 4. Note that the
edges L1, . . . , Lk of Ω are placed along ∂Ω in the counterclock-wise order.

Remark 1. Let P be a k-rotationally symmetric convex polygon with n sides
(and n vertices). In this case, we want to stress that the notions of sides and
edges will not coincide, in general, as well as the notions of vertices and dots.
For instance, if P is a regular polygon, then it will be clearly n-rotationally
symmetric, and its sides and edges will be the same. However, if we consider
an equilateral triangle and we (slightly) cut its vertices symmetrically (see
Figure 5), we will obtain a non-regular hexagon which is 3-rotationally sym-
metric, that is, with six sides and three edges. In this setting, it is not difficult
to check that k ≤ n: the circumradius of P is always given by the distance
between its center of symmetry and a vertex of P , which implies that any dot
of P is indeed a vertex. And consequently, taking into account the previous
definition of an edge, it follows that any edge of P will be composed by one or
several sides of P (more precisely, each edge of P will contain n/k sides).

We can now define the notion of k-Cheeger-regular set in the class of
k-rotationally symmetric planar convex bodies.
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Figure 5. A 3-rotationally symmetric hexagon

Definition 1. Let Ω be a k-rotationally symmetric planar convex body, with
dots x1, . . . , xk and edges L1, . . . , Lk. Let CΩ be the Cheeger set of Ω. Then,
Ω is called k-Cheeger-regular if the boundary of CΩ touches all the edges of
Ω.

Remark 2. Definition 1 does not depend on the choice of the dots of Ω.

Remark 3. Consider a k-rotationally symmetric convex polygon P . We antici-
pate that P is k-Cheeger-regular, by virtue of Theorem 2 below. Let us assume
that P is Cheeger-regular, following the definition given in [27, §. 4]. Then, the
boundary of its associated Cheeger set CP will touch all the sides of P . Taking
into account Remark 1, it follows that ∂CP will also touch all the edges of P ,
and therefore P will be k-Cheeger-regular. On the other hand, we can find ex-
amples of k-Cheeger-regular convex polygons which are not Cheeger-regular.
For instance, consider a very narrow rhombus where we have cut slightly two
vertices symmetrically, see Figure 6. This convex polygon is 2-rotationally sym-
metric, and so 2-Cheeger-regular (by Theorem 2), but it can be checked that it
is not Cheeger-regular (the condition from [27, Th. 3] is not satisfied if the set
is narrow enough and the cutting is very small). This means that the notion of
k-Cheeger-regular, when restricted to the family of k-rotationally symmetric
convex polygons, is weaker than the Cheeger-regular notion introduced in [27,
§. 4].

3. Main Results

In this section we prove our main results, by using Theorem 1. Theorem 2 shows
that any k-rotationally symmetric planar convex body Ω is k-Cheeger-regular,
and Corollary 1 assures that the Cheeger set of Ω is always k-rotationally
symmetric (that is, in this setting, the rotational symmetry is inherited by the
Cheeger set).

Theorem 2. Let Ω be a k-rotationally symmetric planar convex body. Then, Ω
is k-Cheeger-regular, that is, the boundary of its Cheeger set CΩ touches all
the edges of Ω.
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Figure 6. A 2-rotationally symmetric convex polygon which
is 2-Cheeger regular, but not Cheeger regular. The associated
Cheeger set is depicted in the right-hand side

Proof. Fix q ∈ ∂CΩ ∩ ∂Ω (recall that ∂CΩ touches necessarily ∂Ω). We can
assume that q lies in the edge L1 of Ω. Taking into account the characterization
of CΩ from Theorem 1, it follows there exists s > 0 such that q = z + s v, for
certain z ∈ ∂Ωs and v ∈ S

1, and by applying the rotation θk, we will obtain
that θk(q) = θk(z) + s θk(v). Observe that θk(q) ∈ L2 and θk(v) ∈ S

1. Let us
prove that θk(z) ∈ ∂Ωs.

Since z ∈ ∂Ωs, we have that dist(z, ∂Ω) = min{d(z, w) : w ∈ ∂Ω} = s.
Clearly, d(z, w) = d(θk(z), θk(w)) for any w ∈ ∂Ω. Since θk is bijective when
restricted to ∂Ω, it follows that

s = min{d(z, w) : w ∈ ∂Ω} = min{d(θk(z), w) : w ∈ ∂Ω},

which implies that θk(z) ∈ ∂Ωs. Therefore θk(q) = θk(z) + s θk(v) ∈ ∂Ωs +
sB1 = ∂CΩ , using again Theorem 1. This gives that ∂CΩ ∩ L2 �= ∅, and
repeating the argument, it yields that ∂CΩ ∩ Li �= ∅, for i = 1, . . . , k, which
means that ∂CΩ touches all the edges of Ω, as stated. �
Corollary 1. Let Ω be a k-rotationally symmetric planar convex body. Then,
its Cheeger set CΩ is k-rotationally symmetric.

Proof. It suffices to prove that θk(CΩ) ⊂ CΩ . Let q be an arbitrary point in
CΩ . In view of Theorem 1, for s = 1/h(Ω), we will have that q = z + s v,
for certain z ∈ Ωs and v ∈ B1. Then θk(q) = θk(z) + s θk(v). It is clear that
θk(v) ∈ B1, and applying an analogous reasoning to the one from the proof of
Theorem 2, we have that θk(z) ∈ Ωs. Thus θk(q) ∈ Ωs + sB1 = CΩ , which
concludes the proof. �
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Remark 4. An alternative proof of Corollary 1 is the following. It is clear that
θk(CΩ) ⊆ θk(Ω) = Ω, and also that P (θk(CΩ)) = P (CΩ) and A(θk(CΩ)) =
A(CΩ). This implies that θk(CΩ) is also a Cheeger set of Ω. Taking into
account that the Cheeger set of Ω is unique by Lemma 1, we conclude that
θk(CΩ) coincides with CΩ , which gives that CΩ is k-rotationally symmetric.

Remark 5. The reader may compare our Corollary 1 with [8, Lemma 2.3],
where it is proved that for a convex bounded domain Ω in R

n, n ≥ 3, which is
also rotationally invariant (in the sense that Ω is invariant under the rotation
about a fixed axis), the corresponding Cheeger set inherits the same rotational
invariance.

Remark 6. The key points in the proofs of Theorem 2 and Corollary 1 are the
characterization of the Cheeger sets from Theorem 1 and the fact that θk is
bijective. We note that an analogous characterization has been obtained for a
wider family of sets, not necessarily convex ( [33, Th. 1.4], see also [35]): if Ω is
a Jordan domain (with A(∂Ω) = 0) without necks of radius 1/h(Ω), then its
associated maximal Cheeger set can be expressed as in Theorem 1 (using Ωs

instead of Ωs). If we further assume that Ω is k-rotationally symmetric (not
necessarily convex) and star-shaped with respect to its center of symmetry, it
follows that θk is bijective and the proofs of Theorem 2 and Corollary 1 will
work in the same way for the corresponding maximal Cheeger set of Ω (recall
that the lack of convexity implies that the Cheeger set is not unique, in gen-
eral). In this setting, [34, Ex. 4.7] shows an interesting 2-rotationally symmetric
planar (non-convex) star-shaped body with an entire two-parameter family of
associated Cheeger sets, not all of them being 2-rotationally symmetric.

4. Further Comments

We finish with some general comments of interest on the Cheeger problem.

Remark 7. An interesting variant of the Cheeger problem, stated in [18, Prob-
lem A23], consists of minimizing the quotient P (X)α/A(X), for α > 0, over all
subsets X contained in a given planar (convex) body Ω, looking also for the
optimal sets. The reciprocal problem of minimizing P (X)/V (X)α (over sub-
sets X of a given domain Ω in R

n) has been considered in [19], where a sharp
lower bound for the corresponding Cheeger constant is given (see also [5] for
some other lower and upper bounds), and in [44], where the general properties
of this problem are obtained, and the cases of rectangles and (2-dimensional)
curved strips are studied in detail.

Remark 8. The nonlocal/fractional Cheeger problem is another variant dealt
with in literature, where the classical fractional perimeter is considered. This
question has been treated in [9], see also [38, Ch. 5].
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Remark 9. We also have, as a sort of extension of the problems described in Re-
mark 7, the so-called generalized Cheeger problem, where two different positive
functions on a planar bounded domain are used for weighting the perimeter
and area functionals. This is partially studied in [24], with interesting applica-
tions in the framework of landslides modeling, since the generalized Cheeger
constant coincides with a certain coefficient related to the stability of land-
slides (see [24] and references therein). In that work, among other things, the
Cheeger sets and Cheeger constants for this generalized problem are described
when considering planar rectangles and a particular family of weights which
depend only on one variable [24, Th. 7 and Re. 5.E]. These results may sug-
gest that the study of this generalized Cheeger problem in different domains
and with different weights (also known as densities, which have been deeply
considered in the last years, see [39]) is an interesting question which could
reveal applications in other settings (for instance, there is a strong connection
with the existence of rotationally invariant Cheeger sets in domains of Rn, see
[8, Re. 5.1]). We further point out that the generalized Cheeger problem in
R

n with the Gaussian density weighting the perimeter and volume functionals
has been considered in [16] and in [25] (see also [1,37,48], where some exis-
tence, regularity and other interesting results on the generalized Cheeger sets
for different densities have been obtained).

Remark 10. In the anisotropic case (that is, when the perimeter is given by
means of a general non-Euclidean norm), a characterization of the Cheeger set
associated to a planar convex bounded domain can be found in [28, Th. 5.1],
following the same spirit of [27, Th. 1]. Taking this into account, an inter-
esting direction for future work could be studying whether our results hold
in this more general situation. In this setting, we think that there will be a
strong dependence on the structure of the corresponding Wulff shape. For in-
stance, in order to extend our Corollary 1 when considering a k-rotationally
symmetric convex polygon Ω, it seems necessary that the Wulff shape W is a
˜k-rotationally symmetric convex polygon, satisfying certain divisibility relation
between k and ˜k (and moreover, different behaviors may appear depending on
the fact that Ω and W have some parallel sides).

Remark 11. An additional related question is posing the Cheeger problem
for the other classical geometric magnitudes, that is, minimizing the quotient
F (X)/A(X) over all subsets X contained in a given planar convex body Ω,
where F (X) stands for the minimal width, or the circumradius, or the inra-
dius of X. This was also suggested in [18, Problem A23], and we have not
found any related reference in literature. This is surprising for us, because the
relations between pairs (and triplets) of these classical magnitudes have been
largely studied for a long time [49]. Incidentally, we note that the Blaschke–
Santaló diagram for the triplet (P (·), A(·), h(·)) for certain families of pla-
nar sets has been recently determined [20], as well as the one for the triplet
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(r(·), A(·), h(·)) for the family of planar convex bodies [21], where r denotes
the classical inradius functional.

Remark 12. Among all the polygons of (at most) n sides enclosing a prescribed
quantity of area, it is known that the regular one provides the minimum possi-
ble value for the Cheeger constant [10]. This result, whose stability complement
can be found in [14], is strongly related to a conjecture by Pólya and Szegő
on the polygon (of n sides and prescribed enclosed area) minimizing the first
eigenvalue of the Laplacian [43]. On the other hand, it has been proved that
the Reuleaux triangle maximizes the Cheeger constant among all planar con-
vex bodies with (prescribed) constant width [23, Th. 1.1] (also including the
computation of that maximum value, see [23, §. 2.2]).

Remark 13. We want to stress that the Cheeger problem has been also treated
in the non-convex planar setting, as commented in Remark 6. Some references
which cover quite well this case are [31,33–36,47]. In higher dimensions, there
are not so many references, and the reader may check [13,15,30]. Recall that
the uniqueness of the Cheeger set is not assured in this non-convex setting, as
shown in [27] by describing a particular example.

Remark 14. As previously commented, the Cheeger problem has been well
studied during the last decade in some families of sets with certain charac-
teristics (for instance, planar curved strips [31,34], or rotationally symmetric
domains [8]). This reveals the importance of determining appropriately the
setting for studying this problem.
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