
Results Math (2021) 76:214

c© 2021 The Author(s)

1422-6383/21/040001-19

published online October 11, 2021
https://doi.org/10.1007/s00025-021-01520-4 Results in Mathematics

Complex Shepard Operators and Their
Summability

Oktay Duman and Biancamaria Della Vecchia

Abstract. In this paper, we construct the complex Shepard operators to
approximate continuous and complex-valued functions on the unit square.
We also examine the effects of regular summability methods on the ap-
proximation by these operators. Some applications verifying our results
are provided. To illustrate the approximation theorems graphically we
consider the real or imaginary part of the complex function being ap-
proximated and also use the contour lines of the modulus of the function.
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1. Introduction

In 1968, Donald Shepard introduced a sequence of operators that was highly
effective in scattered data interpolation problems, which are known in the liter-
ature as Shepard operators [29]. Since these operators are of interpolatory-type,
linear and positive, they are also quite useful in the classical approximation
theory. Recall that the Shepard interpolatory operators are defined by

Sn,λ(f ;x) =
∑n

k=0

∣
∣x − k

n

∣
∣−λ

f
(

k
n

)

∑n
k=0

∣
∣x − k

n

∣
∣−λ

, λ ≥ 1,n ∈ N, x ∈ [0, 1]

for an arbitrary continuous real-valued function f on the unit interval [0, 1].
These operators defined on real-valued functions have been studied exten-
sively. For example, error estimates, direct and converse theorems, saturation
results, rational approximation, simultaneous approximation may be found in
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Figure 1. Sample points zk,m

[14–16,31,34–36]. There are also several modifications of the original Shepard
operators in order to increase the accuracy of approximation or to solve specific
interpolation problems in CAGD such as scattered data and image compres-
sion [2,6,7,9,10,17–22,24]. However, to the best of our knowledge, there is a
limited information in the literature about a complex version of Shepard oper-
ators. By using the fundamental polynomials of Lagrange interpolation at the
roots of unity, Hermann studied Shepard-type operators for functions on the
unit circle [27].

In the present paper we mainly introduce the complex Shepard operators
and systematically investigate their approximation properties. We also exam-
ine the effects of regular summability methods on the approximation by these
operators. To visualize the corresponding approximation we consider the real
or imaginary part of the complex function being approximated and also use
the contour lines of the modulus of the complex function.
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2. Approximation by the Complex Shepard Operators

Let K denote the unit square, i.e.,

K = [0, 1] × [0, 1] = {z = x + iy ∈ C : x, y ∈ [0, 1]} ,

where i2 = −1, x = �(z) and y = �(z). Now for a given n ∈ N, consider the
following sample points for the set K :

zk,m,n := zk,m =
k

n
+ i

m

n
, k, m ∈ {0, 1, . . . , n}

(see Fig. 1).
Let f be a complex-valued function defined on K. Then, for a positive

real number λ, we define the complex Shepard operators by

Sn,λ (f ; z) =

∑n
k,m=0 |z − zk,m|−λ

f (zk,m)
∑n

k,m=0 |z − zk,m|−λ
, (1)

where we write
∑n

k,m=0 for the double summation
∑n

k=0

∑n
m=0. Observe that

Sn,λ(f) interpolates at the sample points zk,m, i.e.,

Sn,λ (f ; zk,m) = f (zk,m) for k,m ∈ {0, 1, . . . , n}.

We denote the space of all continuous and complex-valued functions on
K by C(K,C). Then, for the complex Shepard operators defined by (1) we get
the following approximation result.

Theorem 1. For every f ∈ C (K,C) and λ ≥ 3, we have

Sn,λ(f) ⇒ fon K,

where, as usual, the symbol ⇒ denotes the uniform convergence.

To prove Theorem 1, we first need the following lemma.

Lemma 1. Let z ∈ K with z �= zk,m. Then, for every n ∈ N and λ > 0,

⎛

⎝
n∑

k,m=0

|z − zk,m|−λ

⎞

⎠

−1

= O
(
n−λ

)

holds.

Proof. Define the indices k∗ and m∗ by

|z − zk∗,m∗ | = min
0≤k,m≤n

|z − zk,m| . (2)

Then, we observe that

|z − zk∗,m∗ |λ = O
(
n−λ

)
.
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Using this and also considering the fact that
⎛

⎝
n∑

k,m=0

|z − zk,m|−λ

⎞

⎠

−1

≤ |z − zk∗,m∗ |λ ,

the proof is completed. �

Now for each fixed z ∈ K define the function ϕz on K by ϕz(w) :=
|w − z|. Then, we also need the next lemma.

Lemma 2. For every λ ≥ 3, we have

Sn,λ(ϕz; z) ⇒ 0 on K.

Proof. Using the indices k∗ and m∗ given by (2) we may write from Lemma 1
that

|Sn,λ(ϕz; z)| ≤
∑n

k,m=0 |z − zk,m|1−λ

∑n
k,m=0 |z − zk,m|−λ

≤ |z − zk∗,m∗ | + O
(
n−λ

) n∑

k=0(k �=k∗)

|z − zk,m∗ |1−λ

+O
(
n−λ

) n∑

m=0(m �=m∗)

|z − zk∗,m|1−λ

+O
(
n−λ

) n∑

k,m=0
(k �=k∗,m �=m∗)

|z − zk,m|1−λ
.

Hence we get

|Sn,λ(ϕz; z)| ≤ O

(
1
n

)

+ O
(
n−λ

) n∑

k=0(k �=k∗)

∣
∣
∣
∣x − k

n

∣
∣
∣
∣

1−λ

+O
(
n−λ

) n∑

m=0(m �=m∗)

∣
∣
∣y − m

n

∣
∣
∣
1−λ

+O
(
n−λ

) n∑

k,m=0
(k �=k∗,m �=m∗)

|z − zk,m|1−λ
.

Since λ ≥ 3, we have
n∑

k=0(k �=k∗)

∣
∣
∣
∣x − k

n

∣
∣
∣
∣

1−λ

≤
n∑

k=0(k �=k∗)

( |k − k∗|
n

− 1
2n

)1−λ

= O

(
1

n1−λ

) n∑

k=1

1
kλ−1

= O

(
1

n1−λ

)

.
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Similarly,
n∑

m=0(m �=m∗)

∣
∣
∣y − m

n

∣
∣
∣
1−λ

= O

(
1

n1−λ

)

.

Also, for λ ≥ 3,

n∑

k,m=0
(k �=k∗,m �=m∗)

|z − zk,m|1−λ =
n∑

k,m=0
(k �=k∗,m �=m∗)

((

x − k

n

)2

+
(
y − m

n

)2
)(1−λ)/2

≤
n∑

k,m=0
(k �=k∗,m �=m∗)

(( |k − k∗|
n

− 1
2n

)2

+
( |m − m∗|

n
− 1

2n

)2
)(1−λ)/2

,

which implies

n∑

k,m=0
(k �=k∗,m �=m∗)

|z − zk,m|1−λ ≤
n∑

k,m=1

((
k

n

)2

+
(m

n

)2
)(1−λ)/2

=
1

n1−λ

⎛

⎝ 1
2(1−λ)/2

+ 2
n∑

k=2

1

(k2 + 1)(λ−1)/2
+

n∑

k,m=2

1

(k2 + m2)(λ−1)/2

⎞

⎠ .

Now if λ > 3, then we see

n∑

k,m=0
(k �=k∗,m �=m∗)

|z − zk,m|1−λ ≤ O

(
1

n1−λ

) (

1 +
∫ n

1

∫ n

1

dxdy

(x2 + y2)(λ−1)/2

)

≤ O

(
1

n1−λ

) (

1 +
∫ 2π

0

∫ √
2n

1

drdθ

rλ−2

)

= O

(
1

n1−λ

)

.

Then, combining the above results, for λ > 3, we obtain

|Sn,λ(ϕz; z)| = O

(
1
n

)

. (3)

Also, if λ = 3, then we have
n∑

k,m=0
(k �=k∗,m �=m∗)

|z − zk,m|−2 = O

(
log n

n−2

)

,
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which gives

|Sn,3(ϕz; z)| = O

(
log n

n

)

. (4)

Therefore, the proof follows from (3) and (4), immediately. �

Now we recall some terminology in the recent paper by Anastassiou [3].
Let K ⊂ C be a compact convex set and L : C(K,C) → C(K,C) be

a linear operator. Then, consider a positive linear operator L̃ : C(K,R) →
C(K,R). Assume that, for every f ∈ C(K,C),

|L(f ; z)| ≤ L̃ (|f | ; z) , ∀z ∈ K. (5)

In this case, L̃ is called the companion operator of L. Then, using the test
function e0(w) = 1 and ϕz(w) = |w − z|, Anastassiou proved the next approx-
imation result.

Theorem 2. (see Corollary 19 in [3]) Let (Ln) be a sequence of linear operators
from C(K,C) into itself and

(
L̃n

)
be a sequence of their companion operators

from C(K,R) into itself. Additionally, assume that, for every g ∈ C(K,R),

L (αg; z) = αL̃ (g; z) ,∀z ∈ K,∀α ∈ C. (6)

Then, for every f ∈ C(K,C), we have

‖Ln(f) − f‖ ≤ ‖f‖
∥
∥
∥L̃n(e0) − e0

∥
∥
∥ +

(
1 +

∥
∥
∥L̃n(e0)

∥
∥
∥
)

ω
(
f,

∥
∥
∥L̃n (ϕz)

∥
∥
∥
)

, (7)

where ‖·‖ denotes the usual supremum norm on K and ω (f, δ) (δ > 0) is the
modulus of continuity of f on K. In this case, if

L̃n(e0) ⇒ e0 and L̃n(ϕz; z) ⇒ 0 on K,

then, for every f ∈ C(K,C), we have

Ln(f) ⇒ f onK.

Now we are ready to prove Theorem 1.

Proof of Theorem 1. Now taking K = [0, 1]× [0, 1] and λ > 0, consider follow-
ing operators on C(K,R)

S̃n,λ(f ; z) =

∑n
k,m=0 |z − zk,m|−λ

f (zk,m)
∑n

k,m=0 |z − zk,m|−λ
.

Then, it is easy to check from (5) that, for each n ∈ N and λ > 0, S̃n,λ is
the companion operator of Sn,λ. Also, these operators satisfy the assumption
(6). We observe that S̃n,λ(ϕz) = Sn,λ(ϕz) since ϕz is a real-valued function.
Therefore, using the fact that S̃n,λ(e0) = e0 = 1 on K and taking into account
Lemma 2, all conditions of Theorem 2 hold for λ ≥ 3, which immediately gives
the proof of Theorem 1. �
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Now we give two applications on the set K = [0, 1] × [0, 1].

Example 1. Define the function f by

f(z) = i exp
(
2
(
z̄2 − z2

))
, z ∈ K, (8)

where z̄ denotes the conjugate of z and exp(·) is the complex exponential
function. Since f ∈ C(K,C), it follows from Theorem 1 that, for every λ ≥ 3,

Sn,λ(f) ⇒ f onK.

To visualize this uniform approximation we may consider the real or imaginary
part of the function f. Then, for example, it is easy to see that

� (Sn,λ(f)) ⇒ �(f) on K,

which is indicated in Fig. 2 for the values λ = 3.7 and n = 8, 15, 30.

Example 2. Define the function g by

g(z) = z3 − z2 + 1 − i

5
, z ∈ K. (9)

Then, Theorem 1 implies that, for every λ ≥ 3,

Sn,λ(g) ⇒ g on K

holds, which also gives

|Sn,λ(g)| ⇒ |g| on K.

This approximation is indicated in Fig. 3 via the contour lines, where larger
values are colored lighter. In Fig. 3 we use the parameter values λ = 5 and
n = 10, 20, 50.

3. Summability by the Complex Shepard Operators

Now let (un) be a sequence of complex functions from K into itself. Then we
consider the following slight modification of the complex Shepard operators:

S
∗
n,λ(f ; z) = Sn,λ (f ;un(z)) (10)

for z ∈ K, n ∈ N, λ > 0 and f ∈ C(K,C). Defining the function e1(z) = z on
K, we get the next approximation theorem.

Theorem 3. If un ⇒ e1 on K, then, for every f ∈ C(K,C) and λ ≥ 3, we have
S

∗
n,λ(f) ⇒ f on K.

Proof. From the definitions of (1) and (10) , we may write that
∣
∣S∗

n,λ(f ; z) − f(z)
∣
∣ ≤ |Sn,λ (f ;un(z)) − f (un(z))| + |f (un(z)) − f(z)|

for any f ∈ C(K,C). Then, using (3) , (4) and (7) we get
∣
∣S∗

n,λ(f ; z) − f(z)
∣
∣ = O

(

ω

(

f,
1
n

))

+ |f (un(z)) − f(z)| for λ > 3 (11)
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Figure 2. Approximation to the real part of the function f
given by (8) by means of the real part of the operators Sn,λ(f)
for the values λ = 3.7 and n = 8, 15, 30

and
∣
∣S∗

n,λ(f ; z) − f(z)
∣
∣ = O

(

ω

(

f,
log n

n

))

+ |f (un(z)) − f(z)| (12)

for λ = 3. Since un ⇒ e1 on K and f is uniformly continuous on K, we
immediately observe that, for every λ ≥ 3,

S
∗
n,λ(f) ⇒ f onK,

which completes the proof. �
Then, it is natural to arise the following problem.

Problem 1. What should we do in order to preserve the approximation in The-
orem 3 in “some sense” if the ordinary convergence of the function sequence
(un) to the function e1 fails?
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Figure 3. Contour lines of |Sn,λ(g)| and |g| for the values
λ = 5 and n = 10, 20, 50, where g is given by (9)

To find an affirmative answer to Problem 1, we will mainly consider non-
negative regular summability matrices. It is known that a summability method
is a common and useful way to overcome the lack of the usual convergence
[8,26]. Recent studies demonstrate that it is also quite effective in the classical
approximation theory (see, for instance, [1,4,5,23,25,28,30,32]). We now use
it in the approximation by complex Shepard operators.

Recall that, for a given infinite matrix A := [ajn] (j, n ∈ N) and a se-
quence x := (xn) , the A-transformed sequence of (xn) is given by Ax :=
((Ax)j) =

∑∞
n=1 ajnxn provided that the series is convergent for every j ∈

N. In this case, we say that A is a summability matrix method. If the A-
transformed sequence of (xn) converges to a number L, then the sequence
(xn) is said to be A-summable (or A-convergent) to L, which is denoted by
xn

A→ L or A-lim x = L. It is also possible to give the same definition for
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a sequence of functions. Let (fn) be a sequence of complex-valued functions
defined on a set D ⊂ C. Then, we say that (fn) is uniformly A-summable to
a function f on D if

lim
j→∞

∞∑

n=1

ajnfn(z) = f(z), uniformly in z ∈ D,

which is denoted by fn

A
⇒ f on D. A regular matrix summability method is a

matrix transformation of a convergent sequence which preserves the limit. It is
well-known that the Silverman-Toeplitz theorem characterizes the regularity
of a matrix summability method (see [8,26]).

Throughout the paper, we will consider A = [ajn] as a nonnegative reg-
ular summability matrix. By the nonnegativity of a matrix method, we mean
all entries of the matrix are nonnegative.

Then, the first idea that comes to mind regarding the solution of Problem
1 is as follows.

Claim: If un

A
⇒ e1 on K, thenS

∗
n,λ(f)

A
⇒ f on K (13)

holds for every f ∈ C(K,C) and λ ≥ 3. However, the next example shows that
the claim in (13) is not satisfied for the function e2(z) = z2 on K.

Example 3. Define the function sequence (un) on the set K by

un(z) =
{

2z, ifn is odd
0, if n is even. (14)

Assume that A = [ajn] is any nonnegative regular summability matrix such
that

un

A

⇒ e1 on K.

It follows from (14) that
∣
∣
∣
∣
∣

∞∑

n=1

ajnun(z) − e1(z)

∣
∣
∣
∣
∣
= 2 |z|

∣
∣
∣
∣
∣

∞∑

n=1

aj,2n−1 − 1
2

∣
∣
∣
∣
∣
.

Taking supremum over z ∈ K, we get
∥
∥
∥
∥
∥

∞∑

n=1

ajnun − e1

∥
∥
∥
∥
∥

= 2
√

2

∣
∣
∣
∣
∣

∞∑

n=1

aj,2n−1 − 1
2

∣
∣
∣
∣
∣
.

Since un

A

⇒ e1 on K, we see that

lim
j→∞

∞∑

n=1

aj,2n−1 =
1
2
. (15)
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On the other hand, we may write from (14) that

e2(un(z)) =
{

4z2, ifn is odd
0, ifn is even.

Then, defining the function h(z) = 2z2 on K, we see that
∣
∣
∣
∣
∣

∞∑

n=1

ajnS
∗
n,λ (e2; z) − h(z)

∣
∣
∣
∣
∣
≤

∣
∣
∣
∣
∣

∞∑

n=1

ajnSn,λ (e2;un(z)) −
∞∑

n=1

ajne2 (un(z))

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

∞∑

n=1

ajne2 (un(z)) − h(z)

∣
∣
∣
∣
∣

≤
∞∑

n=1

ajn |Sn,λ (e2;un(z)) − e2 (un(z))|

+ 4 |z|2
∣
∣
∣
∣
∣

∞∑

n=1

aj,2n−1 − 1
2

∣
∣
∣
∣
∣
.

Therefore, we get from (3), (4) and (7) that
∥
∥
∥
∥
∥

∞∑

n=1

ajnS
∗
n,λ (e2) − h

∥
∥
∥
∥
∥

= O

( ∞∑

n=1

ajnω

(

f,
1
n

))

+ 8

∣
∣
∣
∣
∣

∞∑

n=1

aj,2n−1 − 1
2

∣
∣
∣
∣
∣

for λ > 3; and
∥
∥
∥
∥
∥

∞∑

n=1

ajnS
∗
n,λ (e2) − h

∥
∥
∥
∥
∥

= O

( ∞∑

n=1

ajnω

(

f,
log n

n

))

+ 8

∣
∣
∣
∣
∣

∞∑

n=1

aj,2n−1 − 1
2

∣
∣
∣
∣
∣

for λ = 3. Using (15) in the last two inequalities and also considering the
regularity of A, we obtain

S
∗
n,λ (e2)

A
⇒ h �= e2 onK

for every λ ≥ 3. Hence, (13) does not work for the test function e2.

We understand from Example 3 that in order to find a solution to Problem
1, we need a slightly stronger concept than the A-summability. In fact, there is
such a concept in the summability theory, the so-called “strong summability”.

Recall that, for a given summability matrix A = [ajn], a sequence x =
(xn) is said to be strongly A-summable to a value L if all sums

∑∞
n=1 ajn|xn−L|

(j = 1, 2, . . .) exist and converges to zero as j → ∞. We denote this by

xn
|A|→ L. The concept of strong summability can be also given for a sequence

of functions. Let (fn) be a sequence of complex-valued functions defined on
a set D ⊂ C. Then, we say that (fn) is strongly uniform A-summable to a
function f on D provided that
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lim
j→∞

∞∑

n=1

ajn|fn(z) − f(z)| = 0, uniformly in z ∈ D,

which is denoted by

fn

|A|
⇒ f on D.

Since strong A-summability implies A-summability for any nonnegative regular
matrix A, we may write, for bounded functions on D, that

fn ⇒ f on D ⇒ fn

|A|
⇒ f on D ⇒ fn

A
⇒ f on D.

But the converse is not always true. For example, observe that the function
sequence (un) in Example 3 is (uniform) C1 -summable to e1 but not strongly.

Theorem 4. Let A = [ajn] be a nonnegative regular matrix method and (un)
be a sequence of complex-valued functions defined on K such that

un

|A|
⇒ e1 onK. (16)

Then, for every f ∈ C(K,C) and λ ≥ 3, we have

S
∗
n,λ(f)

|A|
⇒ f onK. (17)

Proof. Let f ∈ C(K,C) be given. Then, from the uniform continuity of f on
the convex set K, the function f satisfies the almost Lipschitz property on K
(see [33]), that is, for every ε > 0, there exists a positive constant Mε such
that

|f(s) − f(z)| ≤ Mε |s − z| + ε (18)

holds for all s, z ∈ K. We may write from (11) and (18) that, for λ > 3
∞∑

n=1

ajn

∣
∣S∗

n,λ(f ; z) − f(z)
∣
∣ = O

( ∞∑

n=1

ajnω

(

f,
1
n

))

+Mε

∞∑

n=1

ajn (|un(z) − z| + ε) .

From the hypothesis (16) and the regularity of the method A, the right-hand
side of the last inequality goes to zero uniformly as j → ∞, which means

S
∗
n,λ(f)

|A|
⇒ f on K for everyλ > 3.

Similarly, one can easily obtain from (12) and (18) that

S
∗
n,λ(f)

|A|
⇒ f on K forλ = 3.

Hence, the proof is completed. �
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We should note that, under the same condition in Theorem 4, the A-
strong summability in (17) also implies

S
∗
n,λ(f)

A
⇒ f on K for everyλ ≥ 3.

Example 4. Define the function sequence (un) on K by

un(z) =
{

z + 1, if n = m2 (m ∈ N)
z, otherwise. (19)

Now consider the Cesàro method C1 = [cjn] given by

cjn =
{ 1

j , if n = 1, 2, . . . , j

0, otherwise.

Then, we get from (19) that

∞∑

n=1

cjn |un(z) − e1(z)| =
1
j

j∑

n=1

|un(z) − z|

≤ 1√
j
,

which implies

un

|C1|
⇒ e1 on K.

Therefore, by Theorem 1, for the corresponding (modified) complex Shepard
operators, we have, for every f ∈ C(K,C) and λ ≥ 3,

S
∗
n,λ(f)

|C1|
⇒ f on K,

which also gives

S
∗
n,λ(f)

C1

⇒ f onK. (20)

However, observe that it is not possible to approximate f (in the ordinary
sense) by means of S

∗
n,λ(f) for any function f satisfying f(z + 1) �= f(z)

for some z ∈ K. We also understand from (20) that the arithmetic mean of
(modified) complex Shepard operators is uniformly convergent to f on the set
K, that is, for every λ ≥ 3

S1,λ (f ;u1(z)) + S2,λ (f ;u2(z)) + · · · + Sj,λ(f ;uj(z))
j

⇒ f(z) on K.

Hence, one can easily check that

�{S1,λ (f ;u1(z))} + �{S2,λ (f ;u2(z))} + · · · + �{Sj,λ (f ;uj(z))}
j

⇒ �{f(z)} ,
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Figure 4. Cesàro approximation to the imaginary part of
the function f given by (8) by means of the imaginary part
of the modified complex Shepard operators

uniformly with respect to z ∈ K. This (uniform) Cesàro approximation is
indicated in Fig. 4 for the function f given by (8) and the parameter values
λ = 3, j = 6, 16, 25.

4. Concluding Remarks

In this study, we have introduced the complex Shepard operators Sn,λ in order
to approximate continuous and complex-valued function on the unit square
K = [0, 1] × [0, 1]. We have also examined the effects of regular summability
methods on the approximation by these operators. On the unit square, we have
considered the sample points zk,m = k

n + im
n (k,m = 0, 1, . . . , n). We should

note that the region K can be extended to any compact rectangular region
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Figure 5. Contour lines of
∣
∣
∣SR

n,λ(e1)
∣
∣
∣ and |e1| for the values

λ = 4 and n = 6, 14, 20, where R = [−1, 1] × [−1, 1]

R = [a, b]× [c, d] with a < b and c < d. Indeed, for a given continuous function
f : R → C, choosing the sample points

zR
k,m :=

(

a +
(b − a)k

n

)

+ i

(

c +
(d − c)m

n

)

, k,m = 0, 1, . . . , n,

we can modify the complex Shepard operators as follows:

S
R
n,λ(f ; z) =

∑n
k,m=0

∣
∣
∣z − zR

k,m

∣
∣
∣
−λ

f(zR
k,m)

∑n
k,m=0

∣
∣
∣z − zR

k,m

∣
∣
∣
−λ

, λ > 0, n ∈ N, z ∈ R. (21)
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In this case, all the results obtained in the previous sections are also valid on
the region R. Hence, from Theorem 1, we may write that

S
R
n,λ(f) ⇒ f (22)

holds for every f ∈ C (R,C) and λ ≥ 3. The approximation in (22) also implies
∣
∣SR

n,λ(f)
∣
∣ ⇒ |f | ,

which is indicated in Fig. 5 for the function e1(z) = z by taking R = [−1, 1] ×
[−1, 1] and also using the contour lines.

Finally, for a future work, it would be interesting to modify the complex
Shepard operators in order to approximate functions that do not need to be
continuous (for example, integrable functions). These types of operators are
known in the literature as Kantorovich operators and have some applications
in image/signal processing and sampling theory (see [11–13]).
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F́ısicas Nat. Ser. A. Matemáticas 114(3), 132 (2020). https://doi.org/10.1007/
s13398-020-00860-0

[33] Vanderbei, R.J.: Uniform continuity is almost Lipschitz continuity. Statistics and
Operations Research Series SOR-91 11. Princeton University (1991). https://
vanderbei.princeton.edu/tex/unif cont/uc3.pdf

[34] Yu, D.: On weighted approximation by rational operators for functions with
singularities. Acta Math. Hung. 136(1), 56–75 (2012). https://doi.org/10.1007/
s10474-011-0187-y

https://doi.org/10.14658/pupj-drna-2019-1-1
https://doi.org/10.14658/pupj-drna-2019-1-1
https://doi.org/10.1016/j.apnum.2019.09.005
https://doi.org/10.1093/imanum/dru065
https://doi.org/10.1016/j.camwa.2021.07.021
https://doi.org/10.1007/s11117-019-00656-6
https://doi.org/10.1090/S0025-5718-1986-0829627-0
https://doi.org/10.1090/S0025-5718-1986-0829627-0
https://doi.org/10.1016/j.fss.2021.03.003
https://doi.org/10.1016/j.fss.2021.03.003
https://doi.org/10.1016/0021-9045(77)90058-2
https://doi.org/10.1016/0021-9045(77)90058-2
https://doi.org/10.1016/0021-9045(79)90008-X
https://doi.org/10.1007/BF02836457
https://doi.org/10.1007/BF02836457
https://doi.org/10.1007/s13398-020-00860-0
https://doi.org/10.1007/s13398-020-00860-0
https://vanderbei.princeton.edu/tex/unif_cont/uc3.pdf
https://vanderbei.princeton.edu/tex/unif_cont/uc3.pdf
https://doi.org/10.1007/s10474-011-0187-y
https://doi.org/10.1007/s10474-011-0187-y


Vol. 76 (2021) Complex Shepard Operators and Their Summability Page 19 of 19 214

[35] Yu, D., Zhou, S.: Approximation by rational operators in Lp spaces. Math.
Nachr. 282(11), 1600–1618 (2009). https://doi.org/10.1002/mana.200610812

[36] Zhou, X.: The saturation class of Shepard operators. Acta Math. Hung. 80(4),
293–310 (1998). https://doi.org/10.1023/A:1006538323418

Oktay Duman
Department of Mathematics
TOBB Economics and Technology University
Ankara
Turkey
e-mail: oduman@etu.edu.tr

Biancamaria Della Vecchia
Dipartimento di Matematica
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