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Abstract. We consider arc colourings of oriented graphs such that for each
vertex the colours of all out-arcs incident with the vertex and the colours
of all in-arcs incident with the vertex form intervals. We prove that the
existence of such a colouring is an NP-complete problem. We give the solu-
tion of the problem for r-regular oriented graphs, transitive tournaments,
oriented graphs with small maximum degree, oriented graphs with small
order and some other classes of oriented graphs. We state the conjecture
that for each graph there exists a consecutive colourable orientation and
confirm the conjecture for complete graphs, 2-degenerate graphs, planar
graphs with girth at least 8, and bipartite graphs with arboricity at most
two that include all planar bipartite graphs. Additionally, we prove that
the conjecture is true for all perfect consecutively colourable graphs and
for all forbidden graphs for the class of perfect consecutively colourable
graphs.

Mathematics Subject Classification. 05C15, 05C20, 90B35.

Keywords. Oriented graph, digraph, consecutive colouring, interval colour-
ing, forbidden graph, perfect consecutively colourable graph.

1. Motivation

A proper edge colouring of a graph with integers such that the colours of
edges incident with each vertex form an interval is called consecutive, and the
graph for which there exists a consecutive colouring is said to be consecutively
colourable. The idea of this colouring first called interval colouring was intro-
duced in 1987 by Asratian and Kamalian in [2] (available in English as [3]),
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and was motivated by the problem of constructing timetables without breaks
for teachers and classes.

It is an NP-complete problem to decide whether a graph is consecu-
tively colourable [15] even in a class of bipartite graphs [24]. However, some
classes of graphs have been proved to admit consecutive colourings. For ex-
ample, trees, regular and complete bipartite graphs [2,16,18], doubly convex
bipartite graphs, [1,19], grids [12], and outerplanar bipartite graphs [4,13]
are consecutively colourable. Also some classes of biregular graphs (see e.g.
[9,10,16,17,20]), k-trees [8], generalized Hertz graphs [6], and generalized Sev-
astjanov rosettes [7] have consecutive colourings. There are many papers de-
voted to this topic, in particular surveys which can be found in the books
[1,22].

In this paper we consider a variant of the concept of consecutive coloura-
bility for oriented graphs. We colour the arcs of an oriented graph in such a
way that for each vertex all out-arcs incident with the vertex and all in-arcs
incident with the vertex obtain pairwise different colours. The model that we
propose can be applied to some real problems, in particular the problem of
work without breaks of electronic devices, including telephones, in the scope
of handling outgoing and incoming data.

In Sect. 2, we introduce basic definitions and tools. Section 3 deals with
the formulation of the main problem of the paper, i.e. the problem of the con-
secutive colourability of oriented graphs. We analyse its complexity and some
special instances. Section 4 shows that the underlying graph of an oriented
graph does not contain information needed to solve the problem. This inves-
tigation gives a background and motivates the conjecture that for each graph
there is a consecutively colourable orientation. In Sect. 5, we formally pose the
conjecture confirming it for some classes of oriented graphs and indicating the
relationship between the conjecture and some known question. In Sect. 6, we
give some concluding remarks.

2. Basic Definitions and Tools

In general, we follow the notation and terminology of [5,11] in connection with
graphs and digraphs, respectively. A graph G consists of a non-empty finite
set V (G) of vertices and a finite set E(G) of pairs of distinct vertices called
edges. Let G be a graph with vertex set V (G) and edge set E(G). For any
S ⊆ V (G) or S ⊆ E(G) the symbol G[S] denotes the subgraph of G induced
by S. The set of neighbours of a vertex v in G is denoted by NG(v), and
NG[v] = NG(v) ∪ {v}. By degG(v) we mean |NG(v)| and we call it the degree
of a vertex v in a graph G. The maximum degree taken over all vertices of
G is denoted by Δ(G). If there exists r ∈ N such that degG(v) = r for every
v ∈ V (G), then G is r-regular (or simply, regular).
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A graph G is called connected if for every pair of vertices u, v ∈ V (G)
there exists a path from u to v in G. A maximal connected subgraph of G is
called a connected component of G. A graph G is 2-connected if it has more
than two vertices and the graph resulting by the removal any of its vertices
is a connected graph. A maximal 2-connected subgraph of G is called a block
of G. The equality G = H means that graphs G and H are isomorphic. Let
G1, G2 be graphs. By G1∪G2 we mean a graph with vertex set V (G1)∪V (G2)
and edge set E(G1) ∪ E(G2). A complete graph, a cycle and a path of order n
are denoted by Kn, Cn and Pn, respectively.

A digraph D consists of a non-empty finite set V (D) of vertices and
a finite set A(D) of ordered pairs of distinct vertices called arcs. Let D be a
digraph with vertex set V (D) and arc set A(D). For any S ⊆ V (D) the symbol
D[S] denotes the subdigraph of D induced by S. If (u, v) is an arc of D, then
we say that u and v are adjacent, and that (u, v) is an out-arc of u (or that u
dominates v), and that (u, v) is an in-arc of v (or that v is dominated by u). A
vertex v is incident with an arc a if a = (u, v) or a = (v, u) for some u ∈ V (D).
The vertices which dominate a vertex v are its in-neighbours and form the set
N−

D (v), the vertices which are dominated by v are its out-neighbours and form
the set N+

D (v). The in-degree deg−
D(v) and out-degree deg+D(v) of the vertex v

are the numbers |N−
D (v)| and |N+

D (v)|, respectively. The maximum in-degree
and out-degree of D are denoted by Δ−(D) and Δ+(D), respectively. If there
exists r ∈ N such that deg+D(v) = deg−

D(v) = r for each v ∈ V (D), then D is
r-regular (or simply, regular). We say that v is a source or a sink in a digraph
D if deg−

D(v) = 0 or deg+D(v) = 0, respectively. By the union of digraphs
D1 and D2 we mean a digraph with vertex set V (D1) ∪ V (D2) and arc set
A(D1) ∪ A(D2).

With any digraph D we can associate a unique graph G on the same
vertex set by replacing each arc by an edge with the same ends. This graph is
called the underlying graph of D and we denote it by G(D). A digraph D is
said to be connected if its underlying graph G(D) is connected. By a connected
component or a block of a digraph D we mean a subdigraph of D induced by
vertices of a connected component or a block, respectively, of its underlying
graph G(D).

One may also obtain a digraph from a graph G by replacing each edge
{u, v} by just one of two possible arcs with the same ends, i.e. by either the
arc (u, v) or the arc (v, u). Such a digraph is called an orientation of G. A
particular orientation of a graph is called an oriented graph. A directed path
or a directed cycle is an orientation of a path or cycle in which each vertex
dominates its successor in the sequence. An acyclic orientation of a graph is an
orientation which does not form any directed cycle and therefore makes it into
a directed acyclic graph. If an oriented graph D is acyclic, then there exists
an ordering v1, v2, . . . , vn of the vertices of D (called an acyclic ordering) such
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that for every arc (vi, vj) ∈ A(D) we have i < j (see e.g. Proposition 1.4.3 in
[5]). Every graph has an acyclic orientation.

In this paper we focus our attention on oriented graphs, i.e. digraphs
without directed cycles of length two.

The symbols Z and N stand for the set of integers and positive integers,
respectively. A proper edge colouring of a graph G is a mapping c : E(G) → Z

such that for every u ∈ V (G) and all v ∈ NG(u) the values c({u, v}) are
pairwise different.

Let A be a finite set of integers. If max A−min A−|A|+1 = 0, then the set
A is called an interval. A proper edge colouring of a graph such that the colours
of edges incident with each vertex form an interval is called consecutive, and a
graph for which there exists a consecutive colouring is said to be consecutively
colourable.

Definition 1. A proper arc colouring of an oriented graph D is a mapping
c : A(D) → Z such that

(i) for every u ∈ V (D) and all v ∈ N+
D (u) the values c((u, v)) are pairwise

different; and
(ii) for every u ∈ V (D) and all v ∈ N−

D (u) the values c((v, u)) are pairwise
different.

Definition 2. A proper arc colouring of an oriented graph such that for each
vertex the colours of all out-arcs incident with the vertex and the colours of
all in-arcs incident with the vertex form intervals is called consecutive, and
an oriented graph for which there exists a consecutive colouring is said to be
consecutively colourable.

Notice that a graph (an oriented graph) is consecutively colourable if and
only if each of its connected components is consecutively colourable.

3. Consecutive Colourability of Oriented Graphs Problem

We define the Consecutive Colourability of Oriented Graphs (CCOG) prob-
lem as a problem of determining whether a consecutive colouring exists for
a given oriented graph. At the beginning of this section we investigate the
computational complexity of this problem.

Construction 1. Let D be an oriented graph. By G∗(D) we mean a graph ob-
tained by

(i) the replacement of each vertex v ∈ V (D) with two vertices v+, v−; and
(ii) the joining of two vertices u+, v− by an edge in G∗(D) if and only if

there is an arc (u, v) in D.

Immediately from Construction 1, the following facts hold.
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Observation 1. If D is an oriented graph, then
(i) G∗(D) is a bipartite graph with bipartition (A,B) of V (G∗(D)), where

A = {v+ : v ∈ V (D)} and B = {v− : v ∈ V (D)};
(ii) there exists a bijection α : E(G∗(D)) → E(G(D)) such that α({u+, v−}) =

{u, v}; and
(iii) if a vertex v is a source (sink, respectively) in D, then degG∗(D)(v−) = 0

(degG∗(D)(v+) = 0, respectively).

Theorem 1. If D is an oriented graph, then D is consecutively colourable if
and only if G∗(D) is consecutively colourable.

Proof. Suppose that D is consecutively colourable and c1 is a consecutive
colouring of D. We define a consecutive colouring c2 of G∗(D) in the following
way: c2({u+, v−}) = c1((u, v)). Similarly, if G∗(D) is consecutively colourable
and c2 is a consecutive colouring of G∗(D), then we define a consecutive colour-
ing c1 of the oriented graph D putting c1((u, v)) = c2({u+, v−}). It is very
easy to see that in both cases c2, c1, respectively, are well defined consecutive
colourings. �
Corollary 1. If D is an oriented graph in which each vertex is either a sink or
a source, then D is consecutively colourable if and only if its underlying graph
G(D) is consecutively colourable.

Proof. If an oriented graph D satisfies the assumptions, then by Construction
1 and Observation 1(iii) there exists a subset X of the set V (G∗(D)) consisting
of the vertices of degree zero in G∗(D) such that G∗(D) − X is isomorphic to
G(D). Thus, G∗(D) is consecutively colourable if and only if G∗(D) − X is
consecutively colourable, and consequently, if and only if G(D) is consecutively
colourable. The application of Theorem 1 finishes the proof. �

Notice that if G is a bipartite graph with bipartition (A,B) of the vertex
set V (G), then we can define an oriented graph D as an orientation of G such
that (u, v) is an arc of D when u ∈ A and v ∈ B. Hence, for each bipartite
graph G there exists an orientation D of G in which every vertex is either a
sink or a source and the equality G(D) = G holds.

Theorem 2. The problem CCOG is NP-complete.

Proof. Obviously, CCOG is in NP. We shall observe that there is a polynomial
reduction from the problem of the consecutive colourability of bipartite graphs
(known to be NP-complete) to CCOG. Based on an instance G, we construct
an instance D for CCOG in which every vertex of D is either a source or a
sink, and such that G(D) = G. By Corollary 1, G is consecutively colourable
if and only if D is consecutively colourable. �

We know that CCOG problem is NP-complete but some of the instances
of this problem can be showed simply based on Theorem 1.
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A decycling set of a graph is a set of edges that must be removed from
this graph to destroy all its cycles. The cyclomatic number of a graph is the
minimum cardinality of its decycling set. It is known that this number for
a given graph G is equal to |E(G)| − |V (G)| + k, where k is the number of
connected components of G.

Proposition 1. Let D be an oriented graph. If k ∈ N and (v+
1 , v−

2 , . . . , v+2k−1,

v−
2k) is a cycle in G∗(D), then (v1, v2, . . . , v2k−1, v2k) is a closed trail in G(D),

and consequently the cyclomatic number of G∗(D) does not exceed the cyclo-
matic number of G(D).

Proof. Consider a bijection α given by Observation 1(ii). Notice that if a set
of edges induces a cycle in G∗(D), then the set of their images by α induces a
closed trail in G(D). Hence, if a set of edges of G(D) is a decycling set in this
graph, then the set of their inverse images by α is a decycling set in G∗(D).
Indeed, if it was not a truth, then after deleting these edges from the graph
G∗(D), we would have at least one cycle in the subgraph of G∗(D). Thus, we
would have at least one closed trail in G(D), and consequently, at last one cycle
in a graph G(D), which is a contradiction with the definition of the decycling
set. �

The next proposition is a consequence of facts that have been proved for
graphs and can be found e.g. in [22] (Chapter 8 with appropriate references). In
this book one can find results that all bipartite graphs with maximum degree
at most three (i.e. subcubic graphs) and all bipartite graphs with a cyclomatic
number at most eight are consecutively colourable. In the same survey one
can also find the result that all bipartite graphs with at most fourteen vertices
have consecutive colourings, and it was shown in [21] that all such graphs on
fifteen vertices are consecutively colourable.

Proposition 2. Let D be an oriented graph. If at least one of the following
conditions is satisfied, then D is consecutively colourable.

(i) Δ+(D) ≤ 3 and Δ−(D) ≤ 3;
(ii) the cyclomatic number of G(D) is at most 8;
(iii) 2|V (D)| − s(D) ≤ 15, where s(D) is the number of vertices in D that

are either a sink or a source;
(iv) |V (D)| ≤ 7; or
(v) there exists r ∈ N such that D is r-regular.

Proof. Notice that each of the conditions (i)–(v) implies the statement by
Theorem 1 provided that the graph G∗(D) is consecutively colourable.
(i) Since Δ+(D) ≤ 3 and Δ−(D) ≤ 3, we have Δ(G∗(D)) ≤ 3. Thus, the graph
G∗(D) is consecutively colourable, because all bipartite subcubic graphs are
consecutively colourable.
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(ii) If the cyclomatic number of G(D) is at most 8, then by Proposition 1 the
cyclomatic number of G∗(D) is at most 8. Thus, the graph G∗(D) is consecu-
tively colourable, since all bipartite graphs with such cyclomatic number are
consecutively colourable.
(iii) Notice that by Observation 1(iii) and Construction 1, there exists a subset
X of the set V (G∗(D)) consisting of the vertices of degree zero in G∗(D) such
that |X| = s(D) and G∗(D) − X is a bipartite graph. Moreover, |V (G∗(D) −
X)| = 2|V (D)| − s(D) ≤ 15. Since all bipartite graphs with at most fifteen
vertices are consecutively colourable, we obtain that G∗(D)−X is consecutively
colourable, and consequently, G∗(D) is consecutively colourable.
(iv) It follows immediately from (iii).
(v) Since we have the same out-degrees and in-degrees in the oriented graph D,
Construction 1 implies that G∗(D) is a bipartite r-regular graph. It is known
from König’s Theorem that the chromatic index (the minimum number of
colours in a proper edge colouring) and the maximum degree of each bipartite
graph are equal. Thus, there exists a proper edge colouring of G∗(D) with r
colours that must be consecutive. �

Notice that Proposition 2 (v) concerns e.g. well known circulant oriented
graphs. Moreover, from the proof of this proposition we have something more.

Observation 2. For every r-regular oriented graph there exists a consecutive
colouring with r colours.

By an identification of two nonadjacent vertices v1 and v2 in a graph G
(an oriented graph D, respectively) into a vertex w, we mean the result of the
following operations on G (on D, respectively): the removal of vertices v1, v2,
the addition of a new vertex w and the addition of the edges {w, v} for all
v ∈ NG(v1) ∪ NG(v2) (the arcs (w, v) for all v ∈ N+

D (v1) ∪ N+
D (v2) and (v, w)

for all v ∈ N−
D (v1) ∪ N−

D (v2), respectively).
It is known that when two vertices of a graph are contained in different

connected components of this graph, then the identification of these vertices
in the graph preserves the consecutive colourability. For oriented graphs the
analogous statement will be true if some additional conditions are satisfied.

Theorem 3. Let D1, D2 be disjoint oriented graphs, v1 ∈ V (D1), v2 ∈ V (D2),
and let D be an oriented graph obtained by an identification of v1 and v2
in D1 ∪ D2. If both D1, D2 are consecutively colourable and for at least one
i ∈ {1, 2} the vertices v+

i , v−
i are contained in different connected components

of G∗(Di), then D is consecutively colourable.

Proof. Without loss of generality we can assume that the vertices v+
2 , v−

2 are
contained in different connected components of G∗(D2).

Denote by G′ and G′′ the connected component of G∗(D2) that con-
tains v+

2 and the union of all remaining connected components of G∗(D2),
respectively. Construction 1 implies that G∗(D) is obtained as a result of two
subsequent identifications:
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– the vertices v+
1 and v+

2 in the union of G∗(D1) and G′, and next
– the vertices v−

1 and v−
2 in the union of the result of the first identification

and G′′.
Note that graphs used in both identifications are disjoint. Since D1, D2

are consecutively colourable, the graphs G∗(D1), G∗(D2) are also consecu-
tively colourable, by Theorem 1. Thus, connected components of G∗(D2) and
all their possible unions are consecutively colourable. The proof follows by
the preservation of the consecutive colourability of graphs with respect to
the identification operation applied to disjoint graphs. �

Corollary 2. If D1, D2 are disjoint consecutively colourable oriented graphs,
v1 ∈ V (D1), v2 ∈ V (D2) and G(D2) is a forest, then the oriented graph
obtained by the identification of v1 and v2 in D1∪D2 is consecutively colourable.

Proof. Clearly, when G(D2) is a forest, then the vertices v+
2 and v−

2 are con-
tained in different connected components of G∗(D2). Theorem 3 implies the as-
sertion. �

If G is a fixed graph, and c : E(G) → Z is a proper edge colouring of G,
then we denote by S(v, c) the set of colours of the edges incident with a vertex
v ∈ V (G) in the colouring c.

If D is a fixed oriented graph, and c : A(D) → Z is a proper arc colouring
of D, then we denote by S+(v, c) and S−(v, c) the set of colours of the out-arcs
and in-arcs, respectively, incident with a vertex v ∈ V (D) in the colouring c. If
D′ is a subdigraph of D, then we denote by S+(v, c)|D′ and S−(v, c)|D′ the set
of colours of the out-arcs in D′ and in-arcs in D′, respectively, incident with a
vertex v ∈ V (D) in the colouring c.

Theorem 4. If each block of an oriented graph D is regular, then D is consec-
utively colourable.

Proof. Let t be the number of blocks of D. We will show that D is consecutively
colourable using the induction on t. More precisely, we will show a little bit
more proving that there exists a consecutive colouring c of D such that for
every block D′ of D and every vertex v ∈ V (D) both sets of colours S+(v, c)|D′

and S−(v, c)|D′ are the same and are intervals.
Suppose that t = 1. In this case D is a regular oriented graph and satisfies

the assertion by Observation 2. Let us assume that D has t, t ≥ 2, blocks.
Next, let D1 be a block of D whose all, except one, vertices belong to exactly
one block (so-called end block) and let v be this exceptional vertex of D1

belonging to more than one blocks. Let D2 = D[(V (D) \ V (D1)) ∪ {v}]. For
i = 1, 2, in Di we rename v to vi. Notice that D can be obtained from two
oriented graphs D1 and D2 by an identification of vertices v1 ∈ V (D1) and
v2 ∈ V (D2) into a vertex v in D1 ∪ D2. By the induction hypothesis there
exist a consecutive colouring c1 of the oriented graph D1 such that the sets
of colours S+(v1, c1) and S−(v1, c1) are the same, and a consecutive colouring
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c2 of the oriented graph D2 such that the sets of colours S+(v2, c2)|D′′ and
S−(v2, c2)|D′′ are the same for every block D′′ of D2. Now, we rename colours
of the consecutive colouring c1 (if it is necessary) such that the colours in
S+(v1, c1) and S+(v2, c2) are pairwise different and create an interval. We
finish the inductive proof taking a colouring c of D such that c(e) = c1(e)
if e ∈ E(D1) and c(e) = c2(e) if e ∈ E(D2). Of course, c is the consecutive
colouring of the oriented graph D. �

4. Consecutive Colourability of an Oriented Graph and Its
Underlying Graph

Notice that Corollary 1 leads to the conclusion that problems of the consecutive
colourability of a graph and its underlying graph can be equivalent.

In this section we show that such relation is not always true. There are
oriented graphs that are consecutively colourable whose underlying graphs
are not consecutively colourable. There are also oriented graphs that are not
consecutively colourable whose underlying graphs are consecutively colourable.

Observation 3. Every orientation of a cycle Cn, n ≥ 3, is consecutively colou-
rable.

Proof. It is enough to notice that the cyclomatic number of G(D) equals one
for any orientation D of Cn and apply Proposition 2(ii). �

It should be mentioned here that an orientation of Kn is known in the lit-
erature as a tournament, and a tournament is transitive if it is acyclic.

Theorem 5. Every transitive tournament is consecutively colourable.

Proof. Let D be a transitive tournament and let v1, v2, . . . , vn be an acyclic
ordering of vertices of D. To notice that D is consecutively colourable it is
enough to define a proper arc colouring c such that c((vi, vj)) = j − i. Indeed,

S+(v1, c) = {1, . . . , n − 1}, S−(v1, c) = ∅,

S+(vi, c) = {1, . . . , n − i}, S−(vi, c) = {1, . . . , i − 1}, for 2 ≤ i ≤ n − 1,

S+(vn, c) = ∅, S−(vn, c) = {1, . . . , n − 1},

which confirms that c is a consecutive colouring of D. �

Recall that for every odd n ∈ N, a complete graph Kn and a cycle Cn

are not consecutively colourable [15]. However, Theorem 5 and Observation 3
immediately imply that there exist orientations of Kn and Cn that are con-
secutively colourable. Moreover, by Proposition 2(iv), if n ≤ 7, then every
orientation of Kn is consecutively colourable.

In the next part of this section we construct an infinite family of ori-
ented graphs that are not consecutively colourable whose underlying graphs
are consecutively colourable. Since the presentation of this family is a little bit
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a2,s2−1

a2,1 = a2

Figure 1. The graph Sl,s

complicated, first we show the most notable element of this family in Exam-
ple 1.

To present Example 1 and its generalization, we recall the definition of
the generalized Sevastjanov rosette (for details see [7]).

Definition 3. ([7], Definition 3) Let li, si ∈ N for i ∈ {1, 2, 3}, and let all si
be even, l = (l1, l2, l3) and s = (s1, s2, s3). The graph denoted by Sl,s and
presented in Fig. 1 is called the generalized Sevastjanov rosette.

Note that si is the length of the path opposite to yi that joins yj and
yk, where i, j, k ∈ {1, 2, 3} and i, j, k are different indices. In what follows
we consider an induced subgraph Hi of the graph G = Sl,s, where Hi =
G [NG[yi] ∪ {x}], i ∈ {1, 2, 3}.

In [14], it was shown that if s = (2, 2, 2) and l = (l, l, l), where l ≥ 7, then
the generalized Sevastjanov rosette Sl,s is not consecutively colourable.

Example 1. Figures 2 and 3 show an oriented graph D and a consecutive
colouring of its underlying graph G(D). Notice that D is not consecutively
colourable since one of the connected components of the graph G∗(D) is iso-
morphic to the generalized Sevastjanov rosette Sl,s, where l = (7, 7, 7) and
s = (2, 2, 2) (see Fig. 4).

To show the generalization of Example 1 we recall some definitions and
two useful theorems [7].

Let N denote the class of all consecutively colourable graphs. Among
graphs which do not have any consecutive colouring we emphasize these ones
that lack little to be consecutive colourable. Referring to this purpose the fol-
lowing two classes of graphs are defined and investigated in [6,7].
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Figure 2. An oriented graph D which is not consecutively
colourable
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Figure 3. The underlying graph G(D) which is consecutively
colourable
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Figure 4. The graph G∗(D) which is not consecutively
colourable

N≤ = {G : each induced subgraph H of G satisfies H ∈ N} ,

C(N≤) = {G /∈N≤ : each proper induced subgraph H of G satisfies H ∈N≤}.

Graphs in N≤ are called perfect consecutively colourable, and graphs in
C(N≤) are forbidden graphs for the class of perfect consecutively colourable
graphs.

Notice that if G belongs to N≤, then G has to be bipartite. Indeed, if it
was not a truth, then an odd cycle would be an induced subgraph of G, which
is impossible since every odd cycle is not consecutively colourable. Thus, G
is bipartite and consecutively colourable. Moreover, it is observed in [6] that
the only non-bipartite graphs in C(N≤) are odd cycles.

Theorem 6. ([7], Theorem 4) If li, si ∈ N for i ∈ {1, 2, 3}, and all si are even,
l = (l1, l2, l3) and s = (s1, s2, s3), then

Sl,s ∈ C(N≤)

if and only if li = si + 5 for every i ∈ {1, 2, 3}.
Theorem 7. ([7], Theorem 1) Let l ∈ N, i, j, a ∈ Z, i < j. Let G be the graph
presented in Fig. 5. If c′ is a precolouring of G such that c′({x, vk}) = a+k for
1 ≤ k ≤ l, c′({y, z1}) = i and c′({y, z2}) = j, then there exists a consecutive
colouring c of G that is an extension of c′ if and only if one of the following
conditions is satisfied.
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x

v1 v2 vl

y

z1 z2

Figure 5. The graph G

(i) i, j ∈ {a, . . . , a + l + 1} and j − i is an odd integer;
(ii) i = a − 1 and j ∈ {a, . . . , a + l}, and j − i, l have different parity;
(iii) i ∈ {a + 1, . . . , a + l + 1} and j = a + l + 2, and j − i, l have different

parity;
(iv) i = a − 2 and j = a − 1; or
(v) i = a + l + 2 and j = a + l + 3.

Now, we are ready to construct an infinite family of oriented graphs that
are not consecutively colourable and whose underlying graphs are consecutively
colourable.

Theorem 8. Let si ∈ N be even and li = si +5 for i ∈ {1, 2, 3}, s = (s1, s2, s3),
l = (l1, l2, l3). Let z be any of the vertices a2,i of Sl,s, where i is an odd integer
in the set {1, . . . , s2−1}. If ˜S is a graph obtained from Sl,s by the identification
of vertices z and x in Sl,s, then there exists an orientation of the graph ˜S that
is not consecutively colourable, while ˜S is consecutively colourable.

Proof. Figure 6 shows simultaneously the orientation D of ˜S that satisfies
the statement of the theorem and a precolouring of the graph ˜S. The existence
of the consecutive colouring c of ˜S follows directly by application of Theorem 7
to the induced subgraphs H1,H2,H3 of the graph G(D). More precisely, we
apply Theorem 7(i) to the induced subgraph H1 of the graph G(D) (j =
l1 + l2 + l3 +2, i = l1 + l2 +2, and j − i = l3 = s3 +5 is odd), Theorem 7(ii) to
the induced subgraph H2 (j = l1 + l2 +1, i = l1, and j − i = l2 +1 and l2 have
different parity), and Theorem 7(i) to the induced subgraph H3 (j = l1 + 1,
i = 1, and j − i = l1 = s1 + 5 is odd). Moreover, we colour alternately, using
appropriate colours, two even paths joining y1 with y2 and y2 with y3, and two
odd paths joining y1 with x and y3 with x in the graph ˜S (see Fig. 6).

The oriented graph D is not consecutively colourable since one of the con-
nected components of G∗(D) is isomorphic to the generalized Sevastjanov
rosette S(s1+5,s2+5,s3+5),(s1,s2,s3) which is not consecutively colourable by The-
orem 6. �
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Figure 6. An oriented graph D that is not consecutively
colourable whose underlying graph G(D) is consecutively
colourable

5. Consecutive Colouring Conjecture

Investigations given in the previous sections provoke us to state the following
conjecture.

Conjecture 1. For each graph G there exists an orientation of G that is con-
secutively colourable.

In this section we show that Conjecture 1 holds for some classes of graphs,
and we compare it with another question posed by Maria Axenovich.

A graph G is 2-degenerate if every subgraph of G has a vertex of degree
at most 2. Recall that for each 2-degenerate graph G there is an ordering
v1, . . . , vn of vertices of G such that for every 1 ≤ i ≤ n, the vertex vi has at
most two neighbours in the set {v1, . . . , vi−1} [23].
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We also know that there are 2-degenerate graphs that are not consecu-
tively colourable (see e.g. [8]) but, in the forthcoming theorem, we show that
Conjecture 1 holds for this class of graphs.

Theorem 9. For each 2-degenerate graph G there is an orientation of G that
is consecutively colourable.

Proof. Note that the theorem holds when |V (G)| = 1. Hence, in the next part
of the proof we assume n = |V (G)| ≥ 2. Let v1, . . . , vn be an ordering of
vertices of G such that for each 1 ≤ i ≤ n, the vertex vi has at most two
neighbours in the set {v1, . . . , vi−1}, and let Gi = G[{v1, . . . , vi}]. We define
an orientation of edges of G, step by step, extending the orientation of Gi−1

to the orientation of Gi for 2 ≤ i ≤ n.
We choose freely one of at most two possible orientations of G2 (either

G2 = K2 or G2 = K2). Next, for 3 ≤ i ≤ n, in the i-th step, we orient edges
incident with vi whose second ends are in {v1, . . . , vi−1}. When there is at most
one such edge, then we orient it arbitrarily. When there are two such edges
and x, y are neighbours of vi in {v1, . . . , vi−1}, then we construct either two
arcs (vi, x) and (y, vi) or two arcs (vi, y) and (x, vi). Denote by D the oriented
graph obtained after the n-th step (D is the special orientation of G). We shall
observe that G∗(D) is a forest. Since each forest is consecutively colourable,
the proof will be completed by Theorem 1.

Let Di = D[{v1, . . . , vi}]. We prove that G∗(D) is a forest by showing
that G∗(Di) is a forest for each 2 ≤ i ≤ n. In the case i = 2 the graph G∗(Di)
has at most one edge, which obviously confirms the statement. Suppose that
the statement holds for each i that is less than n, i.e. G∗(Di) is a forest
for i < n. Note that G∗(Di+1) is obtained from G∗(Di) by adding two new
vertices v+

i+1, v
−
i+1 and at most two new edges, {v+

i+1, v
−
s }, {v−

i+1, v
+
t }, where

vs, vt are two different vertices in {v1, . . . , vi}. Thus G∗(Di+1) is a forest and
next G∗(Dj) is a forest for all i + 2 ≤ j ≤ n, especially for j = n. It completes
the proof. �

The next theorem leads to the reformulation of Conjecture 1 for some
cases.

Proposition 3. Let G be a bipartite graph with bipartition (A,B), let D be any
orientation of G, and

E1 = {{u, v} ∈ E(G) : (u, v) ∈ A(D), u ∈ A, v ∈ B} ,
E2 = {{u, v} ∈ E(G) : (u, v) ∈ A(D), u ∈ B, v ∈ A} .

Then D is consecutively colourable if and only if both graphs G[E1] and G[E2]
are consecutively colourable.

Proof. Let G1 = G[E1], G2 = G[E2]. Thus, by Construction 1, G∗(D) =
G1∪G2∪rK1, where r = 2|V (G)|−(|V (G1)|+|V (G2)|). Hence, D is consecutive
colourable if and only if G∗(D) is consecutively colourable (by Theorem 1) if
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and only if each component of G∗(D), so also G1 and G2, is consecutively
colourable. �

In light of Proposition 3, Conjecture 1 for bipartite graphs can be rewrit-
ten in the following way.

For each bipartite graph there exists a partition of its edges into two parts
so that both graphs induced by partition parts are consecutively colourable.

We do not know whether or not there exists a similar reformulation of
Conjecture 1 for non-bipartite graphs. On the other hand, we realized that
in 2013 Maria Axenovich (during a conference discussion) also asked about
the existence of such partition for an arbitrary graph (not necessarily bipar-
tite). We do not know the relationship between Conjecture 1 and the question
posed by Maria Axenovich in the case of non-bipartite graphs. However, for
bipartite graphs, we can conclude some facts.

The arboricity of a graph G is the minimum number of parts into which
the set E(G) can be partitioned in such a way that a graph induced in G by
each part is a forest. Since each forest is consecutively colourable and the ar-
boricity of each planar bipartite graph is not greater than two (see e.g. [25]),
we have the following two results.

Corollary 3. For each bipartite graph G whose arboricity is at most two there
exists an orientation of G that is consecutively colourable.

Corollary 4. For each planar bipartite graph G there exists an orientation of
G that is consecutively colourable.

As a corollary from the next theorem, we will obtain similar result for
all planar graphs with girth at least 8. Recall that the girth of a graph G is
the minimum length of a cycle contained in G.

Theorem 10. If the set of edges of a graph G can be partitioned into two sets
E1, E2 so that the subgraph G[E1] is bipartite and consecutively colourable and
E2 is a matching of G, then there exists an orientation of G that is consecu-
tively colourable.

Proof. Let G1 = G[E1]. Since G1 is a bipartite graph, there exists an orienta-
tion D1 of G1 such that every vertex is either a sink or a source in D1. Now,
we define an orientation of the edges in E2. Let e = {u, v} ∈ E2. If u and v are
either both sinks or both sources in D1 or at least one vertex of u and v is not
a vertex of D1, then we orient the edge e arbitrarily. If one vertex of u and v is
a sink in D1 and the other one is a source in D1, then we construct an arc (u, v)
when u is a sink, and an arc (v, u) otherwise. Denote by D2 and D the oriented
graph induced by the oriented edges from E2 and E(G), respectively.

Notice that the fact that the graph G1 is consecutively colourable im-
plies that D1 is consecutively colourable by Corollary 1, and consequently
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by Theorem 1, we have that G∗(D1) is also consecutively colourable. More-
over, Construction 1 implies that G∗(D) = G∗(D1)∪G∗(D2). Notice also that
G∗(D1) and G∗(D2) can have isolated vertices and their edges can be incident
in the graph G∗(D). Let k be the number of edges of G∗(D2) each of which is
not incident with any edge of G∗(D1). Clearly, k ≤ |E2|. Observe that G∗(D) is
a union of k graphs K2, a graph H obtained from G∗(D1) by the attachment
of |E2| − k pendant edges, and some number of graphs K1. Since the iden-
tification of vertices contained in different connected components of a con-
secutively colourable graph preserves the consecutive colourability, we have
that the sequential attachment of pendant edges to a consecutively colourable
graph preserves the consecutive colourability. Hence, the graph H is consec-
utively colourable, and consequently also G∗(D) is consecutively colourable,
and by Theorem 1, D is consecutively colourable. If G had isolated vertices,
then its orientation that is the union of D and some number of graphs K1

would be also consecutively colourable. �

In [26], it was proved that edges of every planar graph G with girth at least
8 can be partitioned into two sets E1, E2 so that the graph G[E1] is a forest
and E2 is a matching of G. Since every forest is bipartite and consecutively
colourable, Theorem 10 implies the following result.

Corollary 5. For each planar graph G with girth at least 8 there exists an ori-
entation of G that is consecutively colourable.

Now, we come back to graphs in N≤ or C(N≤) showing that all of them
confirm Conjecture 1.

Observation 4. If G ∈ N≤, then there exists an orientation of G that is con-
secutively colourable.

Proof. Recall that if G belongs to N≤, then G is a bipartite and consecutively
colourable graph. Since for each bipartite graph G there exits an orientation
D of G in which every vertex is either a sink or a source and G(D) = G,
the proof follows by Corollary 1. �

Lemma 1. Let D be an oriented graph such that G(D) is a bipartite graph with
bipartition (A,B) and G(D) ∈ C(N≤).

(i) If each vertex of D is either a sink or a source, then D is not consecutively
colourable.

(ii) If D is an oriented graph obtained from an oriented graph in which each
vertex is either a sink or a source by changing the orientation of every
arc incident with at least one, but not all, fixed vertices from A, then D
is consecutively colourable.

Proof. (i) Since G(D) ∈ C(N≤), we have that G(D) is not consecutively colo-
urable, and the result follows by Corollary 1.
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To prove (ii) let D′ be an oriented graph in which every vertex is either
a sink or a source such that D is an oriented graph obtained from D′ by chang-
ing the orientation of every arc incident with each vertex in V1, where V1 is
a proper non-empty subset of A. Notice that V (D) = V (D′) = V (G(D)). Let
E1 = {e ∈ E(G(D)) : e is incident with v,where v ∈ V1}, E2 = E(G(D)) \ E1,
and let Bi = {v ∈ B : v is incident with e,where e ∈ Ei} for i ∈ {1, 2}.
Notice that B1 and B2 are some non-empty subsets of B. Clearly, G(D)[E1]
and G(D)[E2] are subgraphs of G(D) induced by vertex sets V1 ∪ B1 and
(A \ V1) ∪ B2, respectively. Thus, by the definition of C(N≤), the graphs
G(D)[E1] and G(D)[E2] are consecutively colourable, and the statement fol-
lows by Proposition 3. �

Theorem 11. If G ∈ C(N≤), then there exists an orientation of G that is
consecutively colourable.

Proof. Recall that only non-bipartite graphs in C(N≤) are odd cycles. Obser-
vation 3 implies the required orientation in this case. In the case of bipartite
graphs in C(N≤) we can apply Lemma 1(ii). �

6. Concluding Remarks

In this work, we pose the conjecture of the existence of consecutively colourable
orientation of any graph. It is worth noting that this conjecture was supported
by partial results. In particular, we showed its validity for all bipartite consec-
utively colourable graphs, perfect consecutively colourable graphs, forbidden
graphs for perfect consecutively colourable graphs, 2-degenerate graphs and
complete graphs. In addition, we proved the validity of the conjecture for all
bipartite graphs having decomposition of the edge set into two subsets that
induce forests, and for all graphs having decomposition of the edge set into two
subsets such that one of them is a matching and the second one induces a con-
secutively colourable bipartite graph. In particular, it confirms the conjecture
for all planar bipartite graphs and all planar graphs with girth at least 8.
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