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Abstract. In the paper we consider the Hashimoto topologies on the inter-
val [0, 1] as well as on R, which are connected with the natural topology
on R and with some important and well known σ-ideals in P(R). We
study the families of continuous functions f : [0, 1] → R with respect to
the same Hashimoto topology H(I) (connected with the σ-ideal I) on
the domain and on the range of the considered functions. We show that
inside common parts and differences of some such families we can find
large (c-generated) free algebras. Some of constructed algebras appear
dense in the algebra of the functions which are continuous in the usual
sense.
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1. Introduction

W. Sierpiński [20], K. Kuratowski [18] and other authors studied the possibility
of defining a topological space in terms of the set of limit points. This idea was
generalized by N. F. G. Martin [19] and H. Hashimoto [14]. They disscussed
so called later Hashimoto type topologies (� topologies) which were defined
with the use of ideals [14] or filters [19]. Some improvements of the known
results and applications of this notion were presented in 1990 by D. Janković
and T. R. Hamlett [16].

Let us recall the definition of the Hashimoto topology. Let (X, T ) be a T1

topological space, I be an ideal of subsets of X which contains all singletons
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and I ∩ T = {∅}. The family H = {U \ I : U ∈ T ∧ I ∈ I} is a base of a
topology. If we additionally assume that (X, T ) is second-countable topological
space and I is a σ-ideal, then H is a topology, called the Hashimoto topology.
The spaces (X, T ) and (X,H) are not homeomorphic. (X,H) is not regular, it
does not satisfy the first countability axiom, any compact set in this topology
is finite and the families of connected subsets in (X, T ) and in (X,H) coincide
(for details of proofs see [19] and [14]) .

In our paper we will consider the Hashimoto topologies defined for the
natural topology Tnat and some σ-ideal I. We denote it by H(I) to emphasize
the dependence on the ideal:

H(I) = {A ⊂ R : A = U \ I, where U ∈ Tnat ∧ I ∈ I}.

Obviously, for any σ-ideal I

Tnat ⊂ H(I). (1)

It is easy to observe that any closed set in this topology (H(I)-closed set) is
of the form F ∪ I, where F is closed in the natural topology and I ∈ I.

We will assume that a considered σ-ideal I has some additional proper-
ties: it is invariant with respect to dilatations and translations, which means
that if A ∈ I then aA ∈ I and A + a ∈ I for any a ∈ R. Such a σ-ideal will be
called admissible.

Let us take any admissible ideal I and consider continuous functions from
[0, 1] into R with the natural topology or the Hashimoto topology H(I) on the
domain and on the range. The family Cnat,H(I) of all continuous functions
f : ([0, 1], Tnat) → (R,H(I)) coincides with the family of all constant functions
(it follows from the fact that for continuous function f the image of any closed
interval is connected and compact in H(I), so it is a singleton). In [19] Martin
showed that under the assumption that (Y, TY ) is regular the families of con-
tinuous functions from (X,H) into (Y, TY ) and from (X, T ) into (Y, TY ) are
equal. Therefore, for any σ-ideal I the family CH(I),nat of all continuous func-
tions f : ([0, 1],H(I)) → (R, Tnat) coincides with the family of all continuous
functions C[0,1] with the natural topology on both: their domain and range (we
will call them shortly continuous).

2. H(I)-continuous Functions
We will focus on the continuous functions f : [0, 1] → R with the same Hashimoto
topology H(I) on the domain and on the range of the functions. Let us denote
the family of all such functions by CH(I) and call them H(I)-continuous. We
will examine these families for different admissible ideals. From the fact that
CH(I),nat = C[0,1] and (1) we obtain

CH(I) ⊂ C[0,1]. (2)
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It is obvious that for any admissible ideal I, any affine function f(x) = ax + b
for a, b ∈ R is H(I)-continuous.

Observation 1. Let (an)n∈N be a sequence such that 0 < . . . < an < . . . a1 <
a0 = 1. Assume that a continuous function f : [0, 1] → R is affine on each
interval [an, an−1], n ∈ N, (it will be called piece-wise affine). If f is constant
only on a finite number of intervals [an, an−1] then it is H(I)-continuous for
any admissible ideal I.

Observation 2. Assume that I is any adsmissible ideal, A ⊂ R. If there is a
limit point a0 of A such that a0 /∈ A and there is a sequence (An)n∈N of subsets
of A such that An /∈ I and An → a0 (i.e. sup{|x − a0| : x ∈ An} → 0), then
A is not H(I)-closed. In particular, if An are proper intervals then A is not
H(I)-closed for any admissible ideal I.

Indeed, if A is H(I)-closed then it is of the form A = B ∪ I, where B
is closed in the natural topology and I ∈ I. If a0 /∈ A, then a0 /∈ B and
dist(a0, B) > 0. So in the neighbourhood of a0 the set A\B contains a set not
belonging to I, which is impossible as A \ B ∈ I.

In the paper we will use the notion of interval set, so let us recall it.

Definition 3. An interval set converging to x0 from the right is the set given by

the formula A =
∞⋃

n=1
[an, bn], where x0 < . . . < bn+1 < an < bn < . . . < a1 <

b1, n ∈ N, and lim
n→∞ bn = x0. Analogously we define an interval set converging

to x0 from the left. Instead of closed intervals we can take the open ones.

Example 4. There exists a function F1 : [0, 1] → R which is continuous but not
H(I)-continuous for any admissible ideal I.

Let A =
⋃

n∈N
[an, bn] be an interval set converging to zero from the right.

Let us take any sequence (cn)n∈N strictly decreasing and converging to zero.
We define a continuous function F1 : [0, 1] → R by the formula:

F1(x) =

⎧
⎪⎨

⎪⎩

0 for x = 0
cn for x ∈ [an, bn], n ∈ N,

affine for x ∈ [bn+1, an], n ∈ N.

(3)

It is evident that F1 is continuous. On the other hand it is not H(I)-continuous.
Indeed, let us consider the set Y = {cn : n ∈ N}. It is a countable set so it is
closed in H(I), but by Observation 2 its preimage F−1

1 (Y ) =
⋃

n∈N
[an, bn] is

not closed.
By nonCH we will denote the family of all continuous functions which are

not H(I)-continuous for any admissible ideal I.

Theorem 5. There exists a function F ∈ nonCH such that for any a 	= 0 the
function Fa = F + a · id is H(I)-continuous for any admissible ideal I.



203 Page 4 of 18 A. Bartoszewicz et al. Results Math

Proof. To obtain F we slightly modify the function F1 from the previous ex-
ample. For a given interval set A =

⋃
(an, bn) converging to zero from the right

we choose the sequence (cn)n∈N in the following way:
1. c1 = 1
2. cn+1 < cn for n ∈ N,
3. all slopes of the straight lines on [bn+1, an] are different .

Let us consider the function Fa = F + a · id with a 	= 0. Then Fa may be
constant on at most one interval [bn+1, an]. So according to Observation 1 it
is H(I)-continuous.

From the above theorem we can easyly obtain the next corollary.

Corollary 6. No family CH(I) is closed under addition.

Proof. Let F be the function constructed in Theorem 5, put f(x) = x and
g(x) = F (x) − x. Then f and g are H(I)-continuous but their sum is not
H(I)-continuous.

In the paper [9] there is introduced the notion of linearly sensitive func-
tions. A function f is called linearly sensitive with respect to the property (P )
if f has the property (P ) and for any a 	= 0 the function f +a · id does not have
the property (P ). By S(P ) we will denote the family of all functions linearly
sensitive with the respect to the property (P ). Theorem 5 may be written in
the form: S(nonCH) 	= ∅.

Theorem 7. The set S(nonCH) is dense in C[0,1].

Proof. Let us consider C[0,1] with the metric supremum. Let us fix a function
f continuous on [0, 1] and ε ∈ (0, 1). From the uniform continuity of f it
follows that there exists δ > 0 such that |f(x) − f(z)| < ε for any x, z ∈ [0, 1]
for which |x − z| < δ. The unit interval [0, 1] is the union of finite number
of closed itervals In, n = 1, . . . , k, each of the length less than δ. Then the
length of each Jn = [minx∈In

f(x),maxx∈In
f(x)] is less than ε. Let us take

any point x0 from the interior of I1 and a number ε1 < ε such that S1 =
(x0 −ε1, x0 +ε1)× (f(x0)−ε1, f(x0)+ε1) ⊂ I1 ×J1. For the sequence (cn)n∈N

such that c1 < f(x0)+ε1, in the square S1 we construct a copy of the function
F from Theorem 5. In the intervals In, n ≥ 2, we approximate f with piece-
wise affine functions fn with different slopes and such that d(f, fn) < ε. Let

g(x) =

⎧
⎪⎨

⎪⎩

F (x) for x ∈ (x0 − ε1, x0 + ε1),
fn(x) for x ∈ In, n = 1, . . . , k,

affine for x ∈ I1 \ (x0 − ε1, x0 + ε1)

so that the obtained function g is continuous. From the construction we have
g ∈ S(nonCH). Moreover, d(f, g) < ε which means, that S(nonCH)) is dense
in C[0,1]. �
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3. H(I)-continuous Functions for Frequently used σ-ideals

For the first time the notion of an ideal was used in the XIXth century in the
algebra, namely in the ring theory. The family I of subsets of a commutative
ring P is called ideal if for any a, b belonging to I their difference a− b belongs
to I and for any a ∈ I and b ∈ P the product ab belongs to I. It was observed
that by identifying P with the set of so called principial ideals of the form
Ia = {ab : b ∈ P} we can treat the set of ideals in P as the extension of P.
The nonprincipal elements of such an extension were called the ideal elements,
shortly ideals. The set of ideals, principial or not, (with appropriate algebraic
operations) forms a new ring in some sense more regular then the original
one. If we consider a Boolean ring P(X), for some nonempty set X, with the
symmetric difference and intersection as the operations (or, what is equivalent,
a Boolean algebra P(X) with “∪” and “∩”), we observe that a family of sets
I is an ideal in P(X) if it is closed under finite unions and taking subsets.
Such properties should be owned by the families of sets, we want to call small.
Hence, the mathematicians have been using the notion of ideal (σ-ideal) of
sets in many fields whenever they want to say that a certain property holds
for almost all elements. What does it mean for almost all? Now we say for all
except the set belonging to some ideal (σ-ideal). The best known admissible
σ-ideals of subsets of R are: the σ-ideal of countable sets Iω, the σ-ideal N of
sets of the Lebesgue measure zero and the σ-ideal K of meager sets (the first
category sets). In this section we will examine the families CH(I) for each of
them.

It is worth noting that for any continuous function f and any admissible
ideal I

– if f−1(A) ∈ I for any A ∈ I then f ∈ CH(I),
– f 	∈ CH(I) if and only if there exists a set A ∈ I such that f−1(A) is not

closed in H(I).
In particular any continuous injection is H(Iω)-continuous. Moreover, it is
also H(K)-continuous. It can be derived from the fact that for such function
preimage of countable (nowhere dense) set is also countable (nowhere dense).

It follows from Observation 1 that
⋂

I CH(I) 	= ∅. In the next theorem
we present an unexpected result concerning the family CH(K).

Theorem 8. If f belongs to CH(I) for an admissible ideal I then f belongs to
CH(K). In other words

⋃
I CH(I) = CH(K).

Proof. We will show in the proof that if f /∈ CH(K) then f /∈ CH(I).
Firstly we will prove that if a continuous function f is not constant on any

interval, then it is H(K)-continuous. Let us assume contrary that f /∈ CH(K).
Then there exists H(K)-closed set whose preimage is not H(K)-closed. As f is
continuous, the preimage of any closed set is closed in the natural topology. So
there exists a set A ∈ K such that f−1(A) is of the second category. Hence we
have a nowhere dense set B ⊂ A for which f−1(B) is not nowhere dense. The
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closure B is nowhere dense and f−1(B) contains an interval J (as a closed set
of the second category). From continuity of f it follows that f(J) is connected
so it is either a singleton or an interval. It can not be an interval because
f(J) ⊂ B, so it is a singleton which gives a contradiction.

Let us fix an arbitrary continuous function f and denote by F the family
of all intervals In = [an, bn] such that f is constant on In. Let Y = {f(In) :
n ∈ N}. If Y is finite, then repeating the previous reasonning we obtain that
f ∈ CH(K). Indeed, if f /∈ CH(K) then there exist a nowhere dense set B disjoint
with Y and an interval J such that J ⊂ f−1(B). Then f(J) ⊂ B, so f(J) is a
singleton. Hence f(J) ∈ Y , a contradiction.

Let us assume now that Y is infinite. It is bounded so it contains a
sequence (yn)n∈N converging to some point y0. For any n ∈ N there is an
interval In ∈ F such that f(In) = yn. Intervals (In)n∈N are disjoint and their
left ends an form a sequence convergent to some x0. From continuity of f
it follows that f(x0) = y0. The set Y \ {y0} is closed but f−1(Y \ {y0}) is
not closed in H(I) so, by Observation 2, f is not H(I)-continuous for any
admissible ideal I. �

Even if the admissible ideals I1 and I2 are comparable, we can not com-
pare the families of continuous functions CH(I1) and CH(I2) (see Example 9
and Example 10). However, CH(I) ⊂ CH(I∩K) for any admissible ideal I. In-
deed, let us suppose that f ∈ CH(I) and fix a set A ∈ I ∩ K. Since f ∈ CH(I),
f−1 (A) ∈ I. By Theorem 7, f−1 (A) ∈ K.

Example 9. There exists a function F2 ∈ CH(Iω) \ CH(N ). Consequently, F2 ∈
CH(K) \ CH(N ).

Let C be the Cantor ternary set and let fc be the Cantor function. Let us
consider the function g(x) = fc(x)+x. Then g : [0, 1] → R is strictly increasing.
So the inverse function F2 = g−1 is also strictly increasing, hence it is H(Iω)-
continuous. We will show that it is not H(N )-continuous. Since λ(g(C)) = 1
(λ stands for the Lebesgue measure on the real line), the set g(C) contains a
nonmeasurable subset A. Take B ⊂ C such that g(B) = A. Then B is closed
(as a set from the ideal N ) and its preimage F−1

2 (B) = g(B) is not closed
because it is nonmeasurable. Hence F2 /∈ CH(N ).

Another example of a function with the desired properties is the strongly
singular function which will be used in Theorem 19.

Example 10. There exists a function F3 ∈ CH(N ) \ CH(Iω). Consequently, F3 ∈
CH(K) \ CH(Iω).

Let C be the Cantor ternary set and
⋃∞

n=1(an, bn) be its complement to
[0, 1]. Let f be the auxiliary function defined by the formula:

f(x) =

⎧
⎪⎨

⎪⎩

x − an for x ∈ (an, an+bn

2 ), n ∈ N,

−x + bn for x ∈ (an+bn

2 , bn), n ∈ N,

0 for x ∈ C.
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Y

Figure 1. Auxiliary function f from Example 10

Evidently f is continuous. It is also H(N )-continuous. Let us take any
set N ∈ N . Then its preimage is also of measure zero. Indeed, if 0 ∈ N then
f−1({0}) = C. The preimage of the set N \ {0} cuts only a denumerable
number of intervals (an, bn). On those intervals f is an affine function so the
set f−1(N \ {0}) has measure zero. Hence f−1(N) is of measure zero and
f ∈ CH(N ). From Theorem 8 we obtain f ∈ CH(K).

Let us take any interval set U =
⋃∞

n=1(un, vn) converging to zero from
the right and a sequence of positive terms (cn)n∈N decreasing to zero such
that cn − cn+1 > vn+1−un+1

6 for n ∈ N. On each level y = cn, we construct a
copy of the function f defined on the interval [un, vn]. On intervals (vn+1, un)
we have straight lines so that the obtained function F3 is continuous. Then
F−1
3 ({cn}) is a Cantor set. Denote it C(n). The function F3 is not H(Iω)-

continuous, because the preimage of the set Y = {cn : n ∈ N} ∈ Iω is equal to
F−1
3 (Y ) =

⋃
n C(n) and is not closed in H(Iω) (by Observation 2). We show

that F3 is H(N )-continuous anologously as in the case of auxiliary function f .
Let us observe that by slight modification in the definition of F3 we can

construct a function which is H(K)-continuous, but neither H(Iω)-continuous
nor H(N )-continuous.

Example 11. There exists a function F4 ∈ CH(K) \
(
CH(Iω) ∪ CH(N )

)
.

Proof. We construct the desired function F4 in the same way as in the Example
10, but we use the Cantor set Ĉ of positive measure instead of the Cantor
ternary set. It is sufficient to show that F4 ∈ CH(K) \ CH(N ).

Since f is not constant on any interval, then f ∈ CH(K) by the first part
of the proof of Theorem 8.

We prove that f /∈ CH(N ) in a similar way as it is done in the last part
of the previous proof. Let Y = {cn : n ∈ N}. Then F−1

4 ({cn}) = Ĉ(n) is a
Cantor set of positive measure included in the interval [un, vn], n ∈ N. Then
Y is H(N )-closed but by Observation 2 the set F−1

4 (Y ) =
⋃

n Ĉ(n) is not
H(N )-closed, so F4 /∈ CH(N ). �

The figure below presents all obtained results related to the mutual de-
pendencies between considered families.
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C[0,1]

nonCH (Ex.4)

CH(K) (Ex.11)

CH(Iω)

nonCH(N )

(Ex.9)

CH(N )

nonCH(Iω)

(Ex.10)

Obs.1

4. Algebrability

In the last few years the question whether the family of functions having some
special properties contains a large algebraic structure became important. This
problem is connected with so-called lineability and algebrability of sets in
function spaces. It is particularly interesting if the considered family is not
closed with respect to some algebraic operations.

This research began with the papers [1,2] (the wider survey one can
find in [3,12]). In algebrability one of the first results were connected with
the space of everywhere surjective functions [4] and the space of continuous
functions which are nowhere differentiable [11]. The authors have proved that
such function spaces contain the infinitely generated algebras. Let us take a
cardinal κ. We will say that a subset A of a commutative algebra is κ-algebrable
if A ∪ {0} contains a κ-generated algebra B, i.e. the minimal cardinality of a
set of generators of B is equal to κ. If κ = ω then we will shortly say that A is
algebrable. In [10] A. Bartoszewicz and S. G�la̧b introduced the notion of strong
algebrability which do not coincides with the algebrability. Following them, we
say that A is strongly κ-algebrable if A ∪ {0} contains a κ-generated algebra
B that is isomorphic with the free algebra. Denoting by X = {xα : α < κ} the
set of generators of the free algebra B, we obtain that the set of elements of
the form xk1

α1
xk2

α2
. . . xkn

αn
is linearly independent and all linear combinations of

such elements are in A ∪ {0}. A useful and not difficult criterion of strong c-
algebrability was presented by M. Balcerzak, A. Bartoszewicz and M. Filipczak
in [7]. Their technique, called the exponential-like functions method will be used
in this section. Many applications of this method can be found in [8].
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Definition 12. We say that a function f : R → R is exponential-like of rank

m if it is given by the formula f(x) =
m∑

i=1

aie
βix for some distinct nonzero

numbers β1, . . . , βm and some nonzero real numbers a1, . . . , am.

The following property of the exponential-like functions is very helpful
and we will apply it in a few proofs.

Property 13. [Lemma 8, [7]] For every positive integer m, any exponential-like
function f : R → R of rank m, and each c ∈ R, the preimage f−1 [{c}] has at
most m elements. Consequently, f is not constant in every subinterval of R.

It is evident that any exponential-like function f belongs to C∞ and f ′ is
an exponential-like function, too. So in the face of Property 13, f has a finite
number of extremes attained at points x1, . . .xk. Putting x0 = 0 and xk+1 = 1
we have that the restriction f |[xi,xi+1] is strictly monotone for any i = 0, . . . , k.

In this section we will use the nice criterion of the strong c-algebrability
formulated in the following theorem.

Theorem 14. [Proposition 7, [7]] Given a family F ⊂ R
[0,1], assume that there

exists a function F such that f ◦F ∈ F \{0} for every exponential-like function
f : R → R. Then F is strongly c-algebrable. More exactly, if H ⊂ R is a set
of cardinality c, linearly independent over the rationals Q, then exp ◦ (rF ),
r ∈ H, are free generators of an algebra contained in F ∪ {0}.

It is easy to see that in the above theorem instead of exponential-like
function we can use any algebra which is isomorphic with a free algebra of c
generators.

Theorem 15. Any exponential-like function belongs to CH(Jω) ∩ CH(N ).

Proof. By Property 13 for any denumerable set A its preimage f−1 (A) is also
denumerable, so f ∈ CH(Jω).

Let us fix a null set N and denote by x1, . . .xk the points at which f
attaines its extremes. It is sufficient to check that for any i = 0, . . . , k the set
f−1(N) ∩ (xi, xi+1) is of measure zero. Let us fix i ∈ {0, . . . , k} and denote by
([aj , bj ])j∈N a sequence of intervals such that

∞⋃

j=1

[aj , bj ] = (xi, xi+1) .

For any j, f |[aj ,bj ] is strictly monotone. Let us assume that it is increasing

and denote [cj , dj ] := f ([aj , bj ]). Let us consider
(
f |[aj ,bj ]

)−1. Since f ′ (x) > 0

for any x ∈ [aj , bj ], then
(
f |[aj ,bj ]

)−1 is defined and continuous on [cj , dj ]

and
(
f |[aj ,bj ]

)−1 : [cj , dj ] → [aj , bj ]. The function
(
f |[aj ,bj ]

)−1 has bounded
derivative, so it fulfills the Lipschitz condition. From that and the equality

λ
(
f−1 (N) ∩ [aj , bj ]

)
= λ

(
f−1 (N ∩ [cj , dj ])

)
= 0
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we have

λ
(
f−1 (N) ∩ (xi, xi+1)

)
≤

∞∑

j=1

λ
(
f−1 (N) ∩ [aj , bj ]

)
= 0.

Therefore, f ∈ CH(N ).

Corollary 16. The family CH(Jω) ∩ CH(N ) is strongly c-algebrable.

Directly from Theorem 14 and Example 4 it follows:

Theorem 17. The family nonCH = C[0,1] \
⋃

CH(I) is strongly c-algebrable.

Proof. Let F1 be the function described in Example 4 given by the formula (3),
and let f be arbitrary exponential-like function. Then f ◦F1 is constant on the
intervals [an, bn] and the set {(f ◦ F1) ([an, bn]) : n ∈ N} is infinite. Therefore,
by Observation 2, f ◦ F1 /∈

⋃
CH(I). �

Theorem 18. The family CH(N ) \ CH(Jω) is strongly c-algebrable.

Proof. Let us take the function F3 from Example 10. Then there exists a
denumerable set Y = {cn : n ∈ N} such that for any n ∈ N the set F−1

3 ({cn}) ∈
N \ Jω.

Let f be any exponential-like function. The set Z := f(Y ) is denumerable,
but (f ◦ F3)

−1 (Z) ⊃ F−1
3 (Y ) /∈ Jω and it is not H(Iω)-closed, so by Example

10, f ◦ F3 /∈ CH(Jω).
Both functions f and F3 are from the class CH(N ) so f ◦F ∈ CH(N ) which

completes the proof. �

Theorem 19. The family CH(K) \
(
CH(Iω) ∪ CH(N )

)
is strongly c-algebrable.

Proof. Let us consider the function F4 from Example 11. For any exponential-
like function f after repeating the reasoning from the previous proof we con-
clude that f ◦ F4 	∈ CH(Iω) and f ◦ F4 	∈ CH(N ). From Theorem 15 we have
f ∈ CH(K). Since F4 ∈ CH(K), then f ◦ F4 ∈ CH(K). �

Theorem 20. The family CH(Iω) \ CH(N ) is strongly c-algebrable.

Proof. A continuous function f is called strongly singular whenever f ′ = 0
almost everywhere and f is not constant in every interval. Strictly increasing
strongly singular functions are described in [21] where a good bibliography on
this topic is presented. A nice example of strictly increasing strongly singular
function from [0, 1] onto [0, 1] is also presented in [13, §31]. Such a function F
maps some null set A ⊂ [0, 1] onto a set of measure 1. Therefore, F /∈ CH(N )

and (as injection) it is a function belonging to the class CH(Iω).
Let f be an exponential-like function. Then f ◦ F ∈ CH(Iω) as a compo-

sition of two functions from CH(Iω).
Let us denote B := [0, 1]\f (A). Since F is a bijection, (F )−1 (B) = A′ is

a set of measure 1. Since B ∈ N and f is absolutely continuous function,
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f(B) ∈ N . From Theorem 15 it follows that f−1 (f(B)) ∈ N . From the
inclusion B ⊂ f−1 (f(B)) we have

A′ ⊂ (F )−1 (
f−1 (f(B))

)
.

Hence the set

(f ◦ F )−1 (f(B)) = F−1
(
f−1 (f(B))

)

is of full measure in [0, 1] and it is not closed. Therefore, it is not H(N )-closed,
which proves that f ◦ F /∈ CH(N ). �

One can ask, when algebras constructed in this section are dense in C[0,1].
The answer to this question is that the constructed algebra is dense, if and
only if the starting function F is one-to-one. Indeed, if F is one-to-one then
by similar argument as in Theorem 10 in [7] the algebra is dense. On the other
hand, when F is not one-to-one (i.e. it does not separate some points x and y)
then any function in the algebra (even in its closure) can not separate x and
y. Therefore, the algebra constructed in Theorem 19 is dense in C[0,1].

5. H(I)-continuity for some other Ideals

There are many admissible σ-ideals, for which we can consider the family of
H-continuous functions. In this section we present a few results connected with
H(I)-continuous functions with respect to the σ-ideal M of microscopic sets
and σ-ideal H0 of sets of Hausdorff dimension zero.

The notion of microscopic sets on R was introduced by J. Appell in [5],
but the wide survey of this topic can be found in [15].

Definition 21. A set A ⊂ R is microscopic if for each ε > 0 there exists a
sequence of intervals (In)n∈N such that A ⊂

⋃
n∈N

In and λ(In) ≤ εn for any
n ∈ N.

The family of microscopic sets forms a σ-ideal. Clearly

Iω ⊂ M ⊂ N .

Since the Cantor ternary set is not microscopic (see [6]), the second inclusion
is proper. A Cantor type set (a nowhere dense perfect set) which is microscopic
is constructed in [17]. It follows that the first inclusion is proper, too.

To introduce some necessary denotations and for the convenience of the
reader we recall the construction of a Cantor type set which is microsopic.

Example 22. [15]. There is a nowhere dense perfect set Cm which is micro-
scopic.

We shall define by induction the sequence of open intervals (Jn,i) with i =
1, . . . , 2n−1. Let J1,1 = (14 , 3

4 ). By K1,1 and K1,2 we denote the successive com-
ponents of [0, 1] \ J1,1. Evidently λ(K1,1) = λ(K1,2) = 1

221
. In the second step
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by J2,1, J2,2 we denote two open intervals concentric with K1,1 and K1,2 respec-
tively, such that λ(J2,1) = λ(J2,2) = λ(K1,1)−2 · 1

322
. By K2,1, K2,2, K2,3, K2,4

we denote the succesive components of the set [0, 1] \ (J1,1 ∪ J2,1 ∪ J2,2). Then
λ(K2,i) = 1

322
for i = 1, 2, 3, 4. In each k step we have the open, nonempty inter-

vals Jk,1, . . . , Jk,2p−1 concentric with the closed intervals Kk−1,1, . . . ,Kk−1,2k−1

respectively, such that λ(Jk,i) = λ(Kk−1,1) − 2 · 1

(k+1)2k for i = 1, . . . , 2k−1,

k ∈ N. Finally we put Cm =
⋂∞

k=1

⋃2k

i=1 Kk,i The obtained set is perfect,
nowhere dense and microscopic.

Lemma 23. Let I be an interval. Suppose that f : I → R is a strictly monotone
differentiable function and there exist positive numbers M and m such that for
any x ∈ I

0 < m < |f ′(x)| < M.

Then

A ∈ M ⇔ f(A) ∈ M
for any A ⊂ I.

Proof. For any x, y ∈ I

m|x − y| ≤ |f(x) − f(y)| ≤ M |x − y|. (4)

We can assume that M > 1 and m < 1. As f is a continuous bijection, f(J)
is an interval for any interval J ⊂ I, and

m · λ (J) ≤ λ (f (J)) ≤ M · λ (J)

Let us fix a microscopic set A ⊂ I and a positive number ε. Since A ∈ M, there
exists a sequence of intervals (In)n∈N

such that A ⊂
⋃

In and λ (In) ≤
(

ε
M

)n

for any n ∈ N. Therefore, for any n ∈ N

λ (f (In)) ≤ M · λ (In) ≤ M ·
( ε

M

)n

< εn.

Obviously

f (A) ⊂ f
(⋃

In

)
=

⋃
f (In) ,

so f(A) ∈ M. Using the left inequality in (4), we obtain the second implication.
�

It is clear that the σ-ideal M is invariant with respect to translations and
dilatations (see [15]). Therefore it is an admissible σ-ideal and we can consider
the family CH(M).

Theorem 24. The family
(
CH(N ) ∩ CH(Iω)

)
\ CH(M) is densely strongly

c-algebrable.
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Proof. We will start with finding a function F5 ∈
(
CH(N ) ∩ CH(Iω)

)
\ CH(M).

Firstly we define an auxiliary function f : [0, 1] → [0, 1] which belongs to the
difference CH(N ) \ CH(M).

Let us consider the Cantor ternary set C on x-axis, and the miscroscopic
set Cm constructed in Example 22 on y-axis. The construction of the Cantor
ternary set is well known, but we recall it shortly to enter some denotations. We
start from the unit interval [0, 1] and we denote the middle set of the lenth 1

3 by
E1,1. By L1,1 and L1,2 we denote the successive components of [0, 1] \ E1,1. In
each k step we have the open, nonempty intervals Ek,1, . . . , Ek,2k−1 concentric
with the closed intervals Lk−1,1, . . . , Lk−1,2k−1 respectively, such that λ(Ek,i) =

(13 )k for i = 1, . . . , 2p−1, k ∈ N. The ternary Cantor set C =
⋂∞

k=1

⋃2k

i=1 Lk,i is
perfect, nowhere dense and of measure zero.

Let us take the intervals Jp,i, i = 1, . . . , 2p−1, p ∈ N from Example 22 and
put: Ep,i = (ap,i, bp,i) and Jp,i = (cp,i, dp,i). In the first step for [a1,1, b1,1] =
[13 , 2

3 ] and [c1,1, d1,1] = [14 , 3
4 ] we construct piece-wise affine function f1 in the

following way: we put f1(0) = 0, f1(1) = 1, f1(a1,1) = c1,1, f1(b1,1) = d1,1

and f1 is affine on the intervals [0, a1,1] and [b1,1, 1]. Then f1 is continuous and
strictly increasing. In the second step we modify f1 in the intervals [0, a1,1] and
[b1,1, 1]. Let f2(x) = f1(x) on [a1,1, b1,1], f2(0) = 0, f2(1) = 1, f2(a2,1) = c2,1,
f2(b2,1) = d2,1, f2(a2,2) = c2,2, f2(b2,2) = d2,2 and affine on other intervals so
that f2 is continuous and strictly increasing. Proceeding in the same way we
obtain the uniformly convergent sequence fn of continuous strictly increasing
functions.

Let us put f = limn→∞ fn. Then f is continuous and strictly increasing,
so it is H(Iω)-continuous. Let us observe that f is also H(N )-continuous. Take
any set N of measure zero. We will show that f−1(N) has also the measure
zero. Consider N = (Cm ∩ N) ∪ (N \ Cm). Then f−1(Cm ∩ N) ⊂ C so it
has measure zero. The set N \ Cm is a subset of complement of Cm and is of
measure zero so its preimage under the affine function is also of measure zero.
Hence f−1(N) is a null set, so f ∈ CH(N ).

Next step is analogous to this presented in Theorem 10. Let us take an
interval set U =

⋃∞
n=1(un, vn) convergent to 0 from the right and a sequence

(cn)n∈N of positive numbers strictly decreasing to zero and such that cn −
cn+1 > vn+1 − un+1, n ∈ N. In the same way as in Theorem 10 we construct
a function F5. Let us consider the square Wn = [un, vn] × [un, vn]. Let C

(n)
m

denote the microscopic set contained in [un, vn] on y-axis, C(n) the Cantor set
on x-axis. On each level y = cn in Wn we build a copy of the function f , name
it gn. Then g−1

n (C(n)
m ) = C(n). Now we connect graphs of all gn, n ∈ N, with

affine functions to have a continuous function F5.
We shall prove that F5 ∈ CH(N ) \ CH(M). Firstly let us observe that

F5 /∈ CH(M). Consider the set Y = {C
(n)
m : n ∈ N}. It is H(M)-closed but its

preimage is not H(M)-closed because F−1
5 (Y ) =

⋃
n C(n), and the set

⋃
n C(n)
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0 1

1

X

Y

E1,1

J1,1

y = f1(x)

0 1

1

X

Y

E1,1E2,1 E2,2

J1,1

J2,1

J2,2

y = f2(x)

Figure 2. First two steps of constuction from Theorem 24

is not H(M)-closed. Anologously as in the case of auxiliary function f we show
that F5 is H(N )-continuous which completes the proof. �

To prove the strong c-algebrability of
(
CH(N ) ∩ CH(Iω)

)
\CH(M) we again

use the the exponential-like functions method and consider functions of the
form f ◦F5, where f is an exponential-like function. In Theorem 15 we showed
that any exponential-like function belongs to CH(N ) ∩CH(Iω). The function F5

belongs to CH(N ) ∩ CH(Iω) either, so f ◦ F5 ∈ CH(N ) ∩ CH(Iω). Repeating the
reasoning from the proof of Theorem 18, we obtain that f ◦ F5 /∈ CH(M).
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The density of the constructed algebra in C[0,1] follows from the fact that
the function F5 is one-to-one.

Directly from the last theorem it follows that

CH(N ) ∩ CH(Iω) ∩ CH(M) � CH(N ) ∩ CH(Iω)

Using Lemma 23 and repeating the second part of the proof of Theorem
15 we obtain that any exponential-like function belongs to CH(M). Therefore

Theorem 25. The family CH(N )∩CH(Iω)∩CH(M) is densely strongly c-algebrable.

Let us recall some information to introduce another σ-ideal connected
with the measure.

Definition 26. For any set A ⊂ R, δ ∈ (0,∞] and α ∈ (0,∞) we define the
outer measure

Hα
δ (A) = inf

{ ∑

n∈N

(diamAn)α : A ⊂
⋃

n∈N

An oraz diam(An) < δ
}

.

The α-dimensional Hausdorff measure of a set A is defined as Hα(A) =
lim
δ→0

Hα
δ (A). The Hausdorff dimension of A is a number

dimH(A) = inf{s ≥ 0: Hs(A) = 0}.

The family of sets of the Hausdorff dimension zero forms a σ-ideal denoted
by H0. The classical ternary Cantor set is a null set, but has positive Hausdorff
dimension. In [6] there is constructed a Cantor type set CH which has Hausdorff
dimension 0 and is not microscopic. Hence

Iω � M � H0 � N .

It is known that H0 is admissible, so we may consider H-continuity with
respect to it. By repeating the reasoning from the proof of Theorem 24 we
have

Example 27. There exists functions F6 ∈ CH(H0) \ CH(M) and F7 ∈(
CH(N ) ∩ CH(Iω)

)
\ CH(H0).

In the construction we use the same method as in Theorem 24: to have F6

we use the set CH on x-axis and the microscopic set Cm on y-axis. To obtain
F7 we put the Cantor ternary set C on x-axis and a Cantor-type set CH of
Hausdorff dimension 0 on y-axis.

We decided to show the full research on continuous functions in the
Hashimoto topologies generated with the most often used σ-ideals: of the
countable sets, of the Lebesgue measure zero sets and of the meager sets.
In the last section we only touched the problem for the microscopic sets and
sets of Hausdorff dimension zero. We think that similar considerations can be
promising also for some other σ-ideals: for the σ-ideal of sets with the Haus-
dorff α-dimensional measure zero for 0 < α ≤ 1 or the σ-ideals not directly
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related to the measure or category, for instance the σ-ideal of σ-porous sets or
the σ-ideal of the Marczewski s0-sets.

Funding Not applicable.

Declarations
Conflict of interest The authors declare that they have no conflict of interest.

Open Access. This article is licensed under a Creative Commons Attribution 4.0
International License, which permits use, sharing, adaptation, distribution and re-
production in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in
this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s
Creative Commons licence and your intended use is not permitted by statutory regu-
lation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References
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nonlinear sets in topological vector spaces. Bull. Amer. Math. Soc. 51(1), 71–
130 (2014)

[13] Billingsley, P.: Probability and Measure. Wiley and Sons, New York (1979)

[14] Hashimoto, H.: On the *topology and its application. Fund. Math. 91(1), 5–10,
(1976)
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