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Abstract. We prove that for each infinite subset C of N there exists a
sequence (xn) such that {n : xn > rn} = C and the achievement set
A(xn) is a Cantor set. Moreover, we show that it is possible to construct
a sequence (xn) such that the set {n : xn > rn} has asymptotic density
α for each α ∈ [0, 1) and A(xn) is a Cantorval.
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1. Preliminaries

Let N = {1, 2, 3, 4, . . .} and N0 = {0, 1, 2, 3, 4, . . .} denote the sets of positive
and non-negative integers, respectively.

An achievement set is a set of the form A(xn) = {∑∞
n=1 εnxn : (εn) ∈ {0,

1}N}
=

{∑
n∈A xn : A ⊂ N

}
, where

∑∞
n=1 xn is convergent series of positive

reals. We additionally assume that xn ≥ xn+1 for every n ∈ N.
The first paper where achievement set was considered is that of Kakeya,

see [12]. The author presented sufficient conditions for achievement set to be
interval or Cantor set in terms of series terms xn and the remainders rn =∑

k>n xk.

Theorem 1.1 (Kakeya).

(1) A(xn) is a closed interval if and only if xn ≤ rn for all n;
(2) A(xn) is homeomorphic to a Cantor set, if xn > rn for all n ∈ N.

The sequences (xn) which satisfy condition (1) are called interval-filling
and were deeply studied in [6–8]. The interval-filling sequences (xn) are also

http://crossmark.crossref.org/dialog/?doi=10.1007/s00025-021-01479-2&domain=pdf
http://orcid.org/0000-0003-3712-8289
http://orcid.org/0000-0002-6792-8634


181 Page 2 of 22 J. Marchwicki and P. Miska Results Math

known as slowly convergent, while the sequences satisfying condition (2) are
called quickly or fast convergent.

Softened condition (1) ’xn ≤ rn for all but finitely many n ∈ N’ is
equivalent to that A(xn) is a finite union of closed intervals. On the other
hand, if xn > rn for every n > N , then A(xn) = Σ + A((xn)n>N ) where
Σ = {∑N

n=1 εnxn : (εn) ∈ {0, 1}N}. Since Σ is finite and A((xn)n>N ) is a
Cantor set, then A(xn) as a finite union of Cantor sets is a Cantor set as well.

Kakeya claimed that for an absolutely convergent series with infinitely
many nonzero terms the set A(xn) is either a finite union of closed intervals or
a set homeomorphic to a Cantor set. Due to the Guthrie-Nymann characteri-
zation the achievement set is either a Cantor set or a finite union of intervals
or a Cantorval.

Theorem 1.2. For an absolutely convergent series
∑∞

n=1 xn with infinitely many
nonzero terms, the set A(xn) is one of the following: a finite sum of closed
intervals, homeomorphic to a Cantor set or a Cantorval, that is a set homeo-
morphic to A(yn) for y2n−1 = 3

4n and y2n = 2
4n for all n ∈ N.

It is known that a Cantorval is a nonempty compact set in R such that
it is the closure of its interior and both endpoints of any nontrivial connected
component are accumulation points of its trivial connected components. An-
other topological characterizations of Cantorvals can be found in [4,13]. The-
orem 1.2 was first stated in [11] but its correct proof was given in [14]. The set
A(yn) for y2n−1 = 3

4n and y2n = 2
4n for all n ∈ N is called the Guthrie-

Nymann Cantorval. A multigeometric sequence is a sequence of the form
(xn) = (a1, a2, . . . , am; q) = (a1q, a2q, . . . , amq, a1q

2, a2q
2, . . . , amq2, a1q

3, . . .),
where a1 ≥ a2 ≥ · · · ≥ am and a1q ≤ am which ensure that (xn) is non-
increasing. Using that notion, the Guthrie and Nymann’s Cantorval can be
viewed as A(3, 2; 1

4 ). The set Σ = A(a1, . . . , am) = {∑m
n=1 εnan : (εn) ∈ {0,

1}m} will be of special interest to us. Then A(a1, a2, . . . , am; q) = {∑∞
n=1 ynqn

: (yn) ∈ ΣN
}
. Multigeometric series were studied in [1,3,5].

To obtain Cantorval, both conditions xn ≤ rn and xn > rn must be
fulfilled, each for infinitely many n’s. However, there are known series which
fulfill both conditions but their achievement sets are Cantor sets. We ask if
there are subsets E of N such that the condition xn ≤ rn ⇔ n ∈ E implies
that A(xn) is a Cantorval. Similarly, are there infinite subsets E of N such
that the condition xn ≤ rn ⇔ n ∈ E implies that A(xn) is a Cantor set? In
the paper we present the negative answer for the first question (Theorem 2.1)
and partially negative for the second one in the third section.

We will base on the following theorem proved in [5], which gives a simple
sufficient condition for the achievement set to be a Cantorval.

Theorem 1.3. Let a1 ≥ a2 ≥ · · · ≥ am be positive integers. Assume that there
exist positive integers n0 and r such that Σ ⊃ {n0, n0 + 1, . . . , n0 + r}. If
q ≥ 1

r+1 , then A(a1, a2, . . . , am; q) has a nonempty interior. If q < am∑m
i=1 ai+am

,
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then A(a1, a2, . . . , am; q) is not a finite union of intervals. Consequently, if
1

r+1 ≤ q < am∑m
i=1 ai+am

, then A(a1, a2, . . . , am; q) is a Cantorval.

It is worth to mention that the negative answer for Kakeya’s conjecture
was obtained before Guthrie and Nymann’s paper. The first counterexam-
ple was given without proof by Weinstein and Shapiro in [16]. In [9] Fer-
ens constructed a purely atomic finite measure μ and proved that its range
is a Cantorval. The theories of achievement sets and purely atomic finite
measures coincide. Indeed, we may assume that μ is defined on N. Then
rng(μ) = {μ(A) : A ⊂ N} = A(xn), where the terms of our series are the
values of measure on singletons, that is xn = μ({n}) for all n ∈ N. Hence,
we may say that Ferens observed that A(7, 6, 5, 4, 3; 2

27 ) is a Cantorval. In
the paper we base on two simple properties of the achievement sets. First of
them is connected with the equality A(|xn|) = A(xn) +

∑∞
n=1 x−

n (recall that
x− = −min{x, 0} for each real number x), which allows us to consider only
the sequences with all terms positive. The second property is that for any ab-
solutely convergent series

∑∞
n=1 xn and any bijection σ : N → N the equality

A(xσ(n)) = A(xn) holds. This means that the achievement set is invariant to
any rearrangement of its terms and hence we may assume that the sequence
(xn) is non-increasing. It is also needed to introduce the Kakeya conditions.

The conditions in which we consider the inequalities between the terms
xn and the tails rn are also known as Kakeya or Kakeya-like conditions. In
[6,7] the authors considered a subset U(xn) ⊂ A(xn) of those points which are
obtained in a unique way. In other words, x ∈ U(xn) if and only if there exists a
unique set A or 0−1 sequence (εn) such that x =

∑∞
n∈A xn or x =

∑∞
n=1 εnxn,

respectively. Clearly, U(xn) ⊃ {0,
∑∞

n=1 xn}. The authors in [6,7] proved that
if an interval-filling sequence is a locker, that is xk ≤ rk+1 for all k, then U(xn)
contains only the endpoints 0 and

∑∞
n=1 xn.

On the other hand, if the pure Kakeya condition Theorem 1.1(2) holds,
then U(xn) = A(xn), which can be found in [15]. Let us consider the case of
U(xn) = A(xn). Then, the mapping

T : {0, 1}N 	 (εn) 
→
∞∑

n=1

εnxn ∈ A(xn).

is bijective. T is also continuous with respect to the product topology on {0, 1}N
and natural topology on R as the series

∑∞
n=1 xn is absolutely convergent. The

set {0, 1}N equipped with the product topology is homeomorphic to a Cantor
set . In particular, {0, 1}N is a compact topological space. This means that T
is a homeomorphism. Thus, if A(xn) = U(xn), then A(xn) is homeomorphic
to a Cantor set.

Although the condition Theorem 1.1(1) characterizes the case when A(xn)
is a finite union of closed intervals by Kakeya conditions, the implication in
Theorem 1.1(2) can not be reversed. The authors showed in [10] that even the
implication (xn) is fast convergent ⇒ U(xn) = A(xn) is far from reversal and
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constructed the sequence (xn) for which x2n−1 < r2n−1 for each n ∈ N and
U(xn) = A(xn). In the paper we improve their construction and show that the
fast convergence condition may be broken in any non-cofinite set of indices, see
Theorem 2.1. Note that by Theorem 1.1 (1) there are no such constructions
for any cofinite set. There are several more results connected with the Kakeya
conditions, in particular the three gaps lemmas, which can be found in [4].

From the Kakeya condition we see that if the series
∑∞

n=1 xn is ,,closer” to
satisfy the fast convergence condition, then its achievement set A(xn) is more
likely to be a Cantor set. It is natural to ask if the form of achievement set
A(xn) is somehow connected with the largeness of the set {n ∈ N : xn > rn}.
Probably the most common and popular function which describes the size of
subsets of N is asymptotic density. Let us recall the notions of lower and upper
asymptotic densities of subsets of N:

δ(F ) = lim inf
n→∞

|F ∩ {1, 2, . . . , n}|
n

(lower asymptotic density),

δ(F ) = lim sup
n→∞

|F ∩ {1, 2, . . . , n}|
n

(upper asymptotic density).

If δ(F ) = δ(F ), then we define asymptotic density of F as the common value
of lower and upper asymptotic density of F . The main purpose of the paper
is to show that it is not possible to characterize or even give necessary either
sufficient Kakeya-like condition for the form of A(xn) by using the asymptotic
density of the set {n ∈ N : xn > rn}. To avoid conflict of notations, in
the whole paper we denote the terms of the series as (xn), (yn) or (zn). The
sequences of tails for the series

∑∞
n=1 xn,

∑∞
n=1 yn and

∑∞
n=1 xn are donted by

(rn(x)), (rn(y)) and (rn(z)), respectively. However, if it is known what series
we consider, its sequence of tails will be denoted by (rn) for simplification of
notation.

2. Extreme Examples of Cantor Set as an Achievement Set

We will show that for each (arbitrarily large) not cofinite subset B of N one
can construct a convergent series

∑∞
n=1 xn with positive terms such that the

fast convergence condition with respect to this series fails exactly on B but
the set A(xn) is a Cantor set.

Theorem 2.1. Let C = {n1 < n2 < n3 < · · · } be an infinite subset of N. Then
there exists a non-increasing sequence (xn) of positive real numbers such that
the series

∑∞
n=1 xn is convergent, {n ∈ N : xn > rn} = C, {n ∈ N : xn <

rn} = Cc and A(xn) = U(xn). In particular, A(xn) is a Cantor set.

Proof. Put n−1 = n0 = 0 and for each k ∈ N0 define yk = 3−k · 2−nk−1
∏k

j=0

(nj+1 − nj)−1. Then, for k ∈ N0 and i ∈ {1, . . . , nk+1 − nk} we define xnk+i =
yk + 2−iyk+1. In other words, if nk < n ≤ nk+1, then xn = yk + 2nk−nyk+1.
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It is clear, that for each k ∈ N0 and i ∈ {1, . . . , nk+1 − nk − 1} we have
xnk+i > xnk+i+1. Let us check that for any k ∈ N we have xnk

> xnk+1:

xnk
= xnk−1+nk−nk−1 = yk−1 + 2nk−1−nkyk = 3−k+1 · 2−nk−2

k−1∏

j=0

(nj+1 − nj)−1

+ 3−k · 2−nk

k∏

j=0

(nj+1 − nj)−1 > 3−k · 2−nk−1

k∏

j=0

(nj+1 − nj)−1

+ 3−k−1 · 2−nk−1
k+1∏

j=0

(nj+1 − nj)−1 = yk + 2−1yk+1 = xnk+1.

We show that the series
∑∞

n=1 xn is convergent:

∞∑

n=1

xn =
∞∑

k=0

nk+1−nk∑

i=1

xnk+i =
∞∑

k=0

nk+1−nk∑

i=1

(yk + 2−iyk+1)

<

∞∑

k=0

[(nk+1 − nk)yk + yk+1]

<

∞∑

k=0

(3−k + 3−k−1) =
1 + 1

3

1 − 1
3

= 2.

If k ∈ N0 and i ∈ {1, . . . , nk+1 − nk − 1}, then

xnk+i = yk + 2−iyk+1 < yk + 2−i−1yk+1 + yk+1 + 2−1yk+2

= xnk+i+1 + xnk+1+1 < rnk+i.

Let us notice that for k ∈ N0 we have

2nk−1−nkyk > rnk+1 + yk+1. (1)

Indeed,

rnk+1 + yk+1

=
∞∑

l=k+1

nl+1−nl∑

i=1

(yl + 2−iyl+1) + yk+1 <

∞∑

l=k+1

[(nl+1 − nl)yl + yl+1] + yk+1

=
∞∑

l=k+1

(nl+1 − nl + 1)yl

=
∞∑

l=k+1

⎡

⎣(nl+1 − nl + 1) · 3−l · 2−nl−1

l∏

j=0

(nj+1 − nj)−1

⎤

⎦

= 3−k · 2−nk

∞∑

l=k+1

⎡

⎣
(

1 +
1

nl+1 − nl

)

· 3k−l · 2nk−nl−1

l−1∏

j=0

(nj+1 − nj)−1

⎤

⎦
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< 3−k · 2−nk

∞∑

l=k+1

⎡

⎣2 · 3k−l
k∏

j=0

(nj+1 − nj)−1

⎤

⎦

= 2nk−1−nk · 3−k · 2−nk−1

k∏

j=0

(nj+1 − nj)−1
∞∑

l=k+1

2 · 3k−l

= 2nk−1−nkyk ·
2
3

1 − 1
3

= 2nk−1−nkyk.

In particular,

xnk
= xnk−1+(nk−nk−1) = yk−1 + 2nk−1−nkyk > yk−1 + yk+1 + rnk+1

= 3 · 2nk−1−nk−2(nk+1 − nk)yk + yk+1 + rnk+1 >

nk+1−nk∑

i=1

(yk + 2−iyk+1)

+ rnk+1 =
nk+1−nk∑

i=1

xnk+i + rnk+1 = rnk

for each k ∈ N, where the first inequality follows from (1). As a result, if n ∈ C,
then xn > rn, and if n ∈ Cc, then xn < rn.

To the end of the proof it is enough to show that if F,G ⊂ N and∑
n∈F xn =

∑
n∈G xn, then F = G. Denote Ik = {nk + 1, . . . , nk+1} for

each k ∈ N0. We will show by induction on k that F ∩ Ik = G ∩ Ik. Assume
that F ∩ Il = G ∩ Il for all l < k. First, let us note that |F ∩ Ik| = |G ∩ Ik|.
Otherwise, we would have

∣
∣
∣
∣
∣

∑

n∈F

xn −
∑

n∈G

xn

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

∑

n∈F∩Ik

yk −
∑

n∈G∩Ik

yk

+
∑

n∈F∩Ik

2nk−nyk+1 −
∑

n∈G∩Ik

2nk−nyk+1

+
∑

n∈F
n>nk+1

xn −
∑

n∈G
n>nk+1

xn

∣
∣
∣
∣
∣
∣
∣

≥
∣
∣
∣
∣
∣

∑

n∈F∩Ik

yk −
∑

n∈G∩Ik

yk

∣
∣
∣
∣
∣

−
∣
∣
∣
∣
∣

∑

n∈F∩Ik

2nk−nyk+1 −
∑

n∈G∩Ik

2nk−nyk+1

∣
∣
∣
∣
∣
−

∣
∣
∣
∣
∣
∣
∣

∑

n∈F
n>nk+1

xn −
∑

n∈G
n>nk+1

xn

∣
∣
∣
∣
∣
∣
∣

> yk − yk+1 − rnk+1 > 0,
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where the last inequality follows form (1). Next, suppose that |F ∩Ik| = |G∩Ik|
but F ∩ Ik 
= G∩ Ik. Then

∣
∣∑

n∈F∩Ik
xn − ∑

n∈G∩Ik
xn

∣
∣ ∈ [

2nk−nk+1yk+1; 2−1

yk+1]. If |F ∩ Ik+1| 
= |G ∩ Ik+1|, then
∣
∣
∣
∣
∣

∑

n∈F

xn −
∑

n∈G

xn

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

∑

n∈F∩Ik

xn −
∑

n∈G∩Ik

xn +
∑

n∈F∩Ik+1

yk+1 −
∑

n∈G∩Ik+1

yk+1

+
∑

n∈F∩Ik+1

2nk+1−nyk+2 −
∑

n∈G∩Ik+1

2nk+1−nyk+2 +
∑

n∈F
n>nk+2

xn −
∑

n∈G
n>nk+2

xn

∣
∣
∣
∣
∣
∣
∣
∣

≥
∣
∣
∣
∣
∣
∣

∑

n∈F∩Ik+1

yk+1 −
∑

n∈G∩Ik+1

yk+1

∣
∣
∣
∣
∣
∣
−

∣
∣
∣
∣
∣

∑

n∈F∩Ik

xn −
∑

n∈G∩Ik

xn

∣
∣
∣
∣
∣

−
∣
∣
∣
∣
∣
∣

∑

n∈F∩Ik+1

2nk+1−nyk+2 −
∑

n∈G∩Ik+1

2nk+1−nyk+2

∣
∣
∣
∣
∣
∣

−

∣
∣
∣
∣
∣
∣
∣
∣

∑

n∈F
n>nk+2

xn −
∑

n∈G
n>nk+2

xn

∣
∣
∣
∣
∣
∣
∣
∣

> yk+1 − 2−1yk+1 − yk+2 − rnk+2

= 2−1yk+1 − yk+2 − rnk+2 > 0,

where the last inequality follows form (1) applied for k+1 inserted in the place
of k. If |F ∩ Ik+1| = |G ∩ Ik+1|, then

∣
∣
∣
∣
∣

∑

n∈F

xn −
∑

n∈G

xn

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

∑

n∈F∩Ik

xn −
∑

n∈G∩Ik

xn +
∑

n∈F∩Ik+1

yk+1 −
∑

n∈G∩Ik+1

yk+1

+
∑

n∈F∩Ik+1

2nk+1−nyk+2 −
∑

n∈G∩Ik+1

2nk+1−nyk+2 +
∑

n∈F
n>nk+2

xn −
∑

n∈G
n>nk+2

xn

∣
∣
∣
∣
∣
∣
∣
∣

≥
∣
∣
∣
∣
∣

∑

n∈F∩Ik

xn −
∑

n∈G∩Ik

xn

∣
∣
∣
∣
∣
−

∣
∣
∣
∣
∣
∣

∑

n∈F∩Ik+1

2nk+1−nyk+2 −
∑

n∈G∩Ik+1

2nk+1−nyk+2

∣
∣
∣
∣
∣
∣

−

∣
∣
∣
∣
∣
∣
∣
∣

∑

n∈F
n>nk+2

xn −
∑

n∈G
n>nk+2

xn

∣
∣
∣
∣
∣
∣
∣
∣

> 2nk−nk+1yk+1 − yk+2 − rnk+2 > 0,

where, once again, the last inequality follows form (1) applied for k+1 inserted
in the place of k. Finally, there must be F ∩ Ik = G ∩ Ik for each k ∈ N0. As
a result, F =

⋃∞
k=0(F ∩ Ik) =

⋃∞
k=0(G ∩ Ik) = G. This means that every

element of the set A(xn) can be uniquely represented as a subsum of the series∑∞
n=1 xn. �
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Corollary 2.2. For each 0 ≤ α ≤ β ≤ 1 there exists a convergent series∑∞
n=1 xn with positive terms such that A(xn) = U(xn) and the set {n ∈ N :

xn > rn} has lower asymptotic density equal to α and upper one equal to β.

3. Family of Cantorvals

To simplify the notation when we will write [a, b] instead of {a, a + 1, a +
2, . . . , b}.

Lemma 3.1. The following equality holds for all n, k ∈ N.

Σn,k := A({2p : p ∈ [1, n + k]} ∪ {2n + 1}) = Bn,k ∪ Mn,k ∪ Fn,k,

where Bn,k := {2p : p ∈ [0, 2n−1 − 1]}, Mn,k := [2n, 2n+k+1 − 1], Fn,k :=
{2p + 1 : p ∈ [2n+k, 2n+k + 2n−1 − 1]}.
Proof. We first prove that the equality for Σn,k holds for any n ∈ N and k = 1.

A({2p : p ∈ [1, n + 1]} ∪ {2n + 1})

= A({2p : p ∈ [1, n + 1]}) ∪
(
{2n + 1} + A({2p : p ∈ [1, n + 1]})

)

= {2p : p ∈ [0, 2n+1 − 1]} ∪ ({2n + 1} + {2p : p ∈ [0, 2n+1 − 1]}
= {0, 2, 4, . . . , 2n − 2, 2n, 2n + 2, . . . , 2n+2 − 4, 2n+2 − 2}
∪ {2n + 1, 2n + 3, . . . , 2n+2 − 3, 2n+2 − 1, 2n+2

+ 1, . . . , 2n+2 + 2n − 3, 2n+2 + 2n − 1}
= {0, 2, 4, . . . , 2n − 2, 2n, 2n + 1, 2n + 2, . . . , 2n+2 − 2, 2n+2

− 1, 2n+2 + 1, . . . , 2n+2 + 2n − 3, 2n+2 + 2n − 1}
= {0, 2, 4, . . . , 2n − 2} ∪ {2n, 2n + 1, 2n + 2, . . . , 2n+2 − 2, 2n+2 − 1}
∪ {2n+2 + 1, . . . , 2n+2 + 2n − 3, 2n+2 + 2n − 1}
= Bn,1 ∪ Mn,1 ∪ Fn,1

Now we assume that the assertion holds for some natural n and k. We will
prove that it holds for n and k + 1 which will finish the inductive reasoning.

A({2p : p ∈ [1, n + k + 1]} ∪ {2n + 1})

= A({2p : p ∈ [1, n + k]} ∪ {2n + 1}) ∪
(
{2n+k+1}

+ A({2p : p ∈ [1, n + k]} ∪ {2n + 1})
)

= {0, 2, . . . , 2n − 2, 2n, 2n + 1, . . . , 2n+k+1 − 2, 2n+k+1

− 1, 2n+k+1 + 1, . . . , 2n+k+1 + 2n − 3, 2n+k+1 + 2n − 1}
∪ {2n+k+1, . . . , 2n+k+1 + 2n − 2, 2n+k+1 + 2n, 2n+k+1 + 2n + 1, . . . ,

2n+k+2 − 2, 2n+k+2 − 1, 2n+k+2 + 1, . . . ,
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2n+k+2 + 2n − 3, 2n+k+2 + 2n − 1}
= {0, 2, . . . , 2n − 2, 2n, 2n + 1, . . . , 2n+k+2 − 2, 2n+k+2

− 1, 2n+k+2 + 1, . . . , 2n+k+2 + 2n − 3, 2n+k+2 + 2n − 1}
= {0, 2, . . . , 2n − 2} ∪ {2n, 2n + 1, . . . , 2n+k+2 − 2, 2n+k+2 − 1}
∪ {2n+k+2 + 1, . . . , 2n+k+2 + 2n − 3, 2n+k+2 + 2n − 1}
= Bn,k+1 ∪ Mn,k+1 ∪ Fn,k+1

�

Theorem 3.2. For each α ∈ (0, 1) ∩Q there exists a convergent series
∑∞

i=1 xi

such that A(xi) is a Cantorval and the set {i ∈ N : xi > ri} has asymptotic
density equal to α.

Proof. Fix n, k ∈ N. Let us define the sequence (xi) as the multigeometric
sequence (a1, a2, . . . , an+k+1; q), that is x(n+k+1)j+p = apq

j for all j ∈ N0 and
p ∈ [1, n+ k + 1], where {a1, a2, . . . , an+k+1} = {2p : p ∈ [1, n+ k]}∪ {2n + 1},
that is aj = 2n+k+1−j for j ∈ [1, k], ak+1 = 2n + 1, aj = 2n+k+2−j for j ∈
[k+2, n+k+1]. Then by Lemma 3.1 we have Σ = A(a1, a2, . . . , an+k+1) = Σn,k.
Hence, by Theorem 1.3 the achievement set A(a1, a2, . . . , an+k+1; q) is a Can-
torval for each q ∈

[
1

2n+k+1−2n
, 2
2n+k+1+2n+1

)
. Clearly a1 > a2 > · · · >

an+k+1 and an+k+1 > a1q for q in given interval. Thanks to that (xn) is
non-increasing. Note that the role of the set {n0, n0 +1, . . . , n0 + r} from The-
orem 1.3 is played by the subset Mn,k of Σn,k. A simple calculation shows

that the interval
[

1
2n+k+1−2n

, 2
2n+k+1+2n+1

)
is nonempty. The condition q ∈

[
1

2n+k+1−2n
, 2
2n+k+1+2n+1

)
means that

1
2n+k+1 + 2n − 1

<
1

2n+k+1 − 2n − 1
=

1
2n+k+1−2n

1 − 1
2n+k+1−2n

≤ q

1 − q

<
2

2n+k+1+2n+1

1 − 2
2n+k+1+2n+1

=
2

2n+k+1 + 2n − 1
.

Note that

rn+k+1 =
∑

m>n+k+1

xm =
n+k+1∑

i=1

ai · q

1 − q
= (2n+k+2 + 2n − 1) · q

1 − q
.

Hence we obtain that rn+k+1 ∈ (1, 2). Fix p ∈ [k + 2, k + 3, . . . , n + k + 1].
Then,

n+k+1∑

i=p

ai =
n+k+1∑

i=p

2n+k+2−i = 2n+k+3−p − 2.
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Thus if p 
= k + 2, then

ap−1 −
n+k+1∑

i=p

ai = 2n+k+3−p − (2n+k+3−p − 2) = 2 > rn+k+1

and also an+k+1 = 2 > rn+k+1. Note that

rk+1 = rn+k+1 +
n+k+1∑

i=k+2

ai > 1 + (2n+1 − 2) ≥ 2n + 1 = ak+1

Moreover
∑n+k+1

i=k+1 ai =
∑n+k+1

i=k+2 (2n+k+2−i) + 2n + 1 = 2n+1 + 2n − 1. Now let
p ∈ [1, k]. We have

n+k+1∑

i=p

ai =
n+k+1∑

i=k+1

ai +
k∑

i=p

ai = 2n+1 + 2n − 1 +
k∑

i=p

2n+k+1−i

= 2n+1 + 2n − 1 + 2n+k+2−p − 2n+1 = 2n+k+2−p + 2n − 1

which means that for all p ∈ [1, k] we have

rp =
n+k+1∑

i=p+1

ai + rn+k+1 > 2n+k+1−p + 2n > 2n+k+1−p = ap

We proved that {p ∈ [1, n+k+1] : ap > rp} = [k+2, n+k+1]. Since we consider
the multigeometric sequence
(a1, a2, . . . , an+k+1; q) the following two inequalities are equivalent for all w ∈
N and p ∈ [1, n + k + 1]:

a(n+k+1)w+p > r(n+k+1)w+p ⇔ ap > rp

because a(n+k+1)w+p = ap · qw and r(n+k+1)w+p = rp · qw Then {i ∈ N : xi >
ri} = {a(n + k + 1) + j : a ∈ N0, j ∈ [k + 2, n + k + 1]}, which has asymptotic
density n

n+k+1 . The equality
{

n
n+k+1 : n, k ∈ N

}
= (0, 1) ∩ Q is clear. �

In order to prove the generalization of the thesis contained in Theorem 3.2
for irrational densities we construct less regular sequences. The idea stays
behind the problem of recovering the sequence (xi) from its achievement set
A(xi). More precisely, it may happen that A(xi) = A(yi) for different sequences
(xi) and (yi) although A(xi) is obtained as an achievement set uniquely. This
problem was deeply studied in [2]. However, we use only a simple observation
that A(2n, 2n−1, . . . , 2) = A( 2, . . . , 2

︸ ︷︷ ︸
2n−1−times

).

Remark 3.3. Fix n, k ∈ N. Let us define the sequence (yi) as the multige-
ometric sequence (b1, b2, . . . , b2n+k; q), where bj = 2n+k+1−j for j ∈ [1, k],
bk+1 = 2n + 1, bj = 2 for j ∈ [k + 2, 2n + k]. Hence, Σ = A(b1, b2, . . . , b2n+k) =
Σn,k, so the achievement set A(b1, b2, . . . , b2n+k; q) is equal to its counterpart
A(a1, a2, . . . , an+k+1; q) constructed in Lemma 3.1. The crucial observation is
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that for the sequence (yi) the fast convergence condition is satisfied on much
thinner set. Indeed, at first, in a very similar reasoning to that in Theorem 3.2
we obtain that r2n+k ∈ (1, 2). Then clearly b2n+k = 2 > r2n+k. Further-
more by dividing the subsequence ak+2, ak+3, . . . , an+k+1 into constant pieces
bk+2, bk+3, . . . , b2n+k each equal to 2 we break the quick convergence condition
obtained on the considered indices without changing the achievement set, that
is

A(ak+2, ak+3, . . . , an+k+1) = A(bk+2, bk+3, . . . , b2n+k) = {0, 2, . . . , 2n+1 − 2}
By the same idea as in Theorem 3.2 of shifting computations to the

latter indices for multigeometric sequence, we finally get {i ∈ N : yi > ri} =
{a(2n + k) : a ∈ N}, which has asymptotic density 1

2n+k .

By a segment in a multigeometric sequence (a1, a2, . . . , am; q) we under-
stand the sequence of all the consequitive terms, which are multiplied by the
same power of q, that is (a1q, a2q, . . . , amq) is the first segment, (a1q

2, a2q
2, . . . ,

amq2) is the second segment and so on. In the next construction we define the
sequence (zi) segment by segment in the way that each segment is a segment
of a multigeometric sequence (xi) as in the family considered in Theorem 3.2
either its counterpart (yi) defined in Remark 3.3. Hence, the achievement set
A(zi) will be equal to both A(xi) and A(yi). The amounts of both type of
segments will depend on the irrational asymptotic density we want to obtain
for the set {i ∈ N : zi > ri}. We will use the following simple result connected
with the mediant of two fractions. We give it without proof, since it is basic.

Lemma 3.4. Let c1, c2, d1, d2 be natural numbers such that c1
d1

< c2
d2
. Then the

function f : [0, 1] → R defined as f(a) = ac2+(1−a)c1
ad2+(1−a)d1

is continuous and strictly

increasing. In particular the range of f is equal to
[

c1
d1

, c2
d2

]
.

The value f
(
1
2

)
is also known as the mediant of the fractions c1

d1
and c2

d2
.

Theorem 3.5. For each α ∈ (0, 1) there exists a convergent series
∑∞

i=1 zi such
that A(zi) is a Cantorval and the set {i ∈ N : zi > ri} has asymptotic density
equal to α.

Proof. Fix α ∈ (0, 1). Let n be any large enough positive integer such that
α ∈

(
1

2n+1 , n
n+2

)
. Fix any q ∈

[
1

2n+2−2n , 2
2n+2+2n+1

)
Define (xi) = (a1, a2, . . . ,

an+2; q), where a1 = 2n+1, a2 = 2n + 1, aj = 2n+3−j for j ∈ [3, n + 2] and
(yi) = (b1, b2, . . . , b2n+1; q), where b1 = 2n+1, b2 = 2n + 1 and bj = 2 for
j ∈ [3, 2n + 1].

We construct (zi) in such a way that the consequitive segments of (zi)
are taken as the segments of (xi) either (yi).

Note that if we define first c + d segments of (zi) by taking c and d
segments of (xi) and (yi), respectively, then we define c(n + 2) + d(2n + 1)
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elements. It also means that |{i ∈ [1, c(n+2)+d(2n+1)] : zi > ri}| = cn+d. By
Lemma 3.4 there exists a unique a ∈ (0, 1) such that an+(1−a)

a(n+2)+(1−a)(2n+1) = α.
The value a can be interpreted as the frequency of segments taken from (xi)
in all the segments of the construction of (zi). If a ∈ Q, a = u

w , then in the
construction of (zi) we take u segments from (xi) and then w−u segments from
(yi) and continue in this way. Let us consider the case when a ∈ (0, 1)\Q. Then
a =

∑∞
m=1

δm
10m for some (δm) ∈ {0, 1, . . . , 9}N, which is a decimal expansion

of a = 0, δ1δ2 . . .. We consider ap =
∑p

m=1
δm
10m , which is a lower rational

approximation of a to the p-th place after comma, obtained by a simple cut
off the expansion in the next places.

We construct (zi) by taking care about two things. First of them is to
cover the proper amounts:

• In the first 10 segments of (zi) we take exactly δ1 segments from (xi) and
10 − δ1 segments from (yi).

• We add the segments in the way in the first 100 segments of (zi) there
should be exactly 10δ1 + δ2 segments from (xi) and 100 − 10δ1 − δ2
segments from (yi).

• We continue inductively and obtain that for each t ∈ N the first 10t

segments of (zi) contain exactly
∑t

j=1 δj10t−j segments from (xi) and
the remaining ones are from (yi).

The second condition is the order of segments:
When we define the k-th segment, k ∈ [1, 10] for t = 1 either k ∈ [10t−1+1, 10t]
for some t ∈ N, t ≥ 2, then we consider the ratio βk−1 of number of segments
(xi) contained in the first k − 1 segments of (zi) to k − 1. We also put β0 = 0.
If βk−1 ≤ ∑t

m=1
δm
10m , then as the k-th segment we take (if we can) the k-th

segment of (xi), otherwise we take the k-th segment of (yi). The ,,if we can”
part is connected with the situation, when a is such small that δm = 0 for all
m ≤ t. Then, by the first condition of construction, all of first 10t segments of
(zi) are taken from (yi).

From the construction we obtain that for each t the cardinality of the set
{i ∈ [1,

∑t
j=1 δj10t−j(n + 2) + (10t − ∑t

j=1 δj10t−j)(2n + 1)] : zi > ri} equals
n

∑t
j=1 δj10t−j + 10t − ∑t

j=1 δj10t−j . Note that
n

∑t
j=1 δj10

t−j+10t−∑t
j=1 δj10

t−j

∑t
j=1 δj10t−j(n+2)+(10t−∑t

j=1 δj10t−j)(2n+1)
tends to α as t tends to ∞. The sec-

ond condition of the construction guarantees alternating-like convergence of βk

to a. Clearly, β10t =
∑t

m=1
δm
10m for each t ∈ N. Assume that t ≥ min{t0 : δt0 
=

0}. Since
∑t

m=1
δm
10m ≤ ∑t+1

m=1
δm
10m by the second rule of the construction, as

the 10t + 1-th segment we always take (xi).
We take segments of (xi) until (βk) exceeds the value of β10t+1 . Then, we

continue with taking (yi) to the moment we get values of (βk) not greater than
β10t+1 and so on. Since the number of the defined elements tends to infinity,
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the affection to the ratio (βk) by the consequitve n + 2 either 2n + 1 elements
is not significant and tends to zero.

For the constructed series
∑∞

i=1 zi we have that A(zi) = A(xi) = A(yi),
so it is a Cantorval and the set {i ∈ N : zi > ri} has asymptotic density equal
to α. �

Remark 3.6. Note that if δm = 9 for m ≤ t + 1, then all of the segments
between 10t + 1 and 10t+1 will be taken from (xi). However, it does not affect
the convergence of (βk), because the sequence is increasing in that indices.
Unfortunately, we are not able to use the similar method of construction to
obtain a Cantorval for which the set {i ∈ N : zi > ri} has asymptotic density
equal to 1. The proof breaks on the beginning, when we are looking for n such
that n

n+2 is greater than the considered density.

Theorem 3.7. For each 0 < α ≤ β < 1 there exists a convergent series
∑∞

i=1 zi

such that A(zi) is a Cantorval and the set {i ∈ N : zi > ri} has lower asymp-
totic density equal to α and upper asymptotic density equal to β.

Proof. The case α = β has been already proved in Theorem 3.5. Let n be any
large enough positive integer such that 1

2n+1 < α < β < n
n+2 . The sequences

(xi), (yi) and the value of q are defined in the same way as in Theorem 3.5.
We define (zi) by using the segments of (xi) either (yi) in the following way:

• The first segment is a segment of (xi).
• Then, we add the least number of segments (yi) as is needed to obtain

the fast convergence condition on less than α of the defined terms since
the beginning of the construction. The sequence of all the defined terms
in this step will be also called as a block of segments of (yi).

• After that we take the least number of segments (xi) that we need to get
the fast convergence condition on more then β of the defined terms since
the beginning of the construction, that is a block of segments of (xi).

• We continue inductively.
Let uj be the number of all defined terms of (zi) after taking j first blocks of
segments of (yi) and j − 1 first blocks of segments of and (xi), respectively.
Similarly, let wj be the number of all defined terms of (zi) after taking j first
blocks of segments of (yi) and j first blocks of segments of and (xi), respec-
tively. Clearly, limj→∞

|{i∈[1,uj ]:zi>ri}|
uj

= α and limj→∞
|{i∈[1,wj ]:zi>ri}|

wj
= β.

From the construction we see that α and β are lower and upper asymptotic
density of the set {i ∈ N : zi > ri}, respectively. �

Remark 3.8. The proof of Theorem 3.5 can be rewritten to use the more sim-
ilar method to the way of construction in Theorem 3.7. Namely, instead of
comparing the sequence (βk) with consequtive ap’s, we may immediately use
the value of a. It causes many advantages like simplifying the proof, since the
notion of (δm) is not needed. Hence, we never change the value with which we
compare the terms of (βk) with. The convergence of (βk) to a is also faster
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then. Another change is in a slight increase of the chosen segments from (xi) in
the beginning of the construction. However, comparing to the irrational value
of a may lose the intuition in the sense we only know that the frequency (βk)
of taking segments from (xi) oscilates close to a. It is impossible to predict
the terms of (βk) accurately without calculating the previous terms. In the
original proof of Theorem 3.5 we know what we obtain for β10t for each t ∈ N

on the spot what determines the amount of taken segments from each type.

Theorem 3.9. There exists a convergent series
∑∞

i=1 zi such that A(zi) is a
Cantorval and the set {i ∈ N : zi > ri} has asymptotic density equal to 0.

Proof. Let GN = A(xi) = A(3, 2; 1
4 ) be the Guthrie and Nymann’s Cantorval.

We consider its superset A(yi) = A(1, 1, 1, 1, 1; 1
4 ) = [0, 5

3 ]. We construct a
sequence (zi) again by taking segments from (xi) either (yi). In the first step
we take 5 segments from (xi) and after that 18 segments from (yi). For each
k ≥ 2, k ∈ N, in the k-th step we define 5 segments from (xi) and then
18 · 10k−1 − 2 segments from (yi). It means that in the first step we define
100 terms and in the k-th step for k ≥ 2 we define exactly 9 · 10k consequitive
elements of (zi). Hence for any k ∈ N in all of the first k-th steps we define
10k+1 terms of (zi). Note that by the construction we obtain that {i ∈ N :
zi > ri} = {2, 4, 6, 8, 10} ∪ {10k+1 + j : k ∈ N, j ∈ {2, 4, 6, 8, 10}}. Clearly

lim sup
n→∞

|{i ∈ {1, . . . , n} : zi > ri}|
n

= lim
n→∞

|{i ∈ {1, . . . , 10n+1 + 10} : zi > ri}|
10n+1 + 10

= lim
n→∞

5n + 5
10n+1 + 10

= 0

Thus the set {i ∈ N : zi > ri} has asymptotic density equal to 0. Since the fast
convergence condition is satisfied on infinite set of indices, by Theorem 1.1(1)
we know that A(zi) is not a finite union of closed intervals. However A(zi) ⊃
GN , which means that A(zi) is a Cantorval. �

By combining the method used in Theorem 3.7 and construction similar
to that one in Theorem 3.9 we obtain the following.

Theorem 3.10. For each 0 ≤ β < 1 there exists a convergent series
∑∞

i=1 zi

such that A(zi) is a Cantorval and the set {i ∈ N : zi > ri(z)} has lower
asymptotic density equal to 0 and upper asymptotic density equal to β.

Proof. It is enough to combine (zi) from the segments belonging to the se-
quences (xi) and (yi) for which fast convergence condition is satisfied on the
set with asymptotic density 0 and β, respectively. To be more precise, we
take any sequence (yi) such that the series

∑∞
i=1 yi is convergent, the set

A(yi) is a Cantorval and the set {i ∈ N : yi > ri(y)} has asymptotic density
equal to β (such a sequence exists by virtue of Theorem 3.5). Then, we de-
fine (xi) = (1, . . . , 1

︸ ︷︷ ︸
k times

; q), where q is as in the construction of (yi) and k ≥ 1
q
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is so large that A(xi) =
[
0, kq

1−q

]
is a superset of A(yi). Of course, the fast

convergence condition is never satisfied in the case of the sequence (xi).
In the 2k −1-st step, k ∈ N, we define the least number of segments from

(yi) to obtain the fast convergence condition on more than β − 1
k of all defined

indices.
In the 2k-th step, k ∈ N, we define the least number of segments from (xi)

to obtain the fast convergence condition on less than 1
k of all defined indices.

�

In the end of this section we gather our results in the following corollary.

Corollary 3.11. For each 0 ≤ α ≤ β < 1 there exists a convergent series∑∞
i=1 zi such that A(zi) is a Cantorval and the set {i ∈ N : zi > ri} has lower

asymptotic density equal to α and upper asymptotic density equal to β.

4. Examples

In this chapter we present numerical examples of Theorems 3.2, 3.5, 3.7. We
start with the simplest consequences of Theorem 3.2.

Example 4.1. The set A(4, 3, 2; q) is a Cantorval for each q ∈ [
1
6 , 2

11

)
. The fast

convergence condition is satisfied on 3N with density 1
3 .

Example 4.2. The set A(32, 17, 16, 8, 4, 2; q) is a Cantorval for each q ∈ [
1
48 , 2

81

)
.

The fast convergence condition is satisfied on (6N−3)∪(6N−2)∪(6N−1)∪(6N)
with density 2

3 .

Now we present the calculations for the first segments of the series for
which the fast convergence condition is satisfied on the set with irrational
density, see Theorem 3.5.

Example 4.3. We show how to define the beginning segments of a convergent
series

∑∞
i=1 zi such that A(zi) is a Cantorval and the set {i ∈ N : zi > ri} has

an asymptotic density equal to α = π
10 = 0.314159 . . ..

For n = 2 we have 1
2n+1 = 0.2 < α < 0.5 = n

n+2 . Thus we will
take the segments to construct (zi) from the multigeometric sequence (xi) =
(8, 5, 4, 2; q) either (yi) = (8, 5, 2, 2, 2; q). We also fix q as any number from the
interval

[
1
12 , 2

21

)
.

The equality an+(1−a)
a(n+2)+(1−a)(2n+1) = α has a solution a = 0.434 . . .. Hence

for the first group of segments the choice between (xi) and (yi) is determined
by β10 = 0.4.
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No.
of
seg-
ment
k

Defined
type

Defined
terms

βk
Number of terms with fast conv. cond.

Number of all defined terms

1 (xi) 8q, 5q ,
4q, 2q

1 2
4 = 0.5

2 (yi) 8q2, 5q2,
2q2, 2q2,
2q2

1
2 = 0.5 3

9 ≈ 0.33

3 (yi) 8q3, 5q3,
2q3, 2q3,
2q3

1
3 ≈ 0.33 4

14 ≈ 0.29

4 (xi) 8q4, 5q4,
4q4, 2q4

2
4 = 0.5 6

18 ≈ 0.33

5 (yi) 8q5, 5q5,
2q5, 2q5,
2q5

2
5 = 0.4 7

23 ≈ 0.304

6 (xi) 8q6, 5q6,
4q6, 2q6

3
6 = 0.5 9

27 ≈ 0.33

7 (yi) 8q7, 5q7,
2q7, 2q7,
2q7

3
7 ≈ 0.428 10

32 ≈ 0.3125

8 (yi) 8q8, 5q8,
2q8, 2q8,
2q8

3
8 = 0.375 11

37 ≈ 0.297

9 (xi) 8q9, 5q9,
4q9, 2q9

4
9 ≈ 0.44 13

41 ≈ 0.317

10 (yi) 8q10, 5q10,
2q10, 2q10,
2q10

4
10 = 0.4 14

46 ≈ 0.304

Now we define the second group of segments. Here we compare the terms
βk−1 with the value β100 = 0.43.
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No.
of
seg-
ment
k

Defined
type

Defined
terms

βk
Number of terms with fast conv. cond.

Number of all defined terms

11 (xi) 8q11, 5q11 ,
4q11, 2q11

5
11 ≈ 0.45 16

50 = 0.32

12 (yi) 8q12, 5q12,
2q12, 2q12,
2q12

5
12 ≈ 0.42 17

55 ≈ 0.309

13 (xi) 8q13, 5q13,
4q13, 2q13

6
13 ≈ 0.46 19

59 ≈ 0.322

14 (yi) 8q14, 5q14,
2q14, 2q14,
2q14

6
14 ≈ 0.429 20

64 ≈ 0.3125

15 (xi) 8q15, 5q15,
4q15, 2q15

7
15 ≈ 0.47 22

68 ≈ 0.324

16 (yi) 8q16, 5q16,
2q16, 2q16,
2q16

7
16 ≈ 0.438 23

73 ≈ 0.315

17 (yi) 8q17, 5q17,
2q17, 2q17,
2q17

7
17 ≈ 0.41 24

78 ≈ 0.308

18 (xi) 8q18, 5q18,
4q18, 2q18

8
18 ≈ 0.44 26

82 ≈ 0.317

...
...

...
...

...
100 . . . . . . 43

100 = 0.43 143
457 ≈ 0.31291

In the third group we consider β1000 = 0.434.

No.
of
seg-
ment
k

Defined
type

Defined
terms

βk
Number of terms with fast conv. cond.

Number of all defined terms

...
...

...
...

...
1000 . . . . . . 434

1000 = 0.434 1434
4566 ≈ 0.31406

and so on. By the construction A(zi) = A(xi) = A(yi) is a Cantorval.
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Remark 4.4. Let us consider again Example 4.3. Due to Remark 3.8 in the
modified method the first change appears in the eight segment. Since β7 < a
the segment in the eight step is taken from (xi). It may also affect the segments
defined in the next steps.

In the next Example we show how to construct a convergent series
∑∞

i=1 zi

such that A(zi) is a Cantorval and the set {i ∈ N : zi > ri} has a given lower
and upper assymptotic densities as in the Theorem 3.7.

Example 4.5. We define a convergent series
∑∞

i=1 zi such that A(zi) is a Can-
torval and the set {i ∈ N : zi > ri} has a lower asymptotic density equal to
α = 0.15 and upper asymptotic density equal to β = 0.55.

For n = 3 we have 1
2n+1 < α < β < n

n+2 . Thus we will take the segments
to construct (zi) from the multigeometric sequence (xi) = (16, 9, 8, 4, 2; q) ei-
ther (yi) = (16, 9, 2, 2, 2, 2, 2, 2, 2; q). We also fix q as any number from the
interval

[
1
24 , 2

41

)
.

No. of
segment
k

Defined
type

Defined
terms

Number of terms with fast conv. cond.
Number of all defined terms

1 (xi) 16q 9q, 8q , 4q, 2q 3
5 = 0.6

2 (yi) 16q2, 9q2, 2q2, . . . , 2q2 4
14 ≈ 0.29

3 (yi) 16q3, 9q3, 2q3, . . . , 2q3 5
23 ≈ 0.22

4 (yi) 16q4, 9q4, 2q4, . . . , 2q4 6
32 ≈ 0.19

5 (yi) 16q5, 9q5, 2q5, . . . , 2q5 7
41 ≈ 0.17

6 (yi) 16q6, 9q6, 2q6, . . . , 2q6 8
50 = 0.16

7 (yi) 16q7, 9q7, 2q7, . . . , 2q7 9
59 ≈ 0.153

8 (yi) 16q8, 9q8, 2q8, . . . , 2q8 10
68 ≈ 0.147

9 (xi) 16q9, 9q9, 8q9, 4q9, 2q9 13
73 ≈ 0.178

...
...

...
...

117 (xi) 16q117, 9q117,
8q117, 4q117,
2q117

337
613 ≈ 0.5498

118 (xi) 16q118, 9q118,
8q118, 4q118,
2q118

340
618 ≈ 0.5502

119 (yi) 16q119, 9q119,
2q119, . . . , 2q119

341
627 ≈ 0.544

...
...

...
...
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No. of
segment
k

Defined
type

Defined
terms

Number of terms with fast conv. cond.
Number of all defined terms

824 (yi) 16q824, 9q824,
2q824, . . . , 2q824

1046
6972 ≈ 0.15003

825 (yi) 16q825, 9q825,
2q825, . . . , 2q825

1047
6981 ≈ 0.14998

826 (xi) 16q826, 9q826,
8q826, 4q826,
2q826

1050
6986 ≈ 0.1503

...
...

...
...

5. Open Problems

In the last chapter we show some of the possible ways of continuation for the
study of connections between Kakeya conditions and topology of achievment
sets. We start with the most general question that we suppose that its answer
is affirmative.

Problem 5.1. Is it possible for each infinite subset C of N with infinite comple-
ment to construct a convergent series

∑∞
i=1 zi such that A(zi) is a Cantorval

and {i ∈ N : zi > ri} = C?

We expect that the above problem can be very difficult to attack. This
is why we propose to start with a particular case.

Problem 5.2. Is it possible to construct a convergent series
∑∞

i=1 zi such that
A(zi) is a Cantorval and the set {i ∈ N : zi > ri} has asymptotic density equal
to 1?

Note that in the paper we have shown that such Examples exist for all
densities α ∈ [0, 1). However, if the answer is true the construction may need
completely different methods than used in the paper. On the other hand, if
the answer for the above question is negative we may also ask the following.

Problem 5.3. Is it possible to construct a convergent series
∑∞

i=1 zi such that
A(zi) is a Cantorval and the set {i ∈ N : zi > ri} has upper asymptotic density
equal to 1?

In the paper we measure the size of the set {i ∈ N : zi > ri} by the no-
tion of asymptotic density. However, one can study its structure much deeper.
Namely, we say that the set E ⊂ N belongs to the interval class I (Cantor
class C or Cantorval class CV) if there exists a convergent series

∑∞
i=1 zi such

that A(zi) is a finite union of closed intervals (homemorphic to a Cantor set
or Cantorval, respectively) and E = {i ∈ N : zi > ri}. By Theorem 1.1(1)
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it is obvious that I is equal to the family of all finite subsets of N, that is
I = Fin and I ∩ (C ∪ CV) = ∅. Furthermore, by Theorem 2.1 we know that
C = P (N)\Fin. Hence, we may state the following problem.

Problem 5.4. Characterize the family CV.

Clearly, (C ∩ CV) 
= ∅. Another simple observation is that removing or
adding finitely many terms to the sequence (zi) does not change the form of
its achievement set, so if some A ∈ CV, then each set of the form AΔF for
some F ∈ Fin is an element of CV as well. In particular, by Theorem 3.2
we obtain that aN + B ∈ CV for each a ∈ N and B, which is any subset of
{1, . . . , a} containing consecutive numbers. Also, by Theorem 1.1(2) we know
that if C ⊂ N has finite complement, then C ∈ C\CV.
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