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The Mixed Scalar Curvature of
Almost-Product Metric-Affine Manifolds, II
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Abstract. We continue our study of the mixed Einstein–Hilbert action as
a functional of a pseudo-Riemannian metric and a linear connection. Its
geometrical part is the total mixed scalar curvature on a smooth man-
ifold endowed with a distribution or a foliation. We develop variational
formulas for quantities of extrinsic geometry of a distribution on a metric-
affine space and use them to derive Euler–Lagrange equations (which in
the case of space-time are analogous to those in Einstein–Cartan theory)
and to characterize critical points of this action on vacuum space-time.
Together with arbitrary variations of metric and connection, we consider
also variations that partially preserve the metric, e.g., along the distribu-
tion, and also variations among distinguished classes of connections (e.g.,
statistical and metric compatible, and this is expressed in terms of re-
strictions on contorsion tensor). One of Euler–Lagrange equations of the
mixed Einstein–Hilbert action is an analog of the Cartan spin connec-
tion equation, and the other can be presented in the form similar to the
Einstein equation, with Ricci curvature replaced by the new Ricci type
tensor. This tensor generally has a complicated form, but is given in the
paper explicitly for variations among semi-symmetric connections.
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1. Introduction

We study the mixed Einstein–Hilbert action as a functional of two variables: a
pseudo-Riemannian metric and a linear connection. Its geometrical part is the
total mixed scalar curvature on a smooth manifold endowed with a distribution
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or a foliation. Our goals are to obtain the Euler–Lagrange equations of the
action, present them in the classical form of Einstein equations and find their
solutions for the vacuum case under various geometric assumptions.

1.1. State of the Art

The Metric-Affine Geometry (founded by E. Cartan) generalizes pseudo-
Riemannian Geometry: it uses a linear connection ∇̄ with torsion, instead
of the Levi-Civita connection ∇ of a pseudo-Riemannian metric g = 〈·, ·〉 on a
manifold M , e.g., [16], and appears in such context as almost Hermitian and
Finsler manifolds and theory of gravity. To describe geometric properties of
∇̄, we use the difference T = ∇̄ − ∇ (called the contorsion tensor) and also
auxiliary (1,2)-tensors T∗ and T∧ defined by

〈T∗
XY,Z〉 = 〈TXZ, Y 〉, T∧

XY = TY X, X, Y, Z ∈ XM .

The following distinguished classes of metric-affine manifolds (M, g, ∇̄) are
considered important.

• Riemann–Cartan manifolds, where the ∇̄-parallel transport along the
curves preserves the metric, i.e., ∇̄g = 0, e.g., [14,28], This condition is equiva-
lent to T∗ = −T and ∇̄ is then called a metric compatible (or: metric) connec-
tion, e.g., [9], where the torsion tensor is involved in the Cartan spin connection
equation, see (3b). More specific types of metric connections (e.g., the semi-
symmetric connections [11,33] and adapted metric connections [5]) also find
applications in geometry and theoretical physics.

• Statistical manifolds, where the tensor ∇̄g is symmetric in all its en-
tries and connection ∇̄ is torsion-free, e.g., [10,18,19]. These conditions are
equivalent to T∧ = T and T∗ = T. The theory of affine hypersurfaces in R

n+1

is a natural source of such manifolds; they also find applications in theory of
probability and statistics.

The above classes of connections admit a natural definition of the sec-
tional curvature: in case of metric connections by the same formula as for the
Levi-Civita connection, and for statistical connections by the analogue intro-
duced in [18]. For the curvature tensor R̄X,Y = [∇̄Y , ∇̄X ]+ ∇̄[X,Y ] of an affine
connection ∇̄, we have

R̄X,Y − RX,Y = (∇Y T)X − (∇X T)Y + [TY , TX ], (1)

where RX,Y = [∇Y ,∇X ] + ∇[X,Y ] is the Riemann curvature tensor of ∇.
Similarly as in Riemannian geometry, one can also consider the scalar curvature
S of R̄.

Many notable examples of pseudo-Riemannian metrics come (as critical
points) from variational problems, a particularly famous of which is the Einste-
in-Hilbert action, e.g., [7]. Its Einstein–Cartan generalization in the framework
of metric-affine geometry, given (on a smooth manifold M) by

J̄ : (g,T) →
∫

M

{ 1
2a

(S − 2Λ) + L
}

dvolg, (2)
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extends the original formulation of general relativity and provides interesting
examples of metrics as well as connections, e.g., [1, Chapter 17]. Here, Λ is a
constant (the “cosmological constant”), L is Lagrangian describing the matter
contents, and a > 0 is the coupling constant. To deal also with non-compact
manifolds, it is assumed that the integral above is taken over M if it converges;
otherwise, one integrates over arbitrarily large, relatively compact domain Ω ⊂
M , which also contains supports of variations of g and T. The Euler–Lagrange
equation for (2) when g varies is

Ric − (1/2) S · g + Λ g = aΞ (3a)

(called the Einstein equation) with the non-symmetric Ricci curvature Ric and
the asymmetric energy-momentum tensor Ξ (generalizing the stress tensor of
Newtonian physics), given in coordinates by Ξμν = −2 ∂L/∂gμν + gμνL. The
Euler–Lagrange equation for (2) when T varies is an algebraic constraint with
the torsion tensor S of ∇̄ and the spin tensor sc

μν = 2 ∂L/∂Tc
μν (used to

describe the intrinsic angular momentum of particles in spacetime, e.g., [30]):

S(X,Y ) + Tr(S(·, Y ) − S(X, ·)) = a s(X,Y ), X, Y ∈ XM . (3b)

Since S(X,Y ) = TXY − TY X, (3b) can be rewritten using the contorsion
tensor. The solution of (3a,b) is a pair (g,T), satisfying this system, where the
pair of tensors (Ξ, s) (describing a specified type of matter) is given. In vacuum
space-time, Einstein and Einstein–Cartan theories coincide. The classification
of solutions of (3a,b) is a deep and largely unsolved problem [30], even for
T = 0 [7].

1.2. Objectives

On a manifold equipped with an additional structure (e.g., almost product,
complex or contact), one can consider an analogue of (2) adjusted to that
structure. In pseudo-Riemannian geometry, it may mean restricting g to a
certain class of metrics (e.g., conformal to a given one, in the Yamabe problem
[7]) or even constructing a new, related action (e.g., the Futaki functional on a
Kahler manifold [7], or several actions on contact manifolds [8]), to cite only few
examples. The latter approach was taken in authors’ previous papers, where
the scalar curvature in the Einstein–Hilbert action on a pseudo-Riemannian
manifold was replaced by the mixed scalar curvature of a given distribution or
a foliation.

In this paper, a similar change in (2) will be considered on a connected
smooth (n + p)-dimensional manifold M endowed with an affine connection
and a smooth n-dimensional distribution D̃ (a subbundle of the tangent bun-
dle TM). Distributions and foliations (that can be viewed as integrable dis-
tributions) on manifolds appear in various situations, e.g., [5,20]. When a
pseudo-Riemannian metric g on M is non-degenerate along D̃, it defines the
orthogonal p-dimensional distribution D such that both distributions span the
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tangent bundle: TM = D̃ ⊕D and define a Riemannian almost-product struc-
ture on (M, g), e.g., [15]. From a mathematical point of view, a space-time
of general relativity is a (n + 1)-dimensional time-oriented (i.e., with a given
timelike vector field) Lorentzian manifold, see [4]. A space-time admits a global
time function (i.e., increasing function along each future directed nonspacelike
curve) if and only if it is stable causal; in particular, a globally hyperbolic
spacetime is naturally endowed with a codimension-one foliation (the level
hypersurfaces of a given time-function), see [6,12].

The mixed Einstein–Hilbert action on (M, D̃),

J̄D̃ : (g,T) 	→
∫

M

{ 1
2a

(Smix − 2Λ) + L
}

d volg, (4)

is an analog of (2), where S is replaced by the mixed scalar curvature Smix,
see (9), for the affine connection ∇̄ = ∇ + T. The physical meaning of (4) is
discussed in [2] for the case of T = 0. Our action (4) can be useful for the multi-
time Geometric Dynamics, e.g., [17] and survey [31]. This was introduced like
Multi-time World Force Law involving field potentials, gravitational potentials
(components of the two Riemannian metrics), and the Yang–Mills potentials
(components of the Riemannian connections and the nonlinear connection).

In view of the formula S = 2Smix + S
�

+ S
⊥

, where S
�

and S
⊥

are
the scalar curvatures along the distributions D̃ and D, one can combine the
actions (2) and (4) to obtain the new perturbed Einstein–Hilbert action on
(M, D̃): J̄ε : (g,T) 	→

∫
M

{
1
2a (S + εSmix − 2Λ) + L

}
d volg with ε ∈ R, whose

critical points may describe geometry of the space-time in an extended theory
of gravity.

The mixed scalar curvature (being an averaged mixed sectional cur-
vature) is one of the simplest curvature invariants of a pseudo-Riemannian
almost-product structure. If a distribution is spanned by a unit vector field N ,
i.e., 〈N,N〉 = εN ∈ {−1, 1}, then Smix = εNRicN,N , where RicN,N is the Ricci
curvature in the N -direction. If dim M = 2 and dim D̃ = 1, then obviously
2Smix = S. If T = 0 then Smix reduces to the mixed scalar curvature Smix of ∇,
see (10), which can be defined as a sum of sectional curvatures of planes that
non-trivially intersect with both of the distributions. Investigation of Smix led
to multiple results regarding the existence of foliations and submersions with
interesting geometry, e.g., integral formulas and splitting results, curvature
prescribing and variational problems, see survey [23]. The trace of the partial
Ricci curvature (rank 2) tensor rD is Smix, see Sect. 2. The understanding
of the mixed curvature, especially, rD and Smix, is a fundamental problem of
extrinsic geometry of foliations, see [20].

Varying (4) with fixed T = 0, as a functional of g only, we obtain the
Euler–Lagrange equations in the form similar to (3a), see [2] for space-times,
and for D̃ of any dimension, see [25,26], i.e.,

RicD − (1/2) SD · g + Λ g = aΞ, (5)
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where the Ricci and scalar curvature are replaced by the mixed Ricci curvature
RicD, see (26), and its trace SD. In [27], we obtained the Euler–Lagrange equa-
tions for (4) with fixed g and variable T, see (30a–h), and examined critical
contorsion tensors (and corresponding connections) in general and in distin-
guished classes of (1,2)-tensors. We have shown that T is critical for (4) with
fixed g if and only if T obeys certain system of algebraic equations, however,
unlike (3b), these equations heavily involve also the pseudo-Riemannian ge-
ometry of the distributions.

In this article we generalize these results, considering variations of (4)
with respect to both g and T, at their arbitrary values. As we are less inclined to
discuss particular physical theories, we basically confine ourselves to studying
the total mixed scalar curvature—the geometric part of the mixed Einstein–
Hilbert action, i.e., we set Λ = L = 0 in (4), which in physics correspond to
vacuum space-time and no “cosmological constant”:

J̄mix : (g,T) 	→
∫

M

Smix d volg . (6)

Considering variations of the metric that preserve the volume of the manifold,
we can also obtain the Euler–Lagrange equations for (6), that coincide with
those for (4) with L = 0 and Λ 
= 0.

The terms of S̄mix without covariant derivatives of T make up the mixed
scalar T-curvature, see Sect. 2, which we find interesting on its own. In partic-
ular, ST can be viewed as the Riemannian mixed scalar curvature of a distri-
bution with all sectional curvatures of planes replaced by their T-curvatures
(see [18]), and for statistical connections we have S̄mix = Smix +ST. Thus, we
also study (in Sect. 3.1) the following, closely related to (6), action on (M, D̃):

I : (g,T) 	→
∫

M

ST d volg . (7)

For each of the examined actions (6) and (7), we obtain the Euler–Lagrange
equations and formulate results about existence and examples of their solu-
tions, that we describe in more detail further below. In particular, from [27] we
know that if T is critical for the action (6), then D and D̃ are totally umbilical
with respect to ∇—and to express this together with other conditions, a pair
of equations like (3a,b) is not sufficient. Due to this fact, only in the special
case of semi-symmetric connections we present the Euler–Lagrange equation
in the form, which directly generalizes (5):

RicD − (1/2) SD · g + Λ g = aΞ (8)

and a separate condition (61), similar to (3b), for the vector field parameter-
izing this type of connection. In general case, instead of a single equation like
(3b), we obtain a system of equations (30a–h), which we then use to write the
analogue of (3a) explicitly in terms of extrinsic geometry of distributions.
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1.3. Structure of the Paper

The article has the Introduction and three other Sections.
Section 2 contains background definitions and necessary results from [3,

25–27], among them the notions of the mixed scalar curvature and the mixed
and the partial Ricci tensors are central.

Section 3 contains the main results, described in detail below.
Section 4 contains auxiliary lemmas with necessary, but lengthy compu-

tations, and the References include 32 items.
In Sect. 3, we derive the Euler–Lagrange equations for (6) and (7) and

find some of their solutions–critical pairs (g,T) for different kinds of variations
of metric and connection. Apart from varying among all metrics that are non-
degenerate on D̃, we also restrict to the case when metric remains fixed on
the distribution, and the complementary case when metric varies only on the
distribution–preserving its orthogonal complement and the metric on it. This
approach (first, applied in [24] for codimension one foliations) can be used to
finding an optimal extension of a metric given only on the distribution–which
is the problem of the relationship between sub-Riemannian and Riemannian
geometries. Moreover, in analogy to the Einstein–Hilbert action, all variations
are considered in two kinds: with and without preserving the volume of the
manifold, see [7]. In addition, together with arbitrary variations of connection,
we consider variations among such distinguished classes as statistical and met-
ric connections and express this in terms of constraints on T.

Section 3 is divided into four subsections, according to additional con-
ditions we impose on connections (e.g., metric, adapted and statistical) or
actions we consider (defined by the mixed scalar curvature Smix and the alge-
braic curvature-type invariant of a contorsion tensor ST).

In Sect. 3.1, we vary functional (7) with respect to metric g. Compared
to its variation with fixed g, which was considered in [27], we obtain additional
conditions for general and metric connections. On the other hand, restricting
(7) to pairs of metrics and statistical connections also does not give any new
Euler–Lagrange equations than those obtained in [27]. Similarly, a metric-
affine doubly twisted product is critical for (7) if and only if it is critical for
the action with fixed g.

In Sect. 3.2, for arbitrary variations of (g,T) we show that statistical
connections critical for (6) on a closed M are exactly those that are critical for
(6) with fixed g, and for n+p > 2 these exist only on metric products. On the
other hand, for every g critical for (6) with fixed T = 0, there exist statistical
connections, satisfying algebraic conditions (37a,b), such that (g,T) is critical
for (6) restricted to all metrics, but only statistical connections. Note that
(37b) is equivalent to T acting invariantly on each distribution, i.e., with only
components T : D̃ × D̃ → D̃ and T : D ×D → D. Equations (37a,b) imply also
that the traces Tr� T and Tr⊥ T vanish, and these are the only restrictions for
T critical among statistical connections.
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In Sect. 3.3 we show that for n, p > 1 the critical value of (6) attained by
(g,T), where T corresponds to a metric connection, depends only on g and is
non-negative on a Riemannian manifold. In other words, pseudo-Riemannian
geometry determines the mixed scalar curvature of any critical metric connec-
tion. For general metric connections, we consider only adapted variations of
the metric (see Definition 2) due to complexity of the variational formulas.
Compared to (6) with fixed g, we get a new condition (47a), involving the
symmetric part of T|D×D and of T|D̃×D̃ in the dual equation. This condition
is strong enough to prevent existence of critical points of (6) in some settings,
e.g. for D̃ spanned by the Reeb field on a closed contact manifold with as-
sociated metric. Under some assumptions, trace of (47a) depends only on the
pseudo-Riemannian geometry of (M, g, D̃) and thus gives a necessary condition
for the metric to admit a critical point of (6) in a large class of connections
(e.g., adapted), or for integrable distributions D. On the other hand, in the
case of adapted variations, antisymmetric parts of (T|D×D)⊥ and (T|D̃×D̃)�

remain free parameters of any critical metric connection, as they do not appear
in Euler–Lagrange equations (note that these components define part of the
critical connection’s torsion). Thus, for a given metric g that admits critical
points of (6), one can expect to have multiple critical metric connections, and
examples in Sect. 3.3 confirm that.

Section 3.4 deals with a semi-symmetric connection (parameterized by a
vector field), as a simple case of a metric connection. Although such connec-
tions are critical for the action (6) and arbitrary variations of connections only
on metric-affine products, when we restrict variations of the mixed scalar cur-
vature to semi-symmetric connections, we obtain meaningful Euler–Lagrange
equations (in Theorem 6), which allow us to explicitly present the mixed Ricci
tensor—analogous to the Ricci tensor in the Einstein equation.

2. Preliminaries

Here, we recall definitions of some functions and tensors, used also in [3,25–
27,32], and introduce several new notions related to geometry of (M, g, ∇̄)
endowed with a non-degenerate distribution.

2.1. The Mixed Scalar Curvature

Let Sym2(M) be the space of symmetric (0, 2)-tensors tangent to a smooth
connected manifold M . A pseudo-Riemannian metric g = 〈·, ·〉 of index q on
M is an element g ∈ Sym2(M) such that each gx (x ∈ M) is a non-degenerate
bilinear form of index q on the tangent space TxM . For q = 0 (i.e., gx is positive
definite) g is a Riemannian metric and for q = 1 it is called a Lorentz metric.
Let Riem(M) ⊂ Sym2(M) be the subspace of pseudo-Riemannian metrics of
a given signature.
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A smooth subbundle D̃ ⊂ TM (that is, a regular distribution) is non-
degenerate, if gx is non-degenerate on D̃x ⊂ TxM for x ∈ M ; in this case, the
orthogonal complement D of D̃ is also non-degenerate, and we have D̃x ∩ Dx =
0, D̃x⊕ Dx = TxM for all x ∈ M . Let XM ,X⊥,X� be the modules over C∞(M)
of sections (vector fields) of TM,D and D̃, respectively.

Let Riem(M, D̃,D) ⊂ Riem(M) be the subspace of pseudo-Riemannian
metrics making D̃ and D (of ranks dim D̃ = n ≥ 1 and dim D = p ≥ 1)
orthogonal and non-degenerate. Given g ∈ Riem(M, D̃,D), a local adapted
orthonormal frame {Ea, Ei}, where {Ea} ⊂ D̃ and εi = 〈Ei, Ei〉 ∈ {−1, 1},
εa = 〈Ea, Ea〉 ∈ {−1, 1}, always exists on M . The following convention is
adopted for the range of indices:

a, b, c . . . ∈{1 . . . n}, i, j, k . . .∈{1 . . . p}.

All the quantities defined below with the use of an adapted orthonormal frame
do not depend on the choice of this frame. We have X = X̃ + X⊥, where
X̃ ≡ X� is the D̃-component of X ∈ XM (respectively, X⊥ is the D-component
of X) with respect to g. Set id �(X) = X� and id ⊥(X) = X⊥.

Definition 1. The function on (M, g, ∇̄) endowed with a non-degenerate dis-
tribution D̃,

S̄mix =
1
2

∑
a,i

εaεi

(
〈R̄Ea,Ei

Ea, Ei〉 + 〈R̄ Ei,Ea
Ei, Ea〉

)
, (9)

is called the mixed scalar curvature with respect to connection ∇̄. In particular
case of the Levi-Civita connection ∇, the function on (M, g),

Smix = Trg rD =
∑

a,i
εaεi 〈REa,Ei

Ea, Ei〉 (10)

is called the mixed scalar curvature (with respect to ∇). The symmetric (0, 2)-
tensor

rD(X,Y ) =
∑

a
εa 〈REa, X⊥ Ea, Y ⊥〉, X, Y ∈ XM , (11)

is called the partial Ricci tensor related to D̃.

Remark that on (M, D̃), the Smix and g-orthogonal complement to D̃
are determined by the choice of metric g. In particular, if dim D̃ = 1 then
rD = εN RN , where RN = RN, � N is the Jacobi operator, and if dimD =
1 then rD = RicN,N g⊥, where the symmetric (0,2)-tensor g⊥ is defined by
g⊥(X,Y ) = 〈X⊥, Y ⊥〉 for X,Y ∈ XM .

We use the following convention for components of various (1, 1)-tensors
in an adapted orthonormal frame {Ea, Ei}: Ta = TEa

, Ti = TEi
, etc. Following

the notion of T-sectional curvature of a symmetric (1, 2)-tensor T on a vector
space endowed with a scalar product and a cubic form, see [18], we define the
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mixed scalar T-curvature by (12), as a sum of T-sectional curvatures of planes
that non-trivially intersect with both of the distributions,

ST =
∑

a,i
εaεi(〈[Ti, Ta]Ea, Ei〉 + 〈[Ta, Ti] Ei, Ea〉). (12)

The definitions (12), (9)–(10) do not depend on the choice of an adapted
local orthonormal frame. Thus, we can consider S̄mix and ST on (M, D̃) as
functions of g and T. If T is either symmetric or anti-symmetric then (12) reads
as ST =

∑
a,i εaεi 〈[Ti, Ta]Ea, Ei〉. As was mentioned in the Introduction,

the mixed scalar T-curvature (for the contorsion tensor T) is a part of S̄mix,
in fact we have [27, Eq. (6)]:

S̄mix = Smix + ST + Q̄/2, (13)

where Q̄ consists of all terms with covariant derivatives of T,

Q̄ =
∑

a,i
εaεi

(
〈(∇iT)aEa, Ei〉 − 〈(∇aT)iEa, Ei〉

+〈(∇aT)i Ei, Ea〉 − 〈(∇iT)a Ei, Ea〉
)
.

The formulas for the mixed scalar curvature in the next two propositions are
essential in our calculations. The propositions use tensors defined in [25], which
are briefly recalled below.

Proposition 1. The following presentation of the partial Ricci tensor in (11)
is valid, see [3,25]:

rD = div h̃ + 〈h̃, H̃〉 − Ã� − T̃ � − Ψ + DefD H. (14)

Tracing (14), we have, see [32],

Smix = 〈H,H〉 + 〈H̃, H̃〉 − 〈h, h〉 − 〈h̃, h̃〉 + 〈T, T 〉 + 〈T̃ , T̃ 〉 + div(H + H̃) .

(15)

For totally umbilical distributions, i.e., h = 1
nH g� and h̃ = 1

p H̃ g⊥, (15) reads
as

Smix =
n − 1

n
〈H,H〉 +

p − 1
p

〈H̃, H̃〉 + 〈T, T 〉 + 〈T̃ , T̃ 〉 + div(H + H̃), (16)

Denote by 〈B,C〉|V the inner product of tensors B,C restricted to V =
(D̃ × D) ∪ (D × D̃).

Proposition 2. (see [21]) We have using (1),

2 (S̄mix − Smix) = div
(
(Tr�(T − T∗))⊥ + (Tr⊥(T − T∗))�)

− Q, (17)

where

Q = −〈 Tr⊥ T, Tr� T∗〉 − 〈Tr� T, Tr⊥ T∗〉 + 〈T∗,T∧〉 | V

−〈 Tr�(T − T∗) − Tr⊥(T − T∗), H − H̃〉
−〈T − T∗ + T∧ − T∗∧, Ã − T̃ � + A − T �〉. (18)
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and the partial traces of T (similarly, for T∗, etc.) are given by

Tr� T =
∑

a
εaTaEa, Tr⊥ T =

∑
i
εi Ti Ei. (19)

The tensors used in the above results (and other ones) are defined below
for one of the distributions (say, D; similar tensors for D̃ are denoted using �

or ˜ notation).
The integrability tensor and the second fundamental form T, h : D̃×D̃ →

D of D̃ are given by

T (X,Y ) = (1/2) [X, Y ]⊥, h(X,Y ) = (1/2) (∇XY + ∇Y X)⊥, X, Y ∈ X�.

The mean curvature vector field of D̃ is given by H = Trg h =
∑

a εah(Ea, Ea).
We call D̃ totally umbilical, minimal, or totally geodesic, if h = 1

nH g�, H = 0,
or h = 0, respectively.

The “musical” isomorphisms � and 	 will be used for rank one and sym-
metric rank 2 tensors. For example, if ω ∈ Λ1(M) is a 1-form and X,Y ∈ XM

then ω(Y ) = 〈ω�, Y 〉 and X�(Y ) = 〈X,Y 〉. For arbitrary (0,2)-tensors A and
B we also have 〈A,B〉 = Trg(A�B�) = 〈A�, B�〉.

The Weingarten operator AZ of D̃ with Z ∈ X⊥, and the operator T �
Z

are defined by

〈AZ(X), Y 〉 = 〈 h(X,Y ), Z〉, 〈T �
Z(X), Y 〉 = 〈T (X,Y ), Z〉, X, Y ∈ X�.

The norms of tensors are obtained using

〈h, h〉 =
∑

a,b
εaεb 〈h(Ea, Eb), h(Ea, Eb)〉,

〈T, T 〉 =
∑

a,b
εaεb 〈T (Ea, Eb), T (Ea, Eb)〉, etc.

The divergence of a vector field X ∈ XM is given by

(div X) d volg = LX(d volg), (20)

where d volg is the volume form of g. One may show that

div X =
∑

i
εi 〈∇i X, Ei〉 +

∑
a
εa 〈∇a X,Ea〉.

The D-divergence of a vector field X is given by div⊥ X =
∑

i εi 〈∇i X, Ei〉.
Thus, div X = Tr(∇X) = div⊥ X + d̃iv X. Observe that for X ∈ X⊥ we have

div⊥X = div X + 〈X, H〉. (21)

For a (1, 2)-tensor P define a (0, 2)-tensor div⊥P by

(div⊥P )(X,Y ) =
∑

i
εi 〈(∇i P )(X,Y ), Ei〉, X, Y ∈ XM .

For a D-valued (1, 2)-tensor P , similarly to (21), we have

(div�P )(X,Y ) =
∑

a
εa 〈(∇a P )(X,Y ), Ea〉 = −〈P (X,Y ),H〉,

div⊥P = div P + 〈P, H〉 ,
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where 〈P,H〉 is a (0, 2)-tensor, 〈P, H〉(X,Y ) = 〈P (X,Y ), H〉. For example,
div⊥ h = div h + 〈h, H〉. For a function f on M , we use the notation ∇⊥f =
(∇f)⊥ of the projection of ∇f onto D.

The D-deformation tensor DefD Z of Z ∈ XM is the symmetric part of
∇Z restricted to D,

2DefD Z(X,Y ) = 〈∇XZ, Y 〉 + 〈∇Y Z,X〉, X, Y ∈ X⊥.

The self-adjoint (1, 1)-tensors: A (the Casorati type operator) and T and the
symmetric (0, 2)-tensor Ψ , see [3,25], are defined by

A =
∑

i
εiA

2
i , T =

∑
i
εi(T

�
i )2,

Ψ(X,Y ) = Tr(AY AX + T �
Y T �

X), X, Y ∈ X⊥.

For readers’ convenience, we gather below also definitions of all other basic
tensors that will be used in further parts of the paper. We define a self-adjoint
(1, 1)-tensor K by the formula

K =
∑

i
ε i[T

�
i , Ai] =

∑
i
εi(T

�
i Ai − AiT

�
i ),

and the (1, 2)-tensors α, θ and δ̃Z (defined for a given vector field Z ∈ XM ) on
(M, D̃, g):

α(X,Y ) =
1
2
(AX⊥(Y �)+AY ⊥(X�)), θ(X,Y ) =

1
2
(T �

X⊥(Y �)+T �
Y ⊥(X�)),

δ̃Z(X,Y ) =
1
2

(
〈∇X�Z, Y ⊥〉 + 〈∇Y �Z, X⊥〉

)
, X, Y ∈ XM .

For any (1, 2)-tensors P,Q and a (0, 2)-tensor S on TM , define the following
(0, 2)-tensor ΥP,Q:

〈ΥP,Q, S〉 =
∑

λ,μ
ελ εμ [S(P (eλ, eμ), Q(eλ, eμ)) + S(Q(eλ, eμ), P (eλ, eμ))],

where on the left-hand side we have the inner product of (0, 2)-tensors induced
by g, {eλ} is a local orthonormal basis of TM and ελ = 〈eλ, eλ〉 ∈ {−1, 1}.
Note that

ΥP,Q = ΥQ,P , ΥP,fQ1+Q2 = fΥP,Q1 + ΥP,Q2 .

Finally, for the contorsion tensor and X ∈ TM we define T�
X : D̃ → D̃ by

T�
XY = (TX(Y �))�, Y ∈ TM.

Remark 1. From now on, we shall omit factors εμ in all expressions with sums
over an adapted frame (or its part), effectively identifying symbols

∑
μ with∑

μ εμ etc. As we assume in this paper that g is non-degenerate on the dis-
tribution D̃, the presence of factors εμ in the sums is the only difference in
formulas with adapted frames for a Riemannian and a pseudo-Riemannian
metric g. With the definitions given in this section, all tensor equations that
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follow look exactly the same in both these cases. In more complicated formu-
las we shall also omit summation indices, assuming that every sum is taken
over all indices that appear repeatedly after the summation sign and contains
appropriate factors εμ.

2.2. The Mixed Ricci Curvature

Let (M, g) be a pseudo-Riemannian manifold endowed with a non-degenerate
distribution D̃. We consider smooth 1-parameter variations {gt ∈ Riem(M) :
|t| < ε} of the metric g0 = g. Let the infinitesimal variations, represented by a
symmetric (0, 2)-tensor

Bt ≡ ∂gt/∂t,

be supported in a relatively compact domain Ω in M , i.e., gt = g outside Ω for
all |t| < ε. We call a variation gt volume-preserving if Vol(Ω, gt) = Vol(Ω, g)
for all t. We adopt the notations ∂t ≡ ∂/∂t, B ≡ ∂tgt | t=0 = ġ, but we
shall also write B instead of Bt to make formulas easier to read, wherever it
does not lead to confusion. Since B is symmetric, then 〈C, B〉 = 〈Sym(C), B〉
for any (0, 2)-tensor C. We denote by ⊗ the product of tensors and use the
symmetrization operator to define the symmetric product of tensors: B �C =
Sym(B ⊗ C) = 1

2 (B ⊗ C + C ⊗ B).

Definition 2. A family of metrics {gt ∈ Riem(M) : |t| < ε} such that g0 = g
will be called

(i) g�-variation if gt(X,Y ) = g0(X,Y ) for all X,Y ∈ X� and |t| < ε.
(ii) adapted variation, if the gt-orthogonal complement Dt remain g0-

orthogonal to D̃ for all t.
(iii) g�-variation, if it is adapted and gt(X,Y ) = g0(X,Y ) for all X,Y ∈

X⊥ and |t| < ε.
(iv) g⊥-variation, if it is adapted g�-variation.

In other words, for g�-variations the metric on D̃ is preserved. For adapted
variation we have gt ∈ Riem(M, D̃,D) for all t. For g�-variations only the met-
ric on D̃ changes, and for g⊥-variations only the metric on D changes, and D
remains to be gt-orthogonal to D̃.

The symmetric tensor Bt = ġt (of any variation) can be decomposed into
the sum of derivatives of g�- and g�-variations, see [26]. Namely, Bt = B�

t +B̃t,
where

B�
t =

(
Bt | D×D Bt | D×D̃
Bt | D̃×D 0

)
, B̃t =

(
0 0
0 Bt | D̃×D̃

)
.

Thus, for g�-variations B(X,Y ) = 0 for all X,Y ∈ X�. Denote by � and ⊥

the gt-orthogonal projections of vectors onto D̃ and D(t) (the gt-orthogonal
complement of D̃), respectively.
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Proposition 3. (see [26]) Let gt be a g�-variation of g ∈ Riem(M, D̃,D). Let
{Ea, Ei} be a local (D̃, D)-adapted and orthonormal for t = 0 frame, that
evolves according to

∂tEa = 0, ∂tEi = −(1/2) (B�
t (Ei))⊥ − (B�

t (Ei))�. (22)

Then, for all t, {Ea(t), Ei(t)} is a gt-orthonormal frame adapted to (D̃,D(t)).

For any g�-variation of metric the evolution of D(t) gives rise to the
evolution of both D̃- and D(t)-components of any X ∈ XM :

∂t(X�) = (∂tX)� + (B�(X⊥))�, ∂t(X⊥) = (∂tX)⊥ − (B�(X⊥))�.

The Divergence Theorem (with X ∈ XM ) states that∫
M

(div X) d volg = 0, (23)

when M is closed (compact and without boundary); this is also true if M is
open and X is supported in a relatively compact domain Ω ⊂ M . For any
variation gt of metric g on M with B = ∂tg we have

∂t

(
d volg

)
=

1
2

(Trg B) d volg, (24)

e.g., [29]. By Lemma 1 and (23)–(24),

d

dt

∫
M

(div X) d volg =
∫

M

div
(
∂tX +

1
2

(Trg B)X
)
d volg = 0 (25)

for any variation gt of metric with supp (∂tg) ⊂ Ω, and t-dependent X ∈ XM

with supp (∂tX) ⊂ Ω.
Let V be the linear subspace of TM ×TM spanned by (D×D̃)∪(D̃×D).

Thus, the product TM × TM is the sum of three subbundles, D̃ × D̃, D × D
and V. Using this decomposition, we define the tensor in (5).

Definition 3. (see [22]) The symmetric (0, 2)-tensor RicD in (5), defined by its
restrictions on three complementary subbundles of TM × TM , is referred to
as the mixed Ricci curvature:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

RicD | D×D = rD − 〈h̃, H̃〉 + Ã � − T̃ � + Ψ − DefD H + K̃ �

+H� ⊗ H� − 1
2 Υh,h − 1

2 ΥT,T − n−1
p+n−2 div(H̃ − H) g⊥,

RicD | V = −4〈θ, H̃〉 − 2(div(α − θ̃)) |V − 2〈θ̃ − α̃,H〉
− 2 Sym(H� ⊗ H̃�) + 2 δ̃H − 4Υα̃,θ − 2Υα,α̃ − 2Υθ,θ̃,

RicD| D̃×D̃ = rD̃ − 〈h, H〉 + A� − T � + Ψ̃ − DefD̃ H̃ + K�

+ H̃� ⊗ H̃� − 1
2 Υ h̃,h̃ − 1

2 Υ T̃ ,T̃ + p−1
p+n−2 div(H̃ − H) g�.

(26)

Here (26)3 is dual to (26)1 with respect to interchanging distributions D̃ and
D, and their last terms vanish if n = p = 1. Also, SD := Trg RicD = Smix +

p−n
n+p−2 div(H − H̃).
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The following theorem, which allows us to restore the partial Ricci curva-
ture (26), is based on calculating the variations with respect to g of components
in (15) and using (25) for divergence terms. According to this theorem and
Definition 3 we conclude that a metric g ∈ Riem(M, D̃) is critical for the ac-
tion (6) with fixed T = 0 (i.e., considered as a functional of g only), with
respect to volume-preserving variations of metric if and only if (5) holds.

Theorem 1. (see [26]) A metric g ∈ Riem(M, D̃) is critical for the action (6)
with fixed T = 0, with respect to volume-preserving g�-variations if and only
if

rD − 〈h̃, H̃〉 + Ã� − T̃ � + Ψ − DefD H + K̃� + H� ⊗ H� − 1
2

Υh,h − 1
2

ΥT,T

−1
2

(
Smix + div(H̃ − H)

)
g⊥ = λ g⊥, (27a)

−4〈θ, H̃〉 − 2(div(α − θ̃)) |V − 2〈θ̃ − α̃,H〉 − 2H� � H̃� + 2 δ̃H

−4Υα̃,θ − 2Υα,α̃ − 2Υθ,θ̃ = 0 (27b)

for some λ ∈ R. The Euler–Lagrange equation for volume-preserving g�-
variations is dual to (27a).

Example 1. For a space-time (Mp+1, g) endowed with D̃ spanned by a timelike
unit vector field N , the tensor RicD, see (26) with n = 1, and its trace have
the following particular form:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

RicD | D×D = εN (RN + (ÃN )2 − (T̃ �
N )2 + [ T̃ �

N , ÃN ])�

+H� ⊗ H� − τ̃1 h̃sc − DefD H,

RicD(· , N) | D = div⊥T̃ �
N |D + 2 (T̃ �

N (H))�,

RicD(N,N) = εN RicN,N −2 ‖T̃‖2 − div H,

(28)

SD = εN RicN,N + div(εN τ̃1N − H). (29)

Here τ̃i = Tr((ÃN )i), ÃN is the shape operator, T̃ is the integrability tensor
and h̃sc is the scalar second fundamental form of D. Note that the right-hand
side of (28)2 vanishes when D is integrable.

2.3. Variations with Respect to T

The next theorem is based on calculating the variations with respect to T of
components ST and Q̄/2 in (13) and using (25) for divergence terms. Here
{eλ} are vectors of an adapted frame, without distinguishing distribution to
which they belong.

Theorem 2. The Euler–Lagrange equation for (4) with fixed g, considered as
a functional of an arbitrary (1, 2)-tensor T, for all variations of T, is the
following algebraic system with spin tensor sc

μν = 2 ∂L/∂Tc
μν (hence sγ

αβ =
〈s(eα, eβ), eγ〉 ):
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〈 Tr⊥ T∗ − H̃, Z〉 〈X,Y 〉 + 〈 Tr⊥ T + H̃, Y 〉 〈X,Z〉
= −(a/2) 〈s(X,Y ), Z〉, (30a)

〈 Tr� T∗ − H,W 〉 〈U, V 〉 + 〈 Tr� T + H,V 〉 〈U,W 〉
= −(a/2) 〈s(U, V ),W 〉, (30b)

〈 Tr⊥ T∗ + H, U〉 〈X,Y 〉 − 〈(AU − T �
U + TU )X, Y 〉

= −(a/2) 〈s(X,Y ), U〉, (30c)

〈 Tr� T∗ + H̃, X〉 〈U, V 〉 − 〈(ÃX − T̃ �
X + TX)U, V 〉

= −(a/2) 〈s(U, V ),X〉, (30d)

〈 Tr⊥ T − H, U〉 〈X,Y 〉 + 〈(AU + T �
U − TU )Y, X〉

= −(a/2) 〈s(X,U), Y 〉, (30e)

〈 Tr� T − H̃, X〉 〈U, V 〉 + 〈(ÃX + T̃ �
X − TX)V, U〉

= −(a/2) 〈s(U,X), V 〉, (30f)

2 〈T̃ �
X U, V 〉 + 〈TU V + T∗

V U, X〉 = (a/2) 〈s(X,U), V 〉, (30g)

2 〈T �
UX, Y 〉 + 〈TXY + T∗

Y X, U〉 = (a/2) 〈s(U,X), Y 〉, (30h)

for all X,Y,Z ∈ D̃ and U, V,W ∈ D, see [27, Eqs. (15a–h)], where variations
of Lagrangian L, i.e., spin tensor in (30a–h), are omitted. Here, (30b, d, f, h)
are dual to (30a, c, e, g).

Proof. Set S = ∂tT
t
| t=0 for a one-parameter family Tt (|t| < ε) of (1, 2)-

tensors. Using Proposition 2 and removing integrals of divergences of com-
pactly supported (in a domain Ω) vector fields, we get

d

dt

∫
M

S̄mix(T
t) d volg | t=0 =

1

2

∫
M

∑ {
〈SaEb, Ec〉

×
(
〈 Tr⊥ T∗ − H̃, Ec〉 〈Ea, Eb〉 + 〈 Tr⊥ T + H̃, Eb〉 〈Ea, Ec〉

)
+ 〈SaEb, Ei〉

(
〈 Tr⊥ T∗ + H, Ei〉 〈Ea, Eb〉 − 〈(Ai − T �

i )Ea, Eb〉 − 〈TiEa, Eb〉
)

+ 〈SaEi, Eb〉
(
〈 Tr⊥ T − H, Ei〉 〈Ea, Eb〉 + 〈(Ai + T �

i )Eb, Ea〉 − 〈TiEb, Ea〉
)

+ 〈SaEi, Ej〉
(
〈(Ãa − T̃ �

a)Ei, Ej〉 − 〈(Ãa + T̃ �
a)Ei, Ej〉 − 〈TiEj + T∗

j Ei, Ea〉
)

+ 〈SiEj , Ek〉
(
〈 Tr� T∗ − H, Ek〉 〈Ei, Ej〉 + 〈 Tr� T + H, Ej〉 〈Ei, Ek〉

)
+ 〈SiEj , Ea〉

(
〈 Tr� T∗ + H̃, Ea〉 〈Ei, Ej〉 − 〈(Ãa + T̃ �

a)Ej , Ei〉 − 〈TaEi, Ej〉
)

+ 〈SiEa, Ej〉
(
〈 Tr� T − H̃, Ea〉 〈Ei, Ej〉 + 〈(Ãa + T̃ �

a)Ej , Ei〉 − 〈TaEj , Ei〉
)

+ 〈SiEa, Eb〉(〈(Ai−T �
i )Ea, Eb〉−〈(Ai+T �

i )Ea, Eb〉−〈TaEb+T∗
bEa, Ei〉)

}
d volg .

Since no further assumptions are made about S or T, all the components
〈Sμeλ, eρ〉 are independent and the above formula gives rise to (30a–h), where
X,Y,Z ∈ D̃ and U, V,W ∈ D are any vectors from an adapted frame. Observe
that in every equation from (30a–h) each term contains the same set of those
vectors and is trilinear in them, so all these equations hold in fact for all vectors
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X,Y,Z ∈ D̃ and U, V,W ∈ D. Further below, we obtain many other formulas
from computations in adapted frames, in the same way. �

Taking difference of symmetric (in X,Y ) parts of (30c,e) with s = 0 yields
that D̃ is totally umbilical—similar result for D follows from dual equations
(e.g., [27]). For vacuum space-time (L = 0), the (30a–h) are simplified to the
following equations (31a–j).

Corollary 1. (see Theorem 1 in [27]) Let a metric-affine manifold (M, g, ∇̄ =
∇ + T) be endowed with a non-degenerate distribution D̃. Then T is critical
for the action (6) with fixed g for all variations of T if and only if D̃ and D
are totally umbilical and T satisfies the following linear algebraic system for
all X,Y ∈ D̃ and U, V ∈ D:

(TU V + T∗
V U)� = −2 T̃ (U, V ), (31a)

(Tr⊥ T∗)� = H̃ = −(Tr⊥ T)� for n > 1, (31b)

T�
U − T∗�

U = 2T �
U , (31c)

T�
U + T∗�

U = 〈 Tr⊥(T + T∗), U〉 id �, (31d)

(Tr⊥(T − T∗))⊥ = (2 − 2/n)H, (31e)

(TX Y + T∗
Y X)⊥ = −2T (X,Y ), (31f)

(Tr� T∗)⊥ = H = −(Tr� T)⊥ for p > 1, (31g)

T⊥
X − T∗⊥

X = 2 T̃ �
X , (31h)

T⊥
X + T∗⊥

X = 〈 Tr�(T + T∗), X〉 id ⊥, (31i)

(Tr�(T − T∗))� = (2 − 2/p) H̃. (31j)

Example 2. For (Mp+1, g, D̃) of Example 1, the system (30a–h) reduces to

〈 Tr⊥(T∗ + T), N〉 = −(a/2) 〈s(N,N), N〉,
〈 Tr� T∗ − H,W 〉 〈U, V 〉 + 〈 Tr� T + H,V 〉〈U,W 〉 = −(a/2)〈s(U, V ),W 〉,
〈 Tr⊥ T∗, U〉 − 〈TU N,N〉 = −(a/2) 〈s(N,N), U〉,
(〈 Tr� T∗, N〉 + τ̃1) 〈U, V 〉 − 〈(ÃN − T̃ �

N + TN )U, V 〉 = −(a/2) 〈s(U, V ), N〉,
〈 Tr⊥ T, U〉 − 〈TU N,N〉 = −(a/2) 〈s(N,U), N〉,
(〈 Tr� T, N〉 − τ̃1) 〈U, V 〉 + 〈(ÃN + T̃ �

N − TN )V, U〉 = −(a/2) 〈s(U,N), V 〉,
〈 2 T̃ (U, V ) + TU V + T∗

V U, N〉 = (a/2) 〈s(N,U), V 〉,
〈(T + T∗)N N, U〉 = (a/2) 〈s(U,N), N〉,

where U, V,W ∈ D.
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3. Main Results

In Sect. 3.1 we consider the total mixed scalar curvature of contorsion tensor
for general and particular connections, e.g., metric and statistical, and metric-
affine doubly twisted products. In Sect. 3.2 we consider the total mixed scalar
curvature of statistical manifolds endowed with a distribution. In Sect. 3.3
we consider the total mixed scalar curvature of Riemann–Cartan manifolds
endowed with a distribution. In Sect. 3.4, we derive the Euler–Lagrange equa-
tions for semi-symmetric connections and present the mixed Ricci tensor ex-
plicitly in (64). Our aims are to find out which metrics admit critical points
of examined functionals and which components of T in these particular cases
determine whether or not its mixed scalar curvature is critical in its class of
connections. This might help to achieve better understanding of both mixed
scalar curvature invariant and the role played by some components of contor-
sion tensor.

3.1. Variational Problem with Contorsion Tensor

By Proposition 2 and (12), we have the following decomposition [21] (note that
these are terms of −Q in the first line of (18)):

2 ST = 〈 Tr� T, Tr⊥ T∗〉 + 〈 Tr⊥ T, Tr� T∗〉 − 〈T∧,T∗〉|V .

We consider arbitrary variations T(t), T(0) = T, |t| < ε, and variations corre-
sponding to metric and statistical connections, while Ω ⊂ M contains supports
of infinitesimal variations ∂tT(t). In such cases, the Divergence Theorem states
that if X ∈ XM is supported in Ω then (23) holds.

Theorem 3. A pair (g, T) is critical for the action (7) with respect to all vari-
ations of T and g if and only if T satisfies the following algebraic systems (for
all X,Y,Z ∈ D̃ and U, V,W ∈ D):

Tr�(TV T∧
U ) − 1

2
〈TV U + TU V, Tr� T∗〉 = 0, (32a)

〈 Tr⊥ T − Tr� T, T∗
Y U〉 − 〈TY U + TU Y, Tr� T∗〉 − Tr⊥(T∗

Y (T∗)∧
U )

+ Tr� (
T∗

Y (T∗)∧
U + TUT

∧
Y + TY T∧

U

)
= 0 (32b)

Tr�(TY T∧
X) − 1

2
〈TY X + TX Y, Tr⊥ T∗〉 = 0, (32c)

and

(T∗
X Y + TY X)⊥ = 0, (33a)

(TU V + T∗
V U)� = 0, (33b)

〈X,Z〉〈 Tr⊥ T, Y 〉 + 〈X,Y 〉 〈 Tr⊥ T∗, Z〉 = 0, (33c)

〈U, V 〉〈 Tr� T∗, W 〉 + 〈U,W 〉〈 Tr� T, V 〉 = 0, (33d)

T�
U = 〈 Tr⊥ T, U〉 id �, (33e)

T⊥
X = 〈 Tr� T∗, X〉 id ⊥, (33f)
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(Tr⊥(T − T∗))⊥ = 0, (Tr�(T − T∗))� = 0. (33g)

Moreover, if n > 1 and p > 1 then (33c,d) read as

(Tr⊥ T)� = 0 = (Tr⊥ T∗)�, (Tr� T∗)⊥ = 0 = (Tr� T)⊥. (34)

Proof. From Proposition 2 and Lemma 3, for a g�-variation gt of metric g we
obtain

2 ∂tST(gt) = ∂t〈 Tr� T, Tr⊥ T∗〉 + ∂t〈 Tr⊥ T, Tr� T∗〉 − ∂t〈T∧,T∗〉|V

=
1

2

∑
B(Ei, Ej)

(
〈 Tr� T,T∗

i Ej−T∗
j Ei〉−〈TjEi+TiEj , Tr� T∗〉+2〈T∗

j Ea,TaEi〉
)

+
∑

B(Ei, Eb)
(
〈 Tr⊥ T − Tr� T, T∗

bEi〉 − 〈TbEi + TiEb, Tr� T∗〉

+ 〈T∗
aEi,TbEa〉 + 〈T∗

bEa,TaEi〉 + 〈T∗
i Ea,TaEb〉 − 〈T∗

j Ei,TbEj〉
)
. (35)

Thus, ∂tST(gt) = 0 if and only if the right hand side of (35) vanishes for all
symmetric tensors B = ∂tg. For the (D × D)-part of B we get
∑

B(Ei, Ej)
(1
2
〈 Tr� T,T∗

i Ej − T∗
jEi〉−

1
2
〈TjEi+TiEj ,Tr� T∗〉+ Tr�(TjT

∧
i )

)
= 0,

but since B is arbitrary and symmetric and T∗
i Ej − T∗

jEi is skew-symmetric,
this can be written as (32a). For the mixed part of B (i.e., B restricted to the
subspace V ) we get the following Euler–Lagrange equation:∑

B(Ei, Eb)
(
〈 Tr⊥ T,T∗

bEi〉 − 〈Tr� T,T∗
bEi〉 − 〈TbEi + TiEb,Tr� T∗〉

+ 〈T∗
aEi,TbEa〉 + 〈T∗

i Ea,TaEb〉 + 〈T∗
bEa,TaEi〉 − 〈T∗

jEi,TbEj〉
)

= 0.

From this we obtain (32b). Taking dual equation to (32a) with respect to
interchanging distributions D̃ and D, we obtain (32c), which is the Euler–
Lagrange equation for g�-variations. The proof of (33a–g), see [27], is based
on calculation of variations with respect to T of ST and using (25). �

Definition 4. (see Sect. 4 in [27]) The doubly twisted product B ×(v,u) F of
metric-affine manifolds (B, gB ,TB) and (F, gF ,TF ) (or the metric-affine dou-
bly twisted product) is a manifold M = B × F with the metric g = g� + g⊥

and the affine connection, whose contorsion tensor is T = T� + T⊥, where

g�(X,Y ) = v2gB(X�, Y �), g⊥(X,Y ) = u2gF (X⊥, Y ⊥),

T�
XY = u2(TB)X�Y �, T⊥

XY = v2(TF )X⊥Y ⊥,

and the warping functions u, v ∈ C∞(M) are positive.

From Theorem 3 we obtain the following

Corollary 2. A metric-affine doubly twisted product B ×(v,u) F with
∑

a εa 
=
0 
=

∑
i εi is critical for (7) with respect to all variations of T and g if and

only if

TrTB = 0 = TrTF . (36)
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Proof. It was proven in [27, Corollary 13] that a metric-affine doubly twisted
product B ×(v,u) F is critical for (7) with fixed g and for variations of T if and
only if (36) holds. It can be easily seen that for such doubly twisted product
satisfying TrTB = 0 = TrTF all terms in (32a–c) vanish. �

Corollary 3. A pair (g,T), where T is the contorsion tensor of a statistical
connection on (M, g), is critical for the action (7) with respect to all variations
of metric, and variations of T corresponding to statistical connections if and
only if T satisfies the following algebraic system:

(Tr� T)� = 0 = (Tr⊥ T)⊥, (37a)

(TX Y )⊥ = 0 = (TU V )�, X, Y ∈ D̃, U, V ∈ D. (37b)

Proof. By [27, Corollary 7], T is critical for the action T 	→
∫

M
ST d volg, see

(7), with respect to variations of T corresponding to statistical connections if
and only if the following equations hold:

(Tr� T)⊥ = 0 = (Tr⊥ T)�, (38a)

(TUV )� =
1
2

〈U, V 〉(Tr� T)�, (38b)

(TXY )⊥ =
1
2

〈X,Y 〉(Tr⊥ T)⊥, (38c)

for all X,Y ∈ D̃ and U, V ∈ D. If (37a,b) hold, then also (38a–c) hold, moreover
if (37b) is satisfied and T corresponds to a statistical connection, then all terms
in equations (32a–c) vanish.

On the other hand, if (38a–c) hold, then (32a) becomes

n

4
(Tr⊥ T)⊥� ⊗ (Tr⊥ T)⊥� − 3

4
〈(Tr� T)�, (Tr� T)�〉 g⊥ = 0, (39)

and (32c) becomes dual to the above. If p > 1 and 〈(Tr⊥ T)⊥, (Tr⊥ T)⊥〉 
= 0,
then there is W ∈ D such that 〈W,W 〉 
= 0 and 〈W, (Tr⊥ T)⊥〉 = 0, and
evaluating (39) on W ⊗W we obtain (Tr� T)� = 0 and then it also follows from
(39) that (Tr⊥ T)⊥ = 0. If p > 1 and (Tr⊥ T)⊥ = 0, then we obtain (Tr� T)� =
0 from (32a), as g⊥ is non-degenerate. If p > 1 and 〈(Tr⊥ T)⊥, (Tr⊥ T)⊥〉 = 0
but (Tr⊥ T)⊥ 
= 0, then (32a) evaluated on (Tr⊥ T)⊥ ⊗ W , where W ∈ D,
implies that

〈(Tr� T)�, (Tr� T)�〉〈(Tr⊥ T)⊥,W 〉 = 0

and since W here is arbitrary, it follows that 〈(Tr� T)�, (Tr� T)�〉 = 0, and
then it also follows from (39) that (Tr⊥ T)⊥ = 0.

Equalities (Tr� T)� = 0 = (Tr⊥ T)⊥ together with (38b,c) yield (37b).
If n > 1 we can similarly use (32c) for the same effect, and if n = p = 1

then (39) becomes

〈(Tr⊥ T)⊥, (Tr⊥ T)⊥〉 = 3〈(Tr� T)�, (Tr� T)�〉,
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which together with its dual imply (Tr� T)� = 0 = (Tr⊥ T)⊥, and again we
obtain (37b) from (38b,c). �

Corollary 4. A pair (g,T), where T is the contorsion tensor of a metric con-
nection on (M, g), is critical for (7) with respect to all variations of metric,
and variations of T corresponding to metric connections if and only if T sat-
isfies the following linear algebraic system (for all X,Y ∈ D̃ and U, V ∈ D):

(TY X + T∗
X Y )⊥ = 0 = (TU V + T∗

V U)�, (40a)

(Tr� T)� = 0 = (Tr⊥ T)⊥, (40b)

T⊥
X = 0 = T�

U , (40c)

(Tr⊥ T)� = 0 for n > 1, (Tr� T)⊥ = 0 for p > 1. (40d)

and for all X ∈ D̃ and U ∈ D we have

Tr�((TU )⊥(T∧
X)⊥ + 2 (T∧

U )�(TX)�) − Tr⊥((T∧
U )�(TX)�)

+〈 Tr⊥ T, (TX U)�〉 = 0.

Proof. By [27, Corollary 8], T is critical for the action T 	→
∫

M
ST d volg, see

(7), with respect to variations of T corresponding to metric connections if and
only if (40a–d) hold.

In (32a), by (40c) we have 〈TaEi, Eb〉 = 0 = 〈Ta Ei, Ek〉, and by (40b)
also 〈T∗

a Ea, Eb〉 = 0. Hence, what remains in (32a) is

〈(Tj Ei + Ti Ej)⊥, Tr� T∗〉 = 0, ∀ i, j.

By (40d), this is identity if p > 1. On the other hand, for p = 1 it reduces to

2〈T1 E1, E1〉〈 Tr� T∗, E1〉 = 0,

and by (40b), 〈T1 E1, E1〉 = 0. Therefore, (32a) is satisfied if (40a–c) and the
second equation in (40d) are satisfied. Using dual parts of (40a–d) we obtain
analogous result for (32c). From (40a–d) we have for all b, c, i, k,∑

〈TaEa, Ec〉 = 0, 〈T∗
bEi, Ek〉 = 0,

∑
〈T∗

aEa, Ec〉 = 0,

〈T∗
bEi, Ek〉 = 0, 〈T∗

i Eb, Ec〉 = 0, 〈TbEi, Ek〉 = 0.

Thus, in (32b) we have only the following terms:∑
〈TjEj , Ec〉〈T∗

bEi, Ec〉+
∑

〈T∗
aEi, Ec〉〈TbEa, Ec〉d+

∑
〈T∗

i Ea, Ek〉〈TaEb, Ek〉

+
∑

〈T∗
bEa, Ec〉〈TaEi, Ec〉 −

∑
〈T∗

jEi, Ec〉〈TbEj , Ec〉 = 0

for all b, i. Using T∗ = −T (metric compatibility of T), we obtain that (32b)
is equivalent to∑

〈TjEj , Ec〉〈TbEi, Ec〉 + 2
∑

〈TaEi, Ec〉〈TbEa, Ec〉

+
∑

〈TiEa, Ej〉〈TaEb, Ej〉 −
∑

〈TjEi, Ec〉〈TbEj , Ec〉 = 0
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for all b, i. This completes the proof. �

The results obtained when considering the action (7) on metric-affine
doubly twisted products, allow us to determine which of these structures are
critical for the action (6).

Proposition 4. A metric-affine doubly twisted product B ×(v,u) F is critical for
(6) with respect to all variations of g and T if and only if (36) holds and

∇�u = 0 = ∇⊥v. (41)

Proof. It was proven in [27] that a metric-affine doubly twisted product B×(v,u)

F is critical for action (6) with fixed g, with respect to all variations of T, if
and only if (41) and (36) hold. Note that (41) means that TB and TF as
(integrable) distributions on B ×(v,u) F are totally geodesic. It can be easily
seen that if (36) holds and the distributions are integrable and totally geodesic,
then all terms in all variation formulas obtained in Lemma 3 vanish. �

3.2. Statistical Connections

We define a new tensor Θ = T−T∗+T∧−T∗∧, composed of some terms appear-
ing in (18). Note that 〈T∗∧

X Y,Z〉 = 〈T∗
Y X,Z〉 = 〈TY Z,X〉 for all X,Y,Z ∈ XM .

Theorem 4. Let (g,T) correspond to a statistical connection. Then (g,T) is
critical for (6) with respect to volume-preserving variations of g and variations
of T among all (1, 2)-tensors if and only if the following conditions are satisfied:

1. D̃ and D are both integrable,
2. (Tr� T)� = 0 = (Tr⊥ T)⊥, see (37a, b),
3. TX : D̃ → D̃ for all X ∈ D̃,
4. TU : D → D for all U ∈ D,
5. if n > 1 then H̃ = 0,
6. if p > 1 then H = 0,
7. D̃ and D are both totally umbilical,

and the following equations (trivial when n > 1 and p > 1, see 5. and 6. above)
hold for some λ ∈ R:

n − 1
n

H� ⊗ H� − 1
2
(n − 1

n
〈H,H〉 +

p − 1
p

〈H̃, H̃〉 +
2(p − 1)

p
div H̃

)
g⊥ =

λ g⊥, (42a)
n − 1

n

(
δ̃H − p − 1

p
H� � H̃�

)
= 0, (42b)

p − 1
p

H̃� ⊗ H̃� − 1
2

(p − 1
p

〈H̃, H̃〉 +
n − 1

n
〈H,H〉 +

2(n − 1)
n

div H
)
g� =

λ g�. (42c)
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Proof. For any T that corresponds to a statistical connection, we have T∧ = T
and T∗ = T. Condition 1 follows from (31a,f) and T = T∧. Then (31a,f),
condition 1 and

〈TiEj , Ea〉 = 〈T∗
jEi, Ea〉 = 〈TaEi, Ej〉, ∀ i, j, a,

yield condition 3. We get condition 5 from T = T∗ and (31b). Conditions 4
and 6 are dual to conditions 3 and 5, and are obtained analogously. Condition
2 follows from T = T∗, condition 3 (and its dual condition 5) and (31c) (and
its dual (31g)). Condition 7 follows from Corollary 1.

Let gt be a g�-variation of g. Although for statistical manifolds, (17)
reads as

S̄mix − Smix = ST = 〈Tr�T, Tr⊥T〉 − 1
2

〈T, T〉 | V , (43)

we cannot vary this formula with respect to metric with fixed T, because when
g changes, T may no longer correspond to statistical connections (condition
T = T∗ may not be preserved by the variation). Instead, we use Lemma 3
and derive from (67) for T corresponding to a statistical connection (for which
T = T∗ = T∧ and Θ = 0) that

∂t〈T∗,T∧〉 | V =
∑

B(Ei, Eb)
(
〈TjEi,TbEj〉 − 3〈TaEi,TbEa〉

)

−
∑

B(Ei, Ej)〈TjEa,TaEi〉.

From conditions 3–4: ∂t〈T∗,T∧〉 | V = 0. From (68) with Θ = 0 we have

∂t〈Θ,A〉 = 2
∑

B(Ej , Eb)
(
〈h(Ea, Eb), Ei〉〈TaEi, Ej〉

−〈h(Ea, Ec), Ej〉〈TaEb, Ec〉
)

− 2
∑

B(Ei, Ej)〈h(Ea, Eb), Ei〉〈TaEj , Eb〉.

For totally umbilical distribution, the last equation further simplifies to

∂t〈Θ,A〉 =
2
n

∑
B(Ej , Eb)

(
〈H, Ei〉〈TbEi, Ej〉 − 〈H, Ej〉〈TaEb, Ea〉

)

− 2
n

∑
B(Ei, Ej)〈H, Ei〉〈TaEj , Ea〉.

From conditions 2-4 we obtain in the above ∂t〈Θ,A〉 = 0. For integrable dis-
tributions, since Θ = 0, we have

∂t〈Θ, T �〉 = 0, ∂t〈Θ, T̃ �〉 = 0,

and from (71), with Θ = 0 and totally umbilical distributions, we have

∂t〈Θ, Ã〉 =
2
p

∑
B(Ej , Eb)

(
〈H̃, Ea〉〈TaEj , Eb〉 − 〈H̃, Eb〉〈TjEi, Ei〉

)

+
2
p

∑
B(Ei, Ej)〈H̃, Ea〉〈TaEj , Ei〉.



Vol. 76 (2021) The Mixed Scalar Curvature Page 23 of 56 162

From conditions 3–4 and 2 we get in the above

∂t〈Θ, Ã〉 = −2
p

∑
B(Ej , Eb)〈H̃, Eb〉〈TiEi, Ej〉 = 0.

From conditions 3–4, using (72) and (73), we get

∂t〈 Tr� T,Tr⊥ T∗〉 = −
∑

B(Ei, Eb)〈 Tr� T, Ec〉〈Ec,TbEi〉 = 0,

∂t〈 Tr� T∗,Tr⊥ T〉 =
∑

B(Ej , Eb)〈 Tr⊥ T − 2Tr� T, TbEj〉

−
∑

B(Ei, Ej)〈TjEi,Tr� T〉.

From conditions 3–4 and 2 we get ∂t〈 Tr� T∗,Tr⊥ T〉 = 0. From T∗ = T, using
(74), we obtain

∂t〈 Tr�(T∗ − T), H̃ − H〉 =
∑

B(Ei, Ej)〈 Tr� T, Ej〉〈Ei,H〉

+
∑

B(Ej , Eb)
(
〈TbEj , H̃ − H〉 + 〈 Tr� T, Eb〉〈Ej ,H〉 − 〈Tr� T, Ej〉〈Eb, H̃〉

)
.

From conditions 3–4 and 2 we get ∂t 〈
∑

(T∗
a − Ta)Ea, H̃ − H〉 = 0. Similarly,

from (75) we obtain

∂t〈 Tr⊥(T∗ − T), H̃ − H〉 =
∑

B(Ei, Ej)
(
〈TiEj , H̃ − H〉 + 〈 Tr⊥ T, Ei〉〈H, Ej〉

)

+
∑

B(Ej , Eb)
(
〈Tr⊥ T, Eb〉〈H, Ej〉 + 〈TjEb, H̃ − H〉 − 〈Tr⊥ T, Ej〉〈H̃, Eb〉

)
.

From conditions 3–4 and 2 we get in the above

∂t〈 Tr⊥(T∗ − T), H̃ − H〉 = −
∑

B(Ei, Ej)〈Tj Ei,H〉.

By condition 6 we have H = 0 if p > 1 and if p = 1 we only have i = j = k = 1
and by condition 2,

〈TjEi, Ek〉 = 〈Tr⊥ T, E1〉 = 0.

Hence, for T corresponding to a statistical connection satisfying the assump-
tions, any variation of Smix with respect to g is just a variation of Smix with
respect to g. Thus, remaining (42a–c) are equations of Theorem 1 written for
both distributions integrable and umbilical. �

Corollary 5. Let M be a closed manifold. Then (g,T), where T corresponds
to a statistical connection on (M, g), is critical for the action (6) with respect
to all variations of g and T if and only if (g,T) satisfy conditions 1–7 of
Theorem 4; furthermore, either n = p = 1 or H = 0 = H̃.

Proof. Clearly, (42a–c) hold when n = p = 1. If n, p > 1 then conditions 5 and
6 imply H = H̃ = 0. Suppose that n > 1, p = 1 and H 
= 0 and let N ∈ D be
a local unit vector field. Then, evaluating (42a) on N ⊗ N , we obtain

n − 1
2n

〈H,H〉 = λ. (44)
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For p = 1 we have H = −(div N)N and
∫

M
τ1 d volg = 0 for τ1 = 〈H,N〉,

e.g., [24]. The integral formula shows that τ1 vanishes somewhere on M . On
the other hand, (44) yields that 〈H,H〉 = τ2

1 is constant on M , hence H = 0.
Since n > 1, condition 5 in Theorem 4 implies also H̃ = 0. �

Equation (43) and Corollary 3 imply the following

Corollary 6. Let (g,T) correspond to a statistical connection. Then (g,T) is
critical for the action (6) with respect to all variations of metric and varia-
tions of T corresponding to statistical connections if and only if (37a, b) and
equations of Theorem 1 hold.

Note that conditions for a statistical connection to be critical for (6) with
fixed g are actually those from Corollary 3 (instead of conditions in [27, Theo-
rem 3], which do not consider all symmetries of ∂tT for variation among statis-
tical connections). Indeed, for a family of statistical connections on (M, g) and
S = ∂tTt|t=0, we have for statistical connections g(SaEb, Ei) = g(SaEi, Eb) =
g(SiEa, Eb). Gathering together terms appearing by these components in [27,
Eq. (14)], we obtain∑

g(SiEa, Eb) ·
(
g(Tr⊥ T + H⊥, Ei)δab − g((Ai − T �

i )Ea, Eb) − g(TiEa, Eb)

+g(Tr⊥ T − H⊥, Ei)δab + g((Ai + T �
i )Eb, Ea) − g(TiEb, Ea)

+g((Ai − T �
i )Ea, Eb) − g((Ai + T �

i )Ea, Eb) − g(TaEb + TbEa, Ei)
)

= 0.

However, we have g(SiEa, Eb) = (SiEb, Ea), thus
∑

(SiEa, Eb)g(T �
i Ea, Eb) =

0. Considering this, instead of [27, Eq. (28c)] we obtain the following Euler–
Lagrange equation:

g(TiEa, Eb) =
1
2
g(Tr⊥ T, Ei)δab,

which can be transformed into the third equation in [27, Cor. 7], and the second
equation in [27, Cor. 7] is dual to it with respect to interchanging distributions
D̃ and D. Similarly, for terms appearing in [27, Eq. (14)] by g(SaEb, Ec), we
obtain

g(SaEb, Ec) ·
(
g(Tr⊥ T − H,Ec)δab + g(Tr⊥ T + H,Eb)δac

)
= 0,

for all S such that g(SaEb, Ec) = g(SbEa, Ec) = g(SaEc, Eb) for all a, b, c.
Considering this symmetry, we obtain the following Euler–Lagrange equation:

g(Tr⊥ T, Ec)δab + g(Tr⊥ T, Eb)δac + g(Tr⊥ T, Ea)δbc = 0,

and considering arbitrary a = b = c we get (Tr⊥ T)� = 0, which - together
with its dual - is the first equation in [27, Cor. 7]. Remaining components of S
in [27, Eq. (14)] are dual to the ones we considered here, so they will not give
new Euler–Lagrange equations. Therefore, distributions in [27, Thm. 3] do not
need to be integrable and conditions given there should be those from [27, Cor.
7]. We note that [27, Cor. 3] remains true under additional assumption that∑

a εa 
= 0 
=
∑

i εi, as then we have Tr� T = 0 = Tr⊥ T.
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3.3. Metric Connections

Here, we consider g and T as independent variables in the action (6), hence for
every pair (g,T) critical for (6) the contorsion tensor T must be critical for (6)
with fixed g, and thus satisfy Corollary 1. Using this fact, we characterize those
critical values of (6), that are attained on the set of pairs (g,T), where T is the
contorsion tensor of a metric (in particular, adapted) connection for g. Note
that by [27, Corollary 2], restricting variations of T to tensors corresponding to
a metric connection gives the same conditions as considering variations among
arbitrary T.

Proposition 5. Let the contorsion tensor T of a metric connection ∇̄ be critical
for the action (6) with fixed g. Then D̃ and D are both totally umbilical and
for Q given in (18) we have

1
2

Q =
2n − 1

n
〈 Tr� T,H〉 +

2p − 1
p

〈 Tr⊥ T, H̃〉

+
p − 1

p
〈H̃, H̃〉 +

n − 1
n

〈H,H〉 + 〈T, T 〉 + 〈T̃ , T̃ 〉. (45)

Proof. By Corollary 1, both distributions are totally umbilical. In this case,
using (31a-j), we have

〈 Tr�(T − T∗),H − H̃〉 = 2 〈 Tr� T,H〉 − 2
p − 1

p
〈H̃, H̃〉,

〈 Tr⊥(T − T∗), H − H̃〉 = 2
n − 1

n
〈H,H〉 − 2 〈 Tr⊥ T, H̃〉,

−〈 Tr� T, Tr⊥ T∗〉 =
n − 1

n
〈 Tr� T,H〉 +

p − 1
p

〈 Tr⊥ T, H̃〉,

−〈 Tr⊥ T,Tr� T∗〉 =
p − 1

p
〈 Tr⊥ T, H̃〉 +

n − 1
n

〈 Tr� T,H〉.

For totally umbilical distributions and critical metric connection, (31a-j) yield

−2〈T + T∧, A〉 = 4〈 Tr� T,H〉,
−2〈T + T∧, Ã〉 = 4〈 Tr⊥ T, H̃〉,

〈T + T∧, T �〉 = 2
∑

〈TaEi + TiEa, T �
i Ea〉 = 4〈T, T 〉,

〈T + T∧, T̃ �〉 = 4〈T̃ , T̃ 〉,
〈T∗,T∧〉 | V = −〈T,T∧〉 | V = −2

∑
〈TiEa,TaEi〉 = −2〈T, T 〉 − 2〈T̃ , T̃ 〉.

Using the above in (18), and simplifying the expression, completes the proof.
�

Remark 2. Let n, p > 1. By (34), for critical metric connection equation (45)
becomes

1
2

Q = −〈H,H〉 − 〈H̃, H̃〉 + 〈T, T 〉 + 〈T̃ , T̃ 〉.
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By this and (17), for any critical metric connection on a closed manifold (M, g)
we have∫

M

Smix d volg
(15)
=

∫
M

(2n − 1
n

〈H,H〉 +
2p − 1

p
〈H̃, H̃〉

)
d volg .

Thus, the right hand side of the above equation is the only critical value
of the action (6) (with fixed g on a closed manifold M) restricted to metric
connections for g. Notice that it does not depend on T, but only on the pseudo-
Riemannian geometry of distributions on (M, g). Moreover, on a Riemannian
manifold it is always non-negative.

Consider pairs (g,T), where T corresponds to a metric connection, critical
for (6) with respect to g⊥-variations. We apply only adapted variations, as
they will allow to obtain the Euler–Lagrange equations without explicit use of
adapted frame or defining multiple new tensors. The case of general variations,
mostly due to complicated form of tensor F defined by (66) that appears
in variation formulas, is significantly more involved and beyond the scope of
this paper. Set

χ =
∑

a,j
(TjEa)⊥� � (T̃ �

aEj)⊥�, φ(X,Y ) = (T + T∧)X⊥Y ⊥. (46)

Define also tensors φ� and φ⊥ by φ�(X,Y ) = (φ(X,Y ))� and φ⊥(X,Y ) =
(φ(X,Y ))⊥ for X,Y ∈ XM .

Theorem 5. A pair (g,T), where T corresponds to a metric connection on M ,
is critical for (6) with respect to g⊥-variations of metric and arbitrary varia-
tions of T if and only if all the following conditions are satisfied: D̃ and D are
totally umbilical, the following Euler–Lagrange equation holds:

−5n − 5

n
H� ⊗ H� − 1

2
ΥT,T + 2 T̃ �

+
(3p − 3

p
div H̃−2n − 1

n
〈 Tr� T, H〉−2p − 1

p
〈 Tr⊥ T, H̃〉 − div((Tr⊥ T)�)

)
g⊥

−2 div φ� + 〈φ,
3

2
H̃ − 1

2
H +

1

2
(Tr� T)⊥〉 + 7χ

+
3n + 2

n
H� � (Tr� T)⊥� = 0, (47a)

T satisfies the following linear algebraic system:

(TV U − TU V )� = 2 T̃ (U, V ), (47b)

T�
U = T �, (47c)

(Tr⊥ T)⊥ =
n − 1

n
H, (47d)

(TY X − TX Y )⊥ = 2T (X,Y ), (47e)

T⊥
X = T̃ �

X , (47f)

(Tr� T)� =
p − 1

p
H̃, (47g)
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for all X,Y ∈ D̃ and U, V ∈ D; and

(Tr� T)⊥ = −H, if p > 1, (Tr⊥ T)� = −H̃, if n > 1. (47h)

Proof. By Corollary 1, T is critical for (6) (with fixed g) if and only if dis-
tributions D̃ and D are totally umbilical and (47b–g) (together with (47h) if
their respective assumptions on n and p hold) are satisfied. Let T be critical
for the action (6) with fixed g. We shall prove that a pair (g,T) is critical for
the action (6) with respect to g⊥-variations of metric if and only if (47a) holds.

By Proposition 2, for any variation gt of metric such that supp(B) ⊂ Ω,
where Ω is a compact set on M , and Q in (18), we have

d

dt

∫
M

(
2(S̄mix − Smix) + Q

)
d volg =

d

dt

∫
M

(div X) d volg,

where X = (Tr�(T − T∗))⊥ + (Tr⊥(T − T∗))�. Although X is not necessarily
zero on ∂Ω, we have supp (∂tX) ⊂ Ω, thus, d

dt

∫
M

(div X) d volg = 0, see (25),
and hence:

d

dt

∫
M

( S̄mix − Smix) d volg = −1
2

∫
M

(∂tQ) d volg −1
4

∫
M

Q 〈B, g〉 d volg,

where, up to divergence of a compactly supported vector field, ∂tQ is given in
Lemma 5. For g⊥-variations we get (see [26, Eq. (29)] for more general case of
g�-variations),

d

dt

∫
M

Smix d volg =
∫

M

〈
− div h̃ − K̃� − H� ⊗ H� +

1
2

Υh,h +
1
2

ΥT,T + 2 T̃ �

+
1
2

(
Smix + div(H̃ − H)

)
g⊥, B

〉
d volg .

For totally umbilical distributions we have

K̃� = 0, div h̃ =
1
p

(div H̃) g⊥,

〈
1
2

Υh,h, B

〉
=

〈
1
n

H� ⊗ H�, B

〉
.

Hence,

d

dt

∫
M

Smix d volg =
∫

M

〈
1
2

ΥT,T + 2 T̃ � − n − 1
n

H� ⊗ H�

+
1
2

(
Smix + div

(
p − 2

p
H̃ − H

)
− 1

2
Q

)
g⊥ +

1
2

δQ, B

〉
d volg,

where δQ is defined by the equality 〈δQ,B〉 = −∂tQ, see Lemma 5. Thus,
the Euler–Lagrange equation for g⊥-variations of metric and totally umbilical
distributions is the following:

−2n − 2
n

H� ⊗ H� + ΥT,T + 4 T̃ � +
(

Smix + div
(

p − 2
p

H̃ − H

)
− 1

2
Q

)
g⊥

+δQ = 0. (48)



162 Page 28 of 56 V. Rovenski and T. Zawadzki Results Math

Using Lemma 5, Proposition 5 and (16) in (48), we obtain

−5n − 5
n

H� ⊗ H� − 1
2

ΥT,T + 2 T̃ � +
(

3p − 3
p

div H̃ − 2n − 1
n

〈 Tr� T, H〉

−2p − 1
p

〈 Tr⊥ T, H̃〉 − div((Tr⊥ T)�)
)

g⊥ − 2 div φ�

+
〈

φ,
p + 2

p
H̃ − 1

2
H +

1
2

Tr� T

〉
+ 7χ +

3n + 2
n

H� � (Tr� T)⊥� = 0.

By (47g), from the above we get (47a). �

Remark 3. Note that for volume-preserving variations, the right hand sides of
(47a) and (48) should be λ g⊥, with λ ∈ R being an arbitrary constant [26].
This obviously applies also to the special cases of the Euler–Lagrange equation
(47a) discussed below.

If p > 1 and n > 1 then (47a) can be written as

3 − 8n

n
H� ⊗ H� − 1

2
ΥT,T + 2 T̃ � − 2 div φ� +

〈
φ,

3
2
H̃ − H

〉
+ 7χ

+
(

4p − 3
p

div H̃ +
2n − 1

n
〈H,H〉 +

2p − 1
p

〈H̃, H̃〉
)

g⊥ = 0. (49)

Taking trace of (49) and using (47d, g–i) and equalities Trg ΥT,T =
2 〈T, T 〉 and Trg T̃ � = −〈T̃ , T̃ 〉, we obtain the following result.

Corollary 7. Let a pair (g,T), where g is a pseudo-Riemannian metric on M
and T corresponds to a metric connection, be critical for (6) with respect to
g⊥-variations of metric and arbitrary variations of T. Then for n, p > 1 we
have

(2n − 1)(p − 5)
n

〈H,H〉 − 〈T, T 〉 − 2〈T̃ , T̃ 〉 + (4p − 1) div H̃

+2(p − 2)〈H̃, H̃〉 + 7Trg χ = 0, (50)

and for n = 1 and p > 1 we get

(p − 5)〈H,H〉 − 2〈T̃ , T̃ 〉 + 3(p − 1) div H̃

−(p + 4) div((Tr⊥ T)�) + 2(2 − p)〈 Tr⊥ T, H̃〉 + 7Trg χ = 0.

Corollary 8. Let M be a closed manifold, D̃ and D be both integrable with
dimensions n, p > 1 and let a pair (g,T), where g is a pseudo-Riemannian
metric on M , postive or negative definite on each distribution D̃, D, and T
corresponds to a metric connection, be critical for (6) with respect to adapted
variations of metric and arbitrary variations of T. Then:

1. if n 
= 2 or p 
= 5 then D̃ is totally geodesic,
2. if p 
= 2 or n 
= 5 then D is totally geodesic.
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Proof. By the assumptions, T , T̃ and χ all vanish in (50), which considered
with its dual and integrated over M yields two homogeneous linear equations
for

∫
M

〈H,H〉 d volg and
∫

M
〈H̃, H̃〉 d volg. It follows that if n 
= 2 or p 
= 5

then
∫

M
〈H,H〉 d volg = 0. Since g is definite on D, we obtain H = 0 and

since D̃ is totally umbilical by Theorem 5, the first claim follows; the second
is analogous. �

Recall that an adapted connection to (D, D̃), see e.g., [5], is defined by

∇̄Z X ∈ X⊥, ∇̄Z Y ∈ X�, X ∈ X⊥, Y ∈ X�, Z ∈ XM ,

and an example is the Schouten-Van Kampen connection with contorsion ten-
sor

TXY = −(∇X�Y ⊥)� − (∇X�Y �)⊥ − (∇X⊥Y ⊥)� − (∇X⊥Y �)⊥, X, Y ∈ XM .

Proposition 6. Let D̃ and D both be totally umbilical. Then contorsion tensor
T corresponding to an adapted metric connection satisfies (47a–i) if and only
if it satisfies the equations

T�
U = T �

U , (51a)

(Tr⊥ T)⊥ =
n − 1

n
H, (51b)

T⊥
X = T̃ �

X , (51c)

(Tr� T)� =
p − 1

p
H̃, (51d)

3 − 8n

n
H� ⊗ H� − 1

2
ΥT,T − 5 T̃ � − 〈φ,H〉

+
( 4p + 1

p
div H̃ +

2p − 4
p

〈H̃, H̃〉 +
2n − 1

n
〈H,H〉

)
g⊥ = 0, (51e)

for all X ∈ D̃ and U ∈ D.

Proof. For adapted connection and totally umbilical distribution D we have
φ� = −2h̃ = − 2

pH̃g⊥, see [27, Section 2.5], and

TXY = −(∇X� Y �)⊥ − (∇X⊥ Y ⊥)� + (AY ⊥ + T �
Y ⊥)X�

+ (ÃY � + T̃ �
Y �)X⊥ + (TX Y �)� + (TX Y ⊥)⊥. (52)

Moreover, an adapted connection is critical for (6) with fixed g if and only if
(51a–d) hold, see [27]. Note that for adapted connection from (52) we obtain
χ = −T̃ �, as for X,Y ∈ D we have

2χ(X,Y ) =
∑ (

2〈T̃ �
aEj ,X〉〈T̃ �

aEj , Y 〉 + 〈ÃaEj ,X〉〈T̃ �
aEj , Y 〉

+〈ÃaEj , Y 〉〈T̃ �
aEj ,X〉

)
= −2

∑
〈T̃ �

aT̃ �
aX,Y 〉

for umbilical distributions. Also (47h) hold, in all dimensions n, p. Thus, for a
critical adapted connection, (47a) simplifies to (51e). �
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If p > 1 then φ⊥ is not determined by (Tr⊥ T)⊥ and by (52) in Proposi-
tion 6 can be set arbitrary for an adapted metric connection. Using this fact
and taking trace of (51e) yield the following.

Corollary 9. Let D̃ and D both be totally umbilical. If a contorsion tensor
T, corresponding to an adapted metric connection, satisfies (47a–i) then the
metric g satisfies
(2n − 1)(p − 5)

n
〈H, H〉 − 〈T, T 〉 + 5〈T̃ , T̃ 〉 + (4p + 1) div H̃ + 2(p − 2)〈H̃, H̃〉 = 0.

(53)

If p > 1 and at every point of M we have H 
= 0, then for a given (M, g)
satisfying (53) there exists a metric adapted connection such that (g,T) is
critical for the action (6) with respect to all variations of T and g⊥-variations
of metric.

Example 3. In [13] it was proved that on a Sasaki manifold (M, g, ξ, η) (that
is, M with a normal contact metric structure [8]) there exists a unique metric
connection with a skew-symmetric, parallel torsion tensor, and its contorsion
tensor is given by 〈TXY,Z〉 = 1

2 (η ∧ dη)(X,Y,Z), where X,Y,Z ∈ XM and η

is the contact form on M . Let D̃ be the one-dimensional distribution spanned
by the Reeb field ξ. It follows that for this connection we have φ = 0 and for
X,Y ∈ D

χ(X,Y ) = −1
4

∑
i

[
(η ∧ dη)(ξ, Ei,X) · 〈 T̃ �

ξ Ei, Y 〉

+(η ∧ dη)(ξ, Ei, Y ) · 〈 T̃ �
ξ Ei,X〉

]
= −T̃ �(X,Y ),

see (46), as dη(X,Y ) = 2〈X, T̃ �
ξ Y 〉 (we use here the same convention for

differential of forms as in [13], which is different than the one in [8]). Since
g is a Sasaki metric, both distributions are totally geodesic, and for volume-
preserving variations the Euler–Lagrange equation (47a) gets λ g⊥ on the right-
hand side (see Remark 3) and becomes

− 5 T̃ � = λ g⊥. (54)

As on a Sasakian manifolds we have T̃ � = − 1
p 〈T̃ , T̃ 〉g⊥ and 〈T̃ , T̃ 〉 = p (e.g.,

[26, Section 3.3]), we see that (54) holds in this case for λ = 5.

We can slightly modify this example to obtain a family of critical con-
nections (although no longer with parallel torsion) on a contact manifold.

Proposition 7. Let (M,η) be a contact manifold and let D̃ be the one-dimensi-
onal distribution spanned by the Reeb field ξ. Let g be an associated metric [8]
on (M,η).

1. There exist metric connections ∇ + T on M such that (g,T) is criti-
cal for (6) with respect to volume-preserving g⊥-variations of metric and
arbitrary variations of T.
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2. If M is closed, then there exist no metric connections ∇ + T on M such
that (g,T) is critical for (6) with respect to adapted volume-preserving
variations of metric and arbitrary variations of T.

Proof. 1. Let Tξξ = 0 and for all X,Y ∈ D let (TξX)� = 0, (TXξ)� = 0 and

〈TXY, ξ〉 =
1
2
(η ∧ dη)(X,Y, ξ) = −〈TXξ, Y 〉, 〈TξX,Y 〉 = −1

2
(η ∧ dη)(ξ,X, Y ).

For all X,Y,Z ∈ D, let 〈TXY,Z〉 = ω(X,Y,Z), where ω is any 3-form. Then
connection ∇ + T will satisfy all Euler–Lagrange equations (47b–i) and (47a)
with λg⊥ = 5g⊥ on the right-hand side (see Remark 3).

2. Recall [26, Remark 4(ii)] that the Euler–Lagrange equations for volume-
preserving adapted variations of the metric are (47a) with the right-hand side
λg⊥ and its dual (with the same constant λ). Note that the tensor dual to φ

is given by φ̃(X,Y ) = TX�Y � + TY �X�.
For an an associated metric g, (T̃ �

ξ , ξ, η, g) is a contact metric structure
[8], which implies [26]

(T̃ �
ξ )2 = − id ⊥, 〈T̃ , T̃ 〉 = p, (55)

Suppose that (g,T) satisfy (47b–i). By (47g), (47h), the left-hand side of the
equation dual to (47a) reduces to −〈T̃ , T̃ 〉. Hence, by (47a) and (55)2, a pair
(g,T) is critical for the action (6) with respect to volume-preserving adapted
variations if and only if

2 T̃ � − div((Tr⊥ T)�) g⊥ − 2 div φ� + 7χ = −pg⊥ (56)

Since for X,Y ∈ D we have TXY = 1
2φ(X,Y ) + 1

2 (TXY −TY X), by (47b) we
have

χ(X,Y ) = −1
4
〈TjX − TXEj , ξ〉〈T̃ �

ξ Ej , Y 〉 − 1
4
〈TjX + TXEj , ξ〉〈T̃ �

ξ Ej , Y 〉

−1
4
〈TjY − TY Ej , ξ〉〈T̃ �

ξ Ej ,X〉 − 1
4
〈TjY + TY Ej , ξ〉〈T̃ �

ξ Ej ,X〉

= −1
2
〈T̃ (X, Ej), ξ〉〈T̃ �

ξ Ej , Y 〉 − 1
2
〈T̃ (Y, Ej), ξ〉〈T̃ �

ξ Ej ,X〉

+
1
4
〈φ(X, Ej), ξ〉〈T̃ �

ξ Y, Ej〉 +
1
4
〈φ(Y, Ej), ξ〉〈T̃ �

ξ X, Ej〉

= −T̃ �(X,Y ) +
1
4
〈φ(T̃ �

ξ Y,X), ξ〉 +
1
4
〈φ(T̃ �

ξ X,Y ), ξ〉. (57)

Taking a local orthonormal basis of D, where for 1 ≤ i ≤ p
2 we have Ei+p/2 =

T̃ �
ξ Ei, and using (55)1, we obtain

∑p

i=1
φ(T̃ �

ξ Ei, Ei) =
∑p/2

i=1
φ(T̃ �

ξ Ei, Ei) +
∑p/2

i=1
φ((T̃ �

ξ )2Ei, T̃
�
ξ Ei)

=
∑p/2

i=1
φ(T̃ �

ξ Ei, Ei) −
∑p/2

i=1
φ(Ei, T̃

�
ξ Ei) = 0,
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as φ is symmetric in its arguments. It follows from (57) that

Trg χ = −Trg T̃ � = −〈T̃ , T̃ 〉 = −p,

and taking trace of (56) we obtain that

div((Tr⊥ T)�) =
p(p + 5)
p + 4

.

By the Divergence Theorem this cannot hold on closed M . On the other hand,
if M is not closed, let Tξξ = 0 and for all X,Y,Z ∈ D let (TξX)� = 0,
(TXξ)� = 0,

(TXY )� =
1
2
g(X,Y )fξ + T̃ (Y,X),

where f ∈ C∞(M), and let 〈TξX,Y 〉 = 〈T̃ �
ξ X,Y 〉, and 〈TXY,Z〉 = ω(X,Y,Z),

where ω is any 3-form. Then (56) holds if and only if

ξ(f) =
2(p + 5)
p + 4

.

�

Corollary 7 can be viewed as an integrability condition for (47a). Below we
give examples of T, constructed for metrics g that satisfy (50) with particular
form of χ, obtaining pairs (g,T) that are critical points of (6) with respect to
variations of T and g⊥-variations of metric.

Proposition 8. Let n, p > 1 and H 
= 0 everywhere on M . For any g such
that D̃ and D are totally umbilical and (50) holds with χ = 0, there exists a
contorsion tensor T such that TXY ∈ X⊥ for all X,Y ∈ X⊥ and (g,T) is
critical for the action (6) with respect to g⊥-variations of metric and arbitrary
variations of T.

Proof. Suppose that TXY ∈ X⊥ for all X,Y ∈ X⊥. Then φ� = 0, χ = 0, see
definitions (46) (because 〈TjEa, Ei〉 = −〈TjEi, Ea〉 = 0), (Tr⊥ T)� = 0, from
equations for critical connections it follows that D is integrable and (47a) is
an algebraic equation for symmetric (0,2)-tensor φ:

− 8n − 3

n
H� ⊗ H� +

(3p − 3

p
div H̃ +

2n − 1

n
〈H, H〉

)
g⊥ − 1

2
ΥT,T − 〈φ, H〉 = 0.

(58)

For H 
= 0, we can always find φ (and then T) satisfying (58). Clearly, such φ
is not unique. �

Proposition 9. Let n, p > 1 and H 
= 0 everywhere on M . For any g such that
D̃ is totally umbilical and D is totally geodesic and (50) holds with χ = −T̃ �,
there exists a contorsion tensor T such that (TX ξ)⊥ = T̃ �

ξ X for all X ∈ X⊥,
ξ ∈ X�, and a pair (g, T) is critical for the action (6) with respect to g⊥-
variations of metric and arbitrary variations of T.



Vol. 76 (2021) The Mixed Scalar Curvature Page 33 of 56 162

Proof. For (TiEa)⊥ = T̃ �
aEi we have for X,Y ∈ X⊥:

χ(X,Y ) =
∑

a,j
〈T̃ �

aEj ,X〉〈T̃ �
aEj , Y 〉 = −T̃ �(X,Y ).

Since 〈Ti Ei, Ea〉 = −〈Ti Ea, Ei〉 = −〈T̃ �
aEi, Ei〉 = 0, we also get (Tr⊥ T)� =

0 = H̃ and similarly, φ� = 0. So, (47a) has the following form:

− 8n − 3
n

H� ⊗ H� − 1
2

ΥT,T − 5 T̃ � +
2n − 1

n
〈H,H〉 g⊥ − 〈φ,H〉 = 0, (59)

Again, we get an algebraic equation for symmetric tensor φ, which admits
many solutions. �

Note that in Propostions 8 and 9 instead of condition H 
= 0 everywhere
on M , we can assume that at those points of M , where H = 0 the metric g
satisfies (58) and (59) with H = 0 (then these equations do not contain φ).

Example 4. Let D̃ and D be totally umbilical, n, p > 1, D integrable and (50)
hold with χ = 0. With these assumptions we can construct a simple example of
T that satisfies the Euler–Lagrange equations (47b–i) and (49) in some domain.
Let U be a neighborhood of p ∈ M ; we choose any local adapted orthonormal
frame (Ea, Ei) on U . Then, due to φ(X,Y ) = φ(X⊥, Y ⊥), we have

(div φ�)(Ei, Ej) =
∑

a
〈∇Ea

(φ�(Ei, Ej)), Ea〉 +
∑

k
〈∇Ek

(φ�(Ei, Ej)), Ek〉

−
∑

a,m
〈φ�(Ei, Em), Ea〉〈∇Ea

Ej , Em〉 −
∑

a,m
〈φ�(Em, Ej), Ea〉〈∇Ea

Ei, Em〉

−
∑

k,m
〈φ�(Ei, Em), Ek〉〈∇Ek

Ej , Em〉 −
∑

k,m
〈φ�(Em, Ej), Ek〉〈∇Ek

Ei, Em〉.

We define components of T with respect to the adapted frame on U . Let (TiEj−
TjEi)� = 0 for i 
= j and let (TiEa)�, (TaEb)⊥ and (TaEi)⊥ be such that
(47c,e,f,h) hold on U . For all (i, j) 
= (p, p), consider (49) evaluated on (Ei, Ej)
as a system of linear, non-homogeneous, first-order PDEs for {φ(Ei, Ej), (i, j) 
=
(p, p)}, assume in this system that φ(Ep, Ep) = n−1

n H − H̃ −
∑p−1

i=1 φ(Ei, Ei),
and let {φij , (i, j) 
= (p, p)} be any local solution of this system of PDEs on
(a subset of) U . Let TiEj + TjEi = φij for (i, j) 
= (p, p) and let TpEp =
1
2 (n−1

n H − H̃ −
∑p−1

i=1 φii), then (47d, i) hold. By the assumption that (50)
holds and the fact that (49) is a linear, non-homogeneous equation for φ, (49)
evaluated on (Ep, Ep) will also be satisfied. Thus, equations (47b–i) and (49)
hold on (a subset of) U for T constructed above.

Note that when we consider adapted variations, we also have the equa-
tion dual (with respect to interchanging D̃ and D) to (47a), so we can mix
different assumptions from the above examples for different distributions, e.g.,
conditions (Ti Ea)⊥ = T̃ �

a Ei and TXY ∈ X� for X,Y ∈ X�.
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3.4. Semi-symmetric Connections

The following connections are metric compatible, see [33]. Using variations of
T in this class, we obtain example with explicitly given tensor RicD.

Definition 5. An affine connection ∇̄ on M is semi-symmetric if its torsion
tensor S satisfies S(X,Y ) = ω(Y )X − ω(X)Y , where ω is a one-form on M .
For (M, g) we have

∇̄XY = ∇XY + 〈U, Y 〉X − 〈X,Y 〉U, (60)

where U = ω� is the dual vector field.

We find Euler–Lagrange equations of (4) as a particular case of (30a–h),
using variations of T corresponding to semi-symmetric connections. Now we
consider variations of a semi-symmetric connection only among connections
also satisfying (60) for some U .

Proposition 10. A semi-symmetric connection ∇̄ on (M, g,D) satisfying (60)
is critical for the action (4) with fixed g among all semi-symmetric connections
if and only if

2p(n − 1) U� − (n − p)H̃ = −(a/2) s�, 2n(p − 1) U⊥ − (p − n)H = −(a/2) s⊥,

(61)

where s� = (s(· , ·))� and s⊥ = (s(· , ·))⊥. In particular, if n = p = 1 and
s = 0 (no spin) then every semi-symmetric connection is critical among all
such connections, because in this case we have Q = 0 in (18).

Proof. Let Ut, t ∈ (−ε, ε), be a family of compactly supported vector fields on
M , and let U = U0 and U̇ = ∂tUt|t=0. Then for a fixed metric g, from (82) we
obtain

∂tQ(Ut)|t=0 = (p − n)〈U̇ , H̃〉 + 2p(n − 1)〈U�, U̇〉 + 〈U̇ ,H〉(n − p)

+2n(p − 1)〈U⊥, U̇〉.
Separating parts with (U̇)� and (U̇)⊥, we get

∂tQ(Ut)| t=0 = 〈U̇ , (p − n)H̃ + 2p(n − 1)U�〉 + 〈U̇ , (n − p)H + 2n(p − 1)U⊥〉,
from which (61) follow. �

Remark 4. Using computations from Lemma 6, we can show that if a semi-
symmetric connection ∇̄ on (M, g,D) is critical for the action (6) with fixed
g, then both D̃ and D are integrable and totally geodesic. Indeed, let ∇̄ be
given by (60) and satisfy (47b–g) and conditions (47h), i.e., it is critical for
action (6) with fixed g. We find from (85) that both D̃ and D are integrable.
Moreover, if n = p = 1 then (84) and its dual with (47b–g) yield H = 0 = H̃
and U = 0 (i.e., the connection ∇̄ becomes the Levi-Civita connection). If
n > 2 and p > 2 we also have H = 0 = H̃ and U = 0, in this case using
also (47h). If n = 1 and p > 1 we obtain from (47d) that U⊥ = 0 and from
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(47h)1 that H = 0, moreover as both distributions are totally umbilical by
Corollary 1, it follows that they are totally geodesic.

Theorem 6. A pair (g,T), where g ∈ Riem(M, D̃,D) and T corresponds to a
semi-symmetric connection on M defined by (60), is critical for (6) with respect
to volume-preserving g�-variations of metric and variations of T correspond-
ing to semi-symmetric connections if and only if the following Euler–Lagrange
equations are satisfied:

rD − 〈h̃, H̃〉 + Ã�−T̃ �+Ψ + K̃� − DefD H + H� ⊗ H� − 1

2
Υh,h − 1

2
ΥT,T

−1

2

(
Smix+ div(H̃−H)

)
g⊥−p − n

4
(div U�) g⊥+

n(p − 1)

2
U⊥� ⊗ U⊥� = λ g⊥,

(62a)

4 〈θ, H̃〉 + 2(div(α − θ̃)) |V + 2〈θ̃ − α̃, H〉 + 2 H� � H̃� − 2 δ̃H

+4 Υα̃,θ + 2Υα,α̃ + 2 Υθ̃,θ +
1

2
(n − p)δ̃U⊥ +

1

2
(n − p)〈α̃ − θ̃, U⊥〉

−(p − n)〈θ, U�〉 − p(n − 1)U�� ⊗ U⊥� = 0, (62b)

and

2p(n − 1)U� − (n − p)H̃ = 0, 2n(p − 1)U⊥ − (p − n)H = 0. (63)

Proof. By Proposition 2 and (83), we obtain

∂t

∫
M

(S̄mix − Smix) d volg =
∫

M

〈1
4

(p − n)(div U�)g⊥ − (p − n)〈θ, U�〉

−1
2

n(p − 1)U⊥� ⊗ U⊥� − p(n − 1)U�� ⊗ U⊥�, B
〉
d volg .

Using (27a,b) give rise to (62a,b). Finally, notice that (63) is (61) for vacuum
space-time. �

Although generally RicD in (8) has a long expression and is not given
here, for particular case of semi-symmetric connections, due to Theorem 6, we
present the mixed Ricci tensor explicitly as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

RicD | D×D = RicD | D×D + 1
2 n(p − 1)U⊥� ⊗ U⊥� − 1

4 (p − n)(div U�) g⊥

+ Z
2−n−p g⊥,

RicD | V = RicD | V − 1
2 (n − p)

(
δ̃U⊥ + 〈α̃ − θ̃, U⊥〉

)
+ (p − n)〈θ, U�〉

+p(n − 1)U�� ⊗ U⊥�,

RicD| D̃×D̃ = RicD| D̃×D̃ + 1
2 p(n − 1)U�� ⊗ U�� − 1

4 (n − p)(div U⊥) g�

+ Z
2−n−p g�,

(64)

also SD = Trg RicD = SD + 2
2−n−p Z, where RicD and SD as in Definition 3,

n + p > 2 and

Z =
1

2
n(p − 1)‖U⊥‖2 +

1

2
p(n − 1)‖U�‖2 − 1

4
p(p − n) div U� − 1

4
n(n − p) div U⊥.
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This is because RicD − 1
2 Tr(RicD)g = 0 is equivalent to all three Euler–

Lagrange equations for (6).

Example 5. For a space-time (Mp+1, g) endowed with D̃ spanned by a timelike
unit vector field N , see Example 1, the tensor RicD has the following particular
form (i.e., (64) with n = 1):

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

RicD | D×D = RicD | D×D + 1
2 (p − 1)U⊥� ⊗ U⊥� − 1

4 (p − 1)(div U�) g⊥

+ Z
1−p g⊥,

RicD | V = RicD | V − 1
2 (1 − p)

(
δ̃U⊥ + 〈α̃ − θ̃, U⊥〉

)
,

RicD | D̃×D̃ = RicD| D̃×D̃ − 1
4 εN (1 − p)(div U⊥) + εN

Z
1−p ,

and SD = SD + 2 εN Z
1−p , where Z = 1

4 (p − 1)
(
2 ‖U⊥‖2 − p div U� + div U⊥)

,
see (29). Note that θ = 0 and 2 δ̃U⊥(N, ·) = (∇N (U⊥))⊥�.

Remark 5. By Proposition 10, also (61) holds, which allows us to simplify the
Euler–Lagrange equations of Theorem 6 as discussed below. If n = p = 1 then
(61) does not give any restrictions for U and all terms containing U vanish in
(62a,b)—as expected from the last sentence in Proposition 10.

If n = 1 and p > 1 then by (61) we have H̃ = 0 and U⊥ = 1
2H, while U�

can be arbitrary. We also have − 1
2Υh,h = −H� ⊗ H�, and (62a) becomes

−div h̃ − K̃� + 2 T̃ � − p − 1
4

H� ⊗ H�

+
1
2

(
Smix + div(H̃ − H) +

p − 1
2

div U�)
g⊥ = λ g⊥,

where we replaced rD by div h̃ (with additional terms) according to (14), and
for (62b) we have

2 (div(α − θ̃)) |V +
7 + p

4
〈θ̃ − α̃,H〉 − 7 + p

4
δ̃H + 2Υα,α̃ = 0. (65)

Let N ∈ D̃ and X ∈ D. Using results and notation from [26], we have the
following:

2(div θ̃)(X,N) = (div T̃ �
N )(X) + 〈T̃ �

NH,X〉,
2(div α)(X,N) = 〈∇NH − τ̃1H,X〉,

2Υα,α̃(X,N) = 〈ÃNH,X〉,
2δ̃H(X,N) = 〈∇NH,X〉,

2〈θ̃ − α̃,H〉(X,N) = −〈T̃ �
NH + ÃNH,X〉,

where τ̃1 = Tr ÃN . Hence, (65) holds if and only if for unit N ∈ D̃ and all
X ∈ D we have
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1 − p

8
〈∇NH,X〉 − 〈τ̃1H,X〉 − (div T̃ �

N )(X) − 15 + p

8
〈T̃ �

NH,X〉

+
1 − p

8
〈ÃNH,X〉 = 0.

If n > 1 and p > 1, then using (61) we reduce (62a) to the following:

−div h̃ − K̃� +
1
2

Υh,h +
1
2

ΥT,T + 2 T̃ � +
1
2

(
Smix + div(H̃ − H)

)
g⊥

− (p − n)2

8p(n − 1)
(div H̃) g⊥ − (p − n)2 + 8n(p − 1)

8n(p − 1)
H� ⊗ H� = λ g⊥,

and we reduce (62b) to the following:

4Υα̃,θ + 2(div(α − θ̃)) |V + 2Υα,α̃ + 2Υθ̃,θ − (p − n)2 + 8n(p − 1)
4n(p − 1)

δ̃H

− (p − n)2 + 8n(p − 1)
4n(p − 1)

〈α̃ − θ̃, H〉 +
(n − p)2 + 8p(n − 1)

2p(n − 1)
〈θ, H̃〉

+
(p − n)2

4n(p − 1)
H� � H̃� = 0.

Note that for vacuum space-time the distributions D̃ and D don’t need to be
umbilical to admit (g,T) critical for (6) among all metrics and semi-symmetric
connections.

4. Auxiliary Lemmas

Lemma 1. For any variation gt of metric and a t-dependent vector field X on
M , we have

∂t (div X) = div(∂tX) +
1
2

X(Trg B).

Proof. Differentiating the formula (20) and using (24), we get

∂t

(
(div X) d volg

)
=

(
∂t (div X) +

1
2

(div X)Trg B
)
d volg,

∂t

(
LX(d volg)

)
=

(
div(∂tX) +

1
2

X(Trg B) +
1
2

(div X)Trg B
)
d volg .

From this the claim follows. �

Define symmetric (1, 2)-tensors L,G, F , by the following formulas:

L(X,Y ) =
1
4
(Θ∗

X⊥Y ⊥ + Θ∧∗
X⊥Y ⊥ + Θ∗

Y ⊥X⊥ + Θ∧∗
Y ⊥X⊥),

G(X,Y ) =
1
4
(Θ∗

X⊥Y � + Θ∧∗
X⊥Y � + Θ∧∗

Y ⊥X� + Θ∗
Y ⊥X�),

F (X,Y ) =
1
4
(Θ∗

X�Y ⊥+ Θ∧∗
X�Y ⊥− ΘX�Y ⊥− Θ∧

X�Y ⊥

+Θ∗
Y �X⊥+ Θ∧∗

Y �X⊥− ΘY �X⊥− Θ∧
Y �X⊥), (66)
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where Θ = T−T∗ +T∧ −T∗∧ and for any (1, 2)-tensor P we have 〈P∧∗
X Y,Z〉 =

〈P∧
XZ, Y 〉 = 〈PZX,Y 〉 = 〈P ∗

ZY,X〉, for all X,Y ∈ XM .
The following equalities (and similar formulas for Υα,α̃, Υθ,α̃, etc.) will be

used (here S is a symmetric (0, 2)-tensor, recall Remark 1 for other notational
conventions):

〈 〈α, H̃〉, S〉 =
∑

a,i
〈Ai(Ea), H̃〉S(Ea, Ei),

〈Υα,θ, S〉 =
∑

a,i
S(Ai(Ea), T �

i (Ea)),

Υα,θ̃(X,Y ) =
1
2

∑
a,i

〈X,AiEa〉 〈Y, T̃ �
aEi〉, X ∈ X�, Y ∈ X⊥.

The variations of components of Q in (18) (used in previous sections) are
collected in the following three lemmas; the results for g� variations are dual
to g⊥-parts in results for g�-variations.

Lemma 2. For any g�-variation of metric g ∈ Riem(M, D̃, D) we have

∂t Tr� T = 0, ∂t Tr⊥ T = −
∑

i

(1
2
(Ti + T∧

i )(B�Ei)⊥+(Ti + T∧
i )(B�Ei)�)

,

∂t Tr� T∗ =
∑

a
[T∗

a, B�]Ea,

∂t Tr⊥ T∗ =
∑

i

(
[T∗

i , B
�] Ei − 1

2
(T∗

i + T∗∧
i )(B�Ei)⊥ − (T∗

i + T∗∧
i )(B�Ei)�)

.

Proof. For any variation gt of metric and X,Y ∈ XM we have

(∂tT
∧)XY = (∂tT)Y X = 0, (∂tT

∗)X = [T∗
X , B�] ,

where the first formula is obvious, the second one follows from (19)1, equality
∂tT = 0 and

〈T∗
XB�(Y ), Z〉 = 〈TXZ,B�(Y )〉 = B(TXZ, Y ) = ∂t〈TXZ, Y 〉 = ∂t〈T∗

XY,Z〉
= B(T∗

XY,Z) + 〈∂tT
∗
XY,Z〉 = 〈B�T∗

XY,Z〉 + 〈∂tT
∗
XY,Z〉.

Using the above and (22) completes the proof. �
Lemma 2 is used in the proof of the following

Lemma 3. For g�-variation gt of metric on (M, D̃, g, ∇̄ = ∇ + T) we have

∂t〈T∗,T∧〉 | V = −
∑

B(Ei, Ej)〈T∗
j Ea,TaEi〉

+
∑

B(Ei, Eb)
(
〈T∗

j Ei,TbEj〉 − 〈T∗
aEi,TbEa〉

−〈T∗
bEa,TaEi〉 − 〈T∗

i Ea,TaEb〉
)
, (67)

∂t〈Θ, A〉 = −2
∑

B(Ei, Ej)
(
〈h(Ea, Eb), Ei〉〈Ej ,Ta Eb〉

−1

2
〈h(Ea, Eb), Ej〉(〈ΘaEi + ΘiEa, Eb〉 + 〈ΘbEi + ΘiEb, Ea〉)

)

+
∑

B(Ei, Eb)
(
〈ΘaEj + ΘjEa, Ei〉〈h(Ea, Eb), Ej〉

−〈ΘaEb + ΘbEa, Ec〉〈h(Ea, Ec), Ei〉 + 2 〈h(Ea, Eb), Ej〉〈Ej ,Ta Ei〉
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−1

2
〈(Ã − T̃ �)aEi, Ej〉(〈ΘaEj + ΘjEa, Eb〉 + 〈ΘbEj + ΘjEb, Ea〉)

−2 〈h(Eb, Ea), Ej〉〈Ei,TjEa〉 + 2 〈h(Ea, Eb), Ej〉〈Ea,Tj Ei〉
−2 〈h(Ea, Ec), Ei〉〈Eb,TaEc〉

)
+ div� 〈B|V , G〉 − 〈B|V , div� G〉, (68)

∂t〈Θ, T �〉 = −2
∑

B(Ei, Ej)〈T (Ea, Eb), Ei〉〈Ej ,TaEb〉 +
∑

B(Ei, Eb)
(
〈ΘaEj

+ ΘjEa, Ei〉〈T (Ea, Eb), Ej〉 − 2 〈T (Ea, Ec), Ei〉〈Eb,TaEc〉
−〈ΘaEb + ΘbEa, Ec〉〈T (Ea, Ec), Ei〉 + 2〈T (Ea, Eb), Ej〉〈Ej ,TaEi〉
−2〈T (Eb, Ea), Ej〉〈Ei,TjEa〉 + 2〈T (Ea, Eb), Ej〉〈Ea,TjEi〉

)
, (69)

∂t〈Θ, T̃ �〉 =
∑

B(Ei, Ej)
(
2 〈T̃ (Ek, Ej), Ea〉〈Ek,TaEi〉

−2〈T̃ (Ei, Ek), Ea〉〈Ej ,TaEk〉 + 2〈T̃ (Ek, Ej), Ea〉〈Ea,TkEi〉

−1

2
〈ΘaEj + ΘjEa, Ek〉〈T̃ (Ei, Ek), Ea〉 +

1

2
〈ΘaEk + ΘkEa, Ei〉〈T̃ (Ek, Ej), Ea〉

−1

2
(〈ΘaEi + ΘiEa, Ek〉 − 〈ΘaEk + ΘkEa, Ei)〉〈Ea, T̃ (Ej , Ek)〉

)

+
∑

B(Ei, Eb)
(1

2
(〈ΘaEi+ΘiEa, Ej〉 − 〈ΘaEj+ΘjEa, Ei)〉〈Ea, (A + T �)jEb〉

−2 〈T̃ (Ei, Ej), Ea〉〈Eb,TaEj〉 + 2 〈T̃ (Ej , Ei), Ea〉〈Ea,TjEb〉
+2 〈T̃ (Ej , Ei), Ea〉〈Ej ,TaEb〉 − 2 〈T̃ (Ek, Ej), Eb〉〈Ei,TkEj〉
−〈ΘaEb + ΘbEa, Ej〉〈T̃ (Ei, Ej), Ea〉

)
+ div⊥ 〈B|V , F 〉 − 〈B|V , div⊥ F 〉, (70)

∂t〈Θ, Ã〉 =
∑

B(Ei, Ej)
(1

2
〈ΘkEa + ΘaEk, Ei〉〈h̃(Ek, Ej), Ea〉

−1

2
〈ΘjEa + ΘaEj , Ek〉〈h̃(Ei, Ek), Ea〉 − 2〈h̃(Ei, Ek), Ea〉〈Ej ,TaEk〉

−(〈ΘiEa + ΘaEi, Ek〉 + 〈ΘkEa + ΘaEk, Ei〉)〈h̃(Ej , Ek), Ea〉
+(〈ΘkEa + ΘaEk, Ej〉 + 〈ΘjEa + ΘaEj , Ek)〉〈(Ãa − T̃ �

a)Ei, Ek〉
+2〈h̃(Ek, Ej), Ea〉〈Ek,TaEi〉 + 2〈h̃(Ek, Ej), Ea〉〈Ea,TkEi〉

)
+

∑
B(Ei, Eb)

(
(〈ΘjEa + ΘaEj , Ei〉 + 〈ΘiEa + ΘaEi, Ej)〉〈(Aj + T �

j )Eb, Ea〉

−(〈ΘiEa + ΘaEi, Ej〉 + 〈ΘjEa + ΘaEj , Ei)〉〈(Aj − T �
j )Eb, Ea〉

−2〈h̃(Ei, Ej), Ea〉〈Eb,TaEj〉 + 2〈h̃(Ej , Ei), Ea〉〈Ea,TjEb〉
+2〈h̃(Ej , Ei), Ea〉〈Ej ,TaEb〉 − 2〈h̃(Ek, Ej), Eb〉〈Ei,TkEj〉
−〈ΘbEa + ΘaEb, Ej〉〈h̃(Ei, Ej), Ea〉

)
− 2 div� 〈B, L〉 + 2〈B, div� L〉, (71)

∂t〈 Tr� T, Tr⊥ T∗〉 =
1

2

∑
B(Ei, Ej)

(
〈 Tr� T, T∗

i Ej−T∗
j Ei〉

)

−
∑

B(Ei, Eb)〈 Tr� T, T∗
bEi〉, (72)

∂t〈 Tr� T∗, Tr⊥ T〉 = −1

2

∑
B(Ei, Ej)〈TjEi + TiEj , Tr� T∗〉

+
∑

B(Ei, Eb)
(
〈 Tr⊥ T,T∗

bEi〉 − 〈TbEi + TiEb, Tr� T∗〉
)
, (73)

∂t〈Tr�(T∗ − T), H̃ − H〉 =
∑

B(Ei, Ej)
(

− 1

2
δijdiv((Tr

�(T∗ − T))�)
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−〈H, Ej〉〈Tr�(T∗ − T), Ei〉 − 〈H, Ej〉〈Tr�(T∗ − T), Ei〉 + 〈Tr�T∗, Ej〉〈Ei, H〉
)

+
∑

B(Ei, Eb)
(
〈H̃, Eb〉〈Tr�(T∗ − T), Ei〉 − 〈H, Ei〉〈Tr�(T∗ − T), Eb〉

+ 〈T∗
bEi, H̃ − H〉 + 〈Tr�T∗, Eb〉〈Ei, H〉 + 2〈T �

i Eb,Tr
�(T∗ − T)〉

+ 〈Ei, (Tr
�(T∗ − T))⊥〉〈H̃, Eb〉 − 〈H, Ei〉〈Tr�(T∗ − T), Eb〉

− 〈Tr�T∗, Ei〉〈Eb, H̃〉−〈∇b((Tr
�(T∗−T))⊥), Ei〉−〈ÃbEi−T̃ �

b Ei,Tr
�(T∗−T)〉

)

+div
(
(B�((Tr�(T∗ − T))⊥))� − 1

2
(TrDB)(Tr�(T∗ − T))�)

, (74)

∂t〈 Tr⊥(T∗ − T), H̃ − H〉 =
∑

B(Ei, Ej)
(
〈T∗

j Ei, H̃ − H〉

+〈 Tr⊥ T∗, Ei〉〈H, Ej〉 − 〈H, Ej〉 〈 Tr⊥(T∗ − T), Ei〉

− 1

2
δij div((Tr⊥(T∗ − T))�) − 〈H, Ej〉 〈 Tr⊥(T∗ − T), Ei〉

)

+
∑

B(Ei, Eb)
(
〈H̃, Eb〉〈 Tr⊥(T∗ − T), Ei〉 − 〈H, Ei〉〈 Tr⊥(T∗ − T), Eb〉

+ 〈 Tr⊥ T∗, Eb〉〈H, Ei〉 + 〈T∗
i Eb, H̃ − H〉 − 〈 Tr⊥ T∗, Ei〉〈H̃, Eb〉

+ 2〈T �
i Eb, Tr⊥(T∗−T)〉+〈Ei, Tr⊥(T∗ − T)〉〈H̃, Eb〉−〈∇b((Tr⊥(T∗−T))⊥), Ei〉

−〈ÃbEi − T̃ �
b Ei, Tr⊥(T∗ − T)〉 − 〈H, Ei〉〈 Tr⊥(T∗ − T), Eb〉

)

+ div
(
(B�((Tr⊥(T∗ − T))⊥))� − 1

2
(TrD B)(Tr⊥(T∗ − T))�)

. (75)

Proof. To obtain ∂tΘ, we compute for X,Y,Z ∈ XM :

∂t〈T∗∧
X Y,Z〉 = B(T∗∧

X Y,Z) + 〈(∂tT
∗∧)XY,Z〉.

On the other hand,

∂t〈T∗∧
X Y,Z〉 = ∂t〈T∗

Y X,Z〉 = B(T∗
Y X,Z) + 〈∂t(T∗

Y X), Z〉 = 〈T∗
Y B�X,Z〉,

so

(∂tT
∗∧)XY = T∗

Y B�X − B� T∗
Y X.

From this we obtain

(∂tΘ)XY = −(∂tT
∗)XY − ∂t(T∗∧)XY

= −T∗
XB�Y + B�T∗

XY − T∗
Y B�X + B�T∗

Y X. (76)

We shall use Proposition 3 and the fact that for g⊥-variations B(X,Y ) = 0
for X,Y ∈ X�.
Proof of (67). We have 〈T∗,T∧〉 | V =

∑
〈T∗

aEi,TiEa〉 +
∑

〈T∗
i Ea,TaEi〉, so

∂t〈T∗,T∧〉 | V =
∑ [

B(T∗
aEi,TiEa) + B(T∗

i Ea,TaEi) + 〈T∗
a∂tEi,TiEa〉

+ 〈T∗
aEi,T∂tEi

Ea〉 + 〈T∗
∂tEi

Ea,TaEi〉 + 〈T∗
i Ea,Ta∂tEi〉

+ 〈(∂tT
∗)aEi,TiEa〉 + 〈(∂tT

∗)iEa,TaEi〉
]
.

We compute 8 terms above separately:∑
B(T∗

aEi,TiEa) =
∑ [

B(Ej , Eb)〈T∗
aEi, Eb〉〈TiEa, Ej〉
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+B(Ej , Eb)〈T∗
aEi, Ej〉〈TiEa, Eb〉 + B(Ej , Ek)〈T∗

aEi, Ek〉〈TiEa, Ej〉
]
,∑

B(T∗
i Ea,TaEi) =

∑ [
B(Ej , Eb)〈T∗

i Ea, Eb〉〈TaEi, Ej〉
+B(Ej , Eb)〈T∗

i Ea, Ej〉〈TaEi, Eb〉 + B(Ek, Ej)〈T∗
i Ea, Ej〉〈TaEi, Ek〉

]
,

∑
〈T∗

a∂tEi,TiEa〉= −
∑ [

B(Ei, Eb)〈T∗
aEb,TiEa〉+1

2
B(Ei, Ej)〈T∗

aEj ,TiEa〉
]
,

∑
〈T∗

aEi,T∂tEi
Ea〉= −

∑ [
B(Ei, Eb)〈T∗

aEi,TbEa〉+1
2
B(Ei, Ej)〈T∗

aEi,TjEa〉
]
,

∑
〈T∗

∂tEi
Ea,TaEi〉= −

∑ [
B(Ei, Eb)〈T∗

bEa,TaEi〉+
1
2
B(Ei, Ej)〈T∗

jEa,TaEi〉
]
,

∑
〈T∗

i Ea,Ta∂tEi〉= −
∑ [

B(Ei, Eb)〈T∗
i Ea,TaEb〉+

1
2
B(Ei, Ej)〈T∗

i Ea,TaEj〉
]
,

∑
〈(∂tT

∗)aEi,TiEa〉 =
∑ [

B(Ei, Eb)〈T∗
aEb,TiEa〉 + B(Ei, Ej)〈T∗

aEj ,TiEa〉
−B(Ej , Eb)〈T∗

aEi, Eb〉〈Ej ,TiEa〉 − B(Ei, Ej)〈T∗
aEk, Ej〉〈Ei,TkEa〉

−B(Ej , Eb)〈T∗
aEi, Ej〉〈Eb,TiEa〉

]
,∑

〈(∂tT
∗)iEa,TaEi〉 =

∑ [
B(Ej , Ea)〈T∗

i Ej ,TaEi〉
−B(Ej , Eb)〈T∗

i Ea, Eb〉〈Ej ,TaEi〉 − B(Ej , Eb)〈T∗
i Ea, Ej〉〈Eb,TaEi〉

−B(Ej , Ek)〈T∗
i Ea, Ej〉〈Ek,TaEi〉

]
.

Summing the 8 terms computed above and simplifying, we obtain (67).
Proof of (68). We have

〈Θ,A〉 =
∑

〈ΘaEi + ΘiEa, Eb〉〈h(Ea, Eb), Ei〉.

So

∂t〈Θ,A〉 =
∑ [

B(ΘaEi + ΘiEa, Eb)〈h(Ea, Eb), Ei〉 + 〈ΘaEi

+ΘiEa, Eb〉B(h(Ea, Eb), Ei) + 〈Θa(∂tEi) + Θ∂tEi
Ea, Eb〉〈h(Ea, Eb), Ei〉

+ 〈ΘaEi + ΘiEa, Eb〉〈∂th(Ea, Eb), Ei〉 + 〈ΘaEi + ΘiEa, Eb〉〈h(Ea, Eb), ∂tEi〉
+ 〈(∂tΘ)aEi + (∂tΘ)iEa, Eb〉〈h(Ea, Eb), Ei〉

]
.

We start from the fourth term of the 6 terms above. Then, from [26],
∑

〈ΘaEi + ΘiEa, Eb〉〈∂th(Ea, Eb), Ei〉 =
∑ 1

2
[
〈ΘaEi + ΘiEa, Eb〉

+〈ΘbEi + ΘiEb, Ea〉
](

∇aB(Eb, Ei) − B(h(Ea, Eb), Ei) + B(∇iEa, Eb)
)
.

We have
1
2

∑ (
〈ΘaEi + ΘiEa, Eb〉 + 〈ΘbEi + ΘiEb, Ea〉

)
∇aB(Eb, Ei)

= div� 〈B|V , G〉 − 〈B|V ,div� G〉,
because

〈B|V ,div G〉 =
1
2

∑ (
〈∇aΘ∧∗

i Eb, Ea〉 + 〈∇aΘ∗
i Eb, Ea〉

)
B(Eb, Ei).
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We also have

−
∑ 1

2
(
〈ΘaEi + ΘiEa, Eb〉 + 〈ΘbEi + ΘiEb, Ea〉

)
B(h(Ea, Eb), Ei)

= −1
2

∑
B(Ei, Ej)〈Ej , h(Ea, Eb)〉(〈ΘaEi + ΘiEa, Eb〉 + 〈ΘbEi + ΘiEb, Ea〉),

∑ 1
2
(
〈ΘaEi + ΘiEa, Eb〉 + 〈ΘbEi + ΘiEb, Ea〉

)
B(∇iEa, Eb)

= −1
2

∑
B(Ej , Eb)〈(Ã − T̃ �)aEj , Ei〉(〈ΘaEi+ΘiEa, Eb〉+〈ΘbEi+ΘiEb, Ea〉).

Now we consider other terms of ∂t〈Θ,A〉. For the fifth term we have∑
〈ΘaEi + ΘiEa, Eb〉〈h(Ea, Eb), ∂tEi〉

= −1
2

∑
B(Ei, Ej)〈ΘaEi + ΘiEa, Eb〉〈h(Ea, Eb), Ej〉.

For the first, second and third terms we have∑
B(ΘaEi + ΘiEa, Eb)〈h(Ea, Eb), Ei〉

=
∑

B(Ej , Eb)〈ΘaEi + ΘiEa, Ej〉〈h(Ea, Eb), Ei〉,∑
〈ΘaEi + ΘiEa, Eb〉B(h(Ea, Eb), Ei)

=
∑

B(Ei, Ej)〈ΘaEi + ΘiEa, Eb〉〈h(Ea, Eb), Ej〉,

〈Θa(∂tEi) + Θ∂tEi
Ea, Eb〉 = −1

2

∑
B(Ei, Ej)〈ΘaEj+ΘjEa, Eb〉

−
∑

B(Ei, Ec)〈ΘaEc+ΘcEa, Eb〉.

Using (76), we have∑
〈(∂tΘ)aEi + (∂tΘ)iEa, Eb〉

=
∑[

− 2B(Ei, Ec)〈T∗
aEc, Eb〉 − 2B(Ei, Ej)〈T∗

aEj , Eb〉 + 2B(Ej , Eb)〈T∗
aEi, Ej〉

− 2B(Ej , Ea)〈T∗
i Ej , Eb〉 + 2B(Ej , Eb)〈T∗

i Ea, Ej〉
]
.

Hence, for the sixth term of ∂t〈Θ,A〉, we have∑
〈(∂tΘ)aEi + (∂tΘ)iEa, Eb〉〈h(Ea, Eb), Ei〉

=
∑

[−2B(Ei, Ec)〈h(Ea, Eb), Ei〉〈T∗
aEc, Eb〉

−2B(Ei, Ej)〈h(Ea, Eb), Ei〉〈T∗
aEj , Eb〉 + 2B(Ej , Eb)〈h(Ea, Eb), Ei〉〈T∗

aEi, Ej〉
−2B(Ej , Ea)〈h(Ea, Eb), Ei〉〈T∗

i Ej , Eb〉+2B(Ej , Eb)〈h(Ea, Eb), Ei〉〈T∗
i Ea, Ej〉

]
.

So finally we get (68).
Proof of (69). We have

〈Θ, T �〉 =
∑

〈ΘaEi + ΘiEa, Eb〉〈T (Ea, Eb), Ei〉,
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thus

∂t〈Θ, T �〉 =
∑ [

B(ΘaEi + ΘiEa, Eb)〈T (Ea, Eb), Ei〉
+〈ΘaEi+ΘiEa, Eb〉〈T (Ea, Eb), ∂tEi〉+〈(∂tΘ)aEi+(∂tΘ)iEa, Eb〉〈T (Ea, Eb), Ei〉
+〈ΘaEi+ΘiEa, Eb〉B(T (Ea, Eb), Ei)+〈Θa(∂tEi)+Θ∂tEi

Ea, Eb〉〈T (Ea, Eb), Ei〉
]
,

because ∂tT = 0. We compute 5 terms above separately:
∑

B(ΘaEi + ΘiEa, Eb) =
∑

B(Ej , Eb)〈ΘaEi + ΘiEa, Ej〉〈T (Ea, Eb), Ei〉,∑
〈ΘaEi + ΘiEa, Eb〉B(T (Ea, Eb), Ei)

=
∑

B(Ei, Ej)〈ΘaEj + ΘjEa, Eb〉〈T (Ea, Eb), Ei〉,
∑

〈Θa(∂tEi) + Θ∂tEi
Ea, Eb〉〈T (Ea, Eb), Ei〉 = −1

2

∑
B(Ei, Ej)〈ΘaEj

+ΘjEa, Eb〉〈T (Ea, Eb), Ei〉−
∑

B(Ei, Eb)〈ΘaEb+ΘbEa, Ec〉〈T (Ea, Ec), Ei〉,∑
〈ΘaEi+ΘiEa, Eb〉〈T (Ea, Eb), ∂tEi〉

= −1

2

∑
B(Ei, Ej)〈ΘaEi + ΘiEa, Eb〉〈T (Ea, Eb), Ej〉,∑

〈(∂tΘ)aEi+(∂tΘ)iEa, Eb〉〈T (Ea, Eb), Ei〉

=
∑

[−2B(Ei, Ec)〈T∗
aEc, Eb〉〈T (Ea, Eb), Ei〉

−2B(Ei, Ej)〈T∗
aEj , Eb〉〈T (Ea, Eb), Ei〉 + 2B(Ej , Eb)〈T∗

aEi, Ej〉〈T (Ea, Eb), Ei〉
−2B(Ej , Ea)〈T∗

i Ej , Eb〉〈T (Ea, Eb), Ei〉+2B(Ej , Eb)〈T∗
i Ea, Ej〉〈T (Ea, Eb), Ei〉].

Finally, we get (69).
Proof of (70). We have 〈Θ, T̃ �〉 =

∑
〈ΘaEi + ΘiEa, Ej〉〈T̃ (Ei, Ej), Ea〉. Now we

compute

∂t〈Θ, T̃ �〉
=

∑
[B(ΘaEi+ΘiEa, Ej)〈T̃ (Ei, Ej), Ea〉+〈ΘaEi+ΘiEa, Ej〉B(T̃ (Ei, Ej), Ea)

+〈Θa(∂tEi)+Θ∂tEi
Ea, Ej〉〈T̃ (Ei, Ej), Ea〉+〈ΘaEi+ΘiEa, ∂tEj〉〈T̃ (Ei, Ej), Ea〉

+〈ΘaEi+ΘiEa, Ej〉〈∂tT̃ (Ei, Ej), Ea〉+〈(∂tΘ)aEi+(∂tΘ)iEa, Ej〉〈T̃ (Ei, Ej), Ea〉].
(77)

Let U : D × D → D̃ be a (1, 2)-tensor, given by 〈UiEj , Ea〉 = 1
2 (〈ΘaEi +

ΘiEa, Ej〉 − 〈ΘaEj + ΘjEa, Ei〉). We compute the fifth term in ∂t〈Θ, T̃ �〉:

2
∑

〈ΘaEi + ΘiEa, Ej〉〈∂tT̃ (Ei, Ej), Ea〉 = 2
∑

〈UiEj , Ea〉〈∂tT̃ (Ei, Ej), Ea〉

=
∑

〈UiEj , Ea〉
(
2〈T̃ (−1

2
(B�Ei)⊥, Ej), Ea〉 + 2〈T̃ (Ei,−

1
2
(B�Ej)⊥), Ea〉

+〈∇(B�Ej)�Ei − ∇(B�Ei)�Ej , Ea〉 + 〈∇j((B�Ei)�) − ∇i((B�Ej)�), Ea〉
)
,∑

〈UiEj , Ea〉〈T̃ (−(B�Ei)⊥, Ej), Ea〉 = −
∑

B(Ei, Ek)〈UiEj , T̃ (Ek, Ej)〉
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= −1
2

∑
B(Ei, Ek)

(
〈ΘaEi + ΘiEa, Ej〉 − 〈ΘaEj + ΘjEa, Ei〉

)
〈Ea, T̃ (Ek, Ej)〉,

−
∑

〈UiEj , Ea〉〈∇(B�Ei)�Ej , Ea〉 =
∑

B(Ei, Eb)〈UiEj , (A + T �)jEb〉

=
1
2

∑
B(Ei, Eb)

(
〈ΘaEi+ΘiEa, Ej〉−〈ΘaEj+ΘjEa, Ei〉

)
〈Ea, (A + T �)jEb〉,

−
∑

〈UiEj , Ea〉〈∇i((B�Ej)�), Ea〉

=
∑ [

〈∇i(B(Ej , Ea)U∗
j Ea), Ei〉 − B(Ej , Ea)〈∇iU

∗
j Ea, Ei〉

]
,

where 〈UjEi, Ea〉 = 〈U∗
j Ea, Ei〉. Note that

〈U∗
j Ea, Ei〉 =

1
2

〈Θ∗
aEj + Θ∧∗

a Ej − ΘaEj − Θ∧
a Ej , Ei〉,

thus, using (1,2)-tensor F defined in (66), we can write

−
∑

〈UiEj , Ea〉〈∇i((B�Ej)�), Ea〉 = div⊥(〈B|V , F 〉) − 〈B|V ,div⊥ F 〉.

For the first four terms of ∂t〈Θ, T̃ �〉, see (77), we obtain:

B(ΘaEi + ΘiEa, Ej)=B(Ej , Ek)〈ΘaEi+ΘiEa, Ek〉+B(Ej , Eb)〈ΘaEi+ΘiEa, Eb〉,∑
〈ΘaEi + ΘiEa, Ej〉B(T̃ (Ei, Ej), Ea) = 0,

〈Θa(∂tEi)+Θ∂tEi
Ea, Ej〉 = −1

2
B(Ei, Ek)〈ΘaEk + ΘkEa, Ej〉

−B(Ei, Eb)〈ΘaEb+ΘbEa, Ej〉,

〈ΘaEi + ΘiEa, ∂tEj〉 = −1
2

B(Ej , Ek)〈ΘaEi + ΘiEa, Ek〉

−B(Ej , Eb)〈ΘaEi + ΘiEa, Eb〉.
Using (76), we consider

〈(∂tΘ)aEi + (∂tΘ)iEa, Ej〉 = 〈 − T∗
aB�Ei + B�T∗

aEi − T∗
i B�Ea + B�T∗

i Ea, Ej〉
+〈 − T∗

i B
�Ea + B�T∗

i Ea − T∗
a B�Ei + B�T∗

aEi, Ej〉,
which can be simplified to the following:

〈(∂tΘ)aEi + (∂tΘ)iEa, Ej〉 = −2
∑

k
B(Ei, Ek)〈T∗

aEk, Ej〉

−2
∑

b
B(Ei, Eb)〈T∗

aEb, Ej〉 + 2
∑

k
B(Ek, Ej)〈T∗

aEi, Ek〉

+2
∑

b
B(Ej , Eb)〈T∗

aEi, Eb〉 − 2
∑

k
B(Ek, Ea)〈T∗

i Ek, Ej〉

+2
∑

b
B(Ej , Eb)〈T∗

i Ea, Eb〉 + 2
∑

k
B(Ek, Ej)〈T∗

i Ea, Ek〉.

Hence, the sixth term in ∂t〈Θ, T̃ �〉 is:∑
〈(∂tΘ)aEi + (∂tΘ)iEa, Ej〉〈T̃ (Ei, Ej), Ea〉

=
∑

[−2B(Ei, Ek)〈T̃ (Ei, Ej), Ea〉〈T∗
aEk, Ej〉
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−2B(Ei, Eb)〈T̃ (Ei, Ej), Ea〉〈T∗
aEb, Ej〉 + 2B(Ek, Ej)〈T̃ (Ei, Ej), Ea〉〈T∗

aEi, Ek〉
+2B(Ej , Eb)〈T̃ (Ei, Ej), Ea〉〈T∗

aEi, Eb〉 − 2B(Ek, Ea)〈T̃ (Ei, Ej), Ea〉〈T∗
i Ek, Ej〉

+2B(Ej , Eb)〈T̃ (Ei, Ej), Ea〉〈T∗
i Ea, Eb〉+2B(Ek, Ej)〈T̃ (Ei, Ej), Ea〉〈T∗

i Ea, Ek〉].

Finally, we get (70).
Proof of (71). We have

〈Θ, Ã〉 =
∑

〈ΘiEa + ΘaEi, Ej〉〈h̃(Ei, Ej), Ea〉.

Hence

∂t〈Θ, Ã〉
=

∑
[B(ΘiEa + ΘaEi, Ej)〈h̃(Ei, Ej), Ea〉+〈ΘiEa+ΘaEi, Ej〉B(h̃(Ei, Ej), Ea)

+〈Θ∂tEi
Ea+Θa(∂tEi), Ej〉〈h̃(Ei, Ej), Ea〉+〈ΘiEa+ΘaEi, ∂tEj〉〈h̃(Ei, Ej), Ea〉

+〈ΘiEa+ΘaEi, Ej〉〈∂th̃(Ei, Ej), Ea〉+〈(∂tΘ)iEa+(∂tΘ)aEi, Ej〉〈h̃(Ei, Ej), Ea〉].

We shall denote by (h) the fifth of the above 6 terms, and write it as sum of
seven terms (h1) to (h7):

∑
〈ΘiEa + ΘaEi, Ej〉〈∂th̃(Ei, Ej), Ea〉

=
∑ [

− 1

2
(〈ΘiEa + ΘaEi, Ej〉 + 〈ΘjEa + ΘaEj , Ei〉)∇aB(Ei, Ej)

−1

2
(〈ΘiEa + ΘaEi, Ej〉 + 〈ΘjEa + ΘaEj , Ei〉)〈h̃(B�Ei, Ej) + h̃(Ei, B

�Ej), Ea〉

−1

2

(
〈ΘiEa+ΘaEi, Ej〉+〈ΘjEa + ΘaEj , Ei〉

)
〈∇i((B

�Ej)
�)+∇j((B

�Ei)
�), Ea〉

−1

2
(〈ΘiEa + ΘaEi, Ej〉 + 〈ΘjEa + ΘaEj , Ei〉)〈∇(B�Ej)�Ei + ∇(B�Ei)�Ej , Ea〉

+
1

2
(〈ΘiEa + ΘaEi, Ej〉 + 〈ΘjEa + ΘaEj , Ei〉)(∇iB(Ej , Ea) + ∇jB(Ei, Ea))

−1

2
(〈ΘiEa + ΘaEi, Ej〉 + 〈ΘjEa + ΘaEj , Ei〉)(B(∇iEa, Ej) + B(∇jEa, Ei))

+
1

2
(〈ΘiEa + ΘaEi, Ej〉 + 〈ΘjEa + ΘaEj , Ei〉)(B(∇aEi, Ej) + B(∇aEj , Ei))

]
.

We have for the term (h1) above:

−1
2

∑
(〈ΘiEa + ΘaEi, Ej〉 + 〈ΘjEa + ΘaEj , Ei〉)∇aB(Ei, Ej)

=
∑

B(Ei, Ej)〈∇a(Θ∗
i Ej + Θ∧∗

i Ej), Ea〉

−
∑

〈∇a

(
B(Ei, Ej)(Θ∗

i Ej + Θ∧∗
i Ej)

)
, Ea〉,

which can be written as

−1
2

∑
(〈ΘiEa + ΘaEi, Ej〉 + 〈ΘjEa + ΘaEj , Ei〉)∇aB(Ei, Ej)

= −2 div� 〈B,L〉 + 2〈B,div� L〉.
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For (h2):

−1
2

∑
(〈ΘiEa+ΘaEi, Ej〉+〈ΘjEa+ΘaEj , Ei〉)〈h̃(B�Ei, Ej)+h̃(Ei, B

�Ej), Ea〉

= −
∑

B(Ei, Ek)(〈ΘiEa + ΘaEi, Ej〉 + 〈ΘjEa + ΘaEj , Ei〉)〈h̃(Ek, Ej), Ea〉.

Note that for (h3) we can assume ∇XEa ∈ D for all X ∈ TM at a point,
where we compute the formula, and hence

−1
2

∑
(〈ΘiEa+ΘaEi, Ej〉+〈ΘjEa+ΘaEj , Ei〉)〈∇i((B�Ej)�)+∇j((B�Ei)�), Ea〉

= −
∑

(〈ΘiEa + ΘaEi, Ej〉 + 〈ΘjEa + ΘaEj , Ei〉)∇iB(Ea, Ej).

For (h5), analogously,

1
2

∑
(〈ΘiEa + ΘaEi, Ej〉 + 〈ΘjEa + ΘaEj , Ei〉)(∇iB(Ej , Ea) + ∇jB(Ei, Ea))

=
∑

(〈ΘiEa + ΘaEi, Ej〉 + 〈ΘjEa + ΘaEj , Ei〉)∇iB(Ej , Ea),

so (h3)+(h5)=0. For (h4) we have

−1
2

∑
(〈ΘiEa+ΘaEi, Ej〉+〈ΘjEa+ΘaEj , Ei〉)〈∇(B�Ej)�Ei + ∇(B�Ei)�Ej , Ea〉

=
∑

B(Ej , Eb)(〈ΘiEa + ΘaEi, Ej〉 + 〈ΘjEa + ΘaEj , Ei〉)〈(Ai + T �
i )Eb, Ea〉.

For (h6) term we have

−1
2

∑
(〈ΘiEa+ΘaEi, Ej〉 + 〈ΘjEa+ΘaEj , Ei〉)(B(∇iEa, Ej) + B(∇jEa, Ei))

=
∑

B(Ek, Ej)(〈ΘiEa + ΘaEi, Ej〉 + 〈ΘjEa + ΘaEj , Ei〉)〈(Ãa − T̃ �
a)Ek, Ei〉,

and (h7) term can be written as

1
2

∑
(〈ΘiEa + ΘaEi, Ej〉 + 〈ΘjEa + ΘaEj , Ei〉)(B(∇aEi, Ej) + B(∇aEj , Ei))

= −
∑

B(Eb, Ei)(〈ΘiEa+ΘaEi, Ej〉 + 〈ΘjEa+ΘaEj , Ei〉)〈(Aj − T �
j )Eb, Ea〉.

Now we compute other terms of ∂t〈Θ, Ã〉. Recall that those 6 terms are

∂t〈Θ, Ã〉 =
∑ [

B(ΘiEa + ΘaEi, Ej)〈h̃(Ei, Ej), Ea〉

+ 〈ΘiEa+ΘaEi, Ej〉B(h̃(Ei, Ej), Ea)+〈Θ∂tEi
Ea+Θa(∂tEi), Ej〉〈h̃(Ei, Ej), Ea〉

+ 〈ΘiEa + ΘaEi, ∂tEj〉〈h̃(Ei, Ej), Ea〉 + 〈ΘiEa + ΘaEi, Ej〉〈∂th̃(Ei, Ej), Ea〉
+ 〈(∂tΘ)iEa + (∂tΘ)aEi, Ej〉〈h̃(Ei, Ej), Ea〉

]
.

For the first and second terms of the above ∂t〈Θ, Ã〉 we have
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B(ΘiEa + ΘaEi, Ej)

=
∑

B(Ej , Ek)〈ΘiEa + ΘaEi, Ek〉 +
∑

B(Ej , Eb)〈ΘiEa + ΘaEi, Eb〉,∑
〈ΘiEa + ΘaEi, Ej〉B(h̃(Ei, Ej), Ea) = 0,

because B = 0 on D̃ × D̃. For the third and fourth terms we have:

〈Θ∂tEi
Ea+Θa(∂tEi), Ej〉

=
∑

[−1
2

B(Ei, Ek)〈ΘkEa + ΘaEk, Ej〉 − B(Ei, Eb)〈ΘbEa + ΘaEb, Ej〉],

〈ΘiEa + ΘaEi, ∂tEj〉

=
∑

[−1
2

B(Ej , Ek)〈ΘiEa + ΘaEi, Ek〉 − B(Ej , Eb)〈ΘiEa + ΘaEi, Eb〉].

For the sixth term, note that∑
〈(∂tΘ)a Ei + (∂tΘ)iEa, Ej〉〈h̃(Ei, Ej), Ea〉

=
∑

[−2B(Ei, Ek)〈h̃(Ei, Ej), Ea〉〈T∗
aEk, Ej〉

− 2B(Ei, Eb)〈h̃(Ei, Ej), Ea〉〈T∗
aEb, Ej〉 + 2B(Ek, Ej)〈h̃(Ei, Ej), Ea〉〈T∗

aEi, Ek〉
+ 2B(Ej , Eb)〈h̃(Ei, Ej), Ea〉〈T∗

aEi, Eb〉 − 2B(Ek, Ea)〈h̃(Ei, Ej), Ea〉〈T∗
i Ek, Ej〉

+ 2B(Ej , Eb)〈h̃(Ei, Ej), Ea〉〈T∗
i Ea, Eb〉+2B(Ek, Ej)〈h̃(Ei, Ej), Ea〉〈T∗

i Ea, Ek〉].

Finally, we get (71).
Proof of (72) and (73) is straightforward.
Proof of (74) and (75). The variation formulas for these terms appear in the
following part of Q in (18):

−〈 Tr� T − Tr⊥ T + Tr⊥ T∗ − Tr� T∗, H̃ − H〉
= 〈 Tr�(T∗ − T), H̃ − H〉 + 〈 Tr⊥(T∗ − T), H̃ − H〉.

We have

∂t〈 Tr�(T∗ − T), H̃ − H〉 = B(Tr⊥(T∗ − T), H̃ − H)

+
∑

〈(∂tT
∗)kEk, H̃ − H〉 + 〈 Tr⊥(T∗ − T), ∂tH̃〉 − 〈Tr⊥(T∗ − T), ∂tH〉,

B(Tr�(T∗ − T), H̃ − H) =
∑

B(Ei, Eb)
(
〈H̃, Eb〉〈 Tr⊥(T∗ − T), Ei〉

−〈H, Ei〉〈 Tr⊥(T∗ − T), Eb〉
)

−
∑

B(Ei, Ej)〈H, Ej〉〈 Tr⊥(T∗ − T), Ei〉.

Then we have∑
〈(∂tT

∗)aEa, H̃ − H〉=
∑

B(Ei, Eb)
(
〈T∗

bEi, H̃ − H〉+〈 Tr� T∗, Eb〉〈Ei, H〉

−〈 Tr� T∗, Ei〉〈Eb, H̃〉
)

+
∑

B(Ei, Ej)〈 Tr� T∗, Ej〉〈Ei, H〉,∑
〈(∂tT

∗)iEi, H̃ − H〉 =
∑

B(Ei, Ej)
(
〈T∗

j Ei, H̃ − H〉 + 〈 Tr⊥ T∗, Ei〉〈H, Ej〉
)

+
∑

B(Ei, Eb)(〈T∗
i Eb, H̃ − H〉 + 〈 Tr⊥ T∗, Eb〉〈H, Ei〉 − 〈 Tr⊥ T∗, Ei〉〈H̃, Eb〉).
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Next, we shall use equations (20) and (21) from [26]:

〈∂tH̃,X〉 = 〈 2〈θ,X�〉, B〉 − 1
2

X�(TrD B),

〈∂tH,X〉 = div(B�(X⊥))� + 〈B�(X⊥), H̃〉 − 〈B�(X⊥),H〉 − 〈δ̃X⊥ , B〉
−〈〈α̃ − θ̃, X⊥〉, B〉 − B(H,X�).

We have

〈 Tr�(T∗ − T), ∂tH̃〉 = 2
∑

B(Ei, Eb)〈T �
i Eb, Tr⊥(T∗ − T)〉

−1

2

∑
B(Ei, Ej)〈Ei, Ej〉 div((Tr⊥(T∗−T))�)− div(

1

2
(TrD B)(Tr⊥(T∗−T))�).

Finally,

〈∂tH, Tr�(T∗ − T)〉 = div((B�((Tr�(T∗ − T))⊥))�)

+
∑

[B(Ei, Eb)〈Ei, Tr�(T∗−T)〉〈H̃, Eb〉 − B(Ei, Ej)〈H, Ej〉〈 Tr�(T∗ − T), Ei〉

−B(Ei, Eb)〈H, Ei〉〈 Tr�(T∗ − T), Eb〉 − B(Ei, Eb)〈∇b((Tr�(T∗ − T))⊥), Ei〉
−B(Ei, Eb)〈(Ãb − T̃ �

b )Ei, Tr�(T∗ − T)〉 − B(Ei, Eb)〈H, Ei〉〈 Tr�(T∗−T), Eb〉],
〈∂tH, Tr⊥(T∗ − T)〉 = div((B�((Tr⊥(T∗ − T))⊥))�)

+
∑

[B(Ei, Eb)〈Ei, Tr⊥(T∗−T)〉〈H̃, Eb〉 − B(Ei, Ej)〈H, Ej〉〈 Tr⊥(T∗ − T), Ei〉

−B(Ei, Eb)〈H, Ei〉〈 Tr⊥(T∗ − T), Eb〉 − B(Ei, Eb)〈∇b((Tr⊥(T∗ − T))⊥), Ei〉
−B(Ei, Eb)〈(Ãb − T̃ �

b )Ei, Tr⊥(T∗ − T)〉 − B(Ei, Eb)〈H, Ei〉〈 Tr⊥(T∗−T), Eb〉].

Summing ∂t〈 Tr�(T∗ − T), H̃ − H〉 and ∂t〈 Tr⊥(T∗ − T), H̃ − H〉, we obtain
(74) and (75). �

We have the following results for critical metric connections and g⊥-
variations (see Definition 2), that can be considered as a special case of Lemma 3
(see (46) for definitions of tensors χ and φ, that appear below).

Lemma 4. Let D̃ and D be both totally umbilical distributions on (M, g). Let
gt be a g⊥-variation of metric g and ∇ +T be a metric connection: T∗ = −T.
If T is a critical point for (6) with fixed g, then, up to divergences of compactly
supported vector fields, the following formulas hold:

∂t〈 Tr�(T∗ − T), H̃ − H〉 = 〈B, 3H� � (Tr� T)⊥�

+
p − 1

p
(div H̃)g⊥〉, (78a)

∂t〈 Tr⊥(T∗ − T), H̃−H〉 = 〈B, 3
n−1
n

H� ⊗ H� − 1
2
〈φ, H̃−H〉

+ div((Tr⊥ T)�)g⊥〉, (78b)

∂t〈 Tr� T,Tr⊥ T∗〉 = 0, (78c)

∂t〈 Tr� T∗,Tr⊥ T〉 = 〈B,
1
2

〈 φ,Tr� T 〉 〉, (78d)
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∂t〈Θ,A〉 = 〈B,
2
n

H� � (Tr� T)⊥�〉, (78e)

∂t〈Θ, Ã〉 = 〈B,
1
p

〈φ, H̃〉 + 2div L� + 8χ + 8T̃ �〉, (78f)

∂t〈Θ, T �〉 = 〈B, ΥT,T 〉, (78g)

∂t〈Θ, T̃ �〉 = 〈B, 12 T̃ � + 2χ〉, (78h)

∂t〈T∗,T∧〉 | V = 〈B,
1
2

ΥT,T − 2T̃ � − χ〉. (78i)

Proof. First we adapt the results of Lemma 3 to the case of g⊥-variation and
totally umbilical distributions D̃ and D. Then we shall use the Euler–Lagrange
equations (31a–j), which for a metric connection have the following form:

(TV U − TU V )� = 2 T̃ (U, V ), (79a)

〈(TU − T �
U )X, Y 〉 = 0, (79b)

(Tr⊥ T)⊥ =
n − 1

n
H, (79c)

(TY X − TX Y )⊥ = 2T (X,Y ), (79d)

〈(TX − T �
X)U, V 〉 = 0, (79e)

(Tr� T)� =
p − 1

p
H̃, (79f)

for all X,Y ∈ D̃ and U, V ∈ D, and

(Tr⊥ T)� = −H̃ for n > 1, (Tr� T)⊥ = −H for p > 1.

The last two equations require special assumptions on dimensions of the
distributions—we shall not use them in this proof. For metric connections
we also have

Θ = Θ∧ = 2 (T + T∧).

For metric connections, g⊥-variations of metric and totally umbilical dis-
tributions, using (79f), we obtain

∂t〈 Tr�(T∗ − T), H̃ − H〉 =
∑

B(Ei, Ej)
(
3〈H, Ej〉〈 Tr� T, Ei〉

+
p − 1

p
δij div H̃

)
+ div

(
p − 1

p
(TrD B)H̃ − 2(B�(Tr� T)⊥)�

)
.

Writing divergence of compactly supported vector field as div Z, we finally get

∂t〈 Tr�(T∗ − T), H̃ − H〉

=
∑

B(Ei, Ej)
(

3 〈H, Ej〉〈 Tr� T, Ei〉 +
p − 1

p
δij div H̃

)
+ div Z.

Without explicitly using the orthonormal frame, we can write the above as
(78a).
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For metric connections, g⊥-variations of metric and totally umbilical dis-
tributions, using (79c), we have:

∂t〈 Tr⊥(T∗ − T), H̃ − H〉 =
∑

B(Ei, Ej)
(

3
n − 1

n
〈H, Ej〉〈H, Ei〉

−1
2

〈TjEi, H̃ − H〉 − 1
2

〈TiEj , H̃ − H〉 + δij div((Tr⊥ T)�)
)

+ div
(
(TrD B)(Tr⊥ T)� − 2(B�(Tr⊥ T)⊥)�)

.

Writing divergence of compactly supported vector field as div Z, we finally get

∂t〈 Tr⊥(T∗ − T), H̃ − H〉 =
∑

B(Ei, Ej)
(

3
n − 1

n
〈H, Ej〉〈H, Ei〉

−1
2

〈TjEi + TiEj , H̃ − H〉 + δij div((Tr⊥ T)�)
)

+ div Z.

Without explicitly using the orthonormal frame, we can write the above as
(78b).

For metric connections, g⊥-variations of metric and totally umbilical dis-
tributions:

∂t〈 Tr� T,Tr⊥ T∗〉 =
1
2

∑
B(Ei, Ej)〈 Tr� T, T∗

i Ej − T∗
jEi〉 = 0,

as B(Ei, Ej) is symmetric and T∗
i Ej − T∗

jEi is antisymmetric in i, j.
For metric connections, g⊥-variations of metric and totally umbilical dis-

tributions:

∂t〈 Tr� T∗,Tr⊥ T〉 =
1
2

∑
B(Ei, Ej)〈φ(Ei, Ej),Tr� T〉.

Without explicitly using the orthonormal frame, we can write the above as
(78d).

For metric connections, g⊥-variations of metric and totally umbilical dis-
tributions, using (79b), we have:

∂t〈Θ,A〉 =
∑

B(Ei, Ej)
(
2 〈Ej ,H/n〉〈 Tr� T, Ei〉 − 4〈Ej ,H/n〉〈T �

i Ea, Ea〉
)

= 2
∑

B(Ei, Ej)〈Ej ,H/n〉〈 Tr� T, Ei〉.

Without explicitly using the orthonormal frame, we can write the above as
(78e).

For metric connections, g⊥-variations of metric and totally umbilical dis-
tributions:

∂t〈Θ, Ã〉 = −2 div� 〈B,L〉 + 2〈B,div� L〉
+ 4

∑
B(Ei, Ej)

(
〈TkEi + TiEk, Ea〉〈T̃ �

aEj , Ek〉 − 2〈TjEa, Ei〉〈H̃/p,Ea〉
)
.

Using symmetry B(X,Y ) = B(Y,X) for X,Y ∈ X⊥, we obtain:
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∂t〈Θ, Ã〉 = −2 div� 〈B,L〉 + 2〈B,div� L〉

+
∑

B(Ei, Ej)
[ 1

p
〈TjEi + TiEj , H̃〉 + 4〈TkEi + TiEk, T̃ (Ej , Ek)〉

]
.

Note that

〈TkEi + TiEk, T̃ (Ej , Ek)〉 = 〈TkEa, Ei〉〈T̃ �
aEk, Ej〉 − 〈TiEa, T̃ �

aEj〉.

By the above, we can write ∂t〈Θ, Ã〉 as

∂t〈Θ, Ã〉 = −2 div� 〈B,L〉 + 〈B,
1
p
〈φ, H̃〉 + 2div� L − 4ψ

+ 4
∑

a,j
(TjEa)⊥� � (T̃ �

aEj)⊥�〉, (80)

where

ψ(X,Y ) =
1
2

∑
a

(
〈TX⊥ Ea, T̃ �

a(Y ⊥)〉 + 〈TY ⊥ Ea, T̃ �
a(X⊥)〉

)
.

We claim that ψ can be written in terms of tensor χ introduced in (46). Indeed,
for arbitrary symmetric (0,2)-tensor B : D × D → R we have

〈B,ψ〉 = 〈B, −2T̃ � −
∑

a,j
(TjEa)⊥� � (T̃ �

aEj)⊥�〉.

Using (46), we obtain

ψ = −2 T̃ � − χ. (81)

Using the following computation:

〈B,div� L〉 = 〈B,div� L� + div� L⊥〉
= 〈B,div L�〉 + 〈B, 〈L�, H̃〉〉 − 〈B, 〈L⊥,H〉〉,

div� 〈B,L〉 = div 〈B,L〉 − div⊥ 〈B,L〉
= div 〈B,L〉 + 〈B, 〈L�, H̃〉〉 − div⊥ 〈B,L⊥〉,

we obtain

−div� 〈B,L〉 + 〈B,div� L〉 = −div 〈B,L�〉 + 〈B,div L�〉,
which, together with (80)–(81), up to divergence of a compactly supported
vector field, yields (78f).

For metric connections, g⊥-variations of metric and totally umbilical dis-
tributions we have

∂t〈Θ, T �〉 = 2
∑

B(Ei, Ej)〈T (Ea, Eb), Ei〉〈TaEj , Eb〉.

Using (79d), we obtain:

∂t〈Θ, T �〉 = 2
∑

B(Ei, Ej)〈T (Ea, Eb), Ei〉〈T (Ea, Eb), Ej〉.

Without explicitly using the orthonormal frame, we can write the above as
(78g).
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For metric connections, g⊥-variations of metric and totally umbilical dis-
tributions we have

∂t〈Θ, T̃ �〉= −
∑

B(Ei, Ej)〈T̃ (Ei, Ek), Ea〉(4〈TaEj + TjEa, Ek〉 − 2〈TkEa, Ej〉).

Using (79e), we obtain:

∂t〈Θ, T̃ �〉=
∑

B(Ei, Ej)(4〈(T̃ �
a)2Ej , Ei〉−4〈TjEa, T̃ �

aEi〉−2〈T̃ �
aEj , Ei〉〈TjEa, Ek〉).

Next, we have

∂t〈Θ, T̃ �〉 = 〈B, 4T̃ � − 4ψ − 2
∑

a,j
(TjEa)⊥� � (T̃ �

aEj)⊥�〉.

For metric connections, g⊥-variations of metric and totally umbilical distribu-
tions we have:

∂t〈T∗,T∧〉 | V =
∑

B(Ei, Ej)〈TjEa,TaEi〉.

Using (79b,d,e), we obtain the following:

∂t〈T∗,T∧〉 | V =
∑

B(Ei, Ej)
(
〈T (Ea, Eb), Ej〉〈T (Ea, Eb), Ei〉 + 〈TjEa, T̃ �

aEi〉
)
.

We can write, ∂t〈T∗,T∧〉 | V = 〈B, 1
2 ΥT,T + ψ〉 , which, together with (81),

yields (78i). �

Lemma 5. Let gt be a g⊥-variation of g ∈ Riem(M, D̃,D), let T be the contor-
sion tensor of a metric connection that is critical for (6) with fixed g, and let D̃
and D be totally umbilical distributions. Then, up to divergences of compactly
supported vector fields, for Q given by (18) we have

−∂tQ =

〈〈
φ,

p + 2

2 p
H̃−1

2
H+

1

2
Tr� T

〉
−2 div φ�+7χ+

3n + 2

n
H� � (Tr� T)⊥�

− div((Tr⊥ T)�) g⊥ +
p − 1

p
(div H̃)g⊥−3

n − 1

n
H� ⊗ H�+2T̃ �+

3

2
ΥT,T , B

〉
.

Proof. Recall that

L(X,Y ) =
1
4
(Θ∗

X⊥Y ⊥ + Θ∧∗
X⊥Y ⊥ + Θ∗

Y ⊥X⊥ + Θ∧∗
Y ⊥X⊥),

and let L⊥(X,Y ) = (L(X,Y ))⊥ and L�(X,Y ) = (L(X,Y ))� for X,Y ∈ XM .
We have L = L� + L⊥. Note that 〈L⊥(X,Y ), Z〉 = 〈L⊥(X⊥, Y ⊥), Z⊥〉 and
for metric connections

〈T∧∗
X Y,Z〉 = 〈T∧

XZ, Y 〉 = 〈TZX,Y 〉 = −〈TZY,X〉
= −〈T∧

Y Z,X〉 = −〈T∧∗
Y X,Z〉 = −〈T∧∗∧

X Y,Z〉,
for all X,Y,Z ∈ XM , so

4〈L(X,Y ), Z) = 〈Z,Θ∗
XY + Θ∧∗

X Y + Θ∗
Y X + Θ∧∗

Y X〉 = −4〈Z,TXY + T∧
XY 〉.

Hence, L⊥ = −(T + T∧)⊥ and L� = −(T + T∧)� and for metric connections
we obtain L = −φ, see (46), which together with Lemma 4 yields the claim.

�
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Lemma 6. Let ∇̄ be a semi-symmetric connection on (M, g,D). Then:
a) Formula (18) reduces to

Q = (n − p)〈U,H − H̃〉 + np〈U,U〉 − n〈U⊥, U⊥〉 − p〈U�, U�〉. (82)

b) For any g�-variation of metric g and Q given by (82), up to divergences of
compactly supported vector fields we have

∂tQ(gt)| t=0 = 〈 B, −(n − p)δ̃U⊥ − (n − p)〈α̃ − θ̃, U⊥〉 + 2(p − n)〈θ, U�〉

−1
2

(p − n)(div U�)g⊥ + n(p − 1)U⊥� ⊗ U⊥�

+2p(n − 1)U�� � U⊥� 〉. (83)

Proof. a) From (60) we obtain

Tr� T =
∑

a
〈U,Ea〉Ea −

∑
a
〈Ea, Ea〉U = U� − nU. (84)

Similarly, Tr⊥ T = U⊥ − p U . We also have

TaEi = 〈U, Ei〉Ea, TiEa = 〈U,Ea〉Ei, (85)

so we obtain 〈T,T∧〉|V = 0. Next, we have

〈 Tr� T − Tr⊥ T,H − H̃〉 = (p − n − 1)〈U⊥,H〉 + (n − p − 1)〈U�, H̃〉.

We have (T + T∧)iEa = 〈U,Ea〉Ei + 〈U, Ei〉Ea. Also

〈 Tr� T,Tr⊥ T〉 = np〈U,U〉 − n〈U⊥, U⊥〉 − p〈U�, U�〉.

Thus, 〈T + T∧, Ã − T̃ � + A − T �〉 = 〈H + H̃, U〉. b) By [26, Lemma 3], we
have:

〈U⊥, ∂tU
⊥〉 = 〈U⊥, −(B�(U⊥))�〉 = 0,

〈U�, ∂tU
�〉 = 〈U�, B�(U⊥)〉 = 〈B, U�� � U⊥� 〉.

Similarly, by [26, Eq. (20) and Eq. (21)], we have

〈∂tH̃, U〉 = div((TrD B)U�) + 〈B, 2〈θ, U�〉 − 1
2

(div U�)g⊥〉,

〈∂tH,U〉 = div((B�(U⊥))�) + 〈B,U⊥ � (H̃ − H) − U� � H − δ̃U⊥

−〈α̃ − θ̃, U⊥〉 〉.

Omitting divergences of compactly supported vector fields and using B|D̃×D̃ =
0, we obtain

∂tQ(gt)| t=0 = (n − p)B(U,H − H̃) + (n − p)〈U, ∂tH〉 − (n − p)〈∂tH̃, U〉
+np B(U,U) − nB(U⊥, U⊥) − 2n〈∂tU

⊥, U〉 − pB(U�, U�) − 2p〈∂tU
�, U�〉,

that reduces to (83). �
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