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Abstract. It is well known that the interpolation error for |x|α , α > 0 in
L∞ [−1, 1] by Lagrange interpolation polynomials based on the zeros of
the Chebyshev polynomials of first kind can be represented in its limiting
form by entire functions of exponential type. In this paper, we estab-
lish new asymptotic bounds for these quantities when α tends to infinity.
Moreover, we present some explicit constructions for near best approx-
imation polynomials to |x|α , α > 0 in the L∞ norm which are based
on the Chebyshev interpolation process. The resulting formulas possi-
bly indicate a general approach towards the structure of the associated
Bernstein constants.
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1. The Bernstein Constants and Polynomials of Best
Approximation

Let α > 0 be not an even integer. Starting in year 1913 for the case α = 1,
and later in 1938 for the general case α > 0, Bernstein [1,2] established the
existence of the limit

Δ∞,α = lim
n→∞ nαEn (|x|α , L∞ [−1, 1]) ,

where

En (f, Lp [a, b]) = inf
{

‖f − q‖Lp[a,b] : deg (q) ≤ n
}
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denotes the error in best Lp approximation of a function f on the interval
[a, b] by polynomials of degree less or equal n. The proofs in [1,2] are highly
difficult and long, missing many non-trivial technical details. In his 1938 paper,
Bernstein made essential use of the homogeneity property of |x|α, namely that
for c > 0 one has |cx|α = cα |x|α. This enabled Bernstein to relate the uniform
best approximating error on [−1, 1] to that on [−n, n]. Denote by P ∗

n the best
uniform approximation polynomial of order n to |x|α on the interval [−1, 1].
Then, by the homogeneity property, Bernstein established a representation for
the quantities Δ∞,α in form of the approximation error on the real line for
|x|α by entire functions of exponential type, namely

Δ∞,α = lim
n→∞ nαEn (|x|α , L∞ [−1, 1])

= lim
n→∞ En (|x|α , L∞ [−n, n])

= lim
n→∞

∥∥∥|x|α − nαP ∗
n

( ·
n

)∥∥∥
L∞[−n,n]

= ‖|x|α − H∗
α‖L∞(R)

= inf
{

‖|x|α − H‖L∞(R) : H is entire of exponential type ≤ 1
}

. (1.1)

Recall that an entire function f is of exponential type A ≥ 0 means that for
each ε > 0 there is z0 = z0 (ε), such that

|f (z)| ≤ exp (|z| (A + ε)) , ∀z ∈ C : |z| ≥ |z0| . (1.2)

Moreover, A is taken to be the infimum over all possible numbers for which
(1.2) holds. In addition, uniformly on compact subsets we have

lim
n→∞ nαP ∗

n

(x

n

)
= H∗

α (x) , (1.3)

and there is exactly one entire function H of exponential type less or equal
1 which minimizes (1.1). The elegant formulation which introduces now func-
tions of exponential type extends to spaces other than L∞. Ganzburg [3] and
Lubinsky [5] have shown that for all 1 ≤ p ≤ ∞ positive constants Δp,α exists,
where Δp,α is defined by

Δp,α = lim
n→∞ nα+ 1

p En (|x|α , Lp [−1, 1])

= inf
{

‖|x|α − H‖Lp(R)
: H is entire of exponential type ≤ 1

}
.

From now on Δp,α are called the Bernstein constants. It is worth important
to note that the Bernstein constants are only known for p = 1 [7] and p = 2
[11], whereas for p = ∞ no single value of Δ∞,α is known. For details on
the Bernstein constants, conjectures and numerical computations, we refer the
reader to [5,6,8,12,14,15].
Now, turning back to the quantities Δ∞,α we recall that for each integer n
the best approximating polynomial P ∗

n can be represented as an interpolating
polynomial with unknown consecutive nodes in [−1, 1]. Since |x|α is an even
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function a standard argument allows us to restrict ourselves to interpolation
polynomials of even order n. Thus, by starting with some well chosen interpo-
lation polynomials and subsequently analyzing their asymptotic character one
might hope to find some explicit expressions for the limiting approximation
error which possibly can be connected to the Bernstein constants themselves.
To this end, we collect some important results for asymptotic relations and
their corresponding entire functions of exponential type with respect to cer-
tain interpolation polynomials for |x|α.
Let α > 0 and n ∈ N and define the modified Chebyshev interpolation system
by

x
(1)
0,2n = 0,

x
(1)
j,2n = cos

(j − 1/2) π

2n
, j = 1, 2, . . . , 2n.

Obviously, the x
(1)
j,2n are the zeros of the Chebyshev polynomial T2n of first

kind, defined by Tn (x) = cos (n arccos x) at least for j = 1, 2, . . . , 2n and x
(1)
0,2n

is a further additional interpolation node. On the other hand, we take the zeros
of T2n+1, defined by

x
(2)
j,2n+1 = cos

(j − 1/2) π

2n + 1
, j = 1, 2, . . . , 2n + 1.

Note that here x
(2)
n+1,2n+1 = 0 is always a zero of the corresponding T2n+1.

Thus, the second node system is apparently the more natural choice in regard
to the first system. However, as we will see later, the interpolation process
appears here to be more complicated. To proceed further, denote by P

(1)
2n and

P
(2)
2n the corresponding unique interpolation polynomials of order 2n for |x|α.

From Ganzburg ([3], Formulas 2.1, 2.7 and 4.14) we have

Theorem 1.1.

lim
n→∞ (2n)α

∥∥∥|x|α − P
(1)
2n

∥∥∥
L∞[−1,1]

=
∥∥∥|x|α − G(1)

α

∥∥∥
L∞[0,∞)

=
2
π

∣∣∣sin πα

2

∣∣∣ sup
x∈[0,∞)

∫ ∞

0

tα−1

cosh (t)
x2 |cos x|
x2 + t2

dt

=
2
π

∣∣∣sin πα

2

∣∣∣
∫ ∞

0

tα−1

cosh (t)
dt,

where

G(1)
α (x) = |x|α − 2

π
sin

πα

2

∫ ∞

0

tα−1

cosh (t)
x2 cos x

x2 + t2
dt

is an entire function of exponential type 1 that interpolates |x|α at the nodes{(
k + 1

2

)
π : k ∈ Z

}∪{0}. Furthermore, uniformly on compact subsets in [0,∞)
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we have

lim
n→∞ (2n)α

P
(1)
2n

( x

2n

)
= G(1)

α (x) .

Let us give two remarks. Firstly, note that in Theorem 1.1 the repre-
sentation of the limiting error, i.e. the sup-expression, can be given in full
explicit form. In particular, the last equation in Theorem 1.1 follows easily by
some standard analysis arguments. Secondly, the sequence of the scaled inter-
polation polynomials (2n)α

P
(1)
2n

( ·
2n

)
converges also to an entire function of

exponential type, thus showing a similar behavior than the best approximat-
ing polynomials in (1.3). For the second node system, we have an analogous
representation, but unfortunately it can be given only in a more complicated
form. From ([13], Theorems 3.1 and 3.2) we have

Theorem 1.2.

lim
n→∞ (2n)α

∥∥∥|x|α − P
(2)
2n

∥∥∥
L∞[−1,1]

=
∥∥∥|x|α − G(2)

α

∥∥∥
L∞[0,∞)

=
2
π

∣∣∣sin πα

2

∣∣∣ sup
x∈[0,∞)

∫ ∞

0

tα

sinh (t)
x |sinx|
x2 + t2

dt, (1.4)

where

G(2)
α (x) = |x|α − 2

π
sin

πα

2

∫ ∞

0

tα

sinh (t)
x sin x

x2 + t2
dt

is an entire function of exponential type 1 that interpolates |x|α at the nodes
{kπ : k ∈ Z}. Furthermore, uniformly on compact subsets in [0,∞) we have

lim
n→∞ (2n)α

P
(2)
2n

( x

2n

)
= G(2)

α (x) .

As it can be seen from the representation of the limiting error term the
exact determination of the quantity on the right-hand side in (1.4) for indi-
vidual values for α appears to be a rather difficult challenge.
In the next chapters we investigate in more detail in this mentioned quantity.
Though we are still unable to present a full explicit expression for (1.4), sim-
ilar and comparable to that in Theorem 1.1, we can establish an asymptotic
expression when α tends to infinity. We will prove the following

Theorem 1.3. The following asymptotics hold.∥∥∥∥
∫ ∞

0

tα

sinh (t)
x sinx

x2 + t2
dt

∥∥∥∥
L∞[0,∞)

=
1

1 + 2α

∫ ∞

0

tα

sinh (t)
dt (1 + o (1)) , α → ∞.

Though the result in Theorem 1.3 reveals a more or less simple formula
for the asymptotic behavior, the proof is rather long and requires many non-
trivial smart estimates. Many of them were first furnished for our purposes by
extensive use of computational methods (Mathematica). The hardest part for
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the proof requires the determination of a higher asymptotics up to order 5, i.e.
the generalized Watson-lemma, involving the computation of certain rather
complicated defined constants. Thus, we split the whole proof in two sections,
see Sects. 3 and 4. We believe that this sequencing keeps the readability and
also the development of the main ideas more comprehensible.
The rest of the paper is organized as follows.
In Sect. 2 we first collect some definitions for several constants and functions
together with some standard results for later use.
In Sect. 3 we study an envelope function, denoted by H1 (α, ·), for the error
term in Theorem 1.3, later to be denoted by H (α, ·) . Here, we establish in
Theorem 3.1 an asymptotic formula for H1 (α, ·), when α → ∞.

In Sect. 4, by using an higher order asymptotics and investigating into an
itself interesting integral inequality, see Theorem 4.1, we finally arrive on the
desired asymptotic relation between ‖H1 (α, ·)‖L∞[0,∞) and ‖H (α, ·)‖L∞[0,∞),
when α → ∞, thus giving the final proof of Theorem 1.3.
In the final Sect. 5, to emphasize the importance of the interpolation for-
mulas based on the P

(1)
n and P

(2)
n polynomials, we present a compilation of

numerical results involving linear combinations of the just mentioned polyno-
mials together with their corresponding Chebyshev polynomials Tn, in order to
present explicit formulas for near best approximation polynomials in the L∞
norm, see formula (5.1), together with their corresponding entire functions
of exponential type, see formula (5.2). Possibly and hopefully these formulas
could indicate a feasible direction towards some explicit asymptotic represen-
tations of best approximation polynomials for |x|α in the L∞ norm and thus
for the Bernstein constants Δ∞,α themselves.

2. Notation

In this section we record the following constants and functions, together with
properties which are used later in the paper. We denote by Γ (.) the usual
Gamma function. For x ∈ R, let [x] to be the floor function, namely [x] =
max {m ∈ Z : m ≤ x}. Obviously, then x−1 < [x] ≤ x. We define the following
constants.

C (α) =

∞∫

0

tα

sinh (t)
dt, α > 0,

Z (α) =
∞∑

n=1

1
nα

, α > 1.



100 Page 6 of 25 M. Revers Results Math

Next, we define the following functions.

H (α, x) =

∞∫

0

tα

sinh (t)
x sin (x)
x2 + t2

dt, α > 0, x > 0,

H1 (α, x) =

∞∫

0

tα

sinh (t)
x

x2 + t2
dt, α > 0, x > 0,

H2 (α, x) =

∞∫

0

tα

sinh (t)
x2

x2 + t2
dt, α > 0, x > 0.

We proceed further by

F (α, x) =

∞∫

0

tα

sinh (xt)
1

1 + t2
dt, α > 0, x > 0,

R (α, x) =
x

α
F (α + 1, x) − F (α, x) , α > 0, x > 0,

S (α, x) =
αxα−1

2
(
x2 + α2

)
R (α, x) , α > 0, x > 0,

T (α, x) =

∞∫

0

tαe−xt 1
1 + t2

dt, α > 0, x > 0,

F1 (α, x) =
(

2 − 1
2α

)
Z (α + 1) T (α, x) , α > 0, x > 0,

F2 (α, x) =
(

2 − 1
2α−2

)
Z (α − 1) T (α, x) , α > 2, x > 0.

We collect the following easy to establish properties.

(a) H1 (α, x) = xαF (α, x) , α > 0, x > 0,
(b) H2 (α, x) = xα+1F (α, x) , α > 0, x > 0,
(c) 0 ≤ H2 (α, x) ≤ C (α) , α > 0, x > 0,
(d) |H (α, x)| ≤ H2 (α, x) , α > 0, x > 0,

(e) C (α) = αα+1

∞∫

0

tα

sinh (αt)
dt, α > 0,

(f) C (α − 1) = αα

∞∫

0

tα−1

sinh (αt)
dt, α > 1.

(2.1)

Note that (2.1f) is not an easy consequence of (2.1e). We also remark, that for
α ≥ 1 Eq. (2.1a) remains also valid for x = 0, by interpreting both sides as
their limx→0+ . The same holds true for (2.1b) and (2.1d) for α > 0. We then
have

H1 (α, 0) =
{

π
2 , α = 1,
0, α > 1,
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Figure 1. The error function |H (α, ·)| (blue), its envelope
H1 (α, ·) (red) and the point evaluation H1 (α, α) (green)

H (α, 0) = H2 (α, 0) = 0 for α > 0. (2.2)

Then, using (2.2), we can check that G
(2)
α from Theorem 1.2 is a well defined

function for all α > 0 and x ≥ 0.
Next, we record

(a)
∫ c

0

xα−1e−αx (1 − x) dx

=
∫ ∞

c

xα−1e−αx (x − 1) dx =
cαe−αc

α
,

α > 0, c ≥ 0,

(b)
∫ ∞

0

xα−2e−αxdx =
Γ (α − 1)

αα−1
, α > 1,

(c)
∫ ∞

0

xα−1e−αxdx =
∫ ∞

0

xαe−αxdx =
Γ (α)
αα

, α > 0,

(d) Γ (α) >

√
2π

α

(α

e

)α

, α ≥ 1.

(2.3)

Proof. Both equations in (2.3c) as well as (2.3b) are derived directly from ([4],
3.381.4). The Eqs. (2.3a) are an easy consequence of (2.3c) combined together
with ([4], 3.381.3 and 8.356.2). Inequality (2.3d) can be derived from ([4],
8.327) by some simple manipulations. �

3. The Envelope Function

In this section we consider the envelope function H1 (α, ·) with respect to
H (α, ·). Our objective is to establish an asymptotics for ‖H1 (α, ·)‖L∞[0,∞)

when α → ∞. We show

Theorem 3.1. Let α ≥ 2. Then we have
C (α)
1 + 2α

(
1 − 1√

α

)
≤ H1 (α, α) ≤ ‖H1 (α, ·)‖L∞[0,∞) ≤ C (α)

1 + 2α

(
1 +

2√
α

)
.

Figure 1 shows the functions |H (α, ·)| and H1 (α, ·) as well as their point
evaluations H1 (α, α) for values α = 1.8 and α = 6.4. The figure suggests that
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a powerful lower bound for ‖H1 (α, ·)‖ is derivable by determining its point
evaluation H1 (α, α), at least for large values of α. We now start to prove
Theorem 3.1 by splitting it in several lemmas. First, we present the following
five lemmas without proof. They can be derived by some standard calculus
arguments.

Lemma 3.1. The function f (x) =
(
1 + 1

x

)x is monotonically increasing on
(0,∞) and f (x) ≤ e in this interval.

Lemma 3.2. For x > 0 we have
1

1 − e−x
− 1

x
≤ 1.

Lemma 3.3. Let α > 0. The function

f (x) =
x

1 − e−2αx

is convex for x ≥ 0. Here f (0) = limx→0+ f (x) = 1
2α .

Lemma 3.4. Let α > 0. Then, for x ∈ [
0, 1 + 1

2α

]
, we have

x

1 − e−2αx
≤

(
1

1 − e−2α−1
− 1

1 + 2α

)
x +

1
2α

.

Lemma 3.5. Denote by f (x) = x (x + 1) /
(
x2 + 1

)
. Then, for x ≥ 0, we have

f (x) ≤ f
(
1 +

√
2
)

=
1 +

√
2

2
.

Our first substantial result is now the following

Lemma 3.6. Let α ≥ 1. Then
C (α)
1 + 2α

(
1 − 1√

α

)
≤ H1 (α, α) .

Proof. By some routine arguments and using Lemma 3.5, (2.3a), (2.3d) and
(2.3c), we estimate

1 + 2α

α

∫ ∞

0

xα

sinh (αx)

(
α

1 + 2α
− 1

1 + x2

)
dx

=
∫ ∞

0

xα

sinh (αx)
x2 − 1
x2 + 1

dx − 1
α

∫ ∞

0

xα

sinh (αx)
1

1 + x2
dx

≤
∫ ∞

1

xα

sinh (αx)
x2 − 1
x2 + 1

dx

= 2
∫ ∞

1

xα−1e−αx 1
1 − e−2αx

x (x − 1) (x + 1)
x2 + 1

dx

≤ 1 +
√

2
1 − e−2

∫ ∞

1

xα−1e−αx (x − 1) dx
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≤ 2√
α

1
αα

√
2π

α

(α

e

)α

≤ 2√
α

1
αα

Γ (α)

=
2√
α

∫ ∞

0

xαe−αxdx

≤ 1√
α

∫ ∞

0

xα

sinh (αx)
dx.

We summarize ∫ ∞

0

xα

sinh (αx)

(
1

1 + x2
− α

1 + 2α

)
dx

≥ − 1√
α

α

1 + 2α

∫ ∞

0

xα

sinh (αx)
dx. (3.1)

Now, using (2.1a), (2.1e) together with (3.1), we obtain the final result

H1 (α, α) = ααF (α, α)

=
C (α)
1 + 2α

+ αα

∫ ∞

0

tα

sinh (αt)

(
1

1 + t2
− α

1 + 2α

)
dt

≥ C (α)
1 + 2α

− αα

√
α

α

1 + 2α

∫ ∞

0

tα

sinh (αt)
dt

=
C (α)
1 + 2α

(
1 − 1√

α

)
.

�

Next, we show

Lemma 3.7. Let α > 1. Then

‖H1 (α, ·)‖L∞[0,∞) ≤ 1
2
C (α − 1) .

Proof. From (2.2) it follows that we can restrict ourselves to values H1 (α, x)
for x > 0. Thus

‖H1 (α, ·)‖L∞[0,∞) =
∥∥∥∥
∫ ∞

0

tα

sinh (t)
x

x2 + t2
dt

∥∥∥∥
L∞(0,∞)

≤
∥∥∥∥
∫ ∞

0

tα

sinh (t)
x

2xt
dt

∥∥∥∥
L∞(0,∞)

≤ 1
2

∫ ∞

0

tα−1

sinh (t)
dt

=
1
2
C (α − 1) .

�
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Lemma 3.8. Let α ≥ 2. Then

1
2
C (α − 1) ≤ C (α)

1 + 2α

(
1 +

2√
α

)
.

Proof. By using Lemmas 3.4 and 3.2, we begin with
∫ ∞

0

xα−1

sinh (αx)

(
1 +

1
2α

− x

)
dx

≤ 2
∫ 1+ 1

2α

0

xα−2e−αx x

1 − e−2αx

(
1 +

1
2α

− x

)
dx

≤ 2
∫ 1+ 1

2α

0

xα−2e−αx

((
1

1 − e−2α−1
− 1

1 + 2α

)
x +

1
2α

)(
1 +

1
2α

− x

)
dx

≤ 2
∫ 1+ 1

2α

0

xα−2e−αx

(
x +

1
2α

) (
1 +

1
2α

− x

)
dx

= 2
∫ 1+ 1

2α

0

xα−2e−αx

(
x − x2 +

1
2α

+
1

4α2

)
dx.

Note, that for α ≥ 1
2 we have 1/α ≥ 1/ (2α) + 1/

(
4α2

)
. From this, by using

(2.3a), it follows that

2
∫ 1+ 1

2α

0

xα−2e−αx

(
x − x2 +

1
2α

+
1

4α2

)
dx

≤ 2
∫ 1+ 1

2α

0

xα−1e−αx (1 − x) dx +
2
α

∫ 1+ 1
2α

0

xα−2e−αxdx

=
2
α

√(
1 +

1
2α

)2α

e−αe− 1
2 +

2
α

∫ 1+ 1
2α

0

xα−2e−αxdx.

Then, using Lemma 3.1 and (2.3b), the last expression can be estimated to

2
α

√(
1 +

1
2α

)2α

e−αe− 1
2 +

2
α

∫ 1+ 1
2α

0

xα−2e−αxdx

≤ 2
α

√
ee−αe− 1

2 +
2
α

∫ ∞

0

xα−2e−αxdx

=
2
α

e−α +
2
α

Γ (α − 1)
αα−1

=
2
α

e−α +
2

α − 1
1

αα
Γ (α) .

We collect for α ≥ 2 the inequality 2/α ≥ 1/ (α − 1) . Now, using (2.3d) and
(2.3c), we estimate further

2
α

e−α +
2

α − 1
1

αα
Γ (α)



Vol. 76 (2021) Asymptotics of Polynomial Interpolation Page 11 of 25 100

≤ 1√
α

Γ (α)
αα

(
2√
2π

+
4√
α

)

≤ 4√
α

Γ (α)
αα

=
4√
α

∫ ∞

0

xαe−αxdx

≤ 2√
α

∫ ∞

0

xα

sinh (αx)
dx.

Combining all together, we obtain for all α ≥ 2,∫ ∞

0

tα−1

sinh (αt)
dt ≤ 2α

1 + 2α

(
1 +

2√
α

)∫ ∞

0

tα

sinh (αt)
dt.

Finally, using (2.1f) and (2.1e), we arrive at

1
2
C (α − 1) =

αα

2

∫ ∞

0

tα−1

sinh (αt)
dt

≤ αα

2
2α

1 + 2α

(
1 +

2√
α

) ∫ ∞

0

tα

sinh (αt)
dt

=
(

1 +
2√
α

)
C (α)
1 + 2α

.

�

Proof of Theorem 3.1. The theorem is now an easy consequence of the Lem-
mas 3.6, 3.7 and 3.8. �

4. Asymptotics of the Error Function

In this section we establish an asymptotic bound for the norm of the limiting
error function, i.e. for ‖H (α, ·)‖L∞[0,∞) .This section contains the most tech-
nical part in this paper. Here, we use the generalized Watson-lemma (Laplace
method for integrals with large parameter) for deriving an asymptotic ex-
pansion used to be later in the context. As it turns out, we need a higher
order asymptotics up to order 5. To begin with we start with a lower esti-
mate for ‖H (α, ·)‖L∞[0,∞) . Though the process is technical and complicated,
the main idea is pretty easy to see. So, let us start with the idea behind, il-
lustrated in Fig. 2 involving the functions |H (α, ·)| and H1 (α, ·) . Figure 2
shows the error function |H (α, ·)| and its envelope H1 (α, ·) together with
the point evaluations H1 (α, α) (green) and |H (α, β)| = H1 (α, β) (magenta),
where β = β (α) = π

[
α
π

]
+ 3

2π and α = 3.9 and α = 8.4.
Geometrically, the point β is the position of the first or the second relative
maximum of |H (α, ·)| on the right-hand side of α, where H1 (α, ·) appears to
be descending. For higher values of α, the size of these maxima appear to be of
the same magnitude compared to the size H1 (α, α). We use both observations
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Figure 2. The error function |H (α, ·)| and its envelope
H1 (α, ·)

for the asymptotic analysis. First, we show that H1 (α, ·) is descending at least
for values x ≥ α. Then, we derive the asymptotics for the local maximum in
|H (α, β)|. It turns out that the following integral inequality plays an essential
role.

Theorem 4.1. There exists a fixed constant α0 > 0 such that for α ≥ α0,

R (α, α) =
∫ ∞

0

tα+1

sinh (αt)
1

1 + t2
dt −

∫ ∞

0

tα

sinh (αt)
1

1 + t2
dt > 0. (4.1)

We remark that (4.1) is not true for all values α0 > 0. This can be seen out
from Fig. 3. Also, for higher values of α, the positive magnitude becomes rather
small. Numerical experiments suggest that the minimal value for α0 such that
(4.1) becomes true, is inside the interval [2.54288, 2.54289]. However, since we
are interested in an asymptotic expansion, the determination of the precise
minimal value for α0 is not important. Then, from Theorem 4.1 we may derive
our first desired property.

Theorem 4.2. There exists a fixed constant α0 > 0 such that H1 (α, ·) is de-
creasing, whenever x ≥ α > max (α0, 1) .

As we will see later, from Theorem 4.2 we obtain our final asymptotics in
Theorem 1.3 and we are finished.
We first establish Theorem 4.2 by assuming that Theorem 4.1 holds true. Then,
we present the proof for Theorem 4.1 which is completely independent of the
forthcoming lemmas related to Theorem 4.2. Finally, we present the proof for
Theorem 1.3. Without proof, we first present the following

Lemma 4.1. Let α > 0 and x > 0. Then S (α, x) has the representation

S (α, x) =
∫ ∞

0

tα (t − α)
2 sinh (t)

x2 + α2

x2 + t2
dt.

Lemma 4.2. Let α > 1 and x > 0. Then
d

dx
H1 (α, x) ≤ − 2

x2 + α2
S (α, x) .
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Figure 3. The function R (·, ·) for values α ∈ [2.4, 20]

Proof. Using (2.1a) and by differentiating under the integral, we get

d

dx
H1 (α, x)

=
d

dx
(xαF (α, x))

= αxα−1

(∫ ∞

0

tα

sinh (xt)
dt

1 + t2
− x

α

∫ ∞

0

tα+1

sinh (xt)
cosh (xt)
sinh (xt)

dt

1 + t2

)

≤ αxα−1

(∫ ∞

0

tα

sinh (xt)
dt

1 + t2
− x

α

∫ ∞

0

tα+1

sinh (xt)
dt

1 + t2

)

= −αxα−1
(x

α
F (α + 1, x) − F (α, x)

)

= −αxα−1R (α, x)

= −αxα−1 2
α

x1−α 1
x2 + α2

S (α, x)

= − 2
x2 + α2

S (α, x) .

�

Lemma 4.3. Let α > 1 and x > 0. Then

S (α, x) =
α

2
xα−1

(
x2 + α2

)
R (α, x) (4.2)

is an increasing function in x.

Proof. Using Lemma 4.1 and by differentiating again under the integral sign,
we get

d

dx
S (α, x) =

∫ ∞

0

tα (t − α)
2 sinh (t)

∂

∂x

(
x2 + α2

x2 + t2

)
dt
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=
∫ ∞

0

xtα (t − α)2

sinh (t)
t + α

(x2 + t2)2
dt

> 0.

�

The rescaling of R (α, ·) in Lemma 4.3 is now very powerful in proving Theo-
rem 4.2. Considering formula (4.2) contributes to my colleague, Dr. Maximilian
Thaler, for which I thank him.

Proof of Theorem 4.2. By assuming the validity of Theorem 4.1 there exists
some α0 > 0, such that R (α, α) > 0 for all α ≥ α0. From this fact and (4.2) we
deduce S (α, α) = αα+2R (α, α) > 0 for all α > max (α0, 1). Now, combining
Lemma 4.2 together with Lemma 4.3, we establish for x ≥ α > max (α0, 1),

d

dx
H1 (α, x) ≤ − 2

x2 + α2
S (α, x)

≤ − 2
x2 + α2

S (α, α)

< 0.

�

We turn now to the proof for Theorem 4.1. As before, we derive several lemmas.

Lemma 4.4. Let α > 2 and x > 0. Then

F1 (α, x) ≤ F (α, x) ≤ F2 (α, x) .

Proof. By some routine calculations we obtain the representation

F (α, x) = 2
∞∑

n=0

1
(1 + 2n)α−1

∫ ∞

0

tαe−xt

(1 + 2n)2 + t2
dt. (4.3)

Since Z (α) is the well known zeta function, from ([4], 9.522.2) we derive for
α > 1,

Z (α)
(
2 − 21−α

)
= 2

∞∑
n=0

1
(1 + 2n)α . (4.4)

Combining (4.3) together with (4.4), we obtain for α > 2 the right-hand side
in Lemma 4.4 by

F (α, x) ≤ 2
∞∑

n=0

1
(1 + 2n)α−1

∫ ∞

0

tαe−xt

1 + t2
dt

=
(

2 − 1
2α−2

)
Z (α − 1) T (α, x)

= F2 (α, x) .
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Similarly, for α > 0, the left-hand side in Lemma 4.4 can be derived by

F (α, x) ≥ 2
∞∑

n=0

1
(1 + 2n)α−1

∫ ∞

0

tαe−xt

(1 + 2n)2 + (1 + 2n)2 t2
dt

=
(

2 − 1
2α

)
Z (α + 1) T (α, x)

= F1 (α, x) .

�

Lemma 4.5. Let α > 2. Then

R (α, α) ≥
(

2 − 1
2α+1

)
T (α + 1, α)

−
(

2 − 1
2α−2

) (
1 +

1
2α−1

+
1

α − 2
1

2α−2

)
T (α, α) .

Proof. By using a routine estimate for the zeta function, namely

1 < Z (α) < 1 +
1
2α

+
1

α − 1
1

2α−1
, α > 1,

we combine this together with Lemma 4.4. For α > 2 it then follows

R (α, α) = F (α + 1, α) − F (α, α)

≥ F1 (α + 1, α) − F2 (α, α)

=
(

2 − 1
2α+1

)
Z (α + 2) T (α + 1, α)

−
(

2 − 1
2α−2

)
Z (α − 1) T (α, α)

≥
(

2 − 1
2α+1

)
T (α + 1, α)

−
(

2 − 1
2α−2

) (
1 +

1
2α−1

+
1

α − 2
1

2α−2

)
T (α, α) .

�

Lemma 4.6. Let α > 0 and c ≥ 0. Then, as α → ∞, we have the following
asymptotics.

T (α, α) =

√
2π

α
e−α

(
1
2

− 5
24

1
α

+
61
576

1
α2

+ O
(
α−3

))
,

T (α + 1, α) =

√
2π

α
e−α

(
1
2

− 5
24

1
α

+
205
576

1
α2

+ O
(
α−3

))
,

T (α, α + c) =

√
2π

α
e−α

(
e−c

2
+ O

(
α−1

))
.
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Proof. We prove the relations with the generalized Watson-lemma. Let α >
0, k = 0, 1 and c ≥ 0. Then

T (α + k, α + c) =
∫ ∞

0

tk

ect (1 + t2)
e−α(t−log t)dt

=
∫ ∞

0

fk,c (t) e−αg(t)dt,

with fk,c (t) = tk/
(
ect

(
1 + t2

))
and g (t) = t − log t. Before applying the

Watson-lemma, we have to split the integral in two parts T (α + k, α + c) =∫ ∞
0

=
∫ ∞
1

+
∫ 1

0
, because g has exactly one single minimum at a = 1. After

verifying the conditions for the Watson-lemma ([9], Theorem 8.1) it allows us
to expand the integral

∫ ∞
1

into an asymptotic series of the form
∫ ∞

a

fk,c (t) e−αg(t)dt � e−αg(a)
∞∑

n=0

Γ
(

n + λ

μ

)
a
(k,c)
n

α(n+λ)/μ
, α → ∞,

with certain coefficients λ, μ and a
(k,c)
n . For the second integral

∫ 1

0
we have to

apply a suitable transformation before expanding it. It is worth mentioning,
that in the classical textbooks on asymptotic analysis (compare [9], p. 86)
there is no general formula for the coefficients an available. Only the first one
or two coefficients are derived and as it can easily be checked, they are of
rather complicated nature. Surprisingly, in the newer literature ([10], Formula
2.3.18) one can find a remarkable suitable representation for these coefficients
in terms of some residues as well as a reference for its derivation, namely (in
our context)

a(k,c)
n =

1
μ

Res|t=a

(
fk,c (t)

(g (t) − g (a))(n+λ)/μ

)
, n = 0, 1, 2, . . . (4.5)

We used a symbolic computation software (Wolfram Mathematica 12.0) for the
computation of the residues in (4.5), but we do not present the general output
of these formulas. This would fill several pages. However, since the calculations
are of crucial importance in the proof for Theorem 4.1, we present all relevant
outputs. For k = 0, 1, . . ., and c = 0 we calculate

a
(k,0)
0 = 1

2
√
2
, a

(k,0)
3 = 45k3−90k2−90k+86

270 ,

a
(k,0)
1 = 3k−1

6 , a
(k,0)
4 = 36k4−120k3−96k2+324k+61

432
√
2

,

a
(k,0)
2 = 6k2−6k−5

12
√
2

, a
(k,0)
5 = 189k5−945k4−315k3+4683k2+168k−3730

11340 .

For k = 0 and c ≥ 0 we compute a
(0,c)
0 = e−c 1

2
√
2

and a
(0,c)
1 = −e−c 1+3c

6 . With
λ = 1 and μ = 2 we obtain for α → ∞,

∫ ∞

1

f0,0 (t) e−αg(t)dt =

√
2π

α
e−α

(
1
4

− 1
6
√

2π

1√
α

− 5
48

1
α

+
43

135
√

2π

1
α
√

α
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+
61

1152
1
α2

− 373
567

√
2π

1
α2

√
α

+ O
(
α−3

))
,

∫ ∞

1

f1,0 (t) e−αg(t)dt =

√
2π

α
e−α

(
1
4

+
1

3
√

2π

1√
α

− 5
48

1
α

− 49
270

√
2π

1
α
√

α

+
205
1152

1
α2

+
5

567
√

2π

1
α2

√
α

+ O
(
α−3

))
,

∫ ∞

1

f0,c (t) e−αg(t)dt =

√
2π

α
e−α

(
e−c

4
− e−c 1 + 3c

6
√

2π

1√
α

+ O
(
α−1

))
.

Proceeding in the same way for the second integral
∫ 1

0
, we compute

a
(k,0)
0 = 1

2
√
2
, a

(k,0)
3 = − 45k3−90k2−90k+86

270 ,

a
(k,0)
1 = − 3k−1

6 , a
(k,0)
4 = 36k4−120k3−96k2+324k+61

432
√
2

,

a
(k,0)
2 = 6k2−6k−5

12
√
2

, a
(k,0)
5 = − 189k5−945k4−315k3+4683k2+168k−3730

11340 .

For k = 0 and c ≥ 0 we compute a
(0,c)
0 = e−c 1

2
√
2

and a
(0,c)
1 = e−c 1+3c

6 . Again,
with λ = 1 and μ = 2 we obtain for α → ∞,

∫ 1

0

f0,0 (t) e−αg(t)dt =

√
2π

α
e−α

(
1
4

+
1

6
√

2π

1√
α

− 5
48

1
α

− 43
135

√
2π

1
α
√

α

+
61

1152
1
α2

+
373

567
√

2π

1
α2

√
α

+ O
(
α−3

))
,

∫ 1

0

f1,0 (t) e−αg(t)dt =

√
2π

α
e−α

(
1
4

− 1
3
√

2π

1√
α

− 5
48

1
α

+
49

270
√

2π

1
α
√

α

+
205
1152

1
α2

− 5
567

√
2π

1
α2

√
α

+ O
(
α−3

))
,

∫ 1

0

f0,c (t) e−αg(t)dt =

√
2π

α
e−α

(
e−c

4
+ e−c 1 + 3c

6
√

2π

1√
α

+ O
(
α−1

))
.

Collecting the results we finally arrive at the expansion in Lemma 4.6. �

Lemma 4.7. There exists some α1 > 0 such that for α ≥ α1,

T (α + 1, α) −
(

1 +
1
α3

)
T (α, α) > 0.

Proof. From Lemma 4.6, we calculate

T (α + 1, α) − T (α, α) =

√
2π

α
e−α

(
1

4α2
+ O

(
α−3

))
, α → ∞.

Now, combining the last expression again together with Lemma 4.6, we obtain
for α → ∞ the asymptotics

T (α + 1, α) − T (α, α) − 1
α3

T (α, α)
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=

√
2π

α
e−α

(
1

4α2
+ O

(
α−3

)) − 1
α3

√
2π

α
e−α

(
1
2

+ O
(
α−1

))

=

√
2π

α
e−α 1

4α2

(
1 + O

(
α−1

))
.

The assertion now follows. �

Proof of Theorem 4.1. Let α > max (2, α1). Combining Lemma 4.5 together
with Lemma 4.7, we deduce

R (α, α) ≥
((

2 − 1
2α+1

)(
1 +

1
α3

)

−
(

2 − 1
2α−2

) (
1 +

1
2α−1

+
1

α − 2
1

2α−2

))
T (α, α) .

Since T (α, α) > 0 for all α > 0, a standard calculation reveals that the
remaining term in the last expression becomes positive, at least for all α ≥
α0 = max (14, α1) . �

We turn now to the final proof for Theorem 1.3, again by establishing some
lemmas. Without proof, we first present the following

Lemma 4.8. Let α > 0 and β = β (α) = π
[

α
π

]
+ 3

2π. Then

(a) α + π
2 < β ≤ α + 3

2π,
(b) |H (α, β)| = H1 (α, β) .

Lemma 4.9. Let α > 0 and c ≥ 0. Then

T (α, α + c)
T (α, α)

= e−c
(
1 + O

(
α−1

))
, α → ∞.

Proof. From Lemma 4.6, we simply derive

T (α, α + c)
T (α, α)

=

√
2π
α e−α

(
e−c

2 + O
(
α−1

))
√

2π
α e−α

(
1
2 + O (α−1)

)

= e−c
(
1 + O

(
α−1

))
.

�

Lemma 4.10. Let α > 2. Then

H1

(
α, α +

3
2
π

)
= H1 (α, α) (1 + o (1)) , α → ∞.

Proof. Using (2.1a), we obtain

H1

(
α, α + 3

2π
)

H1 (α, α)
=

(
1 +

3
2π

α

)α
F

(
α, α + 3

2π
)

F (α, α)
. (4.6)
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Next, using Lemma 4.4 together with a standard estimate for the zeta function,
we establish

F
(
α, α + 3

2π
)

F (α, α)
≤ F2

(
α, α + 3

2π
)

F1 (α, α)

≤ 2 − 4
2α

2 − 1
2α

(
1 +

1
α − 2

)
T

(
α, α + 3

2π
)

T (α, α)
, (4.7)

and
F

(
α, α + 3

2π
)

F (α, α)
≥ F1

(
α, α + 3

2π
)

F2 (α, α)

≥ 2 − 1
2α

2 − 4
2α

(
1 − 1

α − 1

)
T

(
α, α + 3

2π
)

T (α, α)
. (4.8)

Now, combining (4.6), (4.7) and (4.8) together with Lemma 4.9, we establish
the result. �

Proof of Theorem 1.3. For α ≥ 2, it follows from Theorem 3.1 that

‖H (α, ·)‖L∞[0,∞) ≤ ‖H1 (α, ·)‖L∞[0,∞) ≤ C (α)
1 + 2α

(
1 +

2√
α

)
. (4.9)

For the reverse side, let α > 2. From Lemma 4.10 we deduce that there exists
a function ε (α) → 0 whenever α → ∞ for which we estimate

H1

(
α, α +

3
2
π

)
≥ H1 (α, α) (1 − |ε (α)|) .

Using Lemma 4.8, Theorems 4.2 and 3.1 , we further obtain for α > max (2, α0)
the estimate

‖H (α, ·)‖L∞[0,∞) ≥ |H (α, β)| = H1 (α, β)

≥ H1

(
α, α +

3
2
π

)

≥ H1 (α, α) (1 − |ε (α)|)

≥ C (α)
1 + 2α

(
1 − 1√

α

)
(1 − |ε (α)|) . (4.10)

Finally, combining (4.9) together with (4.10), establishes the result and we are
finished. �

5. Approximation Polynomials in L∞
This section is devoted to an explicit construction for near best approximation
polynomials to |x|α , α > 0 in the L∞ norm. The construction involves the
polynomials P

(1)
n and P

(2)
n together with the Chebyshev polynomials Tn. The

construction method is based on numerical results. The resulting formulas
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Figure 4. Interpolation points for the best approximation to
|x|α

could indicate a general possible approach and structure for the Bernstein
constants Δ∞,α.
First, we refer back again to the content of Theorems 1.1 and 1.2. Now, based
on numerical computations, we made the following observations. For all α > 0
(not an even integer) we find that, beginning with the second positive node,
all interpolation points of the best approximation polynomials P ∗

2n are located
somewhere between two consecutive interpolation points for the P

(1)
2n and P

(2)
2n

polynomials, see Fig. 4.
It is well known that

[
1, x, . . . , xn, xα/2

]
is an hypernormal Haar space of

dimension n+2 on the interval [0, 1] , see ([15], p. 199). Consequently it follows
that we have always an alternation point at x = 0. Thus we cannot expect to
perform in the quality of best approximation solely by using the polynomials
P

(1)
n and P

(2)
n , since both of them interpolate at x = 0. Thus we consider the

following polynomials

P
(3)
2n (x) = c1,αP

(1)
2n (x) + (1 − c1,α) P

(2)
2n (x)

+
2
π

sin
πα

2
c2,α

(−1)n

(2n)α
T2n+1 (x)
(2n + 1) x

, (5.1)

where c1,α and c2,α are numerical constants, depending only on α. As we see
later, for good choices of c1,α and c2,α, the linear combination of P

(1)
2n and P

(2)
2n
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results in a polynomial with almost all the same interpolation points as its best
approximation P ∗

2n, while at the same time the last term in (5.1) establishes
the alternation property at x = 0 and leaves the new interpolation points
largely unchanged.
Since we are interested into the asymptotic behavior of the polynomials P

(3)
2n ,

we directly pass to the resulting scaled limit. From Theorems 1.1, 1.2 and ([13],
Lemma 3.6), it follows that uniformly on compact subsets of [0,∞) we have

lim
n→∞ (2n)α

P
(3)
2n

( x

2n

)
= |x|α − 2

π
sin

πα

2

(
c1,α

∫ ∞

0

tα−1

cosh (t)
x2 cos x

x2 + t2
dt

+ (1 − c1,α)
∫ ∞

0

tα

sinh (t)
x sinx

x2 + t2
dt − c2,α

sin x

x

)
.

(5.2)

Thus, we try to numerically minimize the quantity
∥∥∥∥c1,α

∫ ∞

0

tα−1

cosh (t)
x2 cos x

x2 + t2
dt

+ (1 − c1,α)
∫ ∞

0

tα

sinh (t)
x sin x

x2 + t2
dt − c2,α

sinx

x

∥∥∥∥
L∞[0,∞)

. (5.3)

For the moment, we cannot present an explicit formula for the constants c1,α

and c2,α, but based on numerical calculations, we present the following numer-
ical Table 1.
Although formula (5.1) is not in full explicit form it appears to be an impor-
tant step towards a possible representation for the Bernstein constants Δ∞,α.
This can be seen from the following observations. First, recall the existence of
the unique minimizing entire function H∗

α of exponential type 1 from formulas
(1.1) and (1.3) together with the facts that Δ∞,α = ‖|x|α − H∗

α‖L∞(R) and

Table 1. Numerical coefficients for minimizing formula 5.3

α c1,α c2,α α c1,α c2,α

0.1 0.43 4.40 1.1 0.24 0.43
0.2 0.39 2.05 1.2 0.22 0.42
0.3 0.36 1.32 1.3 0.21 0.41
0.4 0.34 0.97 1.4 0.20 0.41
0.5 0.33 0.79 1.5 0.18 0.41
0.6 0.31 0.66 1.6 0.17 0.42
0.7 0.29 0.57 1.7 0.15 0.44
0.8 0.28 0.52 1.8 0.13 0.46
0.9 0.27 0.48 1.9 0.10 0.49
1.0 0.25 0.45 2.0 0.08 0.52
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Figure 5. Polynomials P
(3)
n (red), P ∗

n (black) and |x|α (blue)
for values α = 0.5 and n = 4, 8
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Figure 6. Polynomials P
(3)
n (red), P ∗

n (black) and |x|α (blue)
for values α = 1 and n = 4, 8

limn→∞ nαP ∗
n

(
x
n

)
= H∗

α (x). There is also a representation for H∗
α as an in-

terpolation series with unknown interpolation points 0 < x∗
1 < x∗

2 < x∗
3 < · · · .

However, it is known ([6], Formulas 1.4 and 1.5) that

x∗
j ∈

[(
j − 3

2
π

)
,

(
j − 1

2
π

)]
, ∀j ≥ 2. (5.4)

Moreover, from ([5], Formulas 1.6 and 1.7) it follows that the minimizing entire
function H∗

α satisfies an alternation property with unknown alternation points.
Now, using our numerical values c1,α and c2,α we use the right-hand side of
formula (5.2) as an approximation for H∗

α. First, in Fig. 5 we present some
illustrations for the P

(3)
n polynomials in competition with their best approxi-

mation polynomials P ∗
n for values α = 0.5 and n = 4, 8. The same is done in

Fig. 6 for α = 1.
In Fig. 7 we present the approximations for H∗

α together with their correspond-
ing interpolation points for values α = 0.5 and α = 1. In Fig. 8 we illustrate
the near equioscillating behavior of the error term in (5.2), again for values
α = 0.5 and α = 1, and we compare the maximal error magnitude with the
corresponding numerical values for the Bernstein constants

Δ∞,0.5 = 0.348648 . . . ,
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Figure 7. Approximations for best entire functions H∗
α of

exponential type 1

Figure 8. Nearly equioscillation property of the error term
for H∗

α together with Δ∞,0.5 and Δ∞,1

Table 2. Interpolation points for the best entire function H∗
α

α x∗
1 x∗

2 x∗
3 x∗

4 x∗
5 x∗

6 x∗
7 x∗

8 x∗
9 x∗

10

0.5 0.13 2.10 4.99 8.04 11.13 14.25 17.37 20.50 23.63 26.76
0.8 0.25 2.30 5.15 8.16 11.22 14.32 17.43 20.55 23.67 26.80
1.0 0.34 2.38 5.24 8.23 11.28 14.36 17.47 20.58 23.70 26.83

Δ∞,1 = 0.280169 . . .

The values for the Bernstein constants are taken from ([15], Table 1.1).
Finally, in the following Table 2 we present the approximations for the best
positive interpolation points x∗

j for H∗
α, j = 1, 2, . . . , 10, from (5.2), see also

Fig. 7.
The values in Table 2 are in accordance with (5.4). Moreover, Table 2 suggests
that, for small positive values α, all interpolation points are slightly shifted to
the left. Apparently this effect becomes greater for those interpolation points
which are located closer to the origin. On the other hand the values in Table 2
suggest that x∗

n+1 − x∗
n → π, as n → ∞.
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We remark that the polynomials P
(3)
n generally appear to be of extreme good

quality in regard to best approximation polynomials P ∗
n even for small values

of n. Presently, we are not aware of similar and comparable constructions for
near best approximation polynomials to |x|α from the literature.
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