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Abstract. We prove that if 1 < p < ∞ and δ :]0, p − 1] →]0, ∞[ is con-
tinuous, nondecreasing, and satisfies the Δ2 condition near the origin,
then

δ̄(ε) :=

[
sup

0<ζ<ε
δ(ζ)

1
p−ζ

]p−ε

≈ δ(ε) , ε ∈]0, p − 1] . (∗)

This result permits to clarify the assumptions on the increasing function
against the Lebesgue norm in the definition of generalized grand Lebesgue
spaces and to sharpen and simplify the statements of some known results
concerning these spaces.
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1. Introduction

The first appearence of generalized grand Lebesgue spaces—a class of Banach
function spaces, see e.g. the monograph by Bennett and Sharpley [4]—is in the
final remark in [5], where the factor against the Lp−ε norm has been further
generalized from a power into an increasing function. The growing interest in
literature for this class of spaces has been motivated either by their utility
in the theory of PDEs (see e.g. [1,8,11]), either in Function Spaces theory
(see [6,9,10,16–18,21]). We refer to [7] for a study of these spaces, to [13] for a
survey, to [12] for a recent characterization of its norm in term of the decreasing
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rearrangement. The increasing interest on these spaces led to “maximize” the
generalization of the original norm

‖f‖Lp)(0,1) = sup
0<ε<p−1

(
ε

∫ 1

0

|f |p−εdx

) 1
p−ε

,

due to Iwaniec and Sbordone in 1992 (see [14]), into

‖f‖Lp),δ(0,1) = ess sup
0<ε<p−1

(
δ(ε)

∫ 1

0

|f |p−εdx

) 1
p−ε

,

where δ is a nonnegative measurable bounded function on ]0, p − 1] (see [7,
Theorem 2.1] for details; see [2,3,15,19] for a generalization also with respect
to ε). Even without a deep knowledge of the literature on these spaces, already
the expression of the norm ‖ · ‖Lp),δ(0,1) suggests clearly that the most natural
assumption on δ is the property to be nondecreasing of the function

δ̂(ε) := δ(ε)
1

p−ε , ε ∈]0, p − 1] .

In [12, 3.8] it has been observed that if δ̂ is nondecreasing, then δ is nonde-
creasing, and that the viceversa does not hold. Hence it is not a surprise that
the main results in [7,12] have the “strong” assumption on the monotonicity
of δ̂ and not on the monotonicity of δ.

The Δ2 condition is a notion familiar for researchers working in Orlicz
spaces (see e.g. [20]). When the so-called Δ2 condition near the origin (we write
δ ∈ Δ2 if δ(2ε) ≤ cδ(ε) for ε small, for some c > 1) plays a role, again from
[12, 3.8] we know that under the “weak” assumption that δ is nondecreasing,
δ ∈ Δ2 ⇔ δ̂ ∈ Δ2.

The considerations above show that

δ̂ nondecreasing and δ̂ ∈ Δ2 (1.1)

is a stronger assumption with respect to

δ nondecreasing and δ ∈ Δ2 (1.2)

and the viceversa does not hold, a simple example being δ(ε) ≡ 1/2.
The novelty of this paper is that, for the theory built on generalized grand

Lebesgue spaces, the weaker assumption (1.2) is sufficient for all statements
containing (1.1) as hypothesis: in fact, essentially, we prove (see Theorem 1 for
the precise statement) that if (1.2) holds, then δ̂ can be replaced, up to equiv-
alence, by its nondecreasing envelope. We may therefore sharpen a number of
results (see the last Sect. 4). In next Sect. 2 we state and prove Theorem 1,
and in Sect. 3 we show that the result fails without the assumption Δ2.



Vol. 76 (2021) On the Factor Opposing the Lebesgue... Page 3 of 12 74

2. The Main Result

Theorem 1. Let 1 < p < ∞, and let δ :]0, p − 1] →]0,∞[ be continuous,
nondecreasing, and satisfying the Δ2 condition near the origin, i.e.

∃c > 1 , ∃ε0 ∈]0, p − 1] such that δ(2ε) ≤ cδ(ε) ∀ 0 < ε < ε0 . (2.1)

The function

δ̄(ε) :=

[
sup

0<ζ<ε
δ(ζ)

1
p−ζ

]p−ε

, ε ∈]0, p − 1] (2.2)

is such that for some M > 1

δ(ε) ≤ δ̄(ε) ≤ Mδ(ε) ∀ 0 < ε ≤ p − 1. (2.3)

Proof. The left wing inequality in (2.3) is an immediate consequence of the
continuity of δ: in fact,

δ̄(ε) =

[
sup

0<ζ<ε
δ(ζ)

1
p−ζ

]p−ε

≥
[
δ(ε)

1
p−ε

]p−ε

= δ(ε),

therefore the proof consists of showing the right wing inequality.
We begin observing that δ̄ is not affected, up to equivalence, multiplying

δ by a positive constant k: assuming, without loss of generality, k > 1, we have

δ̄(ε) ≤ kδ(ε) =

{
sup

0<ζ<ε
[kδ(ζ)]

1
p−ζ

}p−ε

=

[
sup

0<ζ<ε
k

1
p−ζ δ(ζ)

1
p−ζ

]p−ε

≤
[

sup
0<ζ<ε

kδ(ζ)
1

p−ζ

]p−ε

≤ kp

[
sup

0<ζ<ε
δ(ζ)

1
p−ζ

]p−ε

= kpδ̄(ε) ∀ 0 < ε ≤ p − 1 .

As a consequence, dividing δ by 2δ(p − 1), we may assume without loss of
generality that δ(ε) ∈]0, 1] for every ε ∈]0, p− 1] and, since δ is nondecreasing,
that δ0 := δ(0+) ≤ 1/2. If δ0 > 0, then for some ε1 ∈]0, p − 1] we have

δ0 ≤ δ(ζ) < 2δ0 ∀ 0 < ζ < ε1 ,

hence

δ̄(ε) =

[
sup

0<ζ<ε
δ(ζ)

1
p−ζ

]p−ε

≤
[

sup
0<ζ<ε

(2δ0)
1

p−ζ

]p−ε

= sup
0<ζ<ε

(2δ0)
p−ε
p−ζ ≤ (2δ0)

p−ε1
p

= (2δ0)
−ε1

p · (2δ0) = 2(2δ0)
−ε1

p δ0 ≤ 2(2δ0)
−ε1

p δ(ε) ∀ 0 < ε < ε1 ;
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on the other hand,

δ̄(ε) =
δ̄(ε)
δ(ε)

δ(ε) ≤ 1
δ(ε1)

δ(ε) ∀ ε1 < ε ≤ p − 1 . (2.4)

The two relations above show that in the case δ0 > 0, then (2.3) holds with
M = max{2(2δ0)

−ε1
p , 1/δ(ε1)}. In the following we may therefore assume that

δ(0+) = 0.
For every ε ∈]0,min{1, p − 1}[ let n = n(ε) ∈ N be such that

2−n ≤ ε < 2−n+1. (2.5)

By continuity of δ, δ(0+) = 0 and, on the other hand, we recall that δ(ζ) > 0
for ζ ∈]0, p − 1]; therefore for every ε ∈]0,min{1, p − 1}[ there exists ζε ∈]0, ε]
such that

sup
0<ζ<ε

δ(ζ)
1

p−ζ = δ(ζε)
1

p−ζε ; (2.6)

let m = m(ε) ∈ N, m ≥ n, be such that 2−m ≤ ζε < 2−m+1. Hence for every
ε ∈]0,min{1, p − 1}[ we have the existence of integers n,m such that m ≥ n,
both depending on ε, for which

δ̄(ε)
δ(ε)

(2.2)
=

[
sup0<ζ<ε δ(ζ)

1
p−ζ

]p−ε

δ(ε)
(2.6)
=

[
δ(ζε)

1
p−ζε

]p−ε

δ(ε)
≤ δ(2−m+1)

p−2−n+1

p−2−m

δ(2−n)
:= A ,

where the last inequality is due to:

ζε < 2−m+1 ⇒ δ(ζε) ≤ δ(2−m+1)
ε < 2−n+1 ⇒ p − ε > p − 2−n+1

ζε ≥ 2−m ⇒ p − ζε ≤ p − 2−m

ε ≥ 2−n ⇒ δ(ε) ≥ δ(2−n).

We go on with the estimate as follows:

A =
δ(2−m+1)

p−2−n+1

p−2−m

δ(2−n)

=
δ(2−m+1)
δ(2−n)

δ(2−m+1)
p−2−n+1

p−2−m −1

=
δ(2−m+1)
δ(2−n)

δ(2−m+1)
2−m−2−n+1

p−2−m

=
δ(2−m+1)
δ(2−n)

δ(2−m+1)
2−m

p−2−m δ(2−m+1)− 2−n+1

p−2−m ≤ δ(2−m+1)1− 2−n+1

p−2−m

δ(2−n)
:= B ,

where the last inequality is due to the fact that 0 < δ(2−m+1) < 1 and 2−m

p−2−m >
0.
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Now fix any n0 ∈ N such that

n0 > 1 − log2 (min{ε0, p − 1}) ; (2.7)

note that it depends only on p and δ and that from (2.7) we have

−n0 + 1 < log2 (min{ε0, p − 1}) ,

from which

ε2 := 2−n0+1 < min{ε0, p − 1} , (2.8)

where ε0 is from assumption (2.1).
Consider for the moment ε in the interval ]0, ε2[, so that from (2.5)

2−n ≤ ε < 2−n0+1 ;

this means that −n < −n0 + 1, i.e. n ≥ n0, hence, from (2.8), we have

2−n ≤ ε < 2−n+1 ≤ 2−n0+1 < min{ε0, p − 1}. (2.9)

This chain of inequalities gives us the possibility to establish that the exponent
in the numerator of B is positive: in fact

1 − 2−n+1

p − 2−m
> 1 − p − 1

p − 1
= 0 .

Hence, taking into account that m ≥ n and that δ is nondecreasing,

B =
δ(2−m+1)1− 2−n+1

p−2−m

δ(2−n)
≤ δ(2−n+1)1− 2−n+1

p−2−m

δ(2−n)
:= C .

By (2.9) and (2.1)

δ(2−n+1) = δ(2 · 2−n) ≤ cδ(2−n) (2.10)

and therefore we may estimate C as follows:

C =
δ(2−n+1)1− 2−n+1

p−2−m

δ(2−n)
≤ δ(2−n+1)1− 2−n+1

p−2−m

c−1δ(2−n+1)

= cδ(2−n+1)− 2−n+1

p−2−m

= c

[
1

δ(2−n+1)

] 2−n+1

p−2−m

:= D .

Observe that, since m ≥ n, we have 2−m ≤ 2−n and therefore, by (2.9),
2−m ≤ p − 1, from which p − 2−m ≥ 1. On the other hand, by (2.8), iterating
the argument in (2.10), we have

δ(2−n0+1) ≤ cδ(2−n0) ≤ c2δ(2−n0−1) ≤ · · · ≤ ckδ(2−n0−k+1)
≤ · · · ≤ cn−n0δ(2−n+1) .
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We may therefore estimate

D = c

[
1

δ(2−n+1)

] 2−n+1

p−2−m

≤ c

[
1

cn0−nδ(2−n0+1)

]2−n+1

= c

[
1

cn0δ(2−n0+1)

]2−n+1

cn2−n+1 → c .

Overall, we obtained that D is smaller than a term of a bounded sequence
depending only on δ, c (from (2.1)), and n0 (which in turn depends again on
(2.1) and p), hence δ̄(ε)/δ(ε) is bounded for 0 < ε < ε2, where ε2 depends on
n0, too. Finally, we conclude arguing as in (2.4):

δ̄(ε) =
δ̄(ε)
δ(ε)

δ(ε) ≤ 1
δ(ε2)

δ(ε) ∀ ε2 < ε ≤ p − 1.

�

3. A Counterexample

The assumption δ ∈ Δ2 in Theorem 1 cannot be dropped. We are going to
exhibit an example of function δ continuous and nondecreasing, such that δ̄ �≈ δ
(i.e., as usual, positive constants c1, c2 such that c1δ(ε) ≤ δ̄(ε) ≤ c2δ(ε) for
every ε small cannot exist).

Example 1. Let 1 < p < ∞, and let δ :]0, p − 1] →]0,∞[ be defined, close to
the origin, as follows:

δ(ε) :=

{
exp(−5n) if ε ∈ [an, bn]
affine and continuous in [bn+1, an]

, n ∈ N large

where

an = 2−n , bn = 2−n +
p − 2−n

4n
.

We stress that the definition is well posed, because

bn+1 < an ⇔ 2−n−1

+
p − 2−n−1

4n+1
< 2−n ⇔ p − 2−n−1 < 4n+1(2−n − 2−n−1) = 2n+1 ,

which is true for n large. The function δ is continuous by definition and clearly
nondecreasing (because the sequence (exp(−5n))n∈N

is decreasing).
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Since an < bn and δ(an) = δ(bn), we have

δ̄(bn)
δ(bn)

=
1

δ(bn)

[
sup

0<ζ<bn

δ(ζ)
1

p−ζ

]p−bn

≥ 1
δ(bn)

[
δ(an)

1
p−an

]p−bn

= δ(an)
p−bn
p−an

−1 = [exp(−5n)]−
1
4n → ∞ ,

and therefore δ̄ �≈ δ.
We observe also that δ̂ cannot be nondecreasing, otherwise it would be

δ̄ = δ. The lost monotonicity of δ̂ could be verified also directly, because of the
constant behavior of δ in the intervals [an, bn].

Finally, we observe that δ /∈ Δ2: this is a direct consequence of our
Theorem 1, but it can be verified also directly. In fact, writing explicitly the
values of an and bn+1, it is immediate to realize that an < 2bn+1, hence

δ(2bn+1)
δ(bn+1)

≥ δ(an)
δ(bn+1)

=
exp(−5n)

exp(−5n+1)
= exp(4 · 5n) ↑ ∞ .

4. Applications

4.1. On the Definition of Generalized Grand Lebesgue Spaces

After [7], the interesting class of spaces Lp),δ is for functions δ defined point-
wise, therefore the norm can be written with sup instead of esssup:

‖f‖Lp),δ(0,1) = sup
0<ε<p−1

(
δ(ε)

∫ 1

0

|f |p−εdx

) 1
p−ε

= sup
0<ε<p−1

δ̂(ε)
(∫ 1

0

|f |p−εdx

) 1
p−ε

. (4.1)

Again after [7], the whole class of spaces is covered by the assumption δ̂ non-
decreasing, and this is in agreement with the heart of these spaces, which is
based on the monotonicity of the Lebesgue norm ‖ · ‖p−ε, consequence of the
Hölder’s inequality (see [13] for details). With this assumption in order, one
has that δ itself is nondecreasing, too.

If one replaces the assumption “δ̂ nondecreasing”with “δ nondecreas-
ing”, then one gets functions δ̂ which are not nondecreasing (see Example 1):
in principle, it gives a wider range of spaces. However, in [7] it is shown that
replacing δ by δ̄ one has an equivalent norm, and the corresponding ̂̄δ is non-
decreasing. The reader must be aware of the fact that in this case the norms
are equivalent, but δ and δ̄ are not necessarily equivalent. After our Theorem
1, they are equivalent if and only if δ ∈ Δ2. This essentially confirms that “δ̂
nondecreasing” is the best option for the consideration of the whole class of
spaces.
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The point is that several results using techniques from Interpolation-
Extrapolation theory involve the Δ2 condition. With the addition of this as-
sumption, after our Theorem 1, we know that the replacement of δ by δ̄ gives
not only the equivalence of the norms, but also the equivalence δ̄ ≈ δ.

The above considerations lead to state the following

Theorem 2. If 1 < p < ∞ and δ, δ1 :]0, p − 1] →]0,∞[ are continuous and
nondecreasing, then

δ ≈ δ1 ⇒ Lp),δ = Lp),δ1 ,

and the viceversa does not hold. Moreover,

δ̄ ≈ δ ⇒ Lp),δ̄ = Lp),δ ,

and the viceversa does not hold. If, moreover, δ ∈ Δ2, then

δ̄ ≈ δ ⇔ Lp),δ̄ = Lp),δ .

We stress that the last sentence in Theorem 2 comes from the fact that
when δ is nondecreasing and Δ2, by Theorem 1 we know that δ̄ ≈ δ without
the use of Lp),δ̄ = Lp),δ.

4.2. On the Fundamental Function of Generalized Grand Lebesgue Spaces

Let 1 < p < ∞, and let δ :]0, p−1] →]0, 1] be continuous. From [12, 3.7] and [7,
Proposition 2.3] we know that if δ is such that δ̂(·) := δ(·) 1

p−· is nondecreasing
and Δ2 near the origin, then, setting

A(t) := tpδ

(
p − 1

log(e + t)

)
, t ≥ 0 ,

and denoting by ϕX the fundamental function of a rearrangement invariant
Banach function space X, the following holds:
(i) δ(t) ≈ δ̄(t) , t small

(ii) ϕLA(t) ≈ t
1
p δ

(
1

log(e+1/t)

) 1
p

, t small

(iii) ϕLA(t) ≈ t
1
p δ̄

(
1

log(e+1/t)

) 1
p

, t small

(iv) Lp),δ(0, 1) = Lp),δ̄(0, 1)

(v) ϕLp),δ ≈ t
1
p δ

(
1

log(e+1/t)

) 1
p

, t small

Here there are the easy proofs or references: (i) since δ̂ is nondecreasing, we
have δ = δ̄, hence trivially δ ≈ δ̄; (ii) comes from direct computation, tak-
ing into account that from the classical theory ϕLA(t) = 1/A−1(1/t); (iii) is
obvious from (i); (iv) was proved in [7, Proposition 2.3]; (v) comes from the
fact that by [12, 3.8] δ̂ is nondecreasing implies that δ is nondecreasing, and
therefore, since δ̂ ∈ Δ2, again by [12, 3.8], also δ ∈ Δ2; hence by [12, 3.5] we

have ϕLp),δ ≈ t
1
p δ̂

(
1

log(e+1/t)

)
and this implies ϕLp),δ ≈ t

1
p δ

(
1

log(e+1/t)

) 1
p

.
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The arguments above use heavily the assumptions on δ̂, even if this func-
tion does not appear explicitly in (i)-(v). After our Theorem 1, all the state-
ments (i)-(v) are still true in the weaker assumption that δ is nondecreasing
and Δ2. Note that such weaker assumption allows for instance δ ≡ 1/2 (cor-
responding to A(t) = (1/2)tp), which is a case not included in the original
assumption, implicit in [12, 3.7], that δ must be such that δ̂(·) := δ(·) 1

p−· is
nondecreasing.

If one drops the assumption Δ2 and assumes just δ nondecreasing, then
Example 1 shows that (i), (iii) and (v) in general fail, while (ii) and (iv)
remain true (because they have been proved without the Δ2 assumption).

We stress that the problem of a complete characterization of the behavior
of the fundamental function in generalized grand Lebesgue spaces remains still
open.

Remark 1. Theorem 1 shows that the sentences in [12, 3.7] are correct. The
equivalences stated therein use implicitly the stronger assumption that δ (called
ϕ in [12]) must be such that δ̂(·) := δ(·) 1

p−· is nondecreasing, however, their
correct (omitted and detailed) justification is a consequence of our main result.

4.3. The Extension of the Validity of a Sharp Blow-up Estimate

Let 1 < p < ∞, and let ψ :]0, p− 1] →]0,∞[ be continuous and nondecreasing.
In this assumption we know from [12] that if, moreover, ψ ∈ Δ2, then

sup
0<ε<p−1

ψ(ε)‖f‖Lp−ε(0,1) ≈ sup
0<t<1

ψ

(
p − 1

1 − log t

)
‖f∗‖Lp(t,1) . (4.2)

With respect to the notation in (4.1), this means that

sup
0<ε<p−1

δ̂(ε)‖f‖Lp−ε(0,1) ≈ sup
0<t<1

δ̂

(
p − 1

1 − log t

)
‖f∗‖Lp(t,1) . (4.3)

The assumptions on ψ, in terms of δ, entrain—as we already observed above—
that δ is nondecreasing and Δ2, but the viceversa does not hold. After our
Theorem 1, we can assert that (4.3) holds also assuming just δ nondecreasing
and Δ2. In fact, we know that δ̄ ≈ δ and therefore also δ̄ ∈ Δ2 and δ̄(·) 1

p−· ∈
Δ2. Moreover, since by definition of δ̄ we have that δ̄(·) 1

p−· is nondecreasing,

sup
0<ε<p−1

δ̂(ε)‖f‖Lp−ε(0,1)

= sup
0<ε<p−1

(
δ(ε)

∫ 1

0

|f |p−εdx

) 1
p−ε

≈ sup
0<ε<p−1

(
δ̄(ε)

∫ 1

0

|f |p−εdx

) 1
p−ε

= sup
0<ε<p−1

δ̄(ε)
1

p−ε

(∫ 1

0

|f |p−εdx

) 1
p−ε

≈ sup
0<t<1

δ̄

(
p − 1

1 − log t

) 1
p− p−1

1−log t ‖f∗‖Lp(t,1)

≈ sup
0<t<1

δ

(
p − 1

1 − log t

) 1
p− p−1

1−log t ‖f∗‖Lp(t,1) = sup
0<t<1

δ̂

(
p − 1

1 − log t

)
‖f∗‖Lp(t,1) .
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An extension of (4.2) to the case where the Δ2 assumption is dropped is still
an open problem.
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Campanato and grand spaces

[19] Liflyand, E., Ostrovsky, E., Sirota, L.: Structural properties of bilateral grand
Lebesgue spaces. Turkish J. Math. 34(2), 207–219 (2010)

[20] Maligranda, L.: Orlicz spaces and interpolation, Seminários de Matemática
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