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Abstract. Let gcd(k, j) denote the greatest common divisor of the integers
k and j, and let r be any fixed positive integer. Define

Mr(x; f) :=
∑

k≤x

1

kr+1

k∑

j=1

jrf(gcd(j, k))

for any large real number x ≥ 5, where f is any arithmetical function.
Let φ, and ψ denote the Euler totient and the Dedekind function, re-
spectively. In this paper, we refine asymptotic expansions of Mr(x; id),
Mr(x;φ) and Mr(x;ψ). Furthermore, under the Riemann Hypothesis and
the simplicity of zeros of the Riemann zeta-function, we establish the
asymptotic formula of Mr(x; id) for any large positive number x > 5
satisfying x = [x] + 1

2
.
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1. Introduction and Statement of Results

Let gcd(k, j) be the greatest common divisor of the integers k and j. The gcd-
sum function, which is also known as Pillai’s arithmetical function, is defined

Lisa Kaltenböck is supported by the Austrian Science Fund (FWF), Project F5507-N26,
which is a part of the Special Research Program “Quasi Monte Carlo Methods: Theory
and Applications”. Sumaia Saad Eddin is supported by the Austrian Science Fund (FWF):
Projects F5507-N26 and F5505-N26, which are parts of the Special Research Program “Quasi
Monte Carlo Methods: Theory and Applications” .

http://crossmark.crossref.org/dialog/?doi=10.1007/s00025-021-01357-x&domain=pdf
http://orcid.org/0000-0002-9455-7672


43 Page 2 of 17 L. Kaltenböck et al. Results Math

by

P (n) =
n∑

k=1

gcd(k, n).

This function has been studied by many authors such as Broughan [4], Bor-
dellés [3],Tanigawa and Zhai [18], Tóth [19], and others. Analytic properties
for partial sums of the gcd-sum function f(gcd(j, k)) were recently studied
by Inoue and Kiuchi [8]. We recall that the symbol ∗ denotes the Dirich-
let convolution of two arithmetical functions f and g defined by f ∗ g(n) =∑

d|n f(d)g(n/d), for every positive integer n. For any arithmetical function f ,
the second author [11] showed, that for any fixed positive integer r and any
large positive number x ≥ 2 we have

Mr(x; f) :=
∑

k≤x

1
kr+1

k∑

j=1

jrf(gcd(k, j))

=
1
2

∑

n≤x

f(n)
n

+
1

r + 1

∑

d�≤x

μ ∗ f(d)
d

+
1

r + 1

[r/2]∑

m=1

(
r + 1
2m

)
B2m

∑

d�≤x

μ ∗ f(d)
d

1
�2m

. (1)

Here, as usual, the function μ denotes the Möbius function and Bm = Bm(0)
are the Bernoulli numbers, with Bm(x) being the Bernoulli polynomials defined
by the generating function

zexz

ez − 1
=

∞∑

m=0

Bm(x)
zm

m!

with |z| < 2π. Many applications of Eq. (1) have been given in [10], [12] and
[13].

In [11], Eq. (1) was used to establish asymptotic formulas for Mr(x; f) for
specific choices of f such as the identity function id, the Euler totient function
φ = id∗μ or the Dedekind function ψ = id∗|μ|. More precisely, let ζ(s) denote
the Riemann zeta-function, then for f = id, it was proved that

Mr(x; id) =
1

(r + 1)ζ(2)
x log x +

x

2

+
1

(r + 1)ζ(2)

⎛

⎝2γ − 1 − ζ ′(2)
ζ(2)

+
[r/2]∑

m=1

(
r + 1
2m

)
B2mζ(2m + 1)

⎞

⎠

x + Kr(x),

where

Kr(x) =
1

r + 1

∑

n≤x

μ(n)
n

Δ
(x

n

)
+ Or (log x) . (2)
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For f = φ, it was shown that

Mr(x;φ) =
1

(r + 1)ζ2(2)
x log x +

x

2ζ(2)

+
1

(r + 1)ζ2(2)

⎛

⎝2γ − 1 − 2
ζ ′(2)
ζ(2)

+
[r/2]∑

m=1

(
r + 1
2m

)
B2mζ(2m + 1)

⎞

⎠

x + Lr(x),

where

Lr(x) :=
1

r + 1

∑

n≤x

μ ∗ μ(n)
n

Δ
(x

n

)
+ Or

(
(log x)2

)
. (3)

Lastly, for f = ψ it was proved that

Mr(x;ψ) =
1

(r + 1)ζ (4)
x log x +

ζ(2)
2ζ(4)

x

+
1

(r + 1)ζ(4)

⎛

⎝2γ − 1 − 2
ζ ′(4)
ζ(4)

+
[r/2]∑

m=1

(
r + 1
2m

)
B2mζ(2m + 1)

⎞

⎠ x + Ur(x),

where

Ur(x) :=
1

r + 1

∑

n≤x

μ ∗ |μ|(n)
n

Δ
(x

n

)
+ Or

(
(log x)2

)
. (4)

The function Δ(x) denotes the error term of the Dirichlet divisor problem: Let
τ = 1 ∗ 1 be the divisor function, then for any large positive number x ≥ 2,

∑

n≤x

τ(n) = x log x + (2γ − 1)x + Δ(x), (5)

where γ is the Euler constant and Δ(x) can be estimated by Δ(x) = O
(
xθ+ε

)
.

It is known that one can take 1/4 ≤ θ ≤ 1/3. More precisely, the Dirichlet
divisor problem is to find the smallest value of θ for which the above estimate
holds, for any ε > 0. This problem is still unsolved. The best estimate to date
is

O
(
x131/416(log x)26947/8320

)
,

obtained by Huxley [7] in 2003.
The first purpose of this paper is to refine the error terms Kr(x), Lr(x)

and Ur(x) from the above formulas. Therefore, let σu = idu ∗1 be the general-
ized divisor function for any real number u and let m ≥ 1 be an integer. Then
for any large positive number x ≥ 2, the function Δ−2m(x) denotes the error
term of the generalized divisor problem given by

∑

n≤x

σ−2m(n) = ζ(1 + 2m)x − 1
2
ζ(2m) + Δ−2m (x) . (6)
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For more details about the functions Δ(x),Δ−2m(x), see [1]. We have the
following results:

Theorem 1. Let Δ(x) and Δ−2m(x) be the error terms given by Eqs. (5) and
(6), respectively. For any large positive number x > 5 and fixed positive integer
r, we have

Kr(x) =
1

r + 1

∑

d≤x

μ(d)
d

Δ
(x

d

)

+
1

r + 1

∑

d≤x

μ(d)
d

[r/2]∑

m=1

(
r + 1
2m

)
B2mΔ−2m

(x

d

)
+ Or (δ(x)) ,

where the function δ(x) is defined by

δ(x) := exp
(

−C
(log x)3/5

(log log x)1/5

)
(7)

with C being a positive constant. Moreover, we have

Lr(x) =
1

r + 1

∑

n≤x

μ ∗ μ(n)
n

Δ
(x

n

)

+
1

r + 1

∑

n≤x

μ ∗ μ(n)
n

[r/2]∑

m=1

(
r + 1
2m

)
B2mΔ−2m

(x

n

)

+ Or

(
(log x)2/3(log log x)1/3

)
.

and

Ur(x) =
1

r + 1

∑

n≤x

μ ∗ |μ|(n)
n

Δ
(x

n

)

+
1

r + 1

∑

n≤x

μ ∗ |μ|(n)
n

[r/2]∑

m=1

(
r + 1
2m

)
B2mΔ−2m

(x

n

)

− 1
4ζ(2)

log x + Or

(
(log x)2/3

)
.

Remark 1. It is easily checked that using the weakest estimate Δ−2m(x) =
Om(1) in the results Theorem 1 yields much better results than the previously
known formulas for Kr(x), Lr(x) and Mr(x) from Eqs. (2), (3), and (4).

Furthermore, even better estimates of Kr(x) can be achieved by addi-
tional assumptions on the Riemann zeta-function. Under the Riemann Hy-
pothesis, Maier and Montgomery [15] gave a sharper estimate of the partial
sum of the Möbius function, which was later improved by Soundararajan [17].
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The author proved that

M(x) :=
∑

n≤x

μ(n) = O
(
x1/2η(x)

)

where

η(x) := exp
(
(log x)1/2(log log x)14

)
, (8)

for any large positive number x > 5 satisfying x = [x]+ 1
2 . This latter has been

improved slightly by Balazard and de Roton [2]. By using the above result on
M(x), we obtain the next statement.

Theorem 2. Assume the Riemann Hypothesis and let Δ(x) and Δ−2m(x) be
the error terms given by Eqs. (5) and (6), respectively. Then for any large
positive number x > 5 such that x = [x] + 1

2 and fixed positive integer r, we
have

Kr(x) =
1

r + 1

∑

d≤x

μ(d)
d

Δ
(x

d

)

+
1

r + 1

∑

d≤x

μ(d)
d

[r/2]∑

m=1

(
r + 1
2m

)
B2mΔ−2m

(x

d

)
+ Or

(
η(x) log x

x1/2

)
.

For our further considerations, let ρ = α + iβ denote the generic non-
trivial zeros of the Riemann zeta-function. Under the assumption that all zeros
ρ in the critical strip of ζ(s) are simple, we are able to prove an additional
refinement for the error term Kr(x).

Theorem 3. Assume that the zeros of ζ(s) are simple. Let T∗ ≥ x6 be some
positive number satisfying the inequality

1
ζ(σ + iT∗)

� T ε
∗

for 1
2 ≤ σ ≤ 2. For any large positive number x > 5 with x = [x] + 1

2 we then
have

Kr(x) =
1

r + 1

∑

n≤x

μ(n)
n

Δ
(x

n

)
+

1
r + 1

∑

n≤x

μ(n)
n

[r/2]∑

m=1

(
r + 1
2m

)
B2mΔ−2m

(x

n

)

+
2γ + Codd(r) − 1

r + 1

∑

|β|≤T∗

xρ−1

(ρ − 2)ζ ′(ρ)
− Ceven(r)

2(r + 1)

∑

|β|≤T∗

xρ−1

(ρ − 1)ζ ′(ρ)

+
1

r + 1

∑

|β|≤T∗

xρ−1

(ρ − 2)2ζ ′(ρ)
+ Or

(
x−3

)
,
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where the functions Codd(r) and Ceven(r) are given by

Codd(r) :=
[r/2]∑

m=1

(
r + 1
2m

)
B2mζ(2m + 1),

and

Ceven(r) :=
[r/2]∑

m=1

(
r + 1
2m

)
B2mζ(2m)

for any fixed positive integer r.

Finally, define the sum

J−λ(T ) :=
∑

0<β≤T

1
|ζ ′(ρ)|2λ

which is intimately connected to Mertens function. Assuming the simplicity of
the zeros of ζ(s), Gonek [5] and Hejhal [6] independently conjectured that for
any real number λ < 3/2, we have

J−λ(T ) � T (log T )(λ−1)2 (9)

We use this conjecture to prove the following:

Theorem 4. Assume that the Riemann Hypothesis and Gonek-Hejhal conjec-
ture. Then

Kr(x) =
1

r + 1

∑

n≤x

μ(n)
n

Δ
(x

n

)
+

1
r + 1

∑

d≤x

μ(d)
d

[r/2]∑

m=1

(
r + 1
2m

)
B2mΔ−2m

(x

d

)

+ Or

(
(log x)5/4

x1/2

)
,

for any large positive number x > 5 satisfying x = [x] + 1
2 .

2. Proofs of Theorems 1 and 2

In order to prove our main results, we first show some necessary lemmas.

2.1. Auxiliary Lemmas

Lemma 1. For any large positive number x > 5, we have
∑

n≤x

μ(n)
n2

=
1

ζ(2)
+ O

(
δ(x)
x

)
, (10)

∑

n≤x

μ(n)
n2

log n =
ζ ′(2)
ζ2(2)

+ O

(
δ(x)
x

)
, (11)
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and
∑

n≤x

μ(n)
n

= O (δ(x)) , (12)

where δ(x) is given by Eq. (7). Assume that x = [x] + 1
2 . Under the Riemann

Hypothesis we have
∑

n≤x

μ(n)
n2

=
1

ζ(2)
+ O

(
η(x)
x3/2

)
, (13)

∑

n≤x

μ(n)
n2

log n =
ζ ′(2)
ζ2(2)

+ O

(
η(x) log x

x3/2

)
, (14)

and
∑

n≤x

μ(n)
n

= O

(
η(x)
x1/2

)
. (15)

for any large positive number x > 5. Here η(x) is given by Eq. (8).

Proof. Eqs. (10) and (11) follow from Lemmas 2.2 and 2.3 in [16]. The proof
of Eq. (12) can be found in [9]. The formulas (13)–(15) follow from Lemma 2.1
in [8]. �

Lemma 2. For any large positive number x > 5, we have
∑

n≤x

φ(n)
n

=
x

ζ(2)
+ O

(
(log x)2/3(log log x)1/3

)
.

Proof. For any large positive number x ≥ 5, we use the result of Liu in [14]
∑

�≤x

μ(�)
�

ϑ
(x

�

)
= O

(
(log x)2/3(log log x)1/3

)
,

the fact that φ = id ∗ μ, and Eqs. (10), (12) to obtain the formula
∑

n≤x

φ(n)
n

=
∑

�≤x

μ(�)
�

(
x

�
− ϑ

(x

�

)
− 1

2

)

=
x

ζ(2)
+ O

(
(log x)2/3(log log x)1/3

)
.

Here ϑ(x) is the oscillatory function defined by x− [x]− 1
2 . This completes the

proof. �

Lemma 3. For any large positive number x > 5, we have
∑

n≤x

ψ(n)
n

=
ζ(2)
ζ(4)

x − 1
2ζ(2)

log x + O
(
(log x)2/3

)
.

Proof. The proof can be found in [20, Satz 3]. �
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Lemma 4. For any large positive number x > 5, we have
∑

n≤x

μ ∗ μ(n)
n2

=
1

ζ2(2)
+ O

(
κ(x)

x

)
, (16)

∑

n≤x

μ ∗ μ(n)
n2

log n = 2
ζ ′(2)
ζ3(2)

+ O

(
κ(x)

x

)
, (17)

and
∑

n≤x

μ ∗ μ(n)
n

= O (κ(x)) , (18)

where κ(x) is given by

κ(x) = exp
(
−D(log x log log x)1/3

)

with D being a positive constant.

Proof. Eqs. (16), (17) and (18) follow from Eqs. (3.5), (3.6) and (3.3) in [8],
respectively. �
Lemma 5. For any large positive number x > 5, we have

∑

n≤x

|μ| ∗ μ(n)
n2

=
1

ζ (4)
+ O

(
δ(x)
x3/2

)
, (19)

∑

n≤x

|μ| ∗ μ(n)
n2

log n = 2
ζ ′(4)
ζ2(4)

+ O

(
δ(x)
x3/2

)
, (20)

and
∑

n≤x

|μ| ∗ μ(n)
n

=
1

ζ(2)
+ O

(
δ(x)
x1/2

)
. (21)

Proof. Eqs. (19) and (20) follow from Eqs. (3.7) and (3.8) in [8], respectively.
It is known that

∞∑

n=1

|μ| ∗ μ(n)
n

=
1

ζ(2)
,

Now, we write our sums as follows
∑

n≤x

|μ| ∗ μ(n)
n

=
∞∑

n=1

|μ| ∗ μ(n)
n

−
∑

n>x

|μ| ∗ μ(n)
n

=
1

ζ(2)
−

∑

n>x

|μ| ∗ μ(n)
n

.

To complete the proof, it remains to estimate the last sum above. Notice that
∑

n>x

|μ| ∗ μ(n)
n

=
∫ ∞

x

∑
x<n≤t |μ| ∗ μ(n)

t2
dt
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and that
∑

n≤x

|μ| ∗ μ(n) =
∑

n≤√
x

μ(n) + O (xε) = O
(
x1/2δ(x)

)
,

where we used Eq. (3.4) from [8]. Therefore, we have
∑

n>x

|μ| ∗ μ(n)
n

= O

(∫ ∞

x

t1/2δ(t)
t2

dt

)
= O

(
δ(x)
x1/2

)
,

and Eq. (21) is proved. �

Lemma 6. For any large positive number x > 5, we have
∑

n≤x

∑

d|n

φ(d)
d

=
1

ζ(2)
x log x +

1
ζ(2)

(
2γ − 1 − ζ ′(2)

ζ(2)

)
x

+
∑

d≤x

μ(d)
d

Δ
(x

d

)
+ O (δ(x)) , (22)

and
∑

d�≤x

φ(d)
d

1
�2m

=
ζ(1 + 2m)

ζ(2)
x +

∑

d≤x

μ(d)
d

Δ−2m

(x

d

)
+ Om (δ(x)) (23)

for any positive integer m. Suppose that x = [x] + 1
2 . Under the Riemann

Hypothesis, we have
∑

n≤x

∑

d|n

φ(d)
d

=
1

ζ(2)
x log x +

1
ζ(2)

(
2γ − 1 − ζ ′(2)

ζ(2)

)
x

+
∑

d≤x

μ(d)
d

Δ
(x

d

)
+ O

(
η(x) log x

x1/2

)
, (24)

and
∑

d�≤x

φ(d)
d

1
�2m

=
ζ(1 + 2m)

ζ(2)
x +

∑

d≤x

μ(d)
d

Δ−2m

(x

d

)
+ Om

(
η(x)
x1/2

)
(25)

Proof. We recall the identity
φ

id
∗1 =

μ

id
∗ τ. Using Eqs. (5), (10) and (11), we

obtain
∑

n≤x

∑

d|n

φ(d)
d

=
∑

d≤x

μ(d)
d

∑

�≤x/d

τ(�)

= x (log x + 2γ − 1)
∑

d≤x

μ(d)
d2

− x
∑

d≤x

μ(d)
d2

log d +
∑

d≤x

μ(d)
d

Δ
(x

d

)

=
1

ζ(2)
x log x +

1
ζ(2)

(
2γ − 1 − ζ ′(2)

ζ(2)

)
x +

∑

d≤x

μ(d)
d

Δ
(x

d

)
+ O (δ(x)) ,
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which completes the proof of Eq. (22). Further, we recall the identity
φ

id
∗

id−2m =
μ

id
∗ σ−2m, and use Eqs. (6), (10) and (12) to get

∑

d�≤x

φ(d)
d

1
�2m

=
∑

d≤x

μ(d)
d

∑

�≤x/d

σ−2m(�)

=
∑

d≤x

μ(d)
d

(
ζ(1 + 2m)

x

d
− 1

2
ζ(2m) + Δ−2m

(x

d

))

=
ζ(1 + 2m)

ζ(2)
x +

∑

d≤x

μ(d)
d

Δ−2m

(x

d

)
+ Om (δ(x)) .

This completes the proof of Eq. (23). Similarly, we use Eqs. (13), (14) and (15)
to deduce Eqs. (24) and (25). �

Lemma 7. For any large positive number x > 5, we have

∑

n≤x

∑

d|n

μ ∗ φ(d)
d

=
1

ζ2(2)
x log x +

1
ζ2(2)

(
2γ − 1 − 2

ζ ′(2)
ζ(2)

)
x

+
∑

d≤x

μ ∗ μ(d)
d

Δ
(x

d

)
+ O (κ(x)) , (26)

and

∑

d�≤x

μ ∗ φ(d)
d

1
�2m

=
ζ(1 + 2m)

ζ2(2)
x +

∑

d≤x

μ ∗ μ(d)
d

Δ−2m

(x

d

)
+ Om (κ(x)) (27)

for any positive integer m. Here κ(x) is defined above in Lemma 4.

Proof. We use the identity
μ ∗ φ

id
∗ 1 =

μ ∗ μ

id
∗ τ, Eqs. (5), (16), and (17) to

obtain

∑

k≤x

∑

d|k

μ ∗ φ(d)
d

=
∑

d≤x

μ ∗ μ(d)
d

∑

�≤x/d

τ(�)

= x (log x + 2γ − 1)
∑

d≤x

μ ∗ μ(d)
d2

− x
∑

d≤x

μ ∗ μ(d)
d2

log d +
∑

d≤x

μ ∗ μ(d)
d

Δ
(x

d

)

=
x log x

ζ2(2)
+

1
ζ2(2)

(
2γ − 1 − 2

ζ ′(2)
ζ(2)

)
x +

∑

d≤x

μ ∗ μ(d)
d

Δ
(x

d

)
+ O (κ(x)) ,
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which completes the proof of Eq. (26). By using the fact that
μ ∗ φ

id
∗ id−2m =

μ ∗ μ

id
∗ σ−2m, together with Eqs. (6), (16), and (18) we get

∑

d�≤x

μ ∗ φ(d)
d

1
�2m

=
∑

d≤x

μ ∗ μ(d)
d

∑

�≤x/d

σ−2m(�)

=
ζ(1 + 2m)

ζ2(2)
x +

∑

d≤x

μ ∗ μ(d)
d

Δ−2m

(x

d

)
+ Om (κ(x)) .

Therefore, Eq. (27) is proved. �
Lemma 8. For any large positive number x > 5, we have

∑

n≤x

∑

d|n

μ ∗ ψ(d)
d

=
1

ζ (4)
x log x +

1
ζ (4)

(
2γ − 1 − 2

ζ ′(4)
ζ(4)

)
x

+
∑

d≤x

|μ| ∗ μ(d)
d

Δ
(x

d

)
+ O

(
δ(x)
x1/2

)
, (28)

and
∑

d�≤x

μ ∗ ψ(d)
d

1
�2m

=
ζ(1 + 2m)

ζ (4)
x

+
∑

d≤x

|μ| ∗ μ(d)
d

Δ−2m

(x

d

)
− ζ(2m)

2ζ(2)
+ Om

(
δ(x)
x1/2

)

(29)

for any positive integer m.

Proof. From the identity
μ ∗ ψ

id
∗ 1 =

μ ∗ |μ|
id

∗ τ, we have

∑

k≤x

∑

d|k

μ ∗ ψ(d)
d

=
∑

d≤x

μ ∗ |μ|(d)
d

∑

�≤x/d

τ(�).

Using Eqs. (5), (19) and (20), we obtain the formula Eq. (28). Now, we use the

identity
μ ∗ ψ

id
∗ id−2m =

μ ∗ |μ|
id

∗ σ−2m to write our second sums as follows

∑

d�≤x

μ ∗ ψ(d)
d

1
�2m

=
∑

d≤x

μ ∗ |μ|(d)
d

∑

�≤x/d

σ−2m(�).

Again, we use Eq. (6) to get
∑

d�≤x

μ ∗ ψ(d)
d

1
�2m

=
∑

d≤x

μ ∗ |μ|(d)
d

(
ζ(1 + 2m)

x

d
− 1

2
ζ(2m) + Δ−2m

(x

d

))
.

Applying Eqs. (19) and (21) to the above, we deduce the desired result. �
Now we are ready to prove our main theorems.



43 Page 12 of 17 L. Kaltenböck et al. Results Math

2.2. Proofs of the Theorems

Proof of Theorem 1. First, we take f = id into Eq. (1) to get

Mr(x; id) =
1
2

∑

n≤x

1 +
1

r + 1

∑

d�≤x

μ ∗ id(d)
d

+
1

r + 1

[r/2]∑

m=1

(
r + 1
2m

)
B2m

∑

d�≤x

μ ∗ id(d)
d

1
�2m

=
1
2

∑

n≤x

1 +
1

r + 1

∑

n≤x

∑

d|n

φ(d)
d

+
1

r + 1

[r/2]∑

m=1

(
r + 1
2m

)
B2m

∑

d�≤x

φ(d)
d

1
�2m

. (30)

Applying Eqs. (22) and (23) above yields

Kr(x) =
1

r + 1

∑

d≤x

μ(d)
d

Δ
(x

d

)

+
1

r + 1

∑

d≤x

μ(d)
d

[r/2]∑

m=1

(
r + 1
2m

)
B2mΔ−2m

(x

d

)
+ Or (δ(x)) ,

which gives the desired result. We take f = φ into Eq. (1) to get

Mr(x;φ) =
1
2

∑

n≤x

φ(n)
n

+
1

r + 1

∑

n≤x

∑

d|n

μ ∗ φ(d)
d

+
1

r + 1

[r/2]∑

m=1

(
r + 1
2m

)
B2m

∑

d�≤x

μ ∗ φ(d)
d

1
�2m

.

Using Lemma 2, as well as Eqs. (26) and (27), we get

Lr(x) =
1

r + 1

∑

n≤x

μ ∗ μ(n)
n

Δ
(x

n

)

+
1

r + 1

∑

n≤x

μ ∗ μ(n)
n

[r/2]∑

m=1

(
r + 1
2m

)
B2mΔ−2m

(x

n

)

+ Or

(
(log x)2/3(log log x)1/3

)
,



Vol. 76 (2021) Sums of Averages of GCD-Sum Functions II Page 13 of 17 43

as desired. Taking f = ψ into Eq. (1) we get

Mr(x;ψ) =
1
2

∑

n≤x

ψ(n)
n

+
1

r + 1

∑

d�≤x

μ ∗ ψ(d)
d

+
1

r + 1

[r/2]∑

m=1

(
r + 1
2m

)
B2m

∑

d�≤x

μ ∗ ψ(d)
d

1
�2m

. (31)

Applying Lemma 3, as well as Eqs. (28) and (29) in the above formula yields

Ur(x) =
1

r + 1

∑

n≤x

μ ∗ |μ|(n)
n

Δ
(x

n

)

+
1

r + 1

∑

n≤x

μ ∗ |μ|(n)
n

[r/2]∑

m=1

(
r + 1
2m

)
B2mΔ−2m

(x

n

)

− 1
4ζ(2)

log x + Or

(
(log x)2/3

)
.

This completes the proof of Theorem 1. �

Proof of Theorem 2. By assuming the Riemann Hypothesis, and applying Eqs.
(24) and (25) in Eq. (30), we immediately deduce that

Kr(x) =
1

r + 1

∑

d≤x

μ(d)
d

Δ
(x

d

)

+
1

r + 1

∑

d≤x

μ(d)
d

[r/2]∑

m=1

(
r + 1
2m

)
B2mΔ−2m

(x

d

)
+ Or

(
η(x) log x

x1/2

)
,

which completes the proof of Theorem 2. �

3. Proofs of Theorems 3 and 4

To prove Theorems 3 we just need the following lemma.

Lemma 9. Under the hypotheses of Theorem 3, we have
∑

n≤x

μ(n)
n2

=
1

ζ(2)
+

∑

|β|≤T∗

xρ−2

(ρ − 2)ζ ′(ρ)
+

π2

ζ(3)
x−4 + O

(
x−5

)
,

∑

n≤x

μ(n)
n2

log
x

n
=

1
ζ(2)

(
log x − ζ ′(2)

ζ (2)

)

+
∑

|β|≤T∗

xρ−2

(ρ − 2)2ζ ′(ρ)
− π2

4ζ(3)
x−4 + O

(
x−5

)
,
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and
∑

n≤x

μ(n)
n

=
∑

|β|≤T∗

xρ−1

(ρ − 1)ζ ′(ρ)
+

4π2

3ζ(3)
x−3 + O

(
x−5

)
.

Proof. The proof of the lemma can be found in [8, Lemma 3.5]. �
Proof of Theorem 3. We recall that

Mr(x; id) =
1
2

∑

n≤x

1 +
1

r + 1

∑

d�≤x

μ ∗ id(d)
d

+
1

r + 1

[r/2]∑

m=1

(
r + 1
2m

)
B2m

∑

d�≤x

μ ∗ id(d)
d

1
�2m

.

Using the fact that
μ ∗ id

id
∗ 1 =

μ

id
∗ τ,

μ ∗ id
id

∗ id−2m =
μ

id
∗ σ−2m,

and Eqs. (5) and (6), we get

Mr(x; id) =
[x]
2

+
x

r + 1

∑

n≤x

μ(n)
n2

log
x

n
+

x

r + 1
(2γ − 1 + Codd(r))

∑

n≤x

μ(n)
n2

− Ceven(r)
2(r + 1)

∑

n≤x

μ(n)
n

+
1

r + 1

∑

n≤x

μ(n)
n

Δ
(x

n

)

+
1

r + 1

[r/2]∑

m=1

(
r + 1
2m

)
B2m

∑

n≤x

μ(n)
n

Δ−2m

(x

n

)
.

Under the hypotheses of the theorem, we use Lemma 9 to obtain

Mr(x; id) =
[x]
2

+
x log x

(r + 1)ζ(2)
+

x

(r + 1)ζ(2)

(
2γ − 1 − ζ ′(2)

ζ(2)
+ Codd(r)

)

+
1

r + 1

∑

n≤x

μ(n)
n

Δ
(x

n

)
+

1
r + 1

[r/2]∑

m=1

(
r + 1
2m

)

B2mζ(2m)
∑

n≤x

μ(n)
n

Δ−2m

(x

n

)

+
1

r + 1
(2γ − 1 + Codd(r))

∑

|β|≤T∗

xρ−1

(ρ − 2)ζ ′(ρ)

+
1

r + 1

∑

|β|≤T∗

xρ−1

(ρ − 2)2ζ ′(ρ)
− Ceven(r)

2(r + 1)

∑

|β|≤T∗

xρ−1

(ρ − 1)ζ ′(ρ)
+ Or

(
x−3

)
,
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which completes the proof. �

Proof of Theorem 4. To prove our theorem it suffices to show that

∑

|β|≤T∗

x− 1
2+iβ

(−j + iβ)ζ ′( 12 + iβ)
= O

(
x−1/2(log x)5/4

)

with j = 1/2 and 3/2. We take λ = −1/2 into Eq. (9), then J−1/2(T∗) �
T∗(log T∗)1/4. Using the above and partial summation we have

∑

|β|≤T∗

1
β|ζ ′( 12 + iβ)| �

[
J−1/2(t)

t

]T∗

14

+
∫ T∗

14

J−1/2(t)
t2

dt � (log T∗)5/4,

and the proof is complete. �
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