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On a Generic Dimension of the Critical
Locus
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Abstract. Let f : (Cn, 0) → (C, 0) , n ≤ 3, be a nondegenerate singularity.
In this article we give a combinatorial characterization of the dimension
of the critical locus of f in terms of its support. We also show that this
dimension can be read off from the Newton diagram of f , which solves
one of Arnold’s problems in this case.
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1. Introduction

In 1968 and 1975 Vladimir I. Arnold posed the following problems (see [1]):
1968-2 What topological characteristics of a real (complex) polyno-
mial are computable from the Newton diagram (and the signs of the
coefficients)?

1975-1 Every interesting discrete invariant of a generic singularity
with a Newton polyhedron Γ is an interesting function of the poly-
hedron. Study: the signature, the number of moduli, the singularity
index, the integral monodromy, the variation, the Bernstein poly-
nomial, and μi (for generic section).

1975-21 Express the main numerical invariants of a typical singu-
larity with a given Newton diagram (e.g., the signature, the genus
of the 1-dimensional Milnor fiber) in terms of the diagram.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00025-020-1183-8&domain=pdf
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Let f : (Cn, 0) → (C, 0) be a nondegenerate singularity (see Sect. 2). The
dimension d of the critical locus of f is a discrete invariant of a singularity.
The purpose of this paper is to partially solve the above Arnold’s problems
for d in the case n ≤ 3. Precisely we show that d depends only on the Newton
diagram of f (see Theorem 3.3). Moreover this dimension can be easily read off
from the Newton diagram by checking some combinatorial condition called the
(d)—Kouchnirenko condition (see Sect. 2 and Theorem 3.4). Firstly we show
that d is determined by the support of f (see Theorem 3.2). Then we deduce
Theorems 3.3 and 3.4 from this fact. We also give a simple characterization of
a nondegenerate singularity, when its critical locus has codimension one, for
arbitrary n (see Propositions 4.5 and 4.6). As an application of Theorem 3.2
we give Corollaries 4.8 and 4.9.

Kouchnirenko in [6, Thm 1] gave for a set M ⊂ N
n a necessary and suffi-

cient condition (called in [2] the Kouchnirenko condition) so that there exists
an isolated singularity f with supp f ⊂ M. In the joint paper [2] (for arbi-
trary n) it is proved that the fulfillment of the Kouchnirenko condition by the
support of a nondegenerate singularity f is equivalent to f being an isolated
singularity. There are some equivalent combinatorial conditions to the Kouch-
nirenko condition. Hertling and Kurbel collected such conditions for quasiho-
mogeneous polynomial in [4, Lemma 2.1] but this lemma is also true without
the assumption of quasihomogeneity. On the other hand, Kouchnirenko writes
in Remark 1.13 (ii) of his celebrated paper [5] that the Newton number of a
singularity f is finite if and only if supp f satisfies the Kouchnirenko condition.

The (d)—Kouchnirenko condition is a generalization of the Kouchnirenko
condition. The (0)—Kouchnirenko condition is exactly the Kouchnirenko con-
dition (see Sect. 2). When n ≤ 3 Theorem 3.1 (the main result of [2]) is a
special case of Theorem 3.2 for d = 0.

2. Preliminaries

Let f : (Cn, 0) −→ (C, 0) be a nonzero holomorphic function in an open
neighborhood of 0 ∈ C

n. We say that f is a singularity if f(0) = 0, grad f(0) =
0, where grad f = (f ′

z1
, . . . , f ′

zn
). We say that f is an isolated singularity if f is

a singularity, which has an isolated critical point in the origin i.e. additionally
grad f(z) �= 0 for z �= 0 near 0. We note N = {0, 1, 2, . . .}. Let

∑
ν∈Nn aνzν be

the Taylor expansion of f at 0. We define the set supp f = {ν ∈ N
n : aν �= 0}

and call it the support of f. We define

Γ+(f) = conv{ν + R
n
+ : ν ∈ supp f} ⊂ R

n

and call it the Newton diagram of f . Let u ∈ R
n
+\{0}. Put

l(u,Γ+(f)) = inf{〈u, v〉 : v ∈ Γ+(f)},

Δ(u,Γ+(f)) = {v ∈ Γ+(f) : 〈u, v〉 = l(u, Γ+(f))}.
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We say that S ⊂ R
n is a face of Γ+(f) if S = Δ(u, Γ+(f)) for some u ∈

R
n
+\{0}. The vector u is called a primitive vector of S. It is easy to see that

S is a closed and convex set and S ⊂ Fr(Γ+(f)), where Fr(A) denotes the
boundary of A. One can prove that a face S ⊂ Γ+(f) is compact if and only
if all coordinates of its primitive vector u are positive. We call the family of
all compact faces of Γ+(f) the Newton boundary of f and denote it by Γ(f).
For every compact face S ∈ Γ(f) we define the quasihomogeneous polynomial
fS =

∑
ν∈S aνzν . We say that f is nondegenerate on the face S ∈ Γ(f) if the

system of equations
∂fS

∂z1
= . . . =

∂fS

∂zn
= 0

has no solution in (C∗)n, where C
∗ = C\{0}. We say that f is nondegenerate

in the sense of Kouchnirenko (in short nondegenerate ) if it is nondegenerate
on each face of Γ(f).

Let M ⊂ N
n. Define the sets Mi = {ν ∈ N

n : ν + ei ∈ M}, where ei, i =
1, . . . , n, is the standard basis in R

n. Notice that if we take fM =
∑

m∈M zm

then Mi = supp ∂fM/∂zi for every i = 1, 2, . . . , n. Let I ⊂ {1, . . . , n}. Set

OXI = {x ∈ R
n : xi = 0, i /∈ I}.

Observe that OXI is the hyperplane spanned by axes OXi, i ∈ I.
Let I ⊂ {1, 2, . . . , n}, d ∈ N, 0 ≤ d ≤ n.

Definition 2.1. We say that M satisfies the (d)—Kouchnirenko condition for I
if there exist at least |I|−d nonempty sets among the sets M1∩OXI , . . . , Mn∩
OXI .

Definition 2.2. We say that M satisfies the (d)—Kouchnirenko condition if M
satisfies the (d)—Kouchnirenko condition for every I ⊂ {1, 2, . . . , n}.

If d = 0 instead of the (0)—Kouchnirenko condition we will write simply
the Kouchnirenko condition.

Remark 2.3. It is easy to check that M satisfies the (d)—Kouchnirenko con-
dition if and only if a finite subset of M satisfies the (d)—Kouchnirenko con-
dition.

3. Main Results

In this section we give the main results of this paper. The following result was
proved in [2].

Theorem 3.1. Let f : (Cn, 0) → (C, 0) be a nondegenerate singularity. The
following conditions are equivalent.

(i) dim0 Σf = 0,
(ii) supp f satisfies the Kouchnirenko condition
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The aim of this article is to move the above theorem to the case of a
non-isolated singularity. Precisely we show that the dimension of the critical
locus of a nondegenerate singularity is determined by its support in the case
n ≤ 3. To compute this dimension it is enough to check simple combinatorial
conditions imposed on the support.
Let n ≤ 3.

Theorem 3.2. Let f : (Cn, 0) → (C, 0) be a nondegenerate singularity. The
following conditions are equivalent.

(i) dim0 Σf = d,
(ii) supp f satisfies the (d)—Kouchnirenko condition and does not satisfy the

(d − 1)—Kouchnirenko condition,
0 ≤ d ≤ n.

The second result shows that the dimension of the critical locus of a
nondegenerate singularity depends only on its Newton diagram.

Theorem 3.3. Let f, g : (Cn, 0) → (C, 0) be nondegenerate singularities. If
Γ+(f) = Γ+(g), then dim0 Σf = dim0 Σg.

As a direct consequence of Theorems 3.2 and 3.3 we get the following.

Theorem 3.4. Let f : (Cn, 0) → (C, 0) be a nondegenerate singularity. Let V
be the set of vertices of Γ+(f). The following conditions are equivalent.

(i) dim0 Σf = d,
(ii) V satisfies the (d)—Kouchnirenko condition and does not satisfy the (d−

1)—Kouchnirenko condition,
0 ≤ d ≤ n.

This last result show that the dimension of the critical locus of a nonde-
generate singularity can be read off from the Newton diagram of f. To compute
this dimension it is enough to check the (d)—Kouchnirenko condition only for
vertices of the Newton diagram of f.

4. Proof of the Main Results

We start with the following.

Proposition 4.1. Let f : (Cn, 0) → (C, 0) , n ≥ 2, be a singularity. If dim0 Σf ≤
d, then supp f satisfies the (d)—Kouchnirenko condition.

Proof. Put M = supp f,Mi = supp f ′
zi

, i = 1, . . . , n. Suppose to the contrary,
there exists I ⊂ {1, . . . , n} such that there are exactly p < |I| − d nonempty
sets Mj1 ∩ OXI , . . . , Mjp ∩ OXI among the sets Mi ∩ OXi, i = 1, 2, . . . , n.
Therefore Mk ∩ OXI = ∅ for k ∈ {1, 2, . . . n}\{j1, . . . , jp}. For such k we get

∂f

∂zk
=

∑

i�∈I

zihi and {z ∈ C
n : zi = 0, i �∈ I} ⊂

{
∂f

∂zk
= 0

}

, (1)
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for some hi ∈ On. Substitute zi = 0 for i /∈ I to the system of equations:
∂f

∂zj1

= · · · =
∂f

∂zjp

= 0.

We get a system of p equations with |I| variables. Therefore by (1) and Corol-
lary 8 in [3, p. 81] we get

dim{∇f = 0} ≥ |I| − p > d,

which contradicts the assumption that dim0 Σf ≤ d. �

Remark 4.2. The proof of the above proposition is analogous to the proof “in
one side” of the main result in [6] in the case of an isolated singularity. See
also Corollary 3.12 in [9].

It turns out that the critical locus of a nondegenerate singularity lies in
the sum of the coordinate hyperplanes.

Proposition 4.3. Let f : (Cn, 0) → (C, 0) , n ≥ 2, be a nonzero nondegenerate
singularity. Then Σf ⊂ V (z1 · · · zn).

Proof. Suppose to the contrary Σf �⊂ V (z1 · · · zn). Then by the Curve Selection
Lemma there exists a holomorphic parametrization ϕ : (C, 0) → (Cn, 0) , ϕi �=
0, i = 1, . . . , n, such that (grad f) ◦ ϕ = 0. Now by [8, Corollary 2.4.] we get f
is degenerate, a contradiction. �

Proposition 4.4. Let f : (Cn, 0) → (C, 0) , n ≥ 2, be a nondegenerate singular-
ity. If dim0 Σf = n−1, then supp f does not satisfy the (n−2)—Kouchnirenko
condition.

Proof. By formula (*) in [7, Section II.5.3] Σf = V (g) ∪ W, where g =
gcd(f ′

z1
, . . . , f ′

zn
) and dim W ≤ n − 2. Hence and by Proposition 4.3 we get

V (g) ⊂ V (z1 · · · zn). Therefore zi|g for some i. Without loss of generality we
may take i = 1. So z1|f ′

zi
, i = 1, . . . , n. Putting I = {1, . . . , n}\{1}, we get

supp f ′
zi

∩ OXI = ∅, i = 1, . . . , n. Hence we do not find |I| − (n − 2) = 1
nonempty sets among supp f ′

zi
∩ OXI , i = 1, . . . , n. Summing up supp f does

not satisfy the (n − 2)—Kouchnirenko condition. �

As a direct corollary of Propositions 4.1 and 4.4 we have the following
proposition.

Proposition 4.5. Let f : (Cn, 0) → (C, 0) be a nondegenerate singularity. The
following conditions are equivalent.

(i) dim0 Σf = n − 1,
(ii) supp f satisfies the (n−1)—Kouchnirenko condition and does not satisfy

the (n − 2)-Kouchnirenko condition.

Using Proposition 4.5 we give a simple characterization of a nondegener-
ate singularity, when its critical locus has codimension one.
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Proposition 4.6. Let f : (Cn, 0) → (C, 0) be a nondegenerate singularity. The
following conditions are equivalent.

(i) dim0 Σf = n − 1,
(ii) There exists i ∈ {1, . . . , n} and nonzero g ∈ C{z1, . . . , zn} such that

f = z2i g.

Proof. If (ii) holds then V (zi) ⊂ Σf. Hence dim0 Σf = n − 1. If (i) is true by
Proposition 4.5 supp f does not satisfy the (n − 2)—Kouchnirenko condition.
Hence supp f does not satisfy the (n − 2)—Kouchnirenko condition for some
I, |I| ≥ n − 1. Consider the cases.

• |I| = n. Since supp f satisfies the (n − 1)—Kouchnirenko condition then
exactly one among the sets supp f ′

z1
, . . . , supp f ′

zn
is nonempty. Therefore

f depends only on zi for some i. As f is a singularity ordzi
f ≥ 2 and we

get ii).
• |I| = n − 1. Then I = {1, . . . , n}\{i} for some i and sets

supp f ′
z1

∩ OXI , . . . , supp f ′
zn

∩ OXI

are empty. Hence ordzi
f ≥ 2 and ii) holds. �

Now, we are ready to prove Theorem 3.2. For a convenience of the reader
we will give it again here.

Theorem 3.2. Let f : (Cn, 0) → (C, 0) , n ≤ 3, be a nondegenerate singularity.
The following conditions are equivalent.

(i) dim0 Σf = d,
(ii) supp f satisfies the (d)—Kouchnirenko condition and does not satisfy the

(d − 1)—Kouchnirenko condition,
0 ≤ d ≤ n.

Proof. Since the conditions (ii) are disjoint for different d, it is enough to
prove only the implication from (i) to (ii). The case n = 1 is trivial. Assume
that (i) holds and n > 1. Then by Proposition 4.1 supp f satisfies the (d)—
Kouchnirenko condition. Now, we show that supp f does not satisfy the (d −
1)—Kouchnirenko condition. Consider the cases:

• d = n. Then f ≡ 0 and supp f does not satisfy the (n−1)—Kouchnirenko
condition.

• d = n − 1. It follows from Proposition 4.5
• d = 0. It is easy to check that supp f does not satisfy the (−1)—

Kouchnirenko condition.
It finishes the proof for n = 2. If n = 3 and d = 1 by the main result of [2] we
get supp f does not satisfy the Kouchnirenko condition. It finishes the proof
for n = 3. �

Example 4.7. Let f(x, y, z) = z3x + zx3 + zy3. It is a nondegenerate singular-
ity. It is easy to check that supp f satisfy the (1)—Kouchnirenko condition.
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Take I = {1, 2}. Only supp f ′
z ∩ OXI �= ∅. Hence supp f does not satisfy the

Kouchnirenko condition. By the above theorem dim0 Σf = 1.

We have the following corollary.

Corollary 4.8. Let f, g : (Cn, 0) → (C, 0) , n ≤ 3, be singularities. If g is a
nondegenerate singularity and supp f ⊂ supp g then dim0 Σg ≤ dim0 Σf.

Proof. Put d = dim0 Σf. By Proposition 4.1 supp f satisfy the (d)—
Kouchnirenko condition. Since supp f ⊂ supp g then supp g also satisfies
the (d)—Kouchnirenko condition. Suppose to the contrary, that dim0 Σg =
d+i, i ≥ 1. Then by the above theorem supp g does not satisfy the (d+i−1)—
Kouchnirenko condition. Hence supp g does not satisfy the (d)—Kouchnirenko
condition, contradiction. �

As a direct consequence of the above corollary we get the following.

Corollary 4.9. Let f, g : (Cn, 0) → (C, 0) , n ≤ 3, be singularities. If f + g is a
nondegenerate singularity and supp f ∩ supp g = ∅ then

dim0 Σ(f + g) ≤ min{dim0 Σf,dim0 Σg}.

Example 4.10. The assumption that f + g is a nondegenerate singularity is
necessary in the above corollary. Indeed, take f(x, y) = x2 + y2 and g = 2xy.
Then f + g is degenerate and

dim0 Σ(f + g) = 1 > 0 = min{dim0 Σf,dim0 Σg}.

Now, we are ready to prove Theorem 3.3. For a convenience of the reader
we will give it again here.

Theorem 3.3. Let f, g : (Cn, 0) → (C, 0) , n ≤ 3, be nondegenerate singulari-
ties. If Γ+(f) = Γ+(g), then dim0 Σf = dim0 Σg.

Proof. Assume that Γ+(f) = Γ+(g). Let 0 ≤ d ≤ n. By Theorem 3.2 it is
enough to show that supp f does not satisfy the (d)—Kouchnirenko condition
if and only if supp g does not satisfy the (d)—Kouchnirenko condition. Assume
that supp f does not satisfy the (d)—Kouchnirenko condition and consider the
cases:

• d = n. It is trivial.
• d = n − 1. Then f ≡ 0 and g ≡ 0. Hence supp f = supp g = ∅, which

finishes the proof in this case.
• d = n − 2. Consider the subcases.

– At most one among the sets supp f ′
z1

, . . . , supp f ′
zn

is nonempty.
Since Γ+(f) = Γ+(g), then supp f ′

zi
= ∅ if and only if supp g′

zi
= ∅.

Hence supp g also does not satisfy the (n − 2)—Kouchnirenko con-
dition.
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– Then there exists I, |I| = n − 1, such that all sets

supp f ′
z1

∩ OXI , . . . , supp f ′
zn

∩ OXI

are empty. Without loss of generality we may assume that I =
{1, . . . , n − 1}. Hence ordzn

f ≥ 2. Since Γ+(f) = Γ+(g), we get
ordzn

g ≥ 2. Therefore supp g also does not satisfy the (n − 2)—
Kouchnirenko condition.

It finishes the proof for n = 2. If n = 3 and d = 0, then the assertion
follows from [2, Corollary 3.12]. �
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