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Abstract. We investigate the group HC of complexified Heisenberg matri-
ces with entries from an infinite-dimensional complex Hilbert space H.
Irreducible representations of the Weyl–Schrödinger type on the space
L2

χ of quadratically integrable C-valued functions are described. Integra-
bility is understood with respect to the projective limit χ = lim←− χi of
probability Haar measures χi defined on groups of unitary i × i-matrices
U(i). The measure χ is invariant under the infinite-dimensional group
U(∞) =

⋃
U(i) and satisfies the abstract Kolmogorov consistency condi-

tions. The space L2
χ is generated by Schur polynomials on Paley–Wiener

maps. The Fourier-image of L2
χ coincides with the Hardy space H2

β of
Hilbert–Schmidt analytic functions on H generated by the correspond-
ingly weighted Fock space Γβ(H). An application to heat equation over
HC is considered.
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1. Introduction

An aim of this work is to investigate irreducible Weyl–Schrödinger represen-
tations of the complexified Heisenberg group HC (see [17, n.9]), consisting of
matrix elements X(a, b, t) with any a, b ∈ H and t ∈ C such that
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X(a, b, t) =

⎡

⎣
1 a t
0 1 b
0 0 1

⎤

⎦ ,

X(a, b, t) · X(a′, b′, t′) =

⎡

⎣
1 a + a′ t + t′ + 〈a | b′〉
0 1 b + b′

0 0 1

⎤

⎦ (1)

where H is an infinite-dimensional complex Hilbert space and 1 is its identity
map.

The group HC has the unit X(0, 0, 0) and inverse elements of the form
X(a, b, t)−1 = X (−a,−b,−t + 〈a | b〉).

In what follows, we consider the infinite-dimensional unitary group U(∞) =⋃
U(i), containing all subgroups U(i) of unitary i × i-matrices, which acts ir-

reducibly on a complex Hilbert space {H, 〈· | ·〉} with an orthonornal basis
(ei)i∈N.

To find the desired representation, we use the space L2
χ of C-valued func-

tions that are quadratically integrable with respect to the probability measure
χ. Wherein, according to our assumption χ has a structure of the projective
limit χ = lim←−χi of probability Haar’s measures χi on U(i), satisfying the
Kolmogorov consistency conditions in an abstract Bochner’s formulation (see
[23,27]).

In [21,24] it was shown that the projective limit χ = lim←−χi is well defined
over the projective limit U = lim←−U(i) with respect to the Livšic transforms
πi+1

i : U(i + 1) → U(i) such that χi = πi+1
i (χi+1). In this paper, we prove

that for such χ each function from L2
χ admit a superposition (linearization in

the sense of [5]) on Paley–Wiener maps associated with U(∞). As a result,
it is shown that Schur polynomials form an orthonormal basis in L2

χ and the
Fourier-image of L2

χ consists of Hilbert-Schmidt analytic functions on H.
Note also that projective limits of probability measures over various

infinite-dimensional manifolds with similar properties were investigated in [25,
34,35].

If instead of the unitary group U(∞) we take the infinite-dimensional
linear space with a Gaussian measure γ, a similar construction of the appro-
priate space L2

γ can be found in the well-known works [1,2]. In this case, the
Fourier-image of L2

γ coincides with the Segal–Bargmann space of entire an-
alytic functions over which the Schrödinger type irreducible representations
of Heisenberg groups are well defined. In the present paper, we change γ by
the unitarily-invariant projective limit χ = lim←−χi and, as a result, we obtain
another irreducible representation, called to be the Weyl–Schrödinger type.

Infinite-dimensional Heisenberg groups over R was considered in [19] by
using the reproducing kernel Hilbert spaces. The Schrödinger representation of
such groups using Gaussian measures over a real Hilbert space was described
in [3]. Since the group HC in the case of matrix entries a, b, t ∈ R coincides
with the classical Heisenberg group over R (see, e.g. [11]), the results of the
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present paper can be considered as a complexification of previous studies. The
Weyl–Schrödinger representation obtained here is not equivalent to that was
described earlier.

Further, let us briefly describe the main results. Consider the following
mapping φ : H � h 	−→ φh ∈ L2

χ defined by Paley–Wiener maps

φh(u) :=
∑

φi(u) e∗i (h) with φi(u) := 〈ui(ei) | ei〉 , ui = πi(u), (2)

where e∗i (·) := 〈· | ei〉 and the projections πi : U � u → ui ∈ U(i) are uniquely
defined by πi+1

i . Every function φh of variable u ∈ U satisfies the equality
(Corollary 3)

∫

exp
{

Re φh

}
dχ = exp

{
1
4
‖h‖2

}

, h ∈ H.

The space L2
χ can be generated by two orthonormal bases, consisting

of Schur polynomials and power polynomials of variables φı =
(
φı1 , . . . , φıη

)
,

respectively,

sλ
ı (u) :=

det
[
φ

λj+η−j
ıi (u)

]
1≤i,j≤η∏

1≤i<j≤η[φıi
(u) − φıj

(u)]
and φλ

ı := φλ1
ı1 . . . φλη

ıη
. (3)

These bases are indexed by tabloids ıλ with strictly ordered ı = (ı1, . . . , ıη) ∈
N

η where λ = (λ1, . . . , λη) ∈ N
η is a partition of n ∈ N and η = η(λ) stands

for the length of λ. Then we write briefly ıλ � n. The orthogonal expansion
L2

χ =
⊕

L2,n
χ holds (Theorem 1) where L2,n

χ are formed by n-homogeneous
polynomials φλ

ı , normed as follows

‖φλ
ı ‖2χ =

∫

|φλ
ı |2dχ = βλλ!, βλ :=

(η − 1)!
(η − 1 + n)!

, λ! := λ1! . . . λη!.

It is also shown that the surjective linear isometry Ψ : H2
β � ψ∗

f 	−→ f ∈
L2

χ holds (Lemma 5), where H2
β =

∑
Pn

β (H) means the Hardy space of entire
analytic functions ψ∗

f (h) of variable h ∈ H and Pn
β (H) is generated by the

n-homogeneous Hilbert–Schmidt polynomials e∗λ
ı := e∗λ1

ı1 . . . e
∗λη
ıη , normed as

‖e∗λ
ı ‖H2

β
=
(
βλλ!

)1/2.

If the basis of symmetric tensor elements e�λ
ı := e⊗λ1

ı1 � . . . � e
⊗λη
ıη (asso-

ciated with e∗λ
ı ) in the correspondingly weighted Fock space Γβ(H) is normed

as ‖e�λ
ı ‖Γβ

= ‖e∗λ
ı ‖H2

β
then each function f ∈ L2

χ admits the superposition

f = Ψ ◦ ψ∗
f , ψ∗

f (h) =
∑

n≥0

1
n!

∑

ıλ	n

n!
λ!
e∗λ
ı (h)

〈
e�λ
ı | ψf

〉
Γβ

, h ∈ H,

where the Taylor expansion on the right-hand side of any analytic function
ψ∗

f ∈ H2
β on H is uniquely determined by the corresponding element ψf ∈

Γβ(H).
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Our further goal is to analyze the inverse isomorphism Ψ−1 which can be
described by the Fourier transform under the measure χ in following way

f̂(h) =
∫

exp(φ̄h)f dχ where F = Ψ−1 : L2
χ � f 	−→ f̂ := ψ∗

f ∈ H2
β .

The Fourier transform F acts isometrically on the Hardy space of analytic
functions H2

β (Theorem 2). So, F acts as an analytic extension of the mapping
φ.

Applying the superposition with Ψ , we describe two different representa-
tions of the additive group (H,+) over L2

χ defined by shift and multiplicative
groups (Lemma 7). Using this we show (in Theorem 3) that an irreducible
representation of the Heisenberg group HC can be realized on L2

χ in the Weyl–
Schrödinger form

X(a, b, z) 	−→ exp(z)W †(a, b), W †(a, b) := exp
{1

2
〈a | b〉

}
T †

b M†
a∗

for all a, b ∈ H and z ∈ C, where T †
b and M†

a∗ are defined by shift and
multiplicative groups, respectively. It is also proved that the Weyl system
W †(a, b) has the densely-defined generator p†

a,b := ∂†
b + φ̄a which satisfies the

commutation relation

W †(a, b)W †(a′, b′) = exp
{

−
[
p†

a,b, p
†
a′,b′

]}
W †(a′, b′)W †(a, b)

where the groups M†
a∗ and T †

b are generated by φ̄a and ∂†
b , respectively.

Applying the Weyl–Schrödinger representation to the associated with HC

heat equation, we prove (Theorem 4) that the following Cauchy problem with
∂†

i := ∂†
ei ,

dw(r)
dr

= −
∑(

∂†
i + φ̄i

)2
w(r), w(0) = f, r > 0,

has the unique solution w(r) = G†
rf for any function f from a finite sum⊕

L2,n
χ , where the 1-parameter Gaussian semigroup G†

r has the form

G†
rf =

1√
4πr

∫

c0

exp

{

−
‖τ‖2w0

4r

}

W †
τ f dw(τ),

W †
τ f := lim

n→∞ exp

{

−
‖p∼

n (τ)‖2w0

2

}
n∏

i=1

T †
iτiei

M†
−iτie∗

i
.

Here τ = (τi) belongs to the abstract Wiener space {w0, ‖ · ‖w0} defined by
the injections l2 � w0 � c0 of real Banach spaces and endowed with the
Wiener measure w in according to the known Gross’ theorem [10], whereas
the sequence of projectors (p∼

n ) onto R
n is convergent to the identity map on

w0.
Finally, note that this work is a continuation of previous publications

[16,17]. The novelty results from the observation that the system of Schur
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polynomials with variables on Paley–Wiener maps form an orthonormal basis
in L2

χ. This allowed us to investigate irreducible Weyl–Schrödinger represen-
tations and Weyl systems of the Heisenberg group HC on the whole space
L2

χ.

2. Invariant Probability Measure

Consider the unitary group U(∞) =
⋃

U(m) with m ∈ N0 = N∪{0}, 1 = U(0),
irreducibly acting on a separable Hilbert space H, where subgroups U(m)

are identified with ranges of injections U(m) � um 	−→
[
um 0
0 1

]

∈ U(∞).

Following to [21,24], we use the Livšic transforms πm+1
m : U(m + 1) → U(m)

of the form

πm+1
m : um+1 :=

[
zm a
b t

]

	−→ um :=
{

zm − [a(1 + t)−1b] : t �= −1
zm : t = −1 (4)

with zm ∈ U(m) defined by excluding x1 = y1 ∈ C from
[
ym

y1

]

=
[
zm a
−b −t

]

[
xm

x1

]

for xm, ym ∈ C
m and a, b ∈ C [24, Lem. 3.1]. It is surjective (not

continuous) Borel mapping [24, Lem. 3.11].
The projective limit U := lim←−U(m) under πm+1

m has surjective Borel (not
group homomorphisms) projections

πm : U � u 	−→ um ∈ U(m) such that πm = πm+1
m ◦ πm+1.

Their elements u ∈ U are called the virtual unitary matrices. The right action

U � u 	−→ u.g ∈ U with g = (v, w) ∈ U(∞) × U(∞)

is defined to be πm(u.g) = w−1πm(u)v, where m is large enough that v, w ∈
U(m). On U the involution u 	→ u	 = (u	

k) is well defined, where u	
k = u−1

k

is adjoint to uk ∈ U(k). Thus, [πm(u.g)]	 = πm(u	.g	) for all g	 = (w	, v	) ∈
U(∞) × U(∞).

There exists the dense embedding U(∞) � U (see [24, n.4]) which assigns
the stabilized sequence u = (uk) to each um ∈ U(m) such that

U(m) � um 	−→ (uk) ∈ U,

uk =
{

πm
k (um) = (πk+1

k ◦ . . . ◦ πm
m−1)(um) : k < m,

um : k ≥ m.

(5)

We always assume that the group U(m) is endowed with the probability
Haar measure χm. Using the Kolmogorov consistency theorem (see, e.g. [24,
Lem.4.8], [27, Thm 2.2], [30, Cor.4.2]), we determine the probability measure
on U to be the projective limit

χ := lim←−χm under χm = πm+1
m (χm+1)
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where πm+1
m (χm+1) means an image-measure and χ0 = 1. As is known [30,

Thm 2.5], the measure χ is Radon. We now describe the necessary properties
of χ.

Consider the Hilbert space L2
χ of functions f : U → C with the following

norm and inner product

‖f‖χ = 〈f | f〉1/2
χ , 〈f1 | f2〉χ :=

∫

f1f̄2 dχ.

Let L∞
χ be the space of χ-essentially bounded functions f : U → C with the

norm ‖f‖∞ = ess supu∈U|f(u)|. The embedding L∞
χ � L2

χ holds and ‖f‖χ ≤
‖f‖∞.

Lemma 1. For any f ∈ L∞
χ there exists the limit

∫

f dχ = lim
∫

f d(χm ◦ πm) = lim
∫

(f ◦ π−1
m ) dχm. (6)

Moreover, the measure χ is invariant under the right action, which means that
∫

f(u.g) dχ(u) =
∫

f(u) dχ(u), g ∈ U(∞) × U(∞), (7)
∫

f dχ =
∫

dχ(u)
∫

f(u.g) d(χm ⊗ χm)(g). (8)

Proof. The sequence {(χm ◦ πm)(K)} is decreasing for any compact set K in
U, since πm = πm+1

m ◦ πm+1 yields πm+1(K) ⊆ (πm+1
m )−1 [πm(K)]. It follows

(χm ◦ πm)(K) = πm+1
m (χm+1) [πm(K)]

= χm+1

[
(πm+1

m )−1[πm(K)]
]

≥ (χm+1 ◦ πm+1)(K).
(9)

This ensures that the necessary and sufficient conditions of the Prokhorov
theorem [4, Thm IX.52] and its modification from [30, Thm 4.2] are satisfied.

Indeed, let Ǔ(m) ⊂ U(m) be the set of matrices with no eigenvalue {−1}
for m ≥ 1. As is known [24, n.3], Ǔ(m) is open in U(m) and χm(U(m)\Ǔ(m))
= 0. In virtue of [24, Lem. 3.11] the restrictions πm+1

m : Ǔ(m + 1) → Ǔ(m) are
continuous and surjective. The projective limit lim←− Ǔ(m) under these restric-
tions has continuous surjective projections πm : lim←− Ǔ(m) → Ǔ(m). Restrict
χm to Ǔ(m). By [30, Thm 6], a probability measure χ̌ satisfying conditions
πm(χ̌) = χm|Ǔ(m) is well defined iff for every ε > 0 there exists a compact set
K ⊂ lim←− Ǔ(m) such that

(χm ◦ πm)(K) ≥ 1 − ε for all m ∈ N.

Then by the Prokhorov theorem χ̌ is uniquely determined as

χ̌(K) = inf(χm ◦ πm)(K) for all K ⊂ lim←− Ǔ(m). (10)

Let ε > 0 and K1 ⊂ Ǔ(1) be a compact set such that χ1(K1) > 1 − ε.
Let a compact sets Km ⊂ Ǔ(m) be defined inductively such that

πm+1
m (Km+1) ⊂ Km and χm+1(Km+1) > 1 − ε for all m ≥ 1.
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Assume that K1, . . . , Km are constructed. Since χm = πm+1
m (χm+1), we get

χm(Km) = χm+1[(πm+1
m )−1(Km)] > 1 − ε.

By regularity of χm+1|Ǔ(m), there exists a compact set

Km+1 ⊂ (πm+1
m )−1(Km) such that χm+1(Km+1) > 1 − ε.

The induction is complete. Then K = lim←−Km with K0 = 1 is compact.
By virtue of (10), we have χ̌(K) ≥ 1 − ε. Hence, the projective limit χ̌ =
lim←−χm|Ǔ(m) is well defined on lim←− Ǔ(j) by the Prokhorov criterion.

The measure χ̌ can be extended to lim←−U(m)\ lim←− Ǔ(m) as zero, since
each χm is zero on U(m)\Ǔ(m). The uniqueness of the projective limits yields
χ̌ = χ. So, χ = lim←−χm is also well defined and by (9) and (10) we get

χ(K) = inf(χm ◦ πm)(K) = lim(χm ◦ πm)(K) for all compact K ⊂ U.

By the known Portmanteau theorem [14, Thm 13.16] it follows that the limit
(6) exists. Whereas, the property (7) is a consequence of the equalities

χ(K.g) = lim χm(Km.g) = lim χm(Km) = χ(K)

for all g = (v, w) ∈ U(∞) × U(∞) where m is large enough that v, w ∈ U(m).
Finally, the function (u, g) 	→ f(u.g) with any f ∈ L∞

χ is integrable over
U × U(m) × U(m), hence
∫

dχ(u)
∫

f(u.g) d(χm ⊗ χm)(g) =
∫

d(χm ⊗ χm)(g)
∫

f(u.g) dχ(u)

by the Fubini theorem. It yields (8) since the internal integral on the right-
hand side is independent of g by (7) and

∫
d(χm ⊗ χm)(g) = 1. The proof is

complete. �

We now note the concentration property of Haar measures sequence (χm)
satisfying the Kolmogorov conditions χm = πm+1

m (χm+1) if each group U(m)
is endowed with the normalized Hilbert–Schmidt metric

dHS(u, v) =
√

m−1 tr |u − v|HS where |u − v|HS =
√

(u − v)	(u − v).

As is well known (see [9,31]), (U(m), dHB , χm) is a Lévy family. Namely,
the following sequence of isoperimetric constants dependent on ε > 0

α(U(m), ε) = 1 − inf
{
χm[(Ωm)ε] : Ωm be Borel set in U(m), χm(Ωm) > 1/2

}

with (Ωm)ε = {um ∈ U(m) : dHS (um, Ωm) < ε} is such that

α(U(m), ε) → 0 as m → ∞.

Taking into account the Lemma 1, we can formulate the following conclusion.

Corollary 1. For any Borel set Ωε = lim←−(Ωm)ε with χm(Ωm) > 1/2 in the
projective limit U = lim←−U(m) the equality

χ(Ωε) = lim
m→∞ χm [(Ωm)ε] = 1
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holds. Consequently, all Borel sets U\Ωε with χm(Ωm) > 1/2 and any ε > 0
are χ-measure zero, i.e., the measure χ = lim←−χm is concentrated outside these
sets.

3. Polynomials on Paley–Wiener Maps

Let Iη :=
{
ı =

(
ı1, . . . , ıη

)
∈ N

η : ı1 < ı2 < . . . < ıη
}

be an integer alphabet of
length η and I =

⋃
Iη. Let λ = (λ1, . . . , λη) ∈ N

η with λ1 ≥ λ2 ≥ . . . ≥ λη

be a partition of an n-letter word ıλ =
{
�ij : 1 ≤ i ≤ η, j = 1, . . . , λi

}
with

ı ∈ Iη. A Young λ-tableau with a partition λ is a result of filling the word

ıλ onto the matrix [ıλ] =

�11 . . . . . . �1λ1

...
...

. . .
�η1 . . . �ηλη

with n nonzero entries in

some way without repetitions. So, each λ-tableau [ıλ] can be identified with a
bijection [ıλ] → ıλ. The conjugate partition λᵀ corresponds to the transpose
matrix [ıλ]ᵀ.

A Young tableau [ıλ] is called standard (semistandard ) if its entries are
strictly (weakly) ordered along each row and strictly ordered down each col-
umn. Let Y denote all Young tabloids [ıλ] and Yn be its subset such that
ıλ � n. Assume that Y0 = {∅ ∈ Y : |∅| = 0} and η(∅) = 0.

As before, {H, 〈· | ·〉} is a separable complex Hilbert space with an or-
thonormal basis {ei : i ∈ N} and ‖ · ‖ = 〈· | ·〉1/2. For its adjoint space H∗ the
conjugate-linear isometry ∗ : H∗ → H∗∗ = H is defined via a∗(h) = 〈h | a〉
for all a, h ∈ H. The Fourier expansion h =

∑
e∗i (h)ei with e∗i (h) := 〈h | ei〉

holds. The tensor power H⊗n, spanned by elements ψn = h1 ⊗ . . . ⊗ hn with
hi ∈ H (i = 1, . . . , n), is endowed with the norm ‖ψn‖ = 〈ψn | ψn〉1/2 where
〈ψn | ψ′

n〉 := 〈h1 | h′
1〉 . . . 〈hn | h′

n〉.
Let Sn be the group of n-elements permutations σ(ψn) := hσ(1) ⊗ . . . ⊗

hσ(n). An orthogonal basis in H⊗n is formed by elements σ(e⊗λ1
ı1 ⊗ . . . ⊗ e

⊗λη
ıη )

with ıλ � n and η = η(λ), additionally indexed by all σ ∈ Sn. The symmetric
tensor power H�n ⊂ H⊗n is defined to be a range of the orthogonal projec-
tor Sn : H⊗n � ψn 	−→ h1 � . . . � hn := (n!)−1

∑
σ∈Sn

σ(ψn). We assume that
H⊗n is completed and that H⊗0 = C. Let ψn := h⊗n for h = hi. The embed-
ding {h⊗n : h ∈ H} ⊂ H�n is total by the polarization formula [7, n.1.5]

h1 � . . . � hn =
1

2nn!

∑

θ1,...,θn=±1

θ1 . . . θnh⊗n, h =
n∑

i=1

θihi. (11)

Let Hη ⊂ H be spanned by
{
eı1 , . . . , eıη

}
. We can uniquely assign to any

semistandard tableau [ıλ] with ıλ � n the element in H⊗n
η for which there exists

the permutation σ′ ∈ Sn such that σ′(e⊗λ1
ı1 ⊗ . . . ⊗ e

⊗λη
ıη

)
= e⊗λ1

ı1 � . . . � e
⊗λη
ıη
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∈ H�n
η . Taking all ı ∈ I , we conclude that the system indexed by semistan-

dard λ-tabloids

eYn =
{
e�λ
ı := e⊗λ1

ı1 � . . . � e⊗λη
ıη

: ıλ � n, λ ∈ Yn, ı ∈ I
}

, e�∅
ı = 1

where 〈e�λ
ı | e�λ′

ı′ 〉 =
{

λ!/n! : λ = λ and ı = ı′

0 : λ �= λ′ or ı �= ı′

forms an orthogonal basis in the symmetric tensor power H�n
η .

The system
{
e⊗λ
ı := Sn

(
e⊗λ1
ı1 ⊗ . . . ⊗ e

⊗λη
ıη

)
: ıλ � n, λ ∈ Yn, ı ∈ I

}
,

additionally indexed by all σ ∈ Sn, forms an orthonormal basis in the whole
tensor power H⊗n.

As usually, the symmetric Fock space is defined to be the Hilbertian
orthogonal sum Γ (H) =

⊕
n≥0H

�n with the orthogonal basis eY :=
⋃{

eYn :
n ∈ N0

}
of elements ψ =

⊕
ψn with ψn ∈ H�n endowed with the inner

product and norm

〈ψ | ψ′〉Γ =
∑

n!〈ψn | ψ′
n〉, ‖ψ‖Γ = 〈ψ | ψ〉1/2

Γ .

Note that by tensor multinomial theorem the Fourier expansion under
eYn

h⊗n =
∑

ıλ	n

n!
λ!
e�λ
ı e∗λ

ı (h), ‖h⊗n‖2 =
∑

ıλ	n

n!
λ!

|e∗λ
ı (h)|2, e∗λ

ı := e∗λ1
ı1 . . . e∗λη

ıη
,

(12)

holds in H�n for all h ∈ H. Consequently, the linearly independent, so-called,
coherent states

{
exp(h) : h ∈ H

}
in Γ (H) have the expansion under the basis

eY

exp(h) :=
⊕

n≥0

h⊗n

n!
=
⊕

n≥0

1
n!

(
∑

i≥0

ei e
∗
i (h)

)⊗n

=
⊕

n≥0

1
n!

∑

ıλ	n

n!
λ!
e�λ
ı e∗λ

ı (h)

(13)

with h⊗0 = 1, that is convergent, since ‖e�λ
ı ‖2Γ = n!‖e�λ

ı ‖2 and

‖ exp(h)‖2Γ =
∑

n≥0

1
n!

∑

ıλ	n

(n!
λ!

)2
‖e�λ

ı ‖2|e∗λ
ı (h)|2 =

∑

n≥0

1
n!

∑

ıλ	n

n!
λ!

|e∗λ
ı (h)|2

=
∑ 1

n!

(∑
|e∗i (h)|2

)n

=
∑ 1

n!
‖h‖2n = exp ‖h‖2.

(14)

Definition 1. For any h ∈ H and u ∈ U the Paley–Wiener maps are defined to
be

φh(u) :=
∑

φi(u) e∗i (h) with φi(u) := 〈ui(ei) | ei〉 , ui = πi(u)

where projections πi : U � u → ui ∈ U(i) are uniquely defined by πi+1
i .
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These maps satisfy the orthogonal conditions φei
= φi and have the

natural extension φh∗ = φ̄h onto the adjoint space H∗.
Note that, as in the case of linear spaces (see e.g. [12, n.4.4], [29]), the

Paley–Wiener maps uniquely determine the embedding φ : H � h 	−→ φh ∈
L2

χ.
For every h ∈ H the l2-valued function φh(u) of variable u ∈ U is well-

defined, since (e∗i (h)) ∈ l2 and |〈ui(ei) | ei〉| ≤ 1. We show that φh ∈ L2
χ. Assign

for any partition λ = (λ1, . . . , λη) ∈ N
η of the weight |λ| = λ1 + . . . + λη the

constant

βλ :=
(η − 1)!

(η − 1 + |λ|)! ≤ 1, η = η(λ). (15)

Lemma 2. To every semistandard tableau [ıλ] one can uniquely assign the func-
tion

φλ
ı (u) := φλ1

ı1 (u) . . . φλη
ıη

(u), φ∅
ı ≡ 1 (16)

of variable u ∈ U belonging to L∞
χ . The system of χ-essentially bounded func-

tions

φY :=
⋃{

φYn : n ∈ N0

}
with φYn :=

⋃{
φλ

ı : ıλ � n, ı ∈ Iη

}

is orthogonal in the space L2
χ and is normed as follows

‖φλ
ı ‖2χ =

∫

|φλ
ı |2dχ = λ!βλ, ıλ � n, λ! := λ1! . . . λη!.

Proof. According to (4), we have (πm ◦ π−1
m+l)um+l(em) = um(em) for t = −1

and (πm◦π−1
m+l)um+l(em) = um(em)−[a(1+t)−1b]em for t �= −1 for any integer

l ≥ 1. This means that (φk ◦ π−1
m )(um) = 〈um(em) | ek〉 ≡/ 0 for all k ≤ m and

that
(φm ◦ π−1

m+l)(um+l) = 〈um(em) | em〉 for t = −1,

(φm ◦ π−1
m+l)(um+l) = 〈um(em) | em〉 − a(1 + t)−1b 〈em | em〉 for t �= −1.

(17)

Let U(η) with η = η(λ) be the unitary group acting over the linear
complex span

{
eı1 , . . . , eıη

}
in H. Let χη be the probability Haar measure on

U(η) and πη : U → U(η) be the corresponding projector. Using (6) and (17),
we obtain
∫

|φλ
ı (u)|2dχ(u) = lim

∫

|(φλ
ı ◦ π−1

m )(um)|2dχm(um)

= lim
∫

|(φλ1
ı1 ◦ π−1

m )(um) . . . (φλη
ıη

◦ π−1
m )(um)|2dχm(um)

=
∫

|(φλ1
ı1 ◦ π−1

η )(uη) . . . (φλη
ıη

◦ π−1
η )(uη)|2dχη(uη).

(18)
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By (18) and the known integral formula for unitary groups U(η) [28, 1.4.9],
we get

∫

|φλ
ı |2dχ =

∫ η(λ)∏

k=1

|〈uη(eη) | eık
〉|2 dχη(uη) =

(η(λ) − 1)!λ!
(η(λ) − 1 + |λ|)! .

On the other hand, the invariant property (8) provides the formula
∫

f dχ =
1
2π

∫

dχ(u)
∫ π

−π

f [exp(iϑ)u] dϑ, f ∈ L∞
χ . (19)

From (19) it follows the orthogonality relations φλ′
j ⊥ φλ

ı with |λ′| �= |λ|, since
∫

φλ′
j φ̄λ

ı dχ =
1
2π

∫

φλ′
j φ̄λ

ı dχ

∫ π

−π

exp
[
i
(
|λ′| − |λ|

)
ϑ
]
dϑ = 0

for any λ′, λ ∈ Y\{∅}. Let |λ′| = |λ| and η(λ′) > η(λ) for definiteness. Then
there exists an index k with a nonzero integer λ′

k in λ′ =
(
λ′
1, . . . , λ

′
k, . . . , λ′

η(λ′)

)

∈ Y\{∅} such that η(λ) < k ≤ η(λ′). In this case φλ′
j ⊥ φλ

ı because (19) yields
∫

φλ′
j φ̄λ

ı dχ =
1
2π

∫

φλ′
j φ̄λ

ı dχ

∫ π

−π

exp (iλ′
kϑ) dϑ = 0.

Consider the case |λ′| = |λ| and η(λ′) = η(λ). If φλ′
j �= φλ

ı then λ′ �= λ. There
exists an index 0 < k ≤ η(λ) such that λ′

k �= λk. As above, φλ′
j ⊥ φλ

ı , because
∫

φλ′
j φ̄λ

ı dχ =
1
2π

∫

φλ′
j φ̄λ

ı dχ

∫ π

−π

exp [i(λ′
k − λk)ϑ] dϑ = 0.

This proves that the system φY is orthogonal. �

4. Orthonormal Basis of Schur Polynomials

Let ıλ � n, η = η(λ) and tı = (tı1 , . . . , tıη
) be a complex variable. Let tλı :=

∏
t
λj
ıj . The n-homogenous Schur polynomial is defined (see, e.g. [18]) to be

sλ
ı (tı) := Dλ(tı)/Δ(tı) where Dλ(tı) = det

[
tλj+η−j
ıi

]
with λj = 0 for j > η,

Δ(tı) =
∏

1≤i<j≤η(tıi
− tıj

) is Vandermonde’s determinant. It can be written
as sλ

ı (tı) =
∑

[ıλ]t
λ
ı with summation over all semistandard Young tabloids [8,

I.2.2].
We construct an orthonormal basis in L2

χ consisting of Schur polyno-
mials on Paley–Wiener maps. Assign (uniquely) to ı ∈ Iη the vector φı :=(
φı1 , . . . , φıη

)
. Let sλ

ı (u) = (sλ
ı ◦φı)(u) be n-homogeneous functions of variable

u ∈ U with λ ∈ N
η, defined by the formulas (3). Denote

sYn :=
⋃{

sλ
ı : ıλ � n

}
, sY :=

⋃{
sYn : n ∈ N0

}
with s0 = s∅

ı ≡ 1.
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Theorem 1. The system of Schur polynomials sY forms an orthonormal basis
in L2

χ and sYn is the same basis in L2,n
χ . The following orthogonal decomposition

holds,

L2
χ = C ⊕ L2,1

χ ⊕ L2,2
χ ⊕ . . . . (20)

For any h ∈ H the equality (2) uniquely defines the conjugate-linear embedding

φ : H � h 	−→ φh ∈ L2
χ such that ‖φh‖χ = ‖h‖. (21)

Proof. Let U(η) be the unitary group over the linear complex span
{
eı1 , . . . , eıη

}

with η = η(λ). Taking into account (17) similarly as (18), we obtain
∫

sλ
ı s̄μ

ı dχ =
∫

sλ
ı (zη) s̄μ

ı (zη) dχη(zη) = δλμ

for all [ıλ], [ıμ] with ı = (ı1, . . . , ıη) and λ, μ ∈ N
η. In fact, the corresponding

Schur polynomials
{
sλ

ı : λ ∈ N
η
}

are characters of the group U(η). Hence,
by the Weyl integration formula, the right-hand side integral is equal to Kro-
necker’s delta δλμ [26, Thm 8.3.2 & Thm 11.9.1].

The family of finite alphabets ı ∈ I is directed and for any ı, ı′ there ex-
ists ı′′ such that ı∪ı′ ⊂ ı′′. This means that the whole system sYn is orthonormal
in L2

χ.
The property sμ

j ⊥ sλ
ı with |μ| �= |λ| for any ı, j ∈ I follows from (19),

since
∫

sμ
j s̄λ

ı dχ =
1
2π

∫

sμ
j s̄λ

ı dχ

∫ π

−π

exp
(
i(|μ| − |λ|)ϑ

)
dϑ = 0

for all λ ∈ Y and μ ∈ Y\{∅}. This yields L
2,|μ|
χ ⊥ L

2,|λ|
χ in the space L2

χ. Taking

λ = ∅ with |∅| = 0, we get 1 ⊥ L
2,|μ|
χ for all μ ∈ Y\{∅}. Hence, (20) is proved.

By Lemma 2 the subsystem φk = s1k is orthonormal in L2
χ, hence by

Definition 1 it instantly follows that ‖φh‖2χ =
∑

|e∗k(h)|2
∫

|φk|2dχ = ‖h‖2. It
follows the isometric embedding (21).

The set Ǔ(m) of matrices with no eigenvalue {−1} has Stone–Ĉech com-
pactification Ũ(m) such that the mapping π̌m+1

m has a continuous U(m)-valued
extension

π̃m+1
m : Ũ(m + 1) −→ U(m).

This fact follows from [33, Thm 19.5] by virtue of that U(m) is compact.
Hence, the projective limit Ũ := lim←− Ũ(m), determined by π̃m+1

m , is a compact
set in U with continuous U(m)-valued projections π̃m : Ũ → U(m).

Since U(∞) on H acts irreducibly, for any u′ �= u′′ there is m such that

φm(u′) = 〈πm(u′)(em) | em〉 �= 〈πm(u′′)(em) | em〉 = φm(u′′),

i.e., φY separates U and so Ũ. Hence, the system of Schur polynomials sY also
separates Ũ. Moreover, each complex-conjugate function φ̄m(u) = 〈em | πm(u)
(em)〉 = 〈πm(u	)(em) | em〉 belongs to φY. Thus, by the Stone–Weierstrass
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approximation theorem the complex linear span of polynomials φY, as well as,
of sY, forms a dense subspace in the Banach space of all continuous functions
C(Ũ).

Let χ̃m means the image of χm under Ǔ(m) � U(m). In Lemma 1
it inductively was shown that for every ε > 0 there exists a compact set
lim←−Km ⊂ Ǔ such that

χ̃m(Km) ≥ 1 − ε for all m

where χ̃m(Km) = χ̌m(Km) = χm(Km), by definition of the measure χ̃m as
an image. Hence, by the Prokhorov theorem the projective limit χ̃ = lim←− χ̃m,
defined by mappings π̃m+1

m , possesses the properties

χ̃(Ω) = inf χ̃m(Ω) = inf χm(Ω) = lim←−χm(Ω) = χ(Ω)

for all Borel Ω in Ǔ or otherwise χ̃|Ǔ = χ|Ǔ. Consequently,

χ̃|Ǔ = χ|Ǔ = χ|Ǔ⊔(U\Ǔ) = χ|U since χ(U\Ǔ) = 0.

In particular, χ̃ = lim←− χ̃m is regular on Ũ by the Riesz–Markov theorem [20,
1.1].

As a consequence, the space L2
χ coincides with the completion of C(Ũ) and

for any f ∈ L2
χ there exists a sequence (fn) ⊂ span(sY) such that

∫
|f − fn|2dχ

→ 0. Hence, the system sY forms an orthogonal basis in L2
χ.

Finally, sYn ∩ L2
χ is total in L2,n

χ and sYn ⊥ sYm if n �= m. This yields (20).
�

5. Unitarily-Weighted Symmetric Fock Space

Define on the tensor power H⊗n the unitarily-weighted norm ‖ · ‖H⊗n
β

=

〈· | ·〉1/2

H⊗n
β

where the inner product 〈· | ·〉1/2

H⊗n
β

is determined by the relations

〈e⊗λ
ı | e⊗λ′

ı′ 〉H⊗n
β

=

⎧
⎨

⎩

(η − 1)!
(η − 1 + n)!

: λ = λ′ and ı = ı′

0 : λ �= λ′ or ı �= ı′.
(22)

Here e⊗λ
ı := σ′(e⊗λ1

ı1 ⊗ . . . ⊗ e
⊗λη
ıη ) with η = η(λ) and σ′ ∈ Sn is fixed. Let

H⊗n
β be the completion of

{
H⊗n, ‖·‖H⊗n

β

}
. Its closed subspace, defined by the

projection

Sn : H⊗n
β � e⊗λ

ı 	−→ e�λ
ı = (n!)−1

∑

σ∈Sn

σ(e⊗λ
ı )

forms an unitarily-weighted symmetric tensor power H�n
β ⊂ H⊗n

β with the

inner product determined by relations 〈e�λ
ı | e�λ′

ı′ 〉H⊗n
β

= βλ〈e�λ
ı | e�λ′

ı′ 〉 or
more specific
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〈e�λ
ı | e�λ′

ı′ 〉H⊗n
β

=

⎧
⎨

⎩

λ!
n!

(η − 1)!
(η − 1 + n)!

: λ = λ and ı = ı′

0 : λ �= λ′ or ı �= ı′.
(23)

Definition 2. The unitarily-weighted symmetric Fock space is defined to be
the Hilbertian orthogonal sum Γβ(H) =

⊕
n≥0 H�n

β of elements ψ =
⊕

ψn,
ψn ∈ H�n

β with the orthogonal basis eY =
⋃{

eYn : n ∈ N0

}
and the following

inner product and norm

〈ψ | ψ′〉β =
∑

n!〈ψn | ψ′
n〉H⊗n

β
, ‖ψ‖β = 〈ψ | ψ〉1/2

β .

We immediately notice that ‖h‖2β =
∑

|e∗i (h)|2 = ‖h‖2 for all h =
∑

eie
∗
i (h) ∈ H.

Lemma 3. The set of coherent states {exp(h) : h ∈ H} is total in Γβ(H) and
the expansion (13) is convergent in Γβ(H). The injections

Γ (H) � Γβ(H) and H�n � H�n
β

are contractive and dense. The Γβ(H)-valued function H � h 	−→ exp(h) is
entire analytic. The shift group, defined to be

Ta exp(h) := exp(h + a) = exp(∂a) exp(h) with ∂a exp(h) =
d exp(h + za)

dz

∣
∣
∣
z=0

for a, h ∈ H, has a unique linear extension Ta : Γβ(H) � ψ 	−→ Taψ ∈ Γβ(H)
such that

‖Taψ‖2β ≤ exp
(
‖a‖2

)
‖ψ‖2β and Ta+b = TaTb = TbTa, a, b ∈ H. (24)

Proof. Taking into account that βλ ≤ 1, we get the following inequalities

‖h⊗n‖2H⊗n
β

=
∑

ıλ�n

(n!

λ!

)2
‖e�λ

ı ‖2H⊗n
β

|e∗λ
ı (h)|2=

∑

ıλ�n

βλ
n!

λ!
|e∗λ

ı (h)|2≤ ‖h⊗n‖2 = ‖h‖2n,

‖ exp(h)‖2β =
∑

n≥0

1

n!

∑

ıλ�n

βλ
n!

λ!
|e∗λ

ı (h)|2
(15)

≤ exp ‖h‖2 (14)
= ‖ exp(h)‖2Γ .

Hence, (12), (13) are convergent in Γβ(H). This implies that h 	→ exp(h) is
analytic and inclusions Γ (H) � Γβ(H) and H�n � H�n

β are contractive. By
the polarization formula (11) their ranges are dense.

Using the binomial formula (h + za)⊗n =
⊕n

m=0

(
n
m

)
(za)⊗m � h⊗(n−m),

we find

∂m
a exp(h) =

dm exp(h + za)
dzm

∣
∣
∣
z=0

=
⊕

n≥m

Sn/m[a⊗m ⊗ h⊗(n−m)]
(n − m)!

, z ∈ C

with the orthogonal projector Sn/m defined as ψm�ψn−m = Sn/m (ψm ⊗ ψn−m) ∈
H�n

β for all ψm ∈ H�m
β and ψn−m ∈ H

�(n−m)
β . By orthogonality ‖Sn/m‖ ≤ 1.
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Applying the expansions (12) to a⊗m and h⊗(n−m), by (22), we get

‖a⊗m ⊗ h⊗(n−m)‖2H⊗n
β

=
∑

ıλ�m
jμ�(n−m)

(m!

λ!

(n − m)!

μ!

)2
‖e�λ

ı ⊗ e�μ
j ‖2H⊗n

β
|e∗λ

ı (a)|2|e∗μ
j (h)|2

with summations over semistandard tableaux [ıλ], [jμ] and ı, j ∈ I . Let (λ, μ) ∈
N

η(λ,μ) be the smallest partition of number n with the length η(λ, μ) contain-
ing the partitions λ for m and μ for n − m. Then η(λ, μ) ≥ max{η(λ), η(μ)}
and so

‖e�λ
ı ⊗ e�μ

j ‖2
H⊗n

β
=

(η(λ, μ) − 1)!
(η(λ, μ) − 1 + n)!

≤ min{βλ, βμ},

since (η−1)!
(η−1+n)! is decreasing in variable η. Thus, the following inequality

‖a⊗m ⊗ h⊗(n−m)‖2

H⊗n
β

≤
∑

ıλ�m
jμ�(n−m)

(m!

λ!

(n − m)!

μ!

)2
min{βλ, βμ}|e∗λ

ı (a)|2|e∗μ
j (h)|2

= ‖a⊗m‖2‖h⊗(n−m)‖2

H
⊗(n−m)
β

= ‖a‖2m‖h⊗(n−m)‖2

H
⊗(n−m)
β

holds. Using this inequality and that ‖Sn/m‖ ≤ 1, we find

‖∂m
a exp(h)‖2

β =
∑

n≥m

‖Sn/m[a⊗m ⊗ h⊗(n−m)]‖2
β

(n − m)!
≤
∑

n≥m

‖Sn/m‖2‖a⊗m ⊗ h⊗(n−m)‖2
β

(n − m)!

≤ ‖a⊗m‖2
∑

n≥m

‖Sn/m‖2‖h⊗(n−m)‖2
β

(n − m)!
≤ ‖a‖2m‖ exp(h)‖2

β .

Summing with coefficients 1/m!, we get ‖Ta exp(h)‖2β ≤ exp
(
‖a‖2

)
‖ exp(h)‖2β .

This inequality and totality of {exp(x) : h ∈ H} in Γβ(H) yield the required
inequality (24). It also follows that Γβ(H) is invariant under Ta and that the
group property (24) holds, since ∂a+b = ∂a + ∂b for all a, b ∈ H by linearity.

�

Lemma 4. The mapping φ : H � h 	−→ φh ∈ L2
χ, extended onto Ta exp(h) as

Φ : Ta exp(h) 	−→
∑

n≥0

1
n!

∑

ıλ	n

n!
λ!

φλ
ı e

∗λ
ı (h + a), a ∈ H,

has the unique isometric conjugate-linear extension

Φ : Γβ(H) � ψ 	−→ Φψ ∈ L2
χ with the adjoint mapping Φ∗ : L2

χ → Γβ(H)

defined to be 〈Φe�λ
ı | f〉χ = 〈e�λ

ı | Φ∗f〉β for all f ∈ L2
χ in such way that

Φ : e�λ
ı /‖e�λ

ı ‖β 	−→ φλ
ı /‖φλ

ı ‖χ for all λ ∈ Y, ı ∈ Iη(λ).

As a result, the conjugate-linear isometries Γβ(H)
Φ� L2

χ and H�n
β

Φ� L2,n
χ

hold.
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Proof. By Lemma 3 the Γβ(H)-valued function H � h 	→ Ta exp(h) is well
defined for all a ∈ H. Let us use the expansion φh+a =

∑
e∗i (h + a)φi. By

Lemma 2 and Theorem 1, φ : H � h 	−→ φh ∈ L2
χ may be extended to Φ in

following way

ΦTa exp(h) =
∑

n≥0

1
n!

∑

ıλ	n

n!
λ!

φλ
ı e

∗λ
ı (h + a) =

∏

i≥0

∑

n≥0

φn
i

n!
e∗n
i (h + a)

=
∏

exp (φie
∗
i (h + a)) = exp (φh+a) where

Φ[(h + a)�n] = φn
h+a =

∑

ıλ	n

n!
λ!

φλ
ı e

∗λ
ı (h + a), a ∈ H

is an orthogonal component of ΦTa exp(h) in L2
χ. It follows that

‖ exp(φh+a)‖2χ =
∑

n≥0

1
n!2

∑

ıλ	n

‖φλ
ı ‖2χ

n!2

λ!2
|e∗λ

ı (h + a)|2

=
∑

n≥0

1
n!2

∑

ıλ	n

n!2

λ!
βλ|e∗λ

ı (h + a)|2 ≤
∑

n≥0

1
n!

∑

ıλ	n

n!
λ!

|e∗λ
ı (h + a)|2

=
∏

exp |e∗i (h + a)|2 = exp ‖h + a‖2.

Hence, the composition U � u 	−→ [Φ exp(h + a)](u) is well defined in L2
χ.

Now, we consider the ordinary irreducible representation of permutation
group Sn on the Specht λ-module Sλ

ı that is corresponded to the standard
Young tableau [ıλ]. The following known hook formula (see [8, I.4.3]) holds,

�λ := n!
( ∏

i≤λj

h(i, j)
)−1

where �λ = dim Sλ
ı , (25)

with h(i, j) = #
{
�i′j′ ∈ [ıλ] : i′ ≥ i, j′ = j

}
= #

{
�i′j′ ∈ [ıλ] : i′ = i, j′ ≥ j

}

independed of ı ∈ I . Assign to ı ∈ Iη the vectors
(
φı1(u)e

∗
ı1(h), . . . , φıη

(u)e∗ıη
(h)
)

:= tı(u, h).

Let sλ
ı (u, h) := sλ

ı (tı) with tı = tı(u, h) for all u ∈ U, where polynomial terms
are φλ

ı (u)e∗λ
ı (h) = φλ1

ı1 (u)e∗λ1
ı1 (h) . . . φ

λη
ıη (u)e∗λη

ıη (h). Applying the Frobenius for-
mula [18, I.7] and taking into account (2), (3), (25), we obtain

φn
h(u) =

∑

ıλ	n

�λsλ
ı (u, h), h ∈ H

where sλ
ı = 0 if λᵀ

1 > lλ and the summation is over all standard tabloids. Hence,{
φn

h : h ∈ H
}

is total in L2,n
χ by Theorem 1. In consequence, {exp(φh) : h ∈ H}

is total in L2
χ. This yields surjectivity of Φ and of all its restrictions to H�n

β .
�

Corollary 2. The sets
{
φn

h : h ∈ H
}

in L2,n
χ and {exp φh : h ∈ H} in L2

χ are
total.
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6. Fourier Analysis on Virtual Unitary Matrices

Consider the isometry H∗�n
β

P� Pn
β (H) (see e.g., [7, 1.6]), where the space

Pn
β (H) of unitarily-weighted n-homogeneous Hilbert–Schmidt polynomials of

variable h ∈ H is defined to be a restriction to the diagonal in H × . . . × H of
the n-linear forms P ◦ ψn endowed with the norm ‖ψ∗

n‖P n
β

= ‖ψn‖H⊗n
β

where

ψ∗
n(h) := 〈h⊗n | ψn〉H⊗n

β
� 〈(h, . . . , h) | P ◦ ψn〉 , ψn ∈ H�n

β .

Let H2
β =

∑
n≥0 Pn

β (H) be the direct sum of functions ψ∗(h) =
∑

ψ∗
n(h)

of variable h ∈ H with summands ψ∗
n = P ◦ ψn ∈ Pn

β (H) where ψ =
∑

ψn ∈
Γβ(H). Since the set {exp(h) : h ∈ H} is total in Γβ(H), elements of H2

β can
be written as

H2
β =

{
ψ∗(h) = 〈exp(h) | ψ〉β : ψ =

∑
ψn ∈ Γβ(H)

}
.

The analyticity of H � h 	→ ψ∗(h) is a result of the composition exp(·) and
ψ∗(·).

Definition 3. Let H2
β be defined as a Hardy space of unitarily-weighted Hilbert–

Schmidt analytic functions ψ∗(h) of variable h ∈ H endowed with the inner
product

〈ψ∗(·) | ϕ∗(·)〉H2
β
:= 〈ϕ | ψ〉β where ‖ψ∗‖2

H2
β
= 〈ψ∗(·) | ψ∗(·)〉H2

β
=
∑

n!‖ψ∗
n‖2

P n
β

.

The conjugate-linear surjective isometry from H2
β onto Γβ(H) is realized

by the conjugate-linear mapping

∗ : Γβ(H) � ψ 	−→ ψ∗ ∈ H2
β , ψ =

∑
ψn.

On the other hand, the correspondence Φ : e�λ
ı � φλ

ı with λ ∈ Y and
ı ∈ Iη(λ) allows us to determine the conjugate-linear isometry from Γβ(H)
onto L2

χ. As a result, the mapping

Ψ : H2
β � e∗λ

ı /‖e�λ
ı ‖β 	−→ φλ

ı /‖φλ
ı ‖χ ∈ L2

χ

defines the surjective isometry

Ψ : H2
β −→ L2

χ and its adjoint Ψ∗ : L2
χ −→ H2

β .

Lemma 5. The systems of Hilbert–Schmidt polynomials of variable h ∈ H,

e∗Yn :=
⋃{

e∗λ
ı : ıλ � n, ı ∈ I

}
and e∗Y :=

⋃{
e∗Yn : n ∈ N0

}

where e∗∅
ı = 1, form orthogonal bases in Pn

β (H) and H2
β, respectively, such that

‖e∗λ
ı ‖2P n

β
= βλ‖e�λ

ı ‖2 =
(η(λ) − 1)!

(η(λ) − 1 + n)!
λ!
n!

, ıλ � n.
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Every function ψ∗ ∈ H2
β with ψ ∈ Γβ(H) has the expansion with respect to e∗Y

ψ∗(h) = 〈exp(h) | ψ〉β =
∑

n≥0

1
n!

∑

ıλ	n

n!
λ!
e∗λ
ı (h)

〈
e�λ
ı | ψn

〉
β

(26)

with summation in the inner sum over all semistandard tabloids [ıλ] such that
ıλ � n. Each function ψ∗ ∈ H2

β is entire Hilbert–Schmidt analytic and can be
also written as

ψ∗(h) =
〈
ψ∗(·) | exp〈· | h〉

〉
H2

β
=
〈
ψ∗(·) | E(·, h)

〉
H2

β
, ψ ∈ Γβ(H)

where E(h′, h) := | exp〈h′ | h〉|2/ exp〈h | h〉 for all h ∈ H.

(27)

The following linear isometries, defined by linearization via coherent states,
hold

H2
β

Ψ� L2
χ, Pn

β (H)
Ψ� L2,n

χ . (28)

Proof. Taking into account (13) and (23), we conclude that every ψ∗ ∈ H2
β

such that ψ =
⊕

ψn ∈ Γβ(H) with ψn ∈ H�n
β has the following expansion

ψ∗(h) =
∑

n≥0

1
n!

∑

ıλ	n

n!
λ!
e∗λ
ı (h)〈e�λ

ı | ψn〉β where ψ =
⊕

n≥0

∑

ıλ	n

〈e�λ
ı | ψn〉β

‖e�λ
ı ‖2β

e�λ
ı .

On the other hand, in relative to the inner product 〈· | ·〉Γ , we have

exp〈h′ | h〉 =
⊕

n≥0

1
n!

∑

ıλ	n

n!
λ!
e∗λ
ı (h′) ē∗λ

ı (h) =
∑

n≥0

1
n!

∑

ıλ	n

e∗λ
ı (h′)ē∗λ

ı (h)
‖e�λ

ı ‖2
.

Verify the first equality in (27) by substituting (26) into the formula (27). We
get

ψ∗(h) =
〈∑

n≥0

∑

ıλ	n

〈e�λ
ı | ψn〉β

‖e�λ
ı ‖2β

e∗λ
ı (h′) |

∑

n≥0

1
n!

∑

ıλ	n

e∗λ
ı (h′)ē∗λ

ı (h)
‖e�λ

ı ‖2

〉

H2
β

=
∑

n≥0

1
n!

∑

ıλ	n

n!
λ!
e∗λ
ı (h)〈e�λ

ı | ψn〉β = 〈exp(h) | ψ〉β .

If ω∗(h′) := ψ∗(h) exp〈h | h′〉[exp〈h′ | h′〉]−1 then ω∗(h) = ψ∗(h) for h = h′ ∈ H.
Now, putting ω∗(h′) :=

〈
ψ∗(·) | exp〈h′ | ·〉[exp〈h′ | h′〉]−1 exp〈· | h′〉

〉
H2

β
, we

obtain
ψ∗(h) = ω∗(h) = 〈ω∗ | exp(· | h)〉H2

β

=
〈
ψ∗(·) | exp(h | ·)[exp(h | h)]−1 exp(· | h)

〉
H2

β
=
〈
ψ∗(·) | E(·, h)

〉
H2

β
.

Hence, the second equality in (27) holds. Lemma 4 yields (28). �

Remark 1. Since φh =
∑

e∗i (h)φi for all h =
∑

e∗i (h)ei, a range of the embed-
ding (21) coincides with L2,1

χ .
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Lemma 6. Denote exp〈h′ | h〉 := K(h′, h). The functions

H � h 	−→ (Ψ ◦ K)(u, h) and H � h 	−→ (Ψ ◦ E)(u, h)

with u ∈ U take values in L2
χ and can be represented as follows

(Ψ ◦ K)(u, h) = exp (φh(u)) , (Ψ ◦ E)(u, h) = exp
(
2Reφh(u) − ‖h‖2

)

where the last exponential function has the power series expansion

exp
{
2Reφh − ‖h‖2

}
=
∑

m,n≥0

‖h‖m+n

m!n!
hn,m

(
φh/‖h‖, φ̄h/‖h‖

)

hn,m(z, z̄) =
m∧n∑

k=0

(−1)kk!
(

m

k

)(
n

k

)

zm−kz̄n−k

(29)

with coefficients in the form of complex Hermite polynomials hn,m(z, z̄), z ∈ C.

Proof. Applying the transform Ψ to K(h′, h) in variable h′ ∈ H, we obtain

(Ψ ◦ K)(u, h) =
∑

n≥0

1

n!

∑

ıλ�n

n!

λ!
φλ

ı (u)e
∗λ
ı (h) =

∑

n≥0

1

n!

(∑

i≥0

φi(u)e
∗
i (h)

)n
= exp

(
φh(u)

)
.

Similarly, applying Ψ to E(h′, h) in variable h′ ∈ H, we obtain

(Ψ ◦ E)(u, h) =
∣
∣
∣
∑

n≥0

1
n!

∑

ıλ	n

n!
λ!

φλ
ı (u)e∗λ

ı (h)
∣
∣
∣
2
(
∑

n≥0

1
n!

∑

ıλ	n

n!
λ!

|e∗λ
ı (h)|2

)−1

= exp
(
2Re φh(u) − ‖h‖2

)
.

By Lemma 4, (Ψ ◦ K)(·, h) and (Ψ ◦ E)(·, h) with h ∈ H take values in L2
χ.

The expansion (29) follows from [13, n.12] where polynomials hn,m(z, z̄) were
introduced. �

Theorem 2. For any f =
∑

fn ∈ L2
χ with fn ∈ L2,n

χ the entire function

f̂(h) := 〈exp(h) | Φ∗f〉β of variable h ∈ H

and its Taylor coefficients at zero dn
0 f̂ have the integral representations

f̂(h) =
∫

exp(φ̄h)f dχ =
∫

exp
(
2Reφh − ‖h‖2

)
f dχ,

dn
0 f̂(h) =

∫

φ̄n
hfn dχ,

(30)

respectively. The Fourier transform F : L2
χ � f 	−→ f̂ ∈ H2

β provides the isome-
tries

L2
χ

F� H2
β and L2,n

χ

F� Pn
β (H).
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Proof. Since Ψ = Φ ◦ ∗−1, we obtain Ψ∗ = ∗ ◦ Φ∗. From (27) it follows that
f̂(h) = 〈exp(h) | Φ∗f〉β =

〈
(Ψ∗ ◦ f)(·) | K(·, h)

〉
H2

β
=
〈
(Ψ∗ ◦ f)(·) | E(·, h)

〉
H2

β
.

Thus,

f̂(h) =
〈
(Ψ∗ ◦ f)(·) | K(·, h)

〉
H2

β
=
〈
(Ψ∗ ◦ f)(·) | E(·, h)

〉
H2

β

=
〈
f(·) | (Ψ ◦ E)(·, h)

〉
χ

=
∫

exp
(
2Re φh − ‖h‖2H

)
f dχ

by Lemma 6. On the other hand, according to the same claim

f̂(h) =
〈
(Ψ∗ ◦ f)(·) | K(·, h)

〉
H2

β
=
〈
f(·) | (Ψ ◦ K)(·, h)

〉
χ

=
∫

exp
(
φ̄h

)
f dχ.

It particularly follows that for all h = αx with x ∈ H,

f̂ (αx) =
∫

exp
(
φ̄αx

)
f dχ =

∑
αn

∫
φ̄n

x

n!
fn dχ, α ∈ C.

Using the n-homogeneity of derivatives, we find

dn
0 f̂(αx) =

dn

dαn

∑
αn

∫
φ̄n

x

n!
fn dχ |α=0=

∫

φ̄n
xfn dχ.

Finally, we notice that the isometry L2
χ

F� H2
β holds, since the isometry

Φ∗ is surjective by Lemma 5. Similarly, we get L2,n
χ

F� Pn
β (H). �

Corollary 3. For any h ∈ H the Paley–Wiener map φh satisfies the equality
∫

exp
{

Reφh

}
dχ = exp

{1
4
‖h‖2

}
.

Proof. It is enough to put f ≡ 1 and to replace h by h/2 in the formula (30).
�

Corollary 4. The isometry ∗ : Γβ(H) −→ H2
β has the factorization ∗ = F ◦ Φ.

Proof. In fact, Φ : Γβ(H) � ψ 	−→ Φψ = f ∈ L2
χ and F : L2

χ � f 	−→ f̂ ∈ H2
β .

�

Corollary 5. For every f ∈ L2
χ the Taylor expansion at zero of the function

f̂(h) =
∑ 1

n!
dn
0 f̂(h) with f =

∑
fn ∈ L2

χ, fn ∈ L2,n
χ

has the coefficients

dn
0 f̂(h) =

∫

fnφ̄n
h dχ =

∑

ıλ	n

�λsλ
ı [fı e

∗
ı (h)], fı :=

∫

fφ̄ı dχ (31)

with summation over all standard Young tabloids [ıλ] such that ıλ � n where
sλ

ı = 0 if the conjugate partition λᵀ has λᵀ
1 > η(λ) and sλ

ı [fı e
∗
ı (h)] := sλ

ı (tı)
with tı = fı e

∗
ı (h).
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Proof. By the Frobenius formula [18, I.7] we find that φn
h(u) =

∑
ıλ	n �λsλ

ı (u, h),
where sλ

ı = 0 if λᵀ
1 > η(λ), and sλ

ı (u, h) is defined by (3), whereas �λ by (25).
Thus,

exp φh(u) =
∑

n≥0

1
n!

∑

ıλ	n

�λsλ
ı (u, h) =

∑

n≥0

1
n!

∑

ıλ	n

n!
λ!

φλ
ı (u)e∗λ

ı (h). (32)

Using (32) in combination with Theorem 1, we find

f̂(h) =
∫

f(u) exp φ̄h(u) dχ(u) =
∑

n≥0

1
n!

∑

ıλ	n

�λs̄λ
ı [fı e

∗
ı (h)]

where the derivative at zero may be defined as

dn
0 f̂(h) =

∑

ıλ	n

�λsλ
ı [fı e

∗
ı (h)] with sλ

ı [fı e
∗
ı (h)] :=

∫

f(u)s̄λ
ı (u, h) dχ(u).

In fact, for zh with z ∈ C and ıλ � n with λᵀ
1 > η(λ) we find

sλ
ı [fı e

∗
ı (zh)] = znsλ

ı [fı e
∗
ı (h)].

Hence, the derivative dn
0 f̂(h) = (dn/dzn)f̂(zh)|z=0 is a Taylor coefficient of f̂ .

Now, the Frobenius formula and Theorem 1 yield the first equality in
(31). By Lemmas 5 and 6 the second formula in (31) also holds. �

Remark 2. In the finite-dimensional case U = U(m), the Hardy space H2
β of

entire analytic functions of variable h ∈ C
m has the following orthogonal basis{

e∗λ = e∗λ1
1 . . . e∗λm

m : λ = (λ1, . . . , λm) ∈ Y
}
. The Fourier transform

f̂(h) =
∫

exp(φ̄h)f dχm =
∫

exp
(
2Re φh − ‖h‖2

)
f dχm, h ∈ C

m

provides the surjective isometry F : L2
χm

� f 	−→ f̂ ∈ H2
β , defined by map-

pings

F : e∗λ 	→ φλ such that ‖e∗λ‖2H2
β

= ‖φλ‖2χm
=

(m − 1)!λ!
(m − 1 + |λ|)!

where the space L2
χm

with the Haar measure χm on U(m) has the orthogonal
basis

{
φλ = φλ1

1 ◦ π−1
m . . . φλm

m ◦ π−1
m : λ ∈ Y

}
.

7. Intertwining Properties of Fourier Transform

The shift group on H2
β is defined as Taψ∗(h) := 〈Ta exp(h) | ψ〉β for all ψ ∈

Γβ(H), a, h ∈ H. By (27), 〈Ta exp(h) | ψ〉β = Taψ∗(h) =
〈
Taψ∗(·) | exp〈· |

h〉
〉

H2
β
. Hence,

Taψ∗(h) = 〈Ta exp(h) | ψ〉β = 〈ψ∗(·) | exp〈· | h + a〉〉H2
β
= 〈ψ∗(·) | Ma∗ exp〈· | h〉〉H2

β

where Ma∗ exp〈· | h〉 := exp a∗(·) exp〈· | h〉 = exp〈· | h + a〉 is defined to be
the multiplicative group onto the total set {exp〈· | h〉 : h ∈ H} in H2

β .
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Comparing the above formulas, we obtain that Ma∗ is adjoint to Ta on
H2

β . By virtue of adjoint relations, ‖Taψ∗‖H2
β

= ‖Ma∗ψ∗‖H2
β
. The isometry

H2
β � Γβ(H) yields ‖Taψ∗‖H2

β
= ‖Taψ‖β . According to (24), we have

‖Taψ∗‖2H2
β

≤ exp
(
‖a‖2

)
‖ψ∗‖2H2

β
and Ta+b = TaTb = TbTa

‖Ma∗ψ∗‖2H2
β

≤ exp
(
‖a‖2

)
‖ψ∗‖2H2

β
and Ma∗+b∗ = Ma∗Mb∗ = Mb∗Ma∗

(33)

for a, b ∈ H. Thus, these groups are strongly continuous with densely defined
closed generators ∂∗

aψ∗ := limz→0(Tzaψ∗ − ψ∗)/z and a∗ψ∗ := limz→0(Mza∗ψ∗

−ψ∗)/z.
Hence, the additive group (H,+) on H2

β is represented by Ma∗ : H2
β → H2

β

and the generator dMza∗/dz |z=0= a∗ of its 1-parameter subgroup Mza∗ is
strongly continuous with the dense domain D(a∗) =

{
ψ∗ ∈ H2

β : a∗ψ∗ ∈ H2
β

}
.

On the other hand, the group (H,+) can be represented as M†
a∗ = ΨMa∗Ψ∗ : L2

χ

→ L2
χ. The generator of its strongly continuous subgroup

C � z 	−→ M†
za∗ , dM†

za∗/dz |z=0= φ̄a with φ̄a = Ψa∗Ψ∗

has the dense domain D(φ̄a) =
{
f ∈ L2

χ : φ̄af ∈ L2
χ

}
and is closed, since a∗ is

closed.
The group (H,+) on L2

χ can be also represented by T †
a := ΨTaΨ∗ : L2

χ →
L2

χ. From Lemmas 3 and 5 it follows that the generator of strongly continuous
subgroup

C � z 	−→ T †
za, dT †

za/dz |z=0= ∂†
a with ∂†

a := Ψ∂∗
aΨ∗

has the dense domain D(∂†
a) =

{
f ∈ L2

χ : ∂†
af ∈ L2

χ

}
and is closed, since ∂∗

a is
closed. By (27) f̂(h) = 〈exp(h) | Φ∗f〉β =

〈
(Ψ∗ ◦ f)(·) | exp〈· | h〉

〉
H2

β
. Hence,

by Lemma 6,

T †
a f̂(h) =

〈
(Ψ∗ ◦ f)(·) | Ta exp〈· | h〉

〉
H2

β
=
∫

f exp
(
φ̄h+a

)
dχ.

Lemma 7. The additive group (H,+) on L2
χ has two representations a 	→ M†

a∗

and a 	→ T †
a which are adjoint, strongly continuous with closed densely defined

generators φ̄a and ∂†
a, respectively. For every f ∈ D(φ̄m

a ) =
{
f ∈ L2

χ : φ̄m
a f

∈ L2
χ

}
with m ∈ N0,

∂∗m
a TaF (f) = F

(
φ̄m

a M†
a∗f
)
, a ∈ H. (34)

For every f ∈ D(∂†m
a ) =

{
f ∈ L2

χ : ∂†m
a f ∈ L2

χ

}
with m ∈ N0,

a∗mMa∗F (f) = F
(
∂†m

a T †
af
)
, a ∈ H. (35)

As a conclusion, ∂†
ia = −i∂†

a. Moreover, the following commutation relations
hold,

M†
a∗T †

b = exp〈a | b〉T †
b M†

a∗ ,
(
φ̄a∂†

b − ∂†
b φ̄a

)
f = 〈a | b〉f, (36)
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for all f from the dense subspace D(φ̄2
a) ∩D(∂†2

b ) ⊂ L2
χ and nonzero a, b ∈ H.

Proof. Using that Ta and Ma∗ are adjoint, we find that

∂∗m
a Taf̂(h) =

∫
dmM†

za∗f

dzm

∣
∣
∣
z=0

exp φ̄h dχ =
∫

(φ̄m
a f) exp φ̄h dχ, m ≥ 0

for all f ∈ L2
χ. This gives (34). Since Ma∗ψ∗(h) =

〈
ψ∗(·) | Ma∗ exp〈· | h〉

〉
H2

β
=

exp a∗(h)ψ∗(h), we obtain

a∗mMa∗ f̂(h) =
dmMza∗ f̂(h)

dzm

∣
∣
∣
z=0

=
∫

dmT †
zaf

dzm

∣
∣
∣
z=0

exp φ̄h dχ

=
∫

(∂†m
a f) exp φ̄h dχ with f ∈ D(∂†m

a ), ψ∗ = Ψ∗f.

(37)

This together with the group property by applying F and F−1 yields (35).
Now, we prove the commutation relations. For any f ∈ L2

χ and h ∈ H,
we have

Mb∗Taf̂(h) = exp〈h | b〉f̂(h + a),

TaMb∗ f̂(h) = exp〈h + a | b〉f̂(h + a) = exp〈a | b〉Mb∗Taf̂(h).

For each f̂ ∈ D(b∗2) ∩ D(∂2
a) and t ∈ C by differentiation, we obtain

(
d2/dt2

)
TtaMtb∗ f̂ |t=0=

(
∂∗2

a + 2∂∗
ab∗ + b∗2)f̂ . (38)

Subsequently, taking into account (38) together with (d/dt)[exp〈ta | t̄b〉Mtb∗Tta]
= [(d/dt) exp〈ta | t̄b〉]Mtb∗Tta + exp〈ta | t̄b〉[(d/dt)Mtb∗Tta], we find

(
∂∗2

a + 2∂∗
ab∗ + b∗2)f̂ = (d/dt)

[
(d/dt) exp〈ta | t̄b〉Mtb∗Ttaf̂

]
t=0

= 2〈a | b〉f̂ +
(
∂∗2

a + 2b∗∂∗
a + b∗2)f̂ .

Hence, for each f̂ from the dense subspace D(b∗2)∩D(∂2
a) ⊂ H2

β , which includes
all polynomials generated by finite sums Ψ∗(f) =

⊕
ψn ∈ Γβ(H) with ψn ∈

H�n
β ,

TaMb∗ = exp〈a | b〉Mb∗Ta, (∂∗
ab∗ − b∗∂∗

a) f̂ = 〈a | b〉f̂ . (39)

Corollary 4 yields F = ∗ ◦ Φ∗ and F−1 = Φ ◦ ∗−1. The equality (37) for
m = 0 can be rewritten as Mb∗ f̂(a) = 〈exp(a) | TbΦ

∗f〉β with f ∈ L2
χ or in

another way ∗ ◦ Tb = Mb∗ ◦ ∗. Hence, T †
b = Φ TbΦ

∗ = Φ ◦ ∗−1 ◦ Mb∗ ◦ ∗ ◦ Φ∗ =
F−1Mb∗ F and ∂†

b = F−1b∗ F . Similarly, M†
a∗ = F−1Ta F and φ̄a = F−1∂∗

a F .
Finally,

M†
a∗T †

b = F−1TaMb∗ F = exp〈a | b〉F−1Mb∗Ta F = exp〈a | b〉T †
b M†

a∗ ,
(
φ̄a∂†

b − ∂†
b φ̄a

)
f = F−1 (∂∗

ab∗ − b∗∂∗
a) Ff = 〈a | b〉f

for all f from the dense subspace D(φ̄2
a) ∩ D(∂†2

b ) ⊂ L2
χ, which includes all

functions generated by finite sums Φ (
⊕

ψn) with ψn ∈ H�n
β . �
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8. Infinite-Dimensional Heisenberg Group

Our goal is to describe an irreducible representation on the space L2
χ of the

group HC, defined by (1). We will use the appropriate generalization of Weyl’s
system which in our case is written in the form of L2

χ-valued function of variable
h ∈ H

W †(h) := W †(a, b) = exp
{1

2
〈a | b〉

}
T †

b M†
a∗ .

For convenience, we will use the quaternion algebra H = C ⊕ Cj of num-
bers ζ = (α1 + α2i) + (α′

1 + α′
2i)j = α + α′j such that i2 = j2 = k2 = ijk =

−1, k = ij = −ji, ki = −ik = j, where (α, α′) ∈ C
2 with α = α1 + α2i, α

′ =
α′
1 + α′

2i ∈ C and αı, α
′
ı ∈ R (ı = 1, 2) [26, 5.5.2]. Let us denote α′ := �ζ for

all ζ = α + α′j ∈ H.
Consider the Hilbert space H ⊕ Hj with H-valued inner product

〈h | h′〉 = 〈a + bj | a′ + b′j〉 = 〈a | a′〉 + 〈b | b′〉 + [〈a′ | b〉 − 〈a | b′〉] j
where h = a + bj with a, b ∈ H. Hence,

�〈h | h′〉 = 〈a′ | b〉 − 〈a | b′〉, �〈h | h〉 = 0.

Theorem 3. The representation of HC over L2
χ in the Weyl–Schrödinger form

S† : HC � X(a, b, t) 	−→ exp(t)W †(h), h = a + bj

is well defined and irreducible. The Weyl system satisfies the relation

W †(h + h′) = exp
{

− �〈h | h′〉
2

}
W †(h)W †(h′) (40)

which on any real subspace {τh : τ ∈ R} transforms to the 1-parameter group

W † ((τ + τ ′)h) = W †(τh)W †(τ ′h) = W †(τ ′h)W (τh) (41)

with the densely defined generator on L2
χ of the form p†

h := ∂†
b + φ̄a. Moreover,

the following commutation relations hold,

W †(h)W †(h′) = exp
{
�〈h | h′〉

}
W †(h′)W †(h) where

�〈h | h′〉 = −
[
p†

h, p†
h′
]

with
[
p†

h, p†
h′
]

:= p†
hp

†
h′ − p†

h′p
†
h (42)

on the dense subspace D(φ̄2
a) ∩ D(∂†2

b ) ⊂ L2
χ.

Proof. Let us consider the auxiliary group C × (H ⊕ Hj) with multiplication
(t, h)(t′, h′) =

(
t + t′ − 1

2�〈h | h′〉, h + h′) for all h = a + bj, h′ = a′ + b′j ∈
H ⊕ Hj. The mapping G : X(a, b, t) 	−→

(
t − 1

2 〈a | b〉, a + bj
)

is a group iso-
morphism, since

G
(
X(a, b, t)X(a′, b′, t′)

)
= G

(
X(a + a′, b + b′, t + t′ + 〈a | b′〉)

)

=
(
t + t′ + 〈a | b′〉 − 1

2

(
〈a + a′ | b + b′〉

)
, (a + a′) + (b + b′)j

)

=
(
t + t′ − 1

2

(
〈a | b〉 + 〈a′ | b′〉

)
+

1

2

(
〈a | b′〉 − 〈a′ | b〉

)
, (a + a) + (b + b′)j

)
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=
(
t − 1

2
〈a | b〉, a + bj

)(
t′ − 1

2
〈a′ | b′〉, a′ + b′j

)
= G (X(a, b, t))G

(
X(a′, b′, t′)

)
.

On the other hand, let us define the auxiliary Weyl system

W (h) = exp
{1

2
〈a | b〉

}
Mb∗Ta, h = a + bj. (43)

Using group properties and the commutation relation (39), we obtain

exp
{

− �〈h | h′〉
2

}
W (h)W (h′) = exp

{ 〈a | b′〉
2

− 〈a′ | b〉
2

}
W (h)W (h′)

= exp
{ 〈a | b〉

2
+

〈a′ | b′〉
2

}
exp

{ 〈a | b′〉
2

− 〈a′ | b〉
2

}
Mb∗TaMb′∗Ta′

= exp
{1

2
〈a + a′ | b + b′〉

}
Mb∗+b′∗Ta+a′ = W (h + h′). (44)

Hence, the mapping C × (H ⊕ Hj) � (t, h) 	−→ exp(t)W (h) acts as a group
isomorphism into the operator algebra over H2

β . So, the representation

S : HC � X(a, b, t) 	−→ exp(t)W (h) = exp
{

t +
1
2
〈a | b〉

}
Mb∗Ta

is also well defined over H2
β , as a composition of group isomorphisms.

Let us check the irreducibility. Suppose the contrary. Assume there exist
an element h0 �= 0 in H and an integer n > 0 such that

exp
{

t +
1
2
〈a | b〉

}
exp 〈c | a〉〈c + b | h0〉n = 0 for all a, b, c ∈ H.

But, this is only possible for h0 = 0. It gives a contradiction. Finally, using
that

exp
{

t +
1
2
〈a | b〉

}
T †

b M†
a∗ = F−1

(
exp

{
t +

1
2
〈a | b〉

}
Mb∗Ta

)
F,

we obtain that S† = F−1S F is irreducible. Applying F , F−1 to (44) we get
(40).

Consider the Weyl system W † on the space L2
χ. By (40) we obtain the

equality

W †(h)W †(h′) = exp
{
〈h | h′〉

2

}
W †(h + h′) = exp

{
− 
〈h′ | h〉

2

}
W †(h′ + h)

= exp
{
− 
〈h′ | h〉

}
exp

{
〈h′ | h〉
2

}
W †(h′ + h)

= exp
{
− 
〈h′ | h〉

}
W †(h′)W †(h).

Using this equality, we get (41) for any fixed h = a + bj ∈ H ⊕ Hj. The 1-
parameter group W †(τa, τb) = W †(τh) with real τ has the generator p†

h = p†
a,b,

since

p†
a,b =

d

dτ
W †(τh)

∣
∣
∣
τ=0

=
d

dτ
exp

{1
2
〈τa | τb〉

}
T †

τbM
†
τa∗

∣
∣
∣
τ=0

= ∂†
b + φ̄a.
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Taking into account the inequalities (33) and that F is isometric, we get

‖W †(τa, τb)f‖2χ ≤ exp
(
‖τa‖2 + ‖τb‖2

)
‖f‖2χ, f ∈ L2

χ.

Hence, the group W †(τa, τb) in variable τ ∈ R is strongly continuous on L2
χ

and therefore has the dense domain D(p†
h) =

{
f ∈ L2

χ : p†
hf ∈ L2

χ

}
. Moreover,

its generator p†
h is closed (see, e.g., [32]). Note also that p†

τh = τp†
h for τ ∈ R.

Finally, applying the commutation relation (36) and commutability of
group generators in different directions over the dense set D(φ̄2

a)∩D(∂†2
b ) ⊂ L2

χ,
we have

−�〈h | h′〉 = 〈a | b′〉 − 〈a′ | b〉 = φ̄a∂†
b′ − φ̄a′∂†

b + ∂†
b φ̄a′ − ∂†

b′ φ̄a

= (∂†
b + φ̄a)(∂†

b′ + φ̄a′) − (∂†
b′ + φ̄a′)(∂†

b + φ̄a) =
[
p†

h, p†
h′
]
.

�

9. Heat Equation Associated with Weyl System

In what follows, we will consider the real Banach space c0 and let ξ∗
n be the

coordinate functional, i.e., ξ∗
n(ξ) = ξn for ξ ∈ c0. Since, the embedding I : l2 �

c0 is continuous, the Gelfand triple l1
I∗

−→ l2 � c0 with adjoint I∗ holds. The
mapping Q : l1 → c0 with Q := I ◦ I∗ is positive and 〈Qξ∗ | Qξ∗〉l2 :=
ξ∗(Qξ∗) =

∑
ξ2n = ‖ξ‖2l2 where ξ = Qξ∗ ∈ R(Q) and ξ∗ ∈ l1 = c∗

0. By
the Aronszajn-Kolmogorov decomposition theorem (see e.g., [22, Prop.1]) the
appropriative reproducing kernel Hilbert space can be determined as R(Q) =
l2.

Consider the abstract Wiener space defined by I : l2 � c0. Given ξ∗
1 , . . . ,

ξ∗
n ∈ l1 = c∗

0, we assign the family of cylinder sets Ωc
n = {ξ ∈ c0 : (ξ∗

1(ξ), . . . ,
ξ∗
n(ξ)) ∈ Ωn} with any Borel Ωn ⊂ R

n that are not a σ-field. Define the
σ-additive extension w of the Gaussian measure γ onto the Borel σ-algebra
B(c0), called futhure the Wiener measure, such that

w(Ωc
n) := γ(Ωn) with γ(Ωn) := (2π)−n/2

∫

Ωn

exp
{

− ‖ω‖2l2/2
}

dω.

By Gross’ theorem [10] there exists a smaller abstract Wiener space
{w0, ‖ ·‖w0} such that injections l2 � w0 � c0 are continuous and the increas-
ing sequence of orthogonal projectors pn : l2 → R

n has the extension (p∼
n ) on

w0 that is convergent to the identity operator on w0 and w(w0) = 1. The in-
tegral of any cylinder function υ : c0 → R such that υ = ρ ◦ p∼

n is defined to
be
∫

Ωc
n

υ dw =
∫

Ωn
ρ dγ. The Fernique theorem [6], [15, Thm 3.1] implies that

these exist ε, η > 0 such that ‖ · ‖w0 satisfies the following conditions with a
sufficiently large K > 0,

∫

c0

exp
{
ε‖ξ‖2w0

}
dw(ξ) < ∞, w

(
‖ξ‖w0 ≥ K

)
≤ exp

{
− ηK2

}
.
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Let us go back to the Weyl system W †. Consider in L2
χ the dense sub-

space L+2
χ :=

⋃
n≥0

⊕n
m=0 L2,m

χ . Let a = b = iξmem with ξm ∈ R. Then by
Theorem 3

W †(iξmem, iξmem) = exp
{
−ξ2m/2

}
T †
iξem

M†
−iξe∗

m
.

Theorem 4. For any f ∈ L+2
χ and ξ = (ξm) ∈ c0 there exists the limit

W †
ξ f = lim

n→∞ W †
p∼

n (ξ)f, W †
p∼

n (ξ) := exp

{

−
‖p∼

n (ξ)‖2w0

2

}
n∏

m=1

T †
iξmem

M†
−iξme∗

m

w-almost everywhere on c0 such that the 1-parameter Gaussian semigroup

G†
rf =

1√
4πr

∫

c0

exp
{

−
‖ξ‖2w0

4r

}
W †

ξ f dw(ξ), r > 0 (45)

on the space L+2
χ is generated by −

∑(
∂†

m + φ̄m

)2 with ∂†
m := ∂†

em . As a
consequence, w(r) = G†

rf is unique solution of the Cauchy problem

dw(r)
dr

= −
∑(

∂†
m + φ̄m

)2
w(r), w(0) = f ∈ L+2

χ . (46)

Proof. Note that (Mb∗Ta)∗ = T ∗
a M∗

b∗ = Ma∗Tb. Hence, (∂†
a + φ̄a)∗ = ∂†

a + φ̄a is
self-adjoint for a = b, as a generator of the group W †(τa, τa) = exp

{
‖τa‖2/2

}

T †
τaM†

τa∗ with τ ∈ R. Replacing a = b by iτa with τ ∈ R, we obtain that

W †(iτa, iτa) = exp
{

− 1
2
〈τa | τa〉

}
T †
iτaM†

−iτa∗ has the generator i(∂†
a + φ̄a)

with self-adjoint ∂†
a + φ̄a. By relations (36), W †(iτa, iτa) is unitary.

Lemma 7 implies that [M†
−iξme∗

m
, T †

iξkek
] = 0 and [M†

−iξme∗
m

,M†
−iξke∗

k
] = 0,

as well as, [T †
iξmem

, T †
iξkek

] = 0 for any m �= k. In view of the relations (36),
[
φ̄iξmem

, ∂†
iξkek

]
= 0 if m �= k and

[
φ̄iξmem

, ∂†
iξmem

]
= −ξ2m. (47)

Check that (45) holds. Denote W †
p∼

n (ξ) :=
∏n

m=1 W †(iξmem, iξmem) and

T †
p∼

n (ξ) :=
∏n

m=1 T †
iξmem

, as well as, M†
p∼

n (ξ) :=
∏n

m=1 M†
−iξme∗

m
with ξ = (ξm)

∈ w0. Using (33) with the operator norm over H2
β , we get the inequality

ln
n∏

m=1

‖Tiξmem
‖2L (H2

β)
≤

n∑

m=1

〈ξmem | ξmem〉2 =
n∑

m=1

ξ2m = ‖p∼
n (ξ)‖2l2 .

The relation T †
iξmem

= ΨTiξmem
Ψ∗ implies that the left-hand side term above

can be changed by ln
∏n

m=1 ‖T †
iξmem

‖2L (L2
χ). For M†

p∼
n (ξ) =

∏n
m=1 M†

−iξme∗
m

similarly.
Using the unitarity of groups W †(iξmem, iξmem), we find by virtue of (47)

that their product W †
p∼

n (ξ) = exp
{
−‖p∼

n (ξ)‖2l2/2
}

T †
p∼

n (ξ)M
†
p∼

n (ξ) is also unitary.
Taking into account the continuity of I0 : l2 � w0 and that p∼

n converges to the
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identity mapping on w0, as well as, that w(w0) = 1, we obtain for all f ∈ L+2
χ ,

n ≥ 0,

‖W †
p∼

n (ξ)f‖χ ≤ exp
{

− ‖p∼
n (ξ)‖2l2/2

}
‖f‖χ ≤ exp

{
− ‖I0‖2 ‖ξ‖2w0

/2
}
‖f‖χ.

The Lebesgue dominated convergence theorem implies that there exists
lim ‖W †

p∼
n (ξ)f‖χ w-almost everywhere in variable ξ ∈ w0 for all f ∈ L2,m

χ and

m > 0. By completeness of L2,m
χ , the limit W †

ξ f is well defined w-almost ev-
erywhere and

‖W †
ξ f‖χ ≤ exp

{
− ‖I0‖2 ‖ξ‖2w0

/2
}
‖f‖χ for all f ∈ L+2

χ , ξ ∈ w0. (48)

The ‖ · ‖χ-norm of integrant in (45) is bounded by exp
{
ε‖ξ‖2w0

}
with

any ε > 0. By Fernique’s theorem and (48), the integral (45) with the Wiener
measure w exists for all f ∈ L+2

χ . The equality w(w0) = 1 implies that the
integral (45) is absolutely convergent uniformly in variables r > 0 on the whole
space c0. It provides the C0-property of Gr in variables r > 0 on any finite
sum

⊕n
m=0 L2,m

χ .
Prove that the semigroup Gr is generated by

∑
p†2

m with p†
m := i(∂†

m + φ̄m).
By differentiation of W †(iξma, iξma) at ξm = 0, we get that its generator co-
incides with p†

m. In fact, W †(iξma, iξma)f = exp
{
ξmp†

m

}
f for all f ∈ φY.

Applying the next formula for Gamma functions with α = (α1, . . . , αn) ∈ N
n
0

n∏

m=1

1√
4πr

∫

exp

{
−ξ2m
4r

}

ξ2αm
m dξm

∣
∣
∣
ξm=2

√
rxm

=
n∏

m=1

(2
√

r)2√
π

∫

exp
{
− x2

m

}
x2αm

m dxm

= 22nrn
n∏

m=1

Γ
(2αm + 1

2

)
= 2nrn (2α − 1)!

(α − 1)!
,

we find that for any L+2
χ -valued cylinder function hn = (W †

ξ f) ◦ p∼
n we have

G†
rhn =

n∏

m=1

1√
4πr

∫

exp
{

− ξ2m
4r

}
exp

{
ξmp†

m

}
dξmhn

=
∑

α∈Nn
0

n∏

m=1

p†αm
m

αm!
1√
4πr

∫

exp
{

− ξ2m
4r

}
ξαm
m dξmhn

=
∑

α∈Nn
0

2nrn
n∏

m=1

(2αm − 1)!
(αm − 1)!

p†2
m

(2αm)!
hn = exp

{
r

n∑

m=1

p†2
m

}
hn.

Using (48), we obtain that 0 ≤ r 	−→ G†
r is the 1-parameter C0-semigroup on

any finite sum
⊕n

m=0 L2,m
χ with densely defined closed generator

∑n
m=1 p

†2
m .

Applying the known relation [32] between the initial problem (46) and the
1-parameter C0-semigroup G†

r, we obtain that the function wn(r) = G†
rfn for

any n ∈ N solves this problem in the sense that dG†
rfn/dr|r=0 =

∑n
m=1 p

†2
mfn

for all fn ∈
⊕n

m=0 L2,m
χ . The theorem is proved. �
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Taking into account the isometries H2
β

Ψ� L2
χ and Pn

β (H)
Ψ� L2,n

χ from
(28), defined by linearization, we can rewrite the Cauchy problem in polyno-
mial form.

Consider the Weyl system W (a, b) = exp {〈a | b〉/2} Mb∗Ta defined by
(43) on the dense subspace of polynomials Pβ(H) :=

∑
n≥0P

n
β (H) in H2

β ,

consisting of all finite sums of n-homogenous polynomials ψ∗(h) =
∑

ψ∗
n(h)

of variable h ∈ H with components ψ∗
n = P ◦ ψn ∈ Pn

β (H). Replacing a by τa
and b by τb with real τ ∈ R, we get that Tτa and Mτb∗ are generated by closed
generators on Pβ(H),

∂∗
aψ∗ = lim

τ→0
(Tτaψ∗ − ψ∗) /τ and a∗ψ∗ = lim

τ→0
(Mτa∗ψ∗ − ψ∗) /τ, a, b ∈ H.

As a consequence, the 1-parameter Weyl system W (τa, τb) has the generator
d

dτ
W (τa, τb)|τ=0 =

d

dτ
exp

{1
2
〈a | b〉

}∣
∣
∣
τ=0

= b∗ + ∂∗
a

densely defined on Pβ(H) such that (τb)∗ + ∂∗
τa = τ(b∗ + ∂∗

a) for real τ .
Let Wp∼

n (ξ) =
∏n

m=1 W (iξmem, iξmem), Tp∼
n (ξ) =

∏n
m=1 Tiξmem

, Mp∼
n (ξ) =

∏n
m=1 M−iξme∗

m
.

Corollary 6. For all ψ∗ ∈ Pβ(H) and ξ = (ξm) ∈ c0 there exists the limit

Wξψ
∗ = lim

n→∞ Wp∼
n (ξ)ψ

∗, Wp∼
n (ξ) := exp

{
−

‖p∼
n (ξ)‖2w0

2

} n∏

m=1

M−iξme∗
m

Tiξmem

w-almost everywhere on c0 such that the 1-parameter Gaussian semigroup

Grψ
∗ =

1√
4πr

∫

c0

exp
{−‖ξ‖2w0

4r

}
Wξψ

∗dw(ξ), r > 0

is generated by −
∑

(e∗m + ∂∗
m)2. Thus, w(r) = Grψ

∗ is unique solution of the
problem

dw(r)
dr

= −
∑(

e∗m + ∂∗
m

)2
w(r), w(0) = ψ∗ ∈ Pβ(H)

in the space of Hilbert–Schmidt polynomials Pβ(H).
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