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On the Construction of Large Algebras Not
Contained in the Image of the Borel Map

Céline Esser and Gerhard Schindl

Abstract. The Borel map j∞ takes germs at 0 of smooth functions to the
sequence of iterated partial derivatives at 0. It is well known that the
restriction of j∞ to the germs of quasianalytic ultradifferentiable classes
which are strictly containing the real analytic functions can never be onto
the corresponding sequence space. In a recent paper the authors have
studied the size of the image of j∞ by using different approaches and
worked in the general setting of quasianalytic ultradifferentiable classes
defined by weight matrices. The aim of this paper is to show that the
image of j∞ is also small with respect to the notion of algebrability and we
treat both the Cauchy product (convolution) and the pointwise product.
In particular, a deep study of the stability of the considered spaces under
the pointwise product is developed.
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1. Introduction

Classes of ultradifferentiable functions on an open subset U ⊆ R are classically
defined by imposing growth restrictions on their derivatives. In the case these
restrictions are controlled by a weight sequence M = (Mj)j∈N, given a sequence
a = (aj)j∈N of complex numbers, many authors have investigated under which
conditions on M and a there exists a function f in the class associated to
M satisfying f (j)(0) = aj for every j ∈ N, see [12,22,30]. This coincides
with the study of the surjectivity of the Borel map f �→ (

f (j)(0)
)
j∈N

in the
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corresponding spaces. Following the work of Braun et al. [10], it is also very
classical to consider growth restrictions defined by using weight functions ω. In
this situation, the study of the surjectivity of the Borel map has been proposed
in [7,9]. More recently, new classes of ultradifferentiable functions have been
introduced in order to obtain a general framework that covers both previous
situtations, but also different ones, see [23] and [28]. These classes are based
on weight matrices M and the study of the surjectivity of the Borel map in
this context has been carried out in [24]. In any situation, it appears that
if the considered class is quasianalytic, which means that on this class the
Borel map is injective, and if it contains strictly the analytic functions, then
the Borel map is never surjective onto the corresponding weighted sequence
space. In this context, the authors have studied in the recent paper [13] the
question of knowing how far is the Borel map from being surjective. More
precisely, they obtained that the image of the Borel map is “small” in the
corresponding sequence space, where the notion of smallness is defined using
different approaches: the notion of residual sets based on Baire categories,
the notion of prevalence, and the notion of lineability. This paper aims at
obtaining the corresponging result in the algebraic sense, using the notion of
algebrability. While the concept of lineability consists in proving the existence
of large linear subspace satisfying a particular property, one could search for
other structure, such as algebra, see [3] and [2] and the references therein.

Definition 1.1. Let A be an algebra and κ be a cardinal number. A subset
B ⊆ A is κ-algebrable if there is a κ-generated subalgebra C ⊆ B ∪ {0}.

The results of [13] will be extended in two ways: first, we will consider
that the multiplicative structure on the weighted formal power series space
is given by the Cauchy (or convolution) product, which corresponds to the
natural pointwise product of functions. This will be the core of Sect. 3. In this
context, it seems to be more natural to consider weighted formal power se-
ries spaces instead of sequences spaces, see Remark 2.3 for some explanations:
this will be done in this paper. In Sect. 4, we will work under the assumption
that the multiplication is the pointwise product. In particular, a deep study
of the stability of the image and the corresponding power series space under
the pointwise product is proposed in Sect. 4 for weight sequences and weight
matrices, and in Sect. 5 for weight functions. We will see that, contrary to
what happens in the case of the Cauchy product, under our assumptions, this
product does not make sense in the case of a weight sequence, or a weight
function. However, we will construct in Sect. 4 an example of a weight ma-
trix which gives the stability of the corresponding space under the pointwise
product which underlines the different behavior of classes defined by general
weight matrices.

Let us mention that Sect. 2 is dedicated to remind the reader the classes
associated to weight sequences. The presentation of this work and the standard
assumptions on the weight structures are similar to the ones considered in [24]
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and [13]. Moreover, throughout this paper, we write N = {0, 1, . . . }, E(U) and
Cω(U) shall denote respectively the class of all C-valued smooth functions and
the class of all real analytic functions defined on non-empty open U ⊆ R. For
reasons of convenience we will write E[M ] if either E{M} or E(M) is considered,
but not mixing the cases if statements involve more than one E[M ] symbol.
We use similar notations for the classes of weighted formal power series F[M ]

and for classes defined by weight functions ω and weight matrices M as well.
Finally, the cardinal c will denote the continuum.

2. Weight Sequences and Germs of Ultradifferentiable
Functions

Definition 2.1. Let M = (Mj)j∈N ∈ R
N
>0 be an arbitrary sequence of positive

real numbers. Let U ⊆ R be non-empty and open. The M -ultradifferentiable
Roumieu type class is defined by

E{M}(U) := {f ∈ E(U) : ∀K ⊆ U compact ∃h > 0, ‖f‖M
K,h < +∞},

and the M -ultradifferentiable Beurling type class by

E(M)(U) := {f ∈ E(U) : ∀K ⊆ U compact ∀h > 0, ‖f‖M
K,h < +∞},

where

‖f‖M
K,h := sup

j∈N,x∈K

|f (j)(x)|
hjMj

.

Moreover we will write m = (mj)j∈N for mj := Mj

j! .
For any compact set K with smooth boundary EM,h(K) := {f ∈ E(K) :

‖f‖M
K,h < +∞} is a Banach space. The Roumieu type class is endowed with

the projective topology with respect to all K ⊆ U compact and the inductive
topology with respect to h ∈ N>0. Similarly the Beurling type class is endowed
with the projective topology with respect to K ⊆ U compact and with respect
to 1/h, h ∈ N>0. Hence E(M)(U) is a Fréchet space and lim−→h>0

EM,h(K) =
lim−→n∈N>0

EM,n(K) is a Silva space, i.e. a countable inductive limit of Banach
spaces with compact connecting mappings, see [20, Proposition 2.2].

Note that the special case M = (j!)j∈N yields E{M}(U) = Cω(U) the space
of real analytic functions on U , whereas E(M)(U) consists of the restrictions of
all entire functions provided that U is connected.

Definition 2.2. The spaces of germs at 0 ∈ R of the M -ultradifferentiable
functions of Roumieu and Beurling types are defined respectively by

E0
{M} := lim−→

k∈N>0

E{M}

((
− 1

k
,
1
k

))
,
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and

E0
(M) := lim−→

k∈N>0

E(M)

((
− 1

k
,
1
k

))
.

Again, if one considers the sequence M = (j!)j∈N in the Roumieu case,
we obtain the space of germs of real analytic functions at 0 ∈ R; it is denoted
by O0.

Let M ∈ R
N
>0 be arbitrary and define the sets of weighted formal power

series by

F{M} :=

⎧
⎨

⎩
F =

+∞∑

j=0

Fjx
j : (Fj)j ∈ C

N and ∃h > 0 such that |F|Mh < +∞
⎫
⎬

⎭
,

F(M) :=

⎧
⎨

⎩
F =

+∞∑

j=0

Fjx
j : (Fj)j ∈ C

N and ∀h > 0 , |F|Mh < +∞
⎫
⎬

⎭
,

with

|F|Mh := sup
j∈N

|Fj |j!
hjMj

= sup
j∈N

|Fj |
hjmj

.

We endow these spaces with their natural topology: F{M} is an (LB)-space
and F(M) a Fréchet space. Naturally, on F[M ] the addition is defined pointwise
by

F + G =
+∞∑

j=0

(
Fj + Gj

)
xj

and the scalar multiplication by

αF =
+∞∑

j=0

αFjx
j .

Remark 2.3. It is clear (e.g. see [13, Remark 2.1.5] for some explanations)
that there does exist a one-to-one correspondence between F[M ] and Λ1

[M ],
the sequence space has been introduced in [13, Def. 2.1.4], by identifying the
coefficients (Fj)j with a sequence (of complex numbers). So all results from
[13] (and from [24]) are also valid for the sets F[M ] instead of Λ1

[M ]. Note that
in [13] we have preferred to work with classes Λ1

[M ], but in this present work it
seems to be more natural to consider instead classes of weighted formal power
series as defined above since the Cauchy product ∗ seems to be more natural
when considered on F[M ]. Note however that we will also obtain results using
the pointwise product.
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We introduce the Borel map j∞ (at 0) by setting

j∞ : E0
[M ] −→ F[M ], j∞(f) =

+∞∑

j=0

f (j)(0)
j!

xj .

We consider the following definition, according to [24, Sect. 2.2] and [13,
Definition 2.2.1].

Definition 2.4. A sequence of positive real numbers M = (Mj)j∈N ∈ R
N
>0 is

called a weight sequence if
(I) 1 = M0 ≤ M1 (normalization),

(II) M is log-convex,
(III) lim infj→∞(mj)1/j > 0.

Recall that mj := Mj

j! for every j ∈ N.

If M is log-convex and normalized, then M and j �→ (Mj)1/j are both
increasing and MjMk ≤ Mj+k holds for all j, k ∈ N, e.g. see [27, Lem-
mata 2.0.4, 2.0.6].

Occasionally, we will also consider sequences belonging to the set

LC := {M ∈ R
N

>0 : M normalized, log-convex, lim
k→+∞

(Mk)1/k = +∞}.

So for any M ∈ LC, assumption (III) above is not necessarily required.
Let us also introduce some classical conditions on a sequence M ∈ R

N
>0:

• M has moderate growth, denoted by (mg), if

∃C ≥ 1∀ j, k ∈ N : Mj+k ≤ Cj+kMjMk.

• M is called non-quasianalytic, denoted by (nq), if
∞∑

j=1

Mj−1

Mj
< +∞.

If M is log-convex, then using Carleman’s inequality one can show (for
a proof see e.g. [27, Proposition 4.1.7]) that

∑∞
j=1

Mj−1
Mj

< +∞ ⇔∑∞
j=1

1
(Mj)1/j < +∞.

• M is quasianalytic if it does not satify (nq).
Let us recall the following classical definition.

Definition 2.5. A subclass Q ⊆ E is called quasianalytic if for any open con-
nected set U ⊆ R and each point a ∈ U , the Borel map at a, denoted by j∞

a ,
is injective on Q(U).

In the case Q ≡ E[M ] the Denjoy-Carleman theorem characterizes this
behavior in terms of the defining weight sequence M . More precisely, it states
that E[M ] is quasianalytic if and only if M does not satisfy (nq). Let us moreover
mention that E[M ] is quasianalytic if and only if there do not exist non-trivial
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functions in E[M ] with compact support, e.g. see [26, Thm. 19.10]. Functions
in quasianalytic classes can be represented via a summation method, obtained
within the first part of the proof of [30, Theorem 3].

Theorem 2.6. (Representation formula, [30]). Let M be a quasianalytic weight
sequence. There exist numbers (ωM

j,k)j,k∈N such that

lim
k→+∞

ωM
j,k = 1, ∀j ∈ N,

and such that, given any function f ∈ E0
{M}, one has

f(x) = lim
k→+∞

k−1∑

j=0

ωM
j,k

f (j)(0)
j!

xj

for every x > 0 small enough.

Keeping the notations of this Theorem, we directly obtained in [13, Corol-
lary 3.1.2] the following important result. It will be the key for the proofs of
algebrability.

Corollary 2.7. Let M be a quasianalytic weight sequence. If F =
∑+∞

j=0 Fjx
j is

a formal power series for which there exists a sequence of positive real numbers
(an)n∈N decreasing to 0 such that

lim sup
k→+∞

∣
∣
∣
∣
∣
∣

k−1∑

j=0

ωM
j,kFja

j
n

∣
∣
∣
∣
∣
∣
= +∞

for all n ∈ N, then F /∈ j∞(E0
{M}).

Finally, let us recall some relations between weight sequences. For two
weight sequences M = (Mj)j and N = (Nj)j we write M ≤ N if and only if
Mj ≤ Nj ⇔ mj ≤ nj holds for all j ∈ N. Moreover we define M�N by

∃h,C > 0 such that ∀ j ∈ N, Mj ≤ ChjNj

or equivalently

sup
j∈N>0

(
Mj

Nj

)1/j

< +∞.

We call the weight sequences M and N equivalent, denoted by M≈N , if

M�N and N�M.

Finally, we write M�N if

∀h > 0 ∃C > 0 such that ∀ j ∈ N, Mj ≤ ChjNj

which is equivalent to

lim
j→∞

(
Mj

Nj

)1/j

= 0.
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In the relations above one can replace M and N simultaneously by m
and n because the factorial term is cancelling out.

Those relations between weight sequences imply inclusions between ul-
tradifferentiable classes, see e.g. [24, Sect. 2.2] and the references therein. More
precisely, let M be a weight sequence and N arbitrary, then M�N if and only
if E[M ] ⊆ E[N ], which is equivalent to F[M ] ⊆ F[N ]. In particular, choosing M =
(j!)j∈N, we get Cω ⊆ E{N} if and only if lim infj→+∞(nj)1/j > 0. Moreover, if
N is a weight sequence, then E{N} ⊆ Cω if and only if supj∈N>0

(nj)1/j < +∞.
Hence Cω

� E{N} if and only if supj∈N>0
(nj)1/j = +∞.

Similarly M�N if and only if E{M} � E(N), which is equivalent to F{M} �

F(N). In particular, Cω
� E(N) if and only if limj→+∞(nj)1/j = +∞.

Let us close this section by gathering some comments from [13].

• In the following sections we will study the Borel map j∞ defined on
quasianalytic ultradifferentiable classes such that Cω

� E[M ] holds true.
The general assumptions (I)–(III) on M are not restricting the gener-
ality of our considerations: For any M ∈ R

N
>0 with Cω ⊆ E[M ] we have

lim infj→+∞(mj)1/j > 0 in the Roumieu and limj→+∞(mj)1/j = +∞ in
the Beurling case and we can replace M by its log-convex minorant M lc

(see [21, Chapitre I] and [20, (3.2)]) without changing the associated ul-
tradifferentiable class whereas only F[M lc] ⊆ F[M ] follows (and the weight
matrix/function setting is reduced to the sequence case situation).

• In this paper all the spaces and results are considered in R, but everything
goes similarly in R

r by using a simple reduction argument.
• Finally by translation all results below also hold true if 0 ∈ R is replaced

by any other point a ∈ R.

3. Algebrability with Respect to the Cauchy Product

The classical product that can be considered on the space F[M ] is the Cauchy
product (or convolution). It is defined by

F ∗ G =
+∞∑

j=0

(
j∑

r=0

FrGj−r

)

xj .

The aim of this section is to obtain results of algebrability in F[M ] endowed
with the Cauchy product. Then we extend them to the weight matrix and
weight function settings.

By the Leibnitz formula, we have that pointwise multiplication of func-
tions is transferred to the Cauchy product for their formal power series, i.e. one
has j∞(fg) = j∞(f) ∗ j∞(g). A proof for the closedness under the pointwise
product of ultradifferentiable functions can be found in [27, Proposition 2.0.8].
By repeating these arguments we can show the following result which ensures
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that under relatively weak assumptions on M it makes sense to consider the
question of algebrability on F[M ].

Lemma 3.1. If M = (Mj)j satisfies

∃C ≥ 1 such that ∀ j, k ∈ N, MjMk ≤ Cj+kMj+k, (3.1)

which is the case if M is a normalized log-convex sequence (see [27, Lemma 2.0.6]),
then F[M ] is a ring under ∗.
Proof. Indeed, if

|Fj | ≤ C1h
j
1Mj

j!
, ∀j ∈ N and |Gj | ≤ C2h

j
2Mj

j!
, ∀j ∈ N

for some C1, C2, h1, h2 > 0, then one has
∣
∣
∣
∣
∣

j∑

r=0

FrGj−r

∣
∣
∣
∣
∣
≤ C1C2

j∑

r=0

hr
1Mr

r!

hj−r
2 Mj−r

(j − r)!
≤ C1C2C

jMj

j∑

r=0

hr
1

r!

hj−r
2

(j − r)!
=

C3hjMj

j!

where C3 = C1C2 and h = C(h1 + h2). �

3.1. The Weight Sequence Setting

We start with the single weight sequence case and prove the following result.

Theorem 3.2. Let M and N be two quasianalytic weight sequences. Assume
that O0

� E0
(N) resp. O0

� E0
{N}, i.e.

lim
j→+∞

(nj)
1
j = +∞ resp. sup

j∈N>0

(nj)
1
j = +∞. (3.2)

Then F[N ]\j∞(E0
{M}) is c-algebrable in F[N ] endowed with the Cauchy

product (hence F[N ]\j∞(E0
(M)) too).

Proof. By assumption, we can consider an increasing sequence (kp)p∈N of nat-
ural numbers satisfying:

(i) k0 = 1 and kp > pkp−1 for every p ∈ N>0,

(ii) limp→+∞
(
nkp

) 1
kp = +∞,

(iii)
∑pkp−1

j=0

∣
∣
∣ωM

j,kp
− 1
∣
∣
∣nj ≤ 1 for every p ∈ N>0, where the numbers (ωM

j,k)j,k∈N

are those arising in Theorem 2.6.
Let (A,B) be an open interval with 0 < A < B < 1. Let us also consider

a Hamel basis H of R (i.e. a basis of R seen as a Q vector space). We can
assume that the elements of H are in (A,B). Indeed, if h ∈ H is not in (A,B),
it suffices to consider qh ∈ Q such that qhh ∈ (A,B), and we keep a basis.

For an arbitrary given value b ∈ H, we define the formal power series
Fb =

∑+∞
j=0 F b

j xj by setting

F b
j :=

{
(nkp

)b if j = kp,
0 if j /∈ {kp : p ∈ N}.
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Since b < 1, it is straightforward to check that Fb ∈ F(N) (hence also Fb ∈
F{N}). Let us note that if F := Fb and if we define the formal power series
F(i) := F ∗ · · · ∗ F︸ ︷︷ ︸

i times

, then one has

F
(i)
j =

∑

(kp1 ,...,kpi
)∈Ai(j)

Fkp1
· · · Fkpi

=
∑

(kp1 ,...,kpi
)∈Ai(j)

(
nkp1

· · · nkpi

)b
,

where

Ai(j) :=
{
(kp1 , . . . , kpi

) ∈ Ai : kp1 + · · · + kpi
= j
}
.

In particular, if j = ikp for some p ≥ i and if kp1 + · · · + kpi
= ikp, then one

has kp1 = · · · = kpi
= kp since the sequence (kq)q∈N is strictly increasing and

since kp+1 > (p + 1)kp > ikp. Consequently, one has Ai(ikp) = {(kp, . . . , kp)}
and

F i
ikp

=
(
nkp

)ib

if p ≥ i. Note also that F
(i)
j = 0 if j ∈ {pkp−1 + 1, . . . , kp − 1} if p ≥ i since in

this case Ai(j) = ∅.
Now, let us consider the algebra G generated by

{
Fb : b ∈ H} and let

us show that G has the desired property. Any element of this algebra can be
written as

G =
L∑

l=1

αl

(
Fb1 ∗ · · · ∗ Fb1

)

︸ ︷︷ ︸
il,1 times

∗ · · · ∗ (FbJ ∗ · · · ∗ FbJ
)

︸ ︷︷ ︸
il,J times

,

where α1, . . . , αL �= 0, b1, . . . , bJ ∈ H are pairwise distinct, for every l ∈
{1, . . . , L} there is at least one m ∈ {1, . . . , J} such that il,m �= 0 and for
every l, l′ ∈ {1, . . . , L}, l �= l′, there is at least one m ∈ {1, . . . , J} such that
il,m �= il′,m. For every l ∈ {1, . . . , L}, let us set

Pl := il,1 + · · · + il,J .

As done in the case of a single power series, if p ≥ Pl, one has
(
(
Fb1 ∗ · · · ∗ Fb1

)

︸ ︷︷ ︸
il,1 times

∗ · · · ∗ (FbJ ∗ · · · ∗ FbJ
)

︸ ︷︷ ︸
il,J times

)

Plkp

= (nkp
)il,1b1+···+il,JbJ

(3.3)

and if furthermore j ∈ {pkp−1 + 1, . . . , kp − 1}, then
(
(
Fb1 ∗ · · · ∗ Fb1

)

︸ ︷︷ ︸
il,1 times

∗ · · · ∗ (FbJ ∗ · · · ∗ FbJ
)

︸ ︷︷ ︸
il,J times

)

j

= 0.



22 Page 10 of 37 C. Esser and G. Schindl Results Math

It follows that

Gj = 0, ∀j ∈ {pkp−1 + 1, . . . , kp − 1}, (3.4)

as soon as p ≥ P := maxl∈{1,...,L} Pl.
In order to show that the formal power series G does not belong to the

image j∞(E0
{M}) of the Borel map, by Corollary 2.7 it suffices to show that

lim sup
k→+∞

∣
∣
∣
∣
∣
∣

k−1∑

j=0

ωM
j,kGja

j

∣
∣
∣
∣
∣
∣
= +∞

for every a > 0 small enough. Of course, it suffices to prove that

lim sup
p→+∞

∣
∣
∣
∣
∣
∣

kp−1∑

j=0

ωM
j,kp

Gja
j

∣
∣
∣
∣
∣
∣
= +∞.

If p ≥ P , then by (3.4), one has

kp−1∑

j=0

ωM
j,kp

Gja
j =

pkp−1∑

j=0

ωM
j,kp

Gja
j =

pkp−1∑

j=0

Gja
j +

pkp−1∑

j=0

(
ωM

j,kp
− 1
)
Gja

j .

(3.5)

The first term of the sum is a power series, so its convergence or divergence
properties are easy to study. So, let us start with this expression. We have

lim sup
j→+∞

|Gj |1/j ≥ lim sup
p→+∞

∣
∣GPkp

∣
∣1/(Pkp)

= lim sup
p→+∞

∣
∣
∣
∑

l:Pl=P

αl(nkp
)il,1b1+···+il,JbJ

∣
∣
∣
1/(Pkp)

.

Note that the exponents il,1b1 + · · · + il,JbJ are pairwise distinct. Indeed since
the il,j are natural numbers and since if l �= l′ there is at least one number j
such that il,j �= il′,j , it is impossible to have

il,1b1 + · · · + il,JbJ = il′,1b1 + · · · + il′,JbJ ,

because this would contradict the linear independence of the values b1, . . . , bJ ∈
H. Hence, the desired behavior will be given by the largest one (since nkp

→
+∞ as p → +∞) and we can write

lim sup
p→+∞

∣
∣
∣
∑

l:Pl=P

αl(nkp
)il,1b1+···+il,JbJ

∣
∣
∣
1/(Pkp)

≥ C × lim sup
p→+∞

∣
∣
∣αl(nkp

)il,1b1+···+il,JbJ

∣
∣
∣
1/(Pkp)

,
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for some positive constant C and some l well chosen such that P = Pl. This
last expression can be estimated by

lim sup
p→+∞

∣
∣
∣αl

∣
∣
∣
1/(Pkp)∣∣

∣(nkp
)il,1b1+···+il,JbJ

∣
∣
∣
1/(Pkp)

≥ lim sup
p→+∞

∣
∣
∣αl

∣
∣
∣
1/(Pkp)∣∣

∣(nkp
)A(il,1+···+il,J )

∣
∣
∣
1/(Pkp)

= lim sup
p→+∞

∣
∣
∣αl

∣
∣
∣
1/(Pkp)∣∣

∣nkp

∣
∣
∣
A/kp

= +∞,

by recalling il,1 + · · · + il,J = P and assumption (ii) from above. Hence this
first term of the sum in (3.5) cannot be bounded.

Let us now study the second term of the sum in (3.5). Since F{N} is
an algebra for the Cauchy product, we know that G ∈ F{N}. So there exist
h,C > 0 such that

sup
j∈N

|Gj |
hjnj

< C.

Using assumption (iii), we obtain
∣
∣
∣
∣
∣
∣

pkp−1∑

j=0

(
ωM

j,kp
− 1
)
Gja

j

∣
∣
∣
∣
∣
∣
=

pkp−1∑

j=0

∣
∣
∣ωM

j,kp
− 1
∣
∣
∣ |Gj |aj

≤ C

pkp−1∑

j=0

∣
∣
∣ωM

j,kp
− 1
∣
∣
∣nj(ha)j

≤ C

pkp−1∑

j=0

∣
∣
∣ωM

j,kp
− 1
∣
∣
∣nj

≤ C

if p ≥ P and a < 1
h . The conclusion follows. �

We wish to mention that each algebra contained in F[N ]\j∞(E0
{M}), hence

in particular the algebra G constructed in the previous result, does not contain
the identity E = 1 for the convolution ∗ anymore. Here Ej = δj,0 and clearly
E = j∞(1) with 1 : x �→ 1 for all x ∈ R. Similarly this will be the case for the
weight matrix and weight function case below as well.

3.2. The General Weight Matrix Case

The aim of this subsection is to establish an equivalent of Theorem 3.2 in the
more general setting supplied by weight matrices. First we recall the definitions
given in [13, Sect. 4.1], see also the literature citations therein.
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Definition 3.3. A weight matrix M is a family of sequences M :=
{
M (λ) ∈

R
N
>0 : λ > 0

}
, such that

∀λ > 0, M (λ) is a weight sequence

and

M (λ) ≤ M (κ) for all 0 < λ ≤ κ.

A matrix is called constant if M (λ)≈M (κ) for all λ, κ > 0.

We introduce classes of ultradifferentiable function of Roumieu type E{M}
and of Beurling type E(M) as follows (only the pointwise order in Definition 3.3
is required), see [28, Sect. 7] and [23, Sect. 4.2].

Definition 3.4. Let M be a weight matrix and let U ⊆ R be non-empty and
open. The M-ultradifferentiable classes of Roumieu and Beurling types are
defined respectively by

E{M}(U) :=
⋂

K⊆U

⋃

λ>0

E{M(λ)}(K)

and

E(M)(U) :=
⋂

λ>0

E(M(λ))(U).

For a compact set K ⊆ R, one has the representations

E{M}(K) := lim−→
λ>0

lim−→
h>0

EM(λ),h(K)

and so for U ⊆ R non-empty open

E{M}(U) = lim←−
K⊆U

lim−→
λ>0

lim−→
h>0

EM(λ),h(K).

Similarly we get for the Beurling case

E(M)(U) = lim←−
K⊆U

lim←−
λ>0

lim←−
h>0

EM(λ),h(K).

Consequently, since the sequences of M are pointwise ordered, E(M)(U) is
a Fréchet space and lim−→λ>0

lim−→h>0
EM(λ),h(K) = lim−→n∈N>0

EM(n),n(K) is a
Silva space, i.e. a countable inductive limit of Banach spaces with compact
connecting mappings. For more details concerning the locally convex topology
in this setting we refer to [23, Sect. 4.2].

Definition 3.5. The spaces of germs at 0 ∈ R of the (M)-ultradifferentiable
functions of Roumieu and Beurling types are defined respectively by

E0
{M} := lim−→

k∈N>0

E{M}

((
− 1

k
,
1
k

))
,
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and

E0
(M) := lim−→

k∈N>0

E(M)

((
− 1

k
,
1
k

))
.

Finally, as done in the case of weight sequences, we introduce the corre-
sponding spaces of weighted power series sequences, and we endow them with
their classical topology:

F{M} :=

⎧
⎨

⎩
F =

+∞∑

j=0

Fjxj : (Fj)j ∈ C
N and ∃ λ > 0, ∃ h > 0 such that |F|M(λ)

h < +∞
⎫
⎬

⎭
,

F(M) :=

⎧
⎨

⎩
F =

+∞∑

j=0

Fjxj : (Fj)j ∈ C
N and ∀ λ > 0, ∀ h > 0, |F|M(λ)

h < +∞
⎫
⎬

⎭
.

Using notations similar as before, the Borel map j∞ is defined in the
weight matrix case by

j∞ : E0
[M] −→ F[M], j∞(f) =

+∞∑

j=0

f (j)(0)
j!

xj .

If M =
{
M (λ) : λ > 0

}
is a weight matrix, then each M (λ) ∈ M is

log-convex and normalized, i.e. (I) and (II) in Definition 2.4 are valid. Conse-
quently each M (λ) does satisfy (3.1) and thus the proof of Lemma 3.1 together
with the fact that the sequences of M are pointwise ordered immediately
imply that both F{M} and F(M) are rings with respect to the convolution
product ∗.

Given two matrices M and N we write M{�}N if

∀ λ > 0 ∃ κ > 0 : M (λ)�N (κ),

and call them Roumieu equivalent, denoted by M{≈}N , if M{�}N and
N{�}M.

Analogously we write M(�)N if

∀ λ > 0 ∃ κ > 0 : M (κ)�N (λ),

and call them Beurling equivalent, denoted by M(≈)N , if M(�)N and N (�)
M.

We have M[�]N if and only if E[M] ⊆ E[N ], see [23, Prop. 4.6].

Definition 3.6. A weight matrix M is called quasianalytic if for all λ > 0 the
sequence M (λ) is quasianalytic.

Given a quasianalytic weight matrix M, both classes E{M} and E(M) and
all classes E{M(λ)} resp. E(M(λ)) are quasianalytic, too.
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If M is a quasianalytic weight matrix, then to ensure O0
� E0

(M) resp.
O0

� E0
{M} we assume

∀λ > 0 lim
j→+∞

(m(λ)
j )

1
j = +∞ resp. ∀λ > 0 sup

j∈N>0

(
m

(λ)
j

) 1
j

= +∞.

(3.6)

Let us now prove the generalization of Theorem 3.2 for the matrix setting.
The idea of the proof is based on the following lemma, which allows to reduce
the general case of two weight matrices N and M to the case of a weight matrix
N and a single weight sequence M (analogously as done in [13, Sect. 4.2]).

Lemma 3.7. Let M =
{
M (λ) : λ > 0

}
be a quasianalytic weight matrix. Then

there exists a quasianalytic weight sequence L satisfying M (λ)�L for all λ > 0,
i.e. E{M} ⊆ E(L) holds true.

The general result can be stated as follows.

Theorem 3.8. Let M and N be two quasianalytic weight matrices. Assume
that O0

� E0
(N ) resp. O0

� E0
{N}, i.e.

∀λ > 0, lim
j→+∞

(
n

(λ)
j

) 1
j

= +∞ resp. ∀λ > 0, sup
j∈N>0

(
n

(λ)
j

) 1
j

= +∞.

Then F[N ]\j∞(E0
{M}) is c-algebrable in F[N ] endowed with the Cauchy product

(hence F[N ]\j∞(E0
(M)) too).

Proof. Using Lemma 3.7, we can consider a quasianalytic weight sequence
L such that E{M} ⊆ E(L). It suffices now to show that F[N ]\j∞(E0

(L)) is c-
algebrable. The Roumieu case is a consequence of Theorem 3.2: indeed, it
suffices to fix a weight sequence N (λ0) ∈ N and use the obvious inclusion
F{N(λ0)} ⊆ F{N}. For the Beurling case, we will follow the proof of Theo-
rem 3.2. First, by induction we can construct an increasing sequence (kp)p∈N

of natural numbers satisfying:

(i) k0 = 1 and kp > pkp−1 for every p ∈ N>0,

(ii) limp→+∞
(
n

(1/(p+1))
kp

) 1
kp = +∞,

(iii)
∑pkp−1

j=0

∣
∣
∣ωL

j,kp
− 1
∣
∣
∣n(p)

j ≤ 1 for every p ∈ N>0.

Then let us consider an open interval (A,B) with 0 < A < B < 1 and a
Hamel basis H ⊆ (A,B) of R. For an arbitrary given value b ∈ H, we define
the formal power series Fb =

∑+∞
j=0 F b

j xj by setting

F b
j :=

{(
n

(1/(p+1))
kp

)b

if j = kp,

0 if j /∈ {kp : p ∈ N}.
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It is straightforward to check that Fb ∈ F(N ) for any b ∈ H. We follow then
the lines of the proof of Theorem 3.2 where (3.3) turns into
(
(
Fb1 ∗ · · · ∗ Fb1

)

︸ ︷︷ ︸
il,1 times

∗ · · · ∗ (FbJ ∗ · · · ∗ FbJ
)

︸ ︷︷ ︸
il,J times

)

Plkp

=
(
n

(1/(p+1))
kp

)il,1b1+···+il,JbJ

as soon as p ≥ Pl. We consider again the splitting (3.5) and proceed for the
first term as in Theorem 3.2. Concerning the estimation of the second term of
the sum in (3.5), since G ∈ F{N} there exist an index λ0 > 0 and h,C > 0
such that

sup
j∈N

|Gj |
hjn

(λ0)
j

< C.

It follows that∣
∣
∣
∣
∣
∣

pkp−1∑

j=0

(
ωL

j,kp
− 1
)
Gja

j

∣
∣
∣
∣
∣
∣
=

pkp−1∑

j=0

∣
∣
∣ωL

j,kp
− 1
∣
∣
∣ |Gj |aj

≤ C

pkp−1∑

j=0

∣
∣
∣ωL

j,kp
− 1
∣
∣
∣n(λ0)

j (ha)j

≤ C

pkp−1∑

j=0

∣
∣
∣ωL

j,kp
− 1
∣
∣
∣n(p)

j

≤ C

if p ≥ max{P, λ0} and a < 1
h , and using assumption (iii). This concludes the

proof. �

3.3. The Weight Function Case

In this section we will study classes of ultradifferentiable functions defined
using weight functions ω in the sense of Braun et al. [10]. As done in [24] and
[13], we will see that this case can be reduced to the weight matrix situation
by using the matrix associated with ω. First, let us start by recalling the basic
definitions.

Definition 3.9. A function ω : [0,+∞) → [0,+∞) is called a weight function
if

(i) ω is continuous,
(ii) ω is increasing,
(iii) ω(t) = 0 for all t ∈ [0, 1] (normalization, w.l.o.g.),
(iv) limt→+∞ ω(t) = +∞.
In this case, we say that ω has (ω0).

Classical additional conditions can be imposed on the considered weight
functions. More precisely, let us define the following conditions:
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(ω1) ω(2t) = O(ω(t)) as t → +∞,
(ω2) ω(t) = O(t) as t → +∞,
(ω3) log(t) = o(ω(t)) as t → +∞ (⇔ limt→+∞ t

ϕω(t) = 0),
(ω4) ϕω : t �→ ω(et) is a convex function on R,
(ω5) ω(t) = o(t) as t → +∞.

For convenience, we define the set

W := {ω : [0,+∞) → [0,+∞) : ω has (ω0), (ω1), (ω3), (ω4)}.

Note that (ω2) is sometimes also considered as a general assumption on ω (e.g.
see [24, Sect. 4.1]) and note also that (ω5) implies (ω2).

For ω ∈ W, we define the Legendre–Fenchel–Young-conjugate of ϕω by

ϕ∗
ω(x) := sup{xy − ϕω(y) : y ≥ 0}, x ≥ 0.

Definition 3.10. Let U ⊆ R be a non-empty open set and let ω ∈ W. The
ω-ultradifferentiable Roumieu type class is defined by

E{ω}(U) := {f ∈ E(U) : ∀K ⊆ U compact ∃ l > 0, ‖f‖ω
K,l < +∞},

and the ω-ultradifferentiable Beurling type class by

E(ω)(U) := {f ∈ E(U) : ∀K ⊆ U compact ∀ l > 0, ‖f‖ω
K,l < +∞},

where we have put

‖f‖ω
K,l := sup

j∈N,x∈K

|f (j)(x)|
exp
(

1
l ϕ

∗
ω(lj)

) .

As done in the previous contexts, these spaces are endowed with their
natural topologies. Let σ, τ be weight functions, we write σ�τ if τ(t) = O(σ(t))
as t → +∞ and call them equivalent, denoted by σ∼τ , if σ�τ and τ�σ. Let
τ, σ ∈ W, then σ∼τ if and only if E[σ] = E[τ ], see [23, Cor. 5.17].

Analogously as in the sections above, we also consider the spaces of germs
at 0, denoted by E0

{ω} and E0
(ω), and the associated spaces of weighted power

series F{ω} and F(ω). Again, we endow these spaces with their natural topol-
ogy: F{ω} is an (LB)-space and F(ω) a Fréchet space. In this setting, the Borel
map is given by

j∞ : E0
[ω] −→ F[ω], j∞(f) = F =

+∞∑

j=0

f (j)(0)
j!

xj .

As pointed out in [24, Sect. 4.2], that to ensure Cω
� E{ω} resp. Cω

� E(ω),
one has to assume that

lim inf
t→+∞

ω(t)
t

= 0 resp. ω(t) = o(t) as t → +∞, i.e. (ω5), (3.7)

which follows from the characterizations given in [23, Lemma 5.16, Cor. 5.17]
and the fact that the weight ω(t) = t (up to equivalence) defines the class Cω.

Moreover, in the present setting, the definition of quasianalyticity takes
the following form.
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Definition 3.11. A weight function is called quasianalytic if it satisfies
∫ +∞

1

ω(t)
t2

dt = +∞. (3.8)

In [28] and [23, Sect. 5], a matrix Ω :=
{
W (λ) = (W (λ)

j )j∈N : λ > 0
}

has
been associated with each ω ∈ W: This matrix is defined by

W
(λ)
j := exp

(
1
λ

ϕ∗
ω(λj)

)
, ∀j ∈ N, ∀λ > 0,

and E[ω] = E[Ω] holds as locally convex vector spaces. Moreover, the following
results have been obtained (for which (ω1) is not needed necessarily):

(i) Each W (λ) satisfies the basic assumptions (I) and (II) and limj→+∞
(W (λ)

j )1/j = +∞.
(ii) ω has in addition (ω2) if and only if some/each W (λ) has (III), too.

So each W (λ) ∈ Ω is a weight sequence according to the requirements from
Definition 2.4, provided ω ∈ W has (ω2). Moreover, by [23, Corollary 5.8] and
[29, Corollary 4.8], one has that the following assertions are equivalent (again
(ω1) is not needed but then E[ω] = E[Ω] fails):

(i) ω ∈ W is quasianalytic,
(ii) Ω is quasianalytic in the sense of Definition 3.6,
(iii) some/each W (λ) is quasianalytic.

Similarly, from [24, Proposition 2] (and in the same spirit as in [23,
Sect. 5]), for any ω ∈ W one gets F[ω] = F[Ω] as locally convex spaces, too.

Since each W (λ) satisfies (3.1) and the sequences W (λ) are pointwise
ordered, as already commented in the general weight matrix case above, by
following the proof of Lemma 3.1 it is immediate to see that for any ω ∈ W
the sets F{ω} and F(ω) are always rings w.r.t. the convolution product.

The weight function approach is again reduced to the more general weight
matrix setting by using the weight matrices N = Ω and M = Σ associated
with ω and σ and Theorem 3.8 turns into the following form.

Theorem 3.12. Let σ, ω ∈ W be two quasianalytic weight functions. Assume
that ω satisfies (ω2) and lim inft→+∞

ω(t)
t = 0 in the Roumieu resp. (ω5) in

the Beurling case. Then F[ω]\j∞(E0
{σ}) is c-algebrable in F[ω] endowed with the

Cauchy product (hence F[ω]\j∞(E0
(σ)) too).

4. Algebrability with Respect to the Pointwise Product

4.1. Motivation and Solid Spaces

Instead of dealing with the Cauchy product ∗ on F[N ], F[N ] and F[ω], one can
also treat the pointwise product, in the literature also known under Hadamard
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product : Given F =
∑+∞

j=0 Fjx
j and G =

∑+∞
j=0 Gjx

j we consider

F � G :=
+∞∑

j=0

FjGjx
j . (4.1)

On the one hand, the study of the problem of algebrability with respect
to this product might be a quite natural question. Moreover this product has
become important very recently by the development of a convenient theory of
multisummability of formal power series, see [15, Chapter 4] and [16]. Con-
cerning these recent insights, in a private communication Prof. J. Sanz has
told the authors the following explanations.

Remark 4.1. The natural procedure for assigning a sum to a summable series
(in a one step procedure) precisely starts by termwise dividing the coefficients
of the series by a moment sequence (equivalent to the weight sequence defin-
ing the level) to make the new series (the formal Borel transform) convergent.
Correspondingly, the formal Laplace transform multiplies coefficients by the
weight sequence. Moreover, sometimes series are not summable but multi-
summable, i.e. a sum is assigned to them after a finite number of summability
procedures, each associated to a different (that is, associated to nonequivalent
weight sequences) level, and then one needs to move from one level to another
one, which means one has to termwise multiply or divide the coefficients of a
given series by a sequence which measures the “jump” between two different
levels.

Consequently, when working within the framework of weight matrices,
one can control these movements/jumps in the sense that one can stay within
a given matrix M by multiplying pointwise one sequence M1 ∈ M by another
one M2 ∈ M; and for this behavior closedness under � of F[M] becomes
interesting and crucial.

But the study of � has also been motivated by the following approach
(cf. [13,24]): It is still an open problem to give a precise characterization which
F ∈ F[M ] do belong to the image j∞(E0

[M ]) in the quasianalytic setting (strictly
containing the real analytic germs) and similarly for the weight matrix and
weight function setting. Unlike what happens in the case of Cauchy product,
let us show that in this setting this image j∞(E0

{M}) is never closed under
pointwise product �.

Let us first start by recalling the two following results. The first one is due
to Thilliez, see [30, Theorem 1] and for a detailed proof also [27, Prop. 3.1.2]
and [23, Lemma 2.9].

Proposition 4.2. Let M ∈ R
N
>0 satisfying the conditions (I) and (II) from Def-

inition 2.4. Let us consider the function

θM (x) =
∞∑

k=0

Mk

(2μk)k
exp(2iμkx), x ∈ R,
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with μk := Mk/Mk−1 for k ∈ N>0 and μ0 := 1. Then θM ∈ E{M}(R) and

θ
(j)
M (0) = ijsj with sj ≥ Mj , ∀ j ∈ N.

It is not difficult to see that such a function θM does not belong to the
Beurling type class associated to M . On the opposite direction, [24, Thm. 2]
and its proof show that if the derivatives of a smooth function f at 0 have ”large
size” and all have the same sign, then f cannot belong to any quasianalytic
germ class E0

{M}. More precisely we have:

Proposition 4.3. Let M be a quasianalytic weight sequence satisfying O0
�

E0
{M}. Assume that the formal power series F =

∑+∞
j=0 Fjx

j ∈ F{M} with
Fj > 0 for all j ∈ N does not define a real analytic germ. Then F /∈ j∞(E0

{N})
for any quasianalytic weight sequence N .

These two results lead to the following observation: If M is a quasianalytic
weight sequence such that O0

� E0
{M}, then there does exist F ∈ F{M} such

that F ∈ j∞(E0
{M}) but |F| /∈ j∞(E0

{M}) with |F| :=
∑+∞

j=0 |Fj |xj . Indeed, it

suffices to consider F = j∞(θM ), i.e. Fj := θ
(j)
M (0)/j!.

Conclusion Multiplying a given F ∈ j∞(E0
{M}) pointwise by a formal

power series S given in terms of a sequence of suitable complex numbers on
the unit circle, and so S ∈ F{(j!)j} = j∞(O0) ⊆ j∞(E0

{M}) is obvious, will in
general yield that F�S = |F| /∈ j∞(E0

{M}). Thus for any quasianalytic weight
sequence M with O0

� E0
{M} closedness under � fails for the space j∞(E0

{M}).
Note that j∞(E0

{M}) is closed under ∗ for any weight sequence M by having
j∞(fg) = j∞(f) ∗ j∞(g).

Connected to this observation is the notion of solid sub- and superspaces
for spaces of (complex) sequences, e.g. see [1]. Let A be a vector spaces of
sequences, then A is said to be solid if (aj)j ∈ A does imply (bj)j ∈ A for all
sequences satisfying |bj | ≤ |aj |, ∀j ∈ N.

In [1, Lemma 2] it has been shown that for any given sequence space A
there does exist s(A), the largest solid subspace (or solid core) of A, and there
does exist S(A), the smallest solid superspace (or solid hull), of A. We have

s(A) = {(bj)j∈N : (bjλj)j∈N ∈ A,∀ (λj)j∈N ∈ l∞} (4.2)

and

S(A) = {(bj)j∈N : ∃ (aj)j∈N ∈ A : |bj | ≤ |aj |, ∀ j ∈ N}, (4.3)

e.g. see [8, p. 594]. In our context, the two following results will show that this
notion of solidness is not helping answering the question which F does belong
to the image of j∞ or not (again by identifying a formal weighted power series
F =

∑+∞
j=0 Fjx

j by its sequence of coefficients (Fj)j). In particular, we see that
the image j∞(E0

[M ]) of the Borel map is solid if and only if the Borel map is
surjective.
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Proposition 4.4. Let M be a weight sequence. Then one has S(j∞(E0
[M ])) =

F[M ].

Proof. Since j∞(E0
[M ]) ⊆ F[M ] and F[M ] is solid, we have S(j∞(E0

[M ])) ⊆ F[M ].
For the proof of the converse inclusion we distinguish between the Roumieu
and the Beurling type.

Roumieu case. Let F =
∑+∞

j=0 Fjx
j ∈ F{M} be given. Then there exist

C, h > 0 such that |Fj | ≤ Chjmj for all j ∈ N. Let us consider the function
θM,C,h := Cθ(hjMj)j

given in Proposition 4.2 using the sequence (hjMj)j . By

construction, one has G :=
∑+∞

j=0

θ
(j)
M,C,h(0)

j! xj ∈ j∞(E0
{M}) and |θ(j)

M,C,h(0)|/j! ≥
Chjmj ≥ |Fj | for every j ∈ N. By (4.3) we have F ∈ S(j∞(E0

{M})) and are
done.

Beurling case. We will apply and recall [23, Prop. 2.12 (3)] (see also [24,
Proposition 1] with Λ1 instead of F): Since M is a weight sequence, one has

F(M) =
⋃

L�M,L∈LC
F{L}, E0

(M) =
⋃

L�M,L∈LC
E0

{L}.

Hence if F ∈ F(M), then F ∈ F{L} for some L ∈ LC with L�M . The Roumieu
part shows F ∈ S(j∞(E0

{L})) and so, by L�M , also F ∈ S(j∞(E0
(M))) follows

because A ⊆ B implies S(A) ⊆ S(B). The conclusion follows. �
Concerning the solid core, we have the following result.

Proposition 4.5. Let M be a quasianalytic weight sequence such that O0
�

E0
[M ]. Then one has s(j∞(E0

[M ])) = F{(j!)j}.

Proof. First note that F{(j!)j} = j∞(O0) ⊆ j∞(E0
[M ]) and since F{(j!)j} is solid

by definition, we obtain directly F{(j!)j} ⊆ s(j∞(E0
[M ])).

Roumieu case. Conversely, let us consider F ∈ s(j∞(E0
{M})) ⊆ F{M}

with F =
∑+∞

j=0 Fjx
j . Then by (4.2), one has |F| ∈ j∞(E0

{M}) with |F| :=
∑+∞

j=0 |Fj |xj . Let us assume by contradiction that F /∈ F{(j!)j}. We consider
G ∈ j∞(O0) with Gj > 0 for every j ∈ N, and we set

H =
+∞∑

j=0

(|Fj | + Gj)xj .

Since F{(j!)j} is solid, one has H /∈ F{(j!)j}. Moreover, H ∈ F{M} and Hj > 0
for every j ∈ N. Proposition 4.3 implies that H /∈ j∞(E0

{M}). Using the fact
that G ∈ j∞(O0) ⊆ j∞(E0

{M}), we obtain |F| = H − G /∈ j∞(E0
{M}), which

gives a contradiction.
Beurling case. We know that F{(j!)j} ⊆ j∞(E0

(M)) ⊆ j∞(E0
{M}), hence

F{(j!)j} ⊆ s(j∞(E0
(M))) ⊆ s(j∞(E0

{M})) and the Roumieu case allows to con-
clude.

�
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Let us mention that using unions and intersections, the two previous re-
sults easily generalize to the case of weight matrices (and so to weight functions
by using the associated weight matrix).

4.2. Characterization of the Closedness Under the Pointwise Product

The aim is now to characterize, as a first step, the closedness of F[M ] and F[M]

under � defined in (4.1). For the weight function case F[ω] we need some more
preparation and we will study this situation in Sect. 5 below in detail.

First we observe that, if M ∈ R
N
>0, then one clearly has that F[M ] is a

ring under � provided that M has

∃C, h > 0 such that ∀ j ∈ N, (mj)2 ≤ Chjmj , (4.4)

which is also equivalent to supj∈N>0
(mj)1/j < +∞ (i.e. M�(j!)j∈N).

In the general weight matrix setting we consider the following general-
izations of (4.4): In the Roumieu case we require

∀λ > 0 ∃κ > 0, ∃C, h > 0 such that ∀ j ∈ N, (m(λ)
j )2 ≤ Chjm

(κ)
j ,

(4.5)

and in the Beurling case

∀λ > 0 ∃κ > 0, ∃C, h > 0 such that ∀ j ∈ N, (m(κ)
j )2 ≤ Chjm

(λ)
j . (4.6)

It is immediate to see that (4.5) is preserved under {≈} and (4.6) under
(≈).

In this situation we can estimate as follows for all j ∈ N:

|FjGj | ≤ C1h
j
1m

(λ1)
j C2h

j
2m

(λ2)
j ≤ C1C2(h1h2)

j(m
(λ3)
j )2 ≤ C1C2C3(h1h2h3)

jm
(κ)
j ,

by taking λ3 := max{λ1, λ2}. This shows the Roumieu case, the Beurling case
holds true analogously. So these conditions are sufficient to have closedness
under the pointwise product. We will show now that under mild additional
assumptions on M, (4.5) and (4.6) are also necessary for the particular case
[and thus in the single weight sequence case (4.4)].

The proof of the stability of F{M} under the pointwise product will use
the following classical result, see [21, Chapitre I] and [20, Proposition 3.2].
Note that it allows also to construct the log-convex minorant of a sequence.

Proposition 4.6. Let M ∈ R
N
>0 (with M0 = 1) be a log-convex sequence. Then

its associated function ωM : R≥0 → R ∪ {+∞} defined by

ωM (t) := sup
j∈N

log
(

tj

Mj

)
for t > 0, ωM (0) := 0,

satisfies

Mj = sup
t>0

tj

exp(ωM (t))
, ∀ j ∈ N. (4.7)
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We say that a family of sequences M = {M (λ) ∈ R
N
>0 : λ > 0} is standard

log-convex if M (λ) ≤ M (κ) for all 0 < λ ≤ κ and if M (λ) ∈ LC for all λ > 0
(which is slightly weaker than Definition 3.3).

We can now state and prove the result of stability under the pointwise
product.

Proposition 4.7. Let M = {M (λ) : λ > 0} be standard log-convex. Then F{M}
is closed under the pointwise product � if and only if (4.5) holds true and
F(M) is a ring under the product � if and only if (4.6) holds true.

Proof. Roumieu case. Assume that F{M} is a ring under the pointwise product
and fix an index λ > 0. Since the formal power series Fλ :=

∑+∞
j=0 m

(λ)
j xj

belongs to F{M(λ)} ⊆ F{M}, one also has Fλ �Fλ ∈ F{M}. Hence there exist
an index κ and numbers C, h > 0 such that

(m(λ)
j )2 ≤ Chjm

(κ)
j

for all j ∈ N, and (4.5) follows.
Beurling case. We follow the ideas from [11, Sect. 2] and [23, Proposi-

tion 4.6 (1)]. We set

F2
(M) :=

⎧
⎨

⎩
F =

+∞∑

j=0

Fjx
j : ∀ λ > 0 ∀ h > 0, (|F|2)M(λ)

h := sup
j∈N

|Fj |2
hjm

(λ)
j

< +∞
⎫
⎬

⎭
.

Note that both F2
(M) and F(M) are Fréchet space spaces under the canon-

ical projective topology over all h = h−1
1 and λ = λ−1

1 , h1, λ1 ∈ N>0. By
assumption F(M) is closed under the pointwise product which amounts to
F(M) ⊆ F2

(M). The closed graph theorem implies that this last inclusion is
continuous. Consequently, for each λ > 0 and h > 0, there exist κ > 0 and
C, h1 > 0 such that for each F =

∑+∞
j=0 Fjx

j ∈ F(M),

(|F|2)M(λ)

h = sup
j∈N

|Fj |2
hjm

(λ)
j

≤ C sup
j∈N

|Fj |
hj

1m
(κ)
j

= C|F|M(κ)

h1
. (4.8)

For every s ≥ 0, let us consider the function fs(t) := sin(st) + cos(st),

t ∈ R, and let us show that Fs :=
∑+∞

j=0
f(j)

s (0)
j! xj ∈ F(M). Indeed, if s > 0

(the case s = 0 is obvious), note that |f (j)
s (0)| = sj for all j ∈ N and since

for all λ > 0, (M (λ)
j )1/j → +∞ as j → +∞, it is direct to check that for all

λ > 0 and all h > 0 there exists some C > 0 such that sj ≤ ChjM
(λ)
j for all

j ∈ N. Now, inequality (4.8) applied to the family Fs, s ≥ 0, and with the
choice h = 1 yields

sup
j∈N

s2j

M̂
(λ)
j

= sup
j∈N

|f (j)
s (0)|2

j!2m(λ)
j

= sup
j∈N

|F s
j |2

m
(λ)
j

≤ C sup
j∈N

|F s
j |

hj
1m

(κ)
j
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= C sup
j∈N

|f (j)
s (0)|

j!hj
1m

(κ)
j

= C sup
j∈N

sj

hj
1M

(κ)
j

,

where we have put M̂ (λ) := (j!M (λ)
j )j∈N. This implies in turn exp(ω

M̂(λ)(s2)) ≤
C exp(ωM(κ)(s/h1)) for all s ≥ 0, where the associated function is defined in
Proposition 4.6. Using (4.7) we get for all j ∈ N:

M̂
(λ)
j = sup

t≥0

tj

exp(ω
M̂(λ)(t))

= sup
t≥0

t2j

exp(ω
M̂(λ)(t2))

≥ 1
C

sup
t≥0

t2j

exp(ωM(κ)(t/h1))

=
h2j

1

C
sup
t≥0

t2j

exp(ωM(κ)(t))
=

h2j
1

C
M

(κ)
2j .

Consequently M
(κ)
2j ≤ Ch−2j

1 M̂
(λ)
j for all j ∈ N follows. Using the log-convexity

of M (κ), one knows that the sequence (M (κ)
j )1/j)j is increasing, hence (M (κ)

j )2 ≤
M

(κ)
2j for all j ∈ N. This finally yields j!2(m(κ)

j )2 = (M (κ)
j )2 ≤ M

(κ)
2j ≤

Ch−2j
1 M̂

(λ)
j = Ch−2j

1 j!2m(λ)
j and so (4.6) follows. �

Remark 4.8. Consequently, if M is standard log-convex and constant and so
we deal with M ∈ LC, then F{M} and/or F(M) is a ring under the pointwise
product if and only if supj∈N>0

(mj)1/j < +∞ which precisely means E{M} ⊆
Cω resp. E(M) ⊆ Cω (e.g. see [23, Proposition 4.6]). But this is a situation which
cannot be considered under the assumptions of the main result Theorem 3.2 of
Sect. 3.1 above ((3.2) is violated). Note that supj∈N>0

(mj)1/j < +∞ is clearly
stable under ≈ and if M is a weight sequence in the sense of Definition 2.4,
then F{M} and/or F(M) is a ring under the pointwise product if and only if
M≈(j!)j (by combining (III) and supj∈N>0

(mj)1/j < +∞) and so if and only
if E{M} = Cω.

Instead of (4.5) resp. (4.6), it would have been natural to assume on M
also the following assumptions:

∀λ > 0 ∃κ > 0, ∃C, h > 0 such that ∀ j ∈ N, (M (λ)
j )2 ≤ ChjM

(κ)
j ,

(4.9)

resp.

∀λ > 0 ∃κ > 0, ∃C, h > 0 such that ∀ j ∈ N, (M (κ)
j )2 ≤ ChjM

(λ)
j .

(4.10)

Equation (4.9) is preserved under {≈} and (4.10) under (≈).
Note that (4.9)⇒(4.5) resp. (4.10)⇒(4.6) whereas the equivalences will

fail in general, see also the example in Sect. 4.3 below.
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4.3. Example of a Quasianalytic Weight Matrix

In contrast to the single weight sequence case we will construct now an example
which shows that (4.5) and/or (4.6) can even hold true for quasianalytic weight
matrices M satisfying Cω

� E[M], i.e. for M having (3.6). So this weight
matrix satisfies the requirements of Theorem 3.8 and hence it illustrates that
in the general matrix setting an equivalent of Theorem 3.8 using the pointwise
product makes sense, see Theorem 4.9 below.

For this we consider the matrix M := {M (λ) ∈ R
N
>0 : λ > 0} with each

M (λ) defined by its quotients μ
(λ)
j :=

M
(λ)
j

M
(λ)
j−1

as follows: Let j0 ∈ N be the

smallest integer satisfying log(log(j)) ≥ 1 for all j > j0 (and so not depending
on λ) and put

1 = μ
(λ)
0 = · · · = μ

(λ)
j0

, μ
(λ)
j = j

(
log(log(j))

)λ
, ∀j > j0.

So j �→ μ
(λ)
j is increasing for each λ > 0, i.e. each M (λ) is log-convex, and

even limj→+∞ μ
(λ)
j /j = +∞ for each λ > 0 is valid. It is known that this also

implies limj→+∞(m(λ)
j )1/j = +∞ for each λ > 0 (e.g. see the argument given

on [23, p. 104]), hence M is a weight matrix and satisfies both requirements
in (3.6) (and consequently (4.4) does not hold true for any M (λ)). Moreover,
M is quasianalytic because each M (λ) is clearly quasianalytic.

Let us now show that both (4.5) and (4.6) hold true. For all j > j0, one
has

(m(λ)
j )2 =

j∏

i=1

(
μ

(λ)
i

i

)2

=
j0∏

i=1

1
i2

j∏

i=j0+1

(
log(log(i))

)2λ

≤
j0∏

i=1

1
i

j∏

i=j0+1

(
log(log(i))

)κ = m
(κ)
j ,

by taking κ := 2λ resp. λ := κ/2.

It is also immediate to see limj→+∞
μ
(κ)
j

μ
(λ)
j

= +∞ for all 0 < λ < κ which

implies that all sequences are pairwise not equivalent because M (λ)�M (κ) for
all 0 < λ < κ.

Note that M violates both (4.9) and (4.10). Indeed, for all j > j0 we
have

(M (λ)
j )2 ≤ ChjM

(κ)
j

⇔
j∏

i=j0+1

i2
(
log(log(i))

)2λ ≤ Chj

j∏

i=j0+1

i
(
log(log(i))

)κ
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⇔
j∏

i=j0+1

i ≤ Chj

j∏

i=j0+1

(
log(log(i))

)κ−2λ

⇔ j! ≤ j0!Chj

j∏

i=j0+1

(
log(log(i))

)κ−2λ
.

But this cannot hold true for all j ∈ N for any given numbers C and h large,
since, by Stirling’s formula, the left-hand side is increasing like j �→ (

j
e

)j √
2πj,

whereas the right-hand side is bounded by above by j0!Chj log(log(j))j(κ−2λ).
It shall be noted that, by the characterization shown in Proposition 4.7,

we have stability under � for both F{M} and F(M). However, even in this
situation it is still impossible to obtain closedness under � for j∞(E0

{M}): Take
θM(λ0) for some λ0 > 0 and put F := j∞(θM(λ0)). Then clearly F ∈ F{M(λ0)} ⊆
F{M} but |F| /∈ j∞(E0

{M}) (with |F| :=
∑+∞

j=0 |Fj |xj) since |F| /∈ j∞(E0
{L}) for

any quasianalytic weight sequence L (see Proposition 4.3) and so in particular
this holds true for the sequence L coming from Lemma 3.7.

We close this section with the following observation: Not for all (quasiana-
lytic) weight matrices the characterizing conditions (4.5) and (4.6) are satisfied
simultaneously.

For this we consider N := {(j!)j ,M
(λ0)} with M (λ0) denoting one of the

sequences belonging to the matrix M constructed above. So N is a weight
matrix consisting only of two non-equivalent (quasianalytic) weight sequences
and so F(N ) = F((j!)j), F{N} = F{M(λ0)}. Then (4.6), which amounts to (4.4)
for (j!)j holds true, whereas (4.5) for N , i.e. (4.4) for M (λ0), fails. Note that
j! ≤ M

(λ0)
j only holds true for all j ∈ N large, but M (λ0) can be replaced

by an equivalent sequence satisfying this pointwise estimate for all j ∈ N (as
required in Definition 3.3) and defining the same matrix.

4.4. Algebrability for the General Matrix Setting

As seen by the example constructed in Sect. 4.3, in the general weight matrix
setting it makes also sense to consider on F[M] the pointwise product. We show
the following result analogous to Theorem 3.8 for the convolution product but
the proof will simplify at several steps due to the fact that multiplying two
lacunary series w.r.t. � does not change and mix the indices j ∈ N with Fj �= 0.

Theorem 4.9. Let M,N be two quasianalytic weight matrices. We assume
(i) In the Roumieu case that N satisfies (4.5) and O0

� E0
{N},

(ii) In the Beurling case that N satisfies (4.6) and O0
� E0

(N ).

Then F[N ]\j∞(E0
{M}) is c-algebrable in F[N ] endowed with the pointwise prod-

uct (hence F[N ]\j∞(E0
(M)) too).

Proof. As in the proof of Theorem 3.8, one can use Lemma 3.7 to reduce
the proof to the case of a quasianalytic weight sequence L instead of M.
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By assumption, one can construct an increasing sequence (kp)p∈N of natural
numbers satisfying

(i) k0 = 1 and kp > kp−1 for every p ∈ N>0,

(ii) limp→+∞
(
n

(1/(p+1))
kp

) 1
kp = +∞,

(iii)
∑kp−1

j=0

∣
∣
∣ωL

j,kp
− 1
∣
∣
∣n(p)

j ≤ 1 for every p ∈ N>0.

We proceed then exactly as in the proof of Theorem 3.8 to construct formal
power series Fb, b ∈ H, and we remark that if

G =
L′
∑

l=1

αl (Fb1 � · · · � Fb1)
︸ ︷︷ ︸

il,1 times

� · · · � (FbJ � · · · � FbJ )
︸ ︷︷ ︸

il,J times

,

then

Gj =

⎧
⎪⎪⎨

⎪⎪⎩

L′
∑

l=1

αl

(
n

(1/(p+1))
kp

)il,1b1+···+il,JbJ if j = kp

0 if j /∈ {kp : p ∈ N}.

To conclude, one follows the same ideas as in the proofs of Theorems 3.2 and
3.8.

�
The identity for � is given by E	 =

∑+∞
j=0 1xj and so E = j∞(f) with

f(x) :=
∑+∞

j=0 xj representing a real analytic germ at 0. Consequently also in
this setting each algebra contained in F[N ]\j∞(E0

{M}) does not contain the
identity E	 anymore.

5. On the Stability Under the Pointwise Product of F[ω ]

The goal of this section is to show that, similarly as commented in Remark 4.8
for the single weight sequence situation, the problem of algebrability with
respect to � cannot be considered for F[ω] within the quasianalytic setting.
More precisely we will show that all required assumptions on ω can never
be satisfied simultaneously. While in the weight function case we can have
the situation that F[Ω] = F[ω] is closed under the pointwise product � and
E[Ω] = E[ω] is strictly containing the real analytic functions, we will see below
that this situation forces already non-quasianalyticity for ω. Consequently the
matrix constructed in Sect. 4.3 above cannot be associated with a weight
function ω.

In order to do so first recall that, as shown in Lemma 4.7 above, (4.5)
resp. (4.6) are characterizing the closednees under the pointwise product for
F{Ω} = F{ω} resp. F(Ω) = F(ω). Hence we have to show which condition on ω
guarantees that Ω satisfies (4.5) resp. (4.6) and for this we have to introduce
some notation and recall several results.
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Let ω be given satisfying (ω0), (ω3) and (ω4), then as shown in [23,
Sect. 5], respectively [28, Theorem 4.0.3, Lemma 5.1.3] and reproved in [19,
Lemma 2.5] in a more precise way, we have

∀λ > 0 ∃Cλ > 0 such that ∀ t ≥ 0, λωW (λ)(t) ≤ ω(t) ≤ 2λωW (λ)(t) + Cλ.

(5.1)

In particular we have ω∼ωW (λ) for all λ > 0.
Moreover, for any h : (0,+∞) → [0,+∞) which is nonincreasing and such

that lims→0 h(s) = +∞, we can define the so-called lower Legendre conjugate
(or envelope) h	 : [0,+∞) → [0,+∞) of h by

h	(t) := inf
s>0

{h(s) + ts}, t ≥ 0.

We are summarizing some facts for this conjugate, see also [19, Sect. 3.1]. The
function h	 is clearly nondecreasing, continuous and concave, and limt→+∞
h	(t) = +∞, see [4, (8), p. 156]. Moreover, if lims→+∞ h(s) = 0 then h	(0) =
0, and so h	 satisfies all properties from (ω0) except normalization. In the
forthcoming proof we will apply this conjugate to h(t) = ωι(t) := ω(1/t),
where ω is a weight function, so that (ωι)	 is again a weight function (except
normalization); in particular, we will frequently find the case h(t) = ωι

M (t) =
ωM (1/t) for M ∈ R

N
>0 with limp→+∞(Mp)1/p = +∞.

Now we are able to formulate the first main characterizing result.

Theorem 5.1. Let ω be given satisfying (ω0), (ω3) and (ω4), and let Ω =
{W (λ) : λ > 0} be the matrix associated with ω. Then Ω satisfies (4.5) and/or
(4.6) if and only if

∃H > 0∃C > 0 such that ∀ t ≥ 0, (ωι)	(t2) ≤ Cω(Ht) + C. (5.2)

Consequently, if ω ∈ W, then (5.2) is equivalent to having that F{ω} =
F{Ω} and/or F(ω) = F(Ω) is closed under the pointwise product �.

Proof. First, let us assume that Ω satisfies (4.5) and/or (4.6) with indices λ
and κ. We will prove here the Roumieu case, the Beurling case can be treated
in a similar way. If we put Ŵ (λ) := (j!W (λ)

j )j∈N, then we have (W (λ)
j )2 ≤

Chjj!2w(κ)
j = ChjŴ

(κ)
j . Hence for all t ≥ 0 and j ∈ N we get tj

Ŵ
(κ)
j

≤

C (ht)j

(W
(λ)
j )2

= C

(
(
√

ht)j

W
(λ)
j

)2

, and applying logarithm to this inequality yields

ω
Ŵ (κ)(t) ≤ 2ωW (λ)(

√
ht) + log(C).

From [19, Lemma 3.4 (ii), (3.6)] applied to Q = M = Ŵ (κ) (recall that
W (κ) ∈ Ω), we know that

∀ t ≥ Ŵ
(κ)
1

Ŵ
(κ)
0

, ω
Ŵ (κ)(t) ≤ (ωι

W (κ))	(t) ≤ 1 + ω
Ŵ (κ)(et). (5.3)
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The second inequality of (5.3) yields

(ωι
W (κ))	(t) ≤ 1 + ω

Ŵ (κ)(et) ≤ 1 + 2ωW (λ)(
√

het) + log(C).

By using the first inequality of (5.1) we see for all t ≥ 0 that 2ωW (λ)(
√

het) ≤
2
λω(

√
het) and the second inequality of (5.1) implies (ωι

W (κ))	(t) = infs>0

{ωι
W (κ)(s) + st} ≥ infs>0{ 1

2κωι(s) + st} − Cκ

2κ = 1
2κ (ωι)	(2κt) − Cκ

2κ . Thus,
combining everything, we have shown for all t (large enough) that

(ωι)	(t2) ≤ 4κ

λ
ω(
√

he/(2κ)t) + 2κ(1 + log(C)) + Cκ,

hence (5.2) is satisfied.
Conversely, assume now that (5.2) holds true with constants C > 0 and

H > 0. First, let in the following computations λ, κ > 0 be arbitrary but
fixed. The second inequality of (5.1) yields Cω(Ht) + C ≤ 2CλωW (λ)(Ht) +
C(Cλ + 1), whereas the first one implies (ωι)	(t2) = infs>0{ωι(s) + st2} ≥
infs>0{κωι

W (κ)(s) + st2} = κ(ωι
W (κ))	(t2/κ). Moreover, the first estimate in

(5.3) implies κ(ωι
W (κ))	(t2/κ) ≥ κω

Ŵ (κ)(t2/κ) for all t ≥ Ŵ
(κ)
1

Ŵ
(κ)
0

, and altogether

∃D = DC,λ,κ such that ∀ t ≥ 0, ω
Ŵ (κ)(t2) ≤ 2Cλ

κ
ωW (λ)(H

√
κt) + D.

Now take κ = Cλ and with this choice, by using Proposition 4.6, we can
estimate as follows for all j ∈ N

Ŵ
(κ)
j = sup

t≥0

tj

exp(ω
Ŵ (κ)(t))

= sup
t≥0

t2j

exp(ω
Ŵ (κ)(t2))

≥ 1
exp(D)

sup
t≥0

t2j

exp(2ωW (λ)(H
√

κt))

=
1

exp(D)H2jκj

(
sup
t≥0

tj

exp(ωW (λ)(t))

)2

=
1

exp(D)H2jκj
(W (λ)

j )2,

hence (W (λ)
j )2 ≤ exp(D)(H2κ)jj!W (κ)

j for all j ∈ N. This proves both (4.5)
and (4.6) since Cλ = κ and C is only depending on given ω. �

The characterizing property (5.2) is looking similar to the following growth
property on ω, see [14,28], [23, Theorem 5.14 (4)] (called (ω8) in there) and
[17, Appendix A] (denoted by (ω7) there):

∃H > 0 ∃C > 0 such that ∀ t ≥ 0, ω(t2) ≤ Cω(Ht) + C. (5.4)

For any ω satisfying (ω0), (ω3) and (ω4) condition (5.4) does always imply
(ω1), see [17, Appendix A].
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In [17, Lemma A.1] it has been shown that for any ω ∈ W with (5.4) the
associated matrix Ω does have both (4.9) and (4.10) (by having a precise rela-
tion between the indices λ and κ). Following the proof of [17, Lemma A.1 (ii) ⇒
(i)] and replacing Al by l1 there it is straightforward to see that (4.9) and/or
(4.10) are implying (5.4), see [28, Lemma 5.4.1] and also the first half of the
proof of Theorem 5.1 (in fact for this implication one only needs that the
inequalities in (4.9) or (4.10) are valid for some pair of indices λ and κ).

Thus any matrix Ω associated with a function ω satisfying (5.4) will
always have both (4.5) and (4.6), too.

However, (5.4) implies quite strong, and in our situation undesired, prop-
erties for the associated weight matrix Ω. More precisely, by the results shown
in [17, Appendix A] we have that for any ω satisfying (ω0), (ω3) and (ω4)
property (5.4) does imply the strong non-quasianalyticity condition for weight
functions

∃C > 0 such that ∀ y > 0,

∫ +∞

1

ω(yt)
t2

dt ≤ Cω(y) + C, (5.5)

and so in particular (3.8) has to fail.
By the results shown in [5] (see also [7]) it follows that for given ω ∈ W

condition (5.5) is characterizing j∞(E0
[ω]) = F[ω], i.e. the surjectivity of the

Borel mapping. Note that in [5] and [7] non-quasianalyticity for ω was a basic
assumption but which is superfluous provided that O0

� E0
[ω] [characterized

by (3.7)]: On the one hand it is clear that (5.5) forces non-quasianalyticity for
ω. On the other hand, if ω ∈ W with O0

� E0
[ω] and j∞(E0

[ω]) = F[ω] then ω

has to be non-quasianalytic: If ω would be quasianalytic, this would contradict
[24, Cor. 2, Cor. 4] (similarly see also [25, Cor. 2]).

We are gathering now some more observations.

(i) Under the assumptions of Theorem 5.1, one has that (5.2) and ω∼(ωι)	

hold true if and only if (5.4) holds true. Indeed, (5.2) together with
ω∼(ωι)	 immediately imply (5.4). For the converse, first note that [19,
Lemma 5.1, Corollary 5.2] can be applied to each ω as assumed in the
result with (5.4) since (ω1) follows as mentioned above. Hence we get
ω

Ŵ (λ)∼(ωι)	∼ω
Ŵ (κ) for all λ, κ > 0. By [19, Lemma A.1] we know that

∀λ > 0∃κ > 0∃C ≥ 1 such that ∀ j ∈ N,

Ŵ
(λ)
j = j!W (λ)

j ≤ CjW
(κ)
j ,

hence ωW (κ)(t) ≤ ω
Ŵ (λ)(Ct) ≤ ωW (λ)(Ct). By (5.1) and the fact that

ω has (ω1) we have shown ω∼(ωι)	. Obviously this and (5.4) together
imply (5.2).

(ii) Let ω ∈ W be given. Then ω∼(ωι)	 implies γ(ω) = +∞, with γ de-
noting the growth index studied in detail in [18] and used in the exten-
sion results in [17,19] (the fact that ω has (ω1) is equivalent to having
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γ(ω) > 0, see [18, Corollary 2.14]). To show this note that by [18, Propo-
sition 2.22, Corollary 2.26] we have γ(ω) + 1 = γ((ωι)	) = γ(ω), a con-
tradiction if γ(ω) < +∞.
In [17, Lemma A.1] we have shown that (5.4) does imply γ(ω) = +∞.

(iii) Condition (5.2) is clearly stable under ∼, which follows by the character-
ization shown above or can also seen directly since ω(t) ≥ C−1σ(t) − 1
yields (ωι)	(t2) = infs>0{ω(1/s)+t2s} ≥ C−1 infs>0{σ(1/s)+t2Cs}−1 =
C−1(σι)	(Ct2) − 1 ≥ C−1(σι)	(t2) − 1 because (σι)	 is increasing.
In particular, by (5.1), we see that for each ω as considered in Theo-
rem 5.1 the matrix Ω satisfies (4.5) and/or (4.6) if and only if (5.2) is
satisfied for ωW (λ) for some/each λ > 0.

(iv) In general between (5.4) and (5.2) there is a big difference. As pointed
out before, the first condition yields strong non-quasianalyticity for ω,
whereas the second one can even be satisfied by (large) quasianalytic
weight functions: For this consider the power weights ω(t) := tα, α ≥ 1,
then a straightforward computation yields

(ωι)	(t) =
(

α1/(α+1) +
1

αα/(α+1)

)
tα/(α+1)

and so (5.2) holds true (since 2α/(α + 1) ≤ α ⇔ 2 ≤ α + 1).
So far we have started with a weight function satisfying some standard

growth properties, in the next result we will start with a weight sequence M
and are interested in the case ω ≡ ωM . Recall that for given M ∈ LC the
associated weight function ωM does have (ω0), (ω3) and (ω4) (e.g. see [21,
Chapitre I], [20, Definition 3.1] and also [6]).

Proposition 5.2. Let M = (j!mj)j∈N ∈ LC and let ωM be the associated weight
function, Ω := {W (λ) : λ > 0} shall denote the matrix associated with ωM .
Then ωM satisfies (5.2) if and only if

∃C ∈ N≥1 ∃D,h > 0 such that ∀ j ∈ N, (mj)2C ≤ DhjmCj . (5.6)

Note that (5.6) is clearly stable under relation ≈.

Proof. Let ωM satisfy (5.2) and w.l.o.g. we can assume C ∈ N≥1. We follow
the ideas in the proof of [19, Lemma 3.4 (i)] (for M instead of m). First, for
all j ∈ N, we get

M2j = sup
t>0

t2j

exp(ωM (t))
=

e

e
sup
t>0

(Ht)2j

exp(ωM (Ht))
≤ eH2j sup

t>0

t2j

exp( 1
C (ωι

M )	(t2))

= eH2j sup
t>0

tj

exp( 1
C (ωι

M )	(t))
.

The supremum in the last expression yields

exp
(

sup
t>0

{
j log(t) − 1

C
(ωι

M )	(t))
})
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= exp
(

sup
t>0

{
j log(t) − 1

C
inf
s>0

{ωM (1/s) + st}
})

= exp
(

sup
s,t>0

{
j log(t) − 1

C
ωM (1/s) − st

C

})
.

By studying for every j ∈ N and s > 0 fixed the function fj,s(t) := j log(t) −
1
C ωM (1/s) − st

C , t > 0, one gets that its supremum is given by log
(

(jC)j

(es)j

)
−

1
C ωM (1/s) (if j = 0 we use the convention 00 := 1). Using this we can continue
the above estimation for all j ∈ N as follows:

eH2j sup
t>0

tj

exp( 1
C (ωι

M )	(t))
= eH2j exp

(
sup
s>0

{
log
(

(jC)j

(es)j

)
− 1

C
ωM (1/s)

})

= eH2j Cjjj

ej
sup
s>0

1
sj exp( 1

C ωM (1/s))

= e

(
CH2

e

)j

jj sup
s>0

sj

exp( 1
C ωM (s))

= e

(
CH2

e

)j

jj(MCj)1/C .

Summarizing everything we have shown so far that there exist some C1, h1 > 0
such that for all j ∈ N we get (Mj)2 ≤ M2j ≤ C1h

j
1j!(MCj)1/C (using for the

first estimate that the log-convexity for M implies that (M1/j
j )j is increasing)

and so (Mj)2C ≤ C2h
j
2j!

CMCj which is equivalent to

j!C(mj)2C ≤ C2h
j
2(Cj)!mCj

for all j ∈ N. Since by Stirling’s formula (Cj)! is growing like j!C up to a factor
with exponential growth, we obtain (mj)2C ≤ C3h

j
3mCj for all j ∈ N and for

some constants C3, h3 not depending on j, thus (5.6) is verified.
Conversely, assume that (5.6) is valid. By going back in the equivalences

above, we get (Mj)2 ≤ D1h
j
1j!(MCj)1/C for all j ∈ N. If Ω := {W (λ) : λ > 0}

denotes the matrix associated with ωM , then it is known and straightforward
to verify that M ≡ W (1) (e.g. see the proof of [29, Thm. 6.4]) and more-
over W

(λ)
j = exp( 1

λϕ∗
ω(λj)) = (W (1)

λj )1/λ for all λ ∈ N≥1. Thus we obtain

(W (1)
j )2 = (Mj)2 ≤ D1h

j
1j!(MCj)1/C = D1h

j
1Ŵ

(C)
j for all j ∈ N. Then follow

the first part in the proof of Theorem 5.1 with λ = 1 and κ = C in order to
conclude. �

By combining now Proposition 4.7, (5.1), Theorem 5.1, (iii) in the previ-
ous observations and Proposition 5.2 we get the following result.

Corollary 5.3. Let ω be given satisfying (ω0), (ω3) and (ω4), let Ω = {W (λ) :
λ > 0} be the matrix associated with ω. Then the following are equivalent:

(i) F{Ω} and/or F(Ω) is stable under the pointwise product �,
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(ii) Ω satisfies (4.5) and/or (4.6),
(iii) ω satisfies (5.2),
(iv) Some/each ωW (λ) satisfies (5.2),
(v) Some/each W (λ) satisfies (5.6).

If ω has in addition (ω1), then in (i) we have F[ω] = F[Ω] and so stability of
F[ω] under � is characterized.

On the other hand, starting with a weight sequence satisfying an addi-
tional assumption, we have the following characterization.

Corollary 5.4. Let M ∈ LC be given and satisfying (mg), then the following
are equivalent:

(i) M satisfies (4.4) (i.e. E{M} ⊆ Cω and/or E(M) ⊆ Cω),
(ii) M satisfies (5.6),
(iii) ωM satisfies (5.2),
(iv) F{M} = F{Ω} and/or F(M) = F(Ω) is stable under the pointwise product.

Proof. Under the assumptions on M we have F{M} = F{Ω} and/or F(M) =
F(Ω) which follows analogously as for the corresponding ultradifferentiable
function classes by having the same seminorms, see the proofs of [23, Cor. 5.8
(2), Lemma 5.9 (5.11)]. In fact all W (λ) are equivalent to W (1) ≡ M . Conse-
quently, by combining Proposition 4.7 applied to M ≡ M, Theorem 5.1 and
finally Proposition 5.2 we are done.

The equivalence (i) ⇔ (ii) can also be seen directly as follows: On the
one hand, (i) ⇒ (ii) holds by having (mj)2 ≤ Abjmj and so take C = 1 in
(5.6). Conversely, by assumption M has (mg), i.e. Mj+k ≤ Aj+k

0 MjMk for
all j, k ∈ N and some constant A0. Consequently, mj+k ≤ Aj+k

1 mjmk for all
j, k ∈ N and some constant A1. By (5.6), we have (mj)2C ≤ DhjmCj and
by iteration of mj+k ≤ Aj+k

1 mjmk , we get DhjmCj ≤ BbC2j(mj)C and so
(mj)2 ≤ B1/CbCjmj for some constants b,B > 0 which is precisely (4.4). �

The next result establishes a connection between (5.6) and the non-
quasianalyticity of a sequence M .

Lemma 5.5. Let M ∈ LC be given such that supj∈N>0
(mj)1/j = +∞ and (5.6)

holds true. Then M is non-quasianalytic.

Proof. First, M has (5.6) if and only if there exist C ∈ N≥1 and D,h > 0 such
that (mj)2C ≤ DhjmCj , which is equivalent to

((Mj)1/j)2 ≤ j!2/j

(Cj)!1/(Cj)
D1/(Cj)h1/C(MCj)1/(Cj).

By Stirling’s formula j!2/j

(Cj)!1/(Cj) is asymptotically growing like j �→ D1j and
so M has (5.6) if and only if
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∃C ∈ N≥1 ∃C1 ≥ 1 such that ∀ j ∈ N>0,

((Mj)1/j)2 ≤ C1j(MCj)1/(Cj). (5.7)

Note that the assumption supj∈N>0
(mj)1/j = +∞ implies that in (5.7) we have

C ≥ 2: indeed, the case C = 1 would yield (4.4) and so supj∈N>0
(mj)1/j < +∞,

hence a contradiction.
Since we have supj∈N>0

(mj)1/j = +∞, for all A ≥ 1 there does exist a
number qA ∈ N≥1 (which can be chosen minimal) such that we get (mqA

)1/qA ≥
A, or equivalently (MqA

)1/qA ≥ A(qA!)1/qA . Thus, by a consequence of Stir-
ling’s formula, we obtain (MqA

)1/qA ≥ AqA

e and so also eCC1
A ≥ CC1qA

(MqA
)1/qA

follows with C and C1 denoting the constants arising in (5.7) (which are not
depending on given qA).

Let now A ≥ 1 be chosen sufficiently large in order to have eCC1
A < 1 and

set q := qA. By the above we see that CC1q
(Mq)1/q < 1 holds true.

Since M ∈ LC we have that j �→ (Mj)1/j is increasing. As we will see
this property is sufficient to conclude and for convenience we put now Lj :=
(Mj)1/j . For the sum under consideration we estimate by

∑

j≥q

1
(Mj)1/j

=
+∞∑

k=0

Ck+1q−1∑

j=Ckq

1
Lj

≤
+∞∑

k=0

Ck+1q − Ckq

LCkq

=
+∞∑

k=0

Ckq(C − 1)
LCkq

.

Now, by iterating (5.7), we have for every k ∈ N≥1

Ckq(C − 1)
LCkq

≤ qCk+1 1
LCCk−1q

≤ qCk+1C1C
k−1q

1
(LCk−1q)2

= q2C21(k−0)C2
1

1
(LCCk−2q)2

≤ q2C21(k−0)C2
1C2

1C2k−4q2 1
(LCk−2q)4

= q4C22(k−1)C4
1

1
(LCCk−3q)4

≤ q4C22(k−1)C4
1C4

1 (Ck−3)4q4 1
(LCk−3q)8

= q8C8
1C23(k−2) 1

(LCk−3q)8

≤ · · · ≤ q2k

C2k

1 C2k

(Lq)2
k ,

where we have used that for all natural numbers i, k with 1 ≤ i ≤ k − 1 we get
(Ck−(i+1)q)2

i

= q2i

C2i(k−(i+1)) and C2i(k−(i−1))C2i(k−(i+1)) = C2i+1(k−i).
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Finally, if k = 0, then Ckq(C−1)
L

Ckq
≤ qC

Lq
≤ qCC1

Lq
and gathering everything

we have shown now
+∞∑

k=0

Ckq(C − 1)
LCkq

≤
+∞∑

k=0

(qCC1

Lq︸ ︷︷ ︸
<1

)2k

< +∞,

which proves the non-quasianalyticity for M as desired. �

Using the above Lemma we can prove now the final statement of this
section showing that the problem of algebrability cannot be considered within
the quasianalytic weight function setting.

Theorem 5.6. Let ω satisfying (ω0), (ω2), (ω3), (ω4) and lim inft→+∞
ω(t)

t = 0
be given. Assume that ω has in addition the characterizing condition (5.2)
(resp. equivalently F{Ω} and/or F(Ω) is stable under the pointwise product �),
then ω has to be non-quasianalytic, i.e. condition (3.8) is violated.

Proof. Let Ω = {W (λ) : λ > 0} be the matrix associated with ω. We apply
Lemma 5.5 to some/each sequence W (λ) which can be done by the assumptions
on ω and the equivalences obtained in Corollary 5.3 above. Then W (λ) has (nq)
and so ω does not enjoy (3.8) [recall that this last step holds by [20, Lemma 4.1]
and (5.1)]. �

Note that this result deals with a property of the associated matrix Ω
and (ω1) is not required necessarily. If ω has in addition (ω1), then we have
F[ω] = F[Ω] in Theorem 5.6.
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nonlinear sets in topological vector spaces. Bull. Am. Math. Soc. 51(1), 71–130
(2014)

[4] Beurling, A.: Analytic continuation across a linear boundary. Acta Math. 128,
153–182 (1972)

[5] Bonet, J., Braun, R.W., Meise, R., Taylor, B.A.: Whitney’s extension theorem
for nonquasianalytic classes of ultradifferentiable functions. Stud. Math. 99(2),
155–184 (1991)

[6] Bonet, J., Meise, R., Melikhov, S.N.: A comparison of two different ways to define
classes of ultradifferentiable functions. Bull. Belg. Math. Soc. Simon Stevin 14,
424–444 (2007)

[7] Bonet, J., Meise, R., Taylor, B.A.: On the range of the Borel map for classes of
non-quasianalytic functions. N.-Holl. Math. Stud. (Progress Funct. Anal.) 170,
97–111 (1992)

[8] Bonet, J., Taskinen, J.: Solid hulls of weighted Banach spaces of entire functions.
Rev. Mat. Iberoam. 34(2), 593–608 (2018)

[9] Bonet, J., Meise, R.: On the theorem of Borel for quasianalytic classes. Math.
Scand. 112(2), 302–319 (2013)

[10] Braun, R.W., Meise, R., Taylor, B.A.: Ultradifferentiable functions and Fourier
analysis. Results Math. 17(3–4), 206–237 (1990)

[11] Bruna, J.: On inverse-closed algebras of infinitely differentiable functions. Stud.
Math. LXIX, 59–68 (1980)

[12] Carleman, T.: Sur le calcul effectif d’une fonction quasi analytique dont on donne
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