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Abstract. This paper offers a solution of the functional equation
(
tf(x) + (1 − t)f(y)

)
ϕ(tx + (1 − t)y)

= tf(x)ϕ(x) + (1 − t)f(y)ϕ(y) (x, y ∈ I),

where t ∈ ]0, 1[ , ϕ : I → R is strictly monotone, and f : I → R is
an arbitrary unknown function. As an immediate application, we shed
new light on the equality problem of Bajraktarević means with quasi-
arithmetic means.
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1. Introduction

Throughout this paper, the symbols R, R+, and N will stand for the sets of
real, positive real, and natural numbers, respectively, and I will always denote
a nonempty open real interval.

For n ∈ N, define the set of n-dimensional weight vectors Λn by

Λn := {(λ1, . . . , λn) ∈ R
n | λ1, . . . , λn ≥ 0, λ1 + · · · + λn > 0}.

A function M : In × Λn → I is called an n-variable weighted mean if, for all
x = (x1, . . . , xn) ∈ In and λ = (λ1, . . . , λn) ∈ Λn,

min
{
xi | λi > 0

} ≤ M(x, λ) ≤ max
{
xi | λi > 0

}
.
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The most classical class of weighted means is the class of power means, or
more generally, quasi-arithmetic means. Their definition is recalled from the
book [7].

Given a continuous strictly monotone function ϕ : I → R, the weighted
quasi-arithmetic mean Aϕ :

⋃∞
n=1 In × Λn → I is defined by

Aϕ(x, λ) := ϕ−1

(
λ1ϕ(x1) + · · · + λnϕ(xn)

λ1 + · · · + λn

)

for n ∈ N, x = (x1, . . . , xn) ∈ In, and λ = (λ1, . . . , λn) ∈ Λn. The restriction of
Aϕ to the set In × Λn is called the n-variable weighted quasi-arithmetic mean.
In the case when λ1 = · · · = λn = 1, we speak about an n-variable (discrete)
quasi-arithmetic mean and write Aϕ(x) instead of Aϕ(x, λ). The function ϕ is
called the generating function of the quasi-arithmetic mean Aϕ.

By taking ϕ(x) := x for x ∈ R, the resulting mean Aϕ is the weighted
arithmetic mean. Given p ∈ R, p �= 0, the function ϕ(x) := xp (x ∈ R+) gener-
ates the pth weighted power mean. To obtain the weighted geometric mean, one
should take the weighted quasi-arithmetic mean generated by ϕ(x) := log(x)
(x ∈ R+).

For the equality of quasi-arithmetic means, we have the following equiv-
alence of six conditions.

Theorem 1 ([7]). Let ϕ,ψ : I → R be continuous strictly monotone functions.
Then the following properties are pairwise equivalent:

(i) Aϕ(x, λ) = Aψ(x, λ) holds for all n ≥ 2, x = (x1, . . . , xn) ∈ In and
λ = (λ1, . . . , λn) ∈ Λn.

(ii) Aϕ(x) = Aψ(x) for all n ≥ 2 and x = (x1, . . . , xn) ∈ In.
(iii) Aϕ(x, λ) = Aψ(x, λ) holds for all x = (x1, x2) ∈ I2 and λ = (λ1, λ2) ∈

Λ2.
(iv) Aϕ(x) = Aψ(x) holds for all x = (x1, x2) ∈ I2.
(v) There exists t ∈ ]0, 1[ , such that Aϕ(x, λ) = Aψ(x, λ) holds for all x =

(x1, x2) ∈ I2 with λ = (t, 1 − t) ∈ Λ2.
(vi) There exist a, b ∈ R such that ψ = aϕ + b.

Generalizing the notion of quasi-arithmetic means, Mahmud Bajraktarević
in 1958 introduced a new class of means in the following way: Let ϕ : I → R be
a continuous strictly monotone function, let f : I → R+ be a positive function
and define Aϕ,f :

⋃∞
n=1 In × Λn → I by

Aϕ,f (x, λ) := ϕ−1

(
λ1f(x1)ϕ(x1) + · · · + λnf(xn)ϕ(xn)

λ1f(x1) + · · · + λnf(xn)

)

for n ∈ N, x = (x1, . . . , xn) ∈ In, and λ = (λ1, . . . , λn) ∈ Λn. Due to the
identity

Aϕ,f ((x1, . . . , xn), (λ1, . . . , λn)) = Aϕ((x1, . . . , xn), (λ1f(x1), . . . , λnf(xn))),

one can immediately see that the restriction of the function Aϕ,f (x, λ) to the
set In × Λn is an n-variable weighted mean.
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Denoting g := ϕ · f , we can rewrite Aϕ,f (x, λ) in the following more
symmetric form:

Bg,f (x, λ) :=
( g

f

)−1
(

λ1g(x1) + · · · + λng(xn)
λ1f(x1) + · · · + λnf(xn)

)
.

In fact, if g is also nowhere zero, then one can see that Bg,f ≡ Bf,g. It is also
clear that the expression for Bg,f is well defined if f is positive and g/f is
strictly monotone and continuous.

In order to describe necessary and sufficient conditions for the equality
of Bajraktarević means, we introduce the following terminology. We say that
two pairs of functions (f, g) : I → R

2 and (h, k) : I → R
2 are equivalent (and

we write (f, g) ∼ (h, k)) if there exist constants a, b, c, d with ad �= cb such
that

h = af + bg and k = cf + dg. (1)

One can easily check that ∼ is an equivalence relation, indeed.
For two given functions f, g : I → R, we define the two-variable function

Δf,g : I2 → R as follows

Δf,g(x, y) :=
∣
∣
∣
∣
f(x) f(y)
g(x) g(y)

∣
∣
∣
∣ (x, y ∈ I).

For the equality of Bajraktarević means, we have the following equiva-
lence of four conditions.

Theorem 2 ([1,6]). Let f, g, h, k : I → R such that f and h are positive func-
tions and g/f , k/h are continuous and strictly monotone. Then the following
properties are pairwise equivalent:
(I) Bg,f (x, λ) = Bk,h(x, λ) holds for all n ≥ 2, x = (x1, . . . , xn) ∈ In and

λ = (λ1, . . . , λn) ∈ Λn.
(II) Bg,f (x) = Bk,h(x) for all n ≥ 2 and x = (x1, . . . , xn) ∈ In.

(III) Bg,f (x, λ) = Bk,h(x, λ) holds for all x = (x1, x2) ∈ I2 and λ = (λ1, λ2) ∈
Λ2.

(VI) (f, g) ∼ (h, k).

The proof of the above theorem is partly based on the following lemma
that we will also need in the sequel.

Lemma 3. Let (f, g) : I → R
2 and (h, k) : I → R

2 be equivalent pairs. Then,
for some nonzero real constant γ,

Δh,k = γΔf,g. (2)

Proof. By the assumption, there exist constants a, b, c, d with ad �= cb such that
(1) holds. Then, using the product theorem of determinants, for all x, y ∈ I,

Δh,k(x, y) =
∣
∣
∣
∣
h(x) h(y)
k(x) k(y)

∣
∣
∣
∣ =

∣
∣
∣
∣
a b
c d

∣
∣
∣
∣·

∣
∣
∣
∣
f(x) f(y)
g(x) g(y)

∣
∣
∣
∣ = (ad − bc)Δf,g(x, y).

Therefore, (2) holds with γ := ad − bc �= 0. �
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When comparing the characterizations of the equality for quasi-arithmetic
and Bajraktarević means, one can observe that two conditions are missing from
the list of Theorem 2 (which would correspond to assertions (iv) and (v) in
Theorem 1):

(IV) Bg,f (x) = Bk,h(x) holds for all x = (x1, x2) ∈ I2.
(V) there exists t ∈ ]0, 1[ , such that Bg,f (x, λ) = Bk,h(x, λ) holds for all

x = (x1, x2) ∈ I2 with λ = (t, 1 − t) ∈ Λ2.

It is obvious that each of the equivalent assertions (I), or (II), or (III), or (VI)
implies (IV). It is also evident that (IV) implies (V) (with t := 1

2 ). As it has
been pointed out in our paper [13], assertion (V) with t ∈ ]0, 1

2 [∪ ]12 , 1[ implies
(VI) (and hence also (I) and (II) and (III)) under three times differentiability
of the generating functions f, g, h, and k. On the other hand, as it was shown
by Losonczi [9], assertion (IV) is not equivalent to any of the assertions (I),
(II), (III), and (VI). More precisely, under six times differentiability, Losonczi
completely described the solutions of the equality problem of two-variable Ba-
jraktarević means and established 32 cases of the equality beyond the standard
equivalence of the generating pairs.

Similar problems have been considered in the literature by several au-
thors. Bajraktarević [2,3] solved the equality problem of two Bajraktarević
means with at least three variables under three times differentiability. He also
found sufficient conditions for the equality of the two-variable means. Aczél
and Daróczy [1] described the necessary and sufficient conditions of the equal-
ity for all number of variables but without imposing any additional regularity
properties. Daróczy and Losonczi [4] solved the comparison problem assuming
first-order differentiability. Losonczi [9] solved the equality problem of two-
variable Bajraktarević means assuming a certain algebraic conditions and six
times differentiability of the unknown functions. Later, he [10] investigated the
equality problem of more general means under the same regularity assump-
tions, but he removed the algebraic conditions required in his earlier papers.
In a recent paper by Losonczi and Páles [11], the equality of two-variable Ba-
jraktarević means generated via two different measures has been investigated.
Until now, the weakening of the regularity assumptions has not been succeeded
in the general case, only in the particular case when the equality problem of
(symmetric) two-variable Bajraktarević mean with a quasi-arithmetic mean
was considered. Matkowski [12] solved this question supposing first-order dif-
ferentiability. He did not notice however, that the same goal was accomplished
8 years ago in 2004 by Daróczy et al. [5] where no additional differentiability
condition was assumed.

The goal of this paper to solve the above mentioned equality problem
in a particular case but without additional unnatural regularity assumptions.
More precisely, we will solve the equality problem of Bajraktarević means to
quasi-arithmetic means in two settings: in the class of two-variable symmetric
means and in the class of two-variable nonsymmetrically weighted or more than
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two-variable weighted means. After an obvious substitution, these equality
problems can be reduced to the functional equation

(
tf(x) + (1 − t)f(y)

)
ϕ(tx + (1 − t)y)

= tf(x)ϕ(x) + (1 − t)f(y)ϕ(y) (x, y ∈ I), (3)

where f, ϕ : I → R and t ∈ ]0, 1[ is fixed. This equation was considered and
solved in the case t = 1

2 in [5] under strict monotonicity and continuity of ϕ
and in [8] under continuity of ϕ, respectively. In Theorem 4 and Theorem 5
below, we completely solve (3) assuming only the strict monotonicity of ϕ
and also including the case t �= 1

2 . Applying these solutions, the main results
are stated in Theorem 10 and Theorem 11, which provide various equivalent
conditions for a Bajraktarević mean to be quasi-arithmetic.

2. Solution of the Fundamental Functional Equation (3)

Theorem 4. Let ϕ : I → R be a strictly monotone function, f : I → R be
an arbitrary function, and t ∈ ]0, 1[ . Assume that the functional equation (3)
holds. Then either f is identically zero, or f is nowhere zero, f and ϕ are
infinitely many times differentiable and there exists a nonzero constant γ ∈ R

such that

f2ϕ′ = γ. (4)

Proof. If f is identically zero, then (3) holds, therefore no information can be
obtained for ϕ.

Assume now that there exists a point y0 such that f does not vanish at
y0. Then, for x ∈ I, x �= y0, the convex combination tx + (1 − t)y0 is strictly
between the values x and y0. Therefore, by the strict monotonicity of ϕ, we
have that (ϕ(tx + (1 − t)y0) − ϕ(x))(ϕ(y0) − ϕ(tx + (1 − t)y0)) > 0. Then, it
follows from the functional equation (3), that

f(x) =
1 − t

t
f(y0)

ϕ(y0) − ϕ(tx + (1 − t)y0)
ϕ(tx + (1 − t)y0) − ϕ(x)

. (5)

This implies that f(x) is nonzero for all x ∈ I, furthermore, f(x) has the same
sign as f(y0), i.e., the sign of f is constant.

In what follows, we prove that, at every point of I, the function f has
left and right limits and it is continuous at every point where ϕ is continuous.
Denote by Dϕ the set of discontinuity points of ϕ. Then the monotonicity of
ϕ implies that Dϕ is countable.

Let x0 ∈ I be fixed. Then tx0 + (1 − t)I is a subinterval of I, hence
I\Dϕ intersects tx0 + (1 − t)I. Therefore, there exists an element y0 ∈ I such
that tx0 + (1 − t)y0 ∈ I\Dϕ. Thus, ϕ is continuous at tx0 + (1 − t)y0. Now,
upon taking the left or right limits as x tends to x0 of the right hand side of
equality (5), we can see that these limits exist because ϕ(tx + (1 − t)y0) tends
to ϕ(tx0 + (1 − t)y0) and ϕ(x) has a left and right limit (by the monotonicity
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of ϕ). Therefore, (5) yields that f has left and right limits at x0. In addition,
if ϕ is continuous at x0, then its left and right limits are the same, hence f
has to be continuous at x0.

From what we have proved it follows that f is continuous everywhere
except at countably many points, hence f is continuous almost everywhere.
On the other hand, f is bounded on every compact subinterval of I. Indeed, if
f were unbounded on a compact subinterval [a, b] ⊆ I, then there would exist
a subsequence (xn) in [a, b] converging to some element x0 ∈ [a, b], such that
|f(xn)| → +∞. We can extract a subsequence (xnk

) which is either converging
from the left or from the right to x0. Then the limit of f(xnk

) is the left or
right limit of f at x0, which is finite, contradicting |f(xnk

)| → +∞. Having
the local boundedness of f , it follows that f is Riemann integrable on every
compact subinterval of I.

Let 0 < α < 1
2 |I| and Iα := (I − α) ∩ (I + α). Then Iα is a nonempty

interval and Iα + [−α, α] ⊆ I. Let u ∈ Iα, v ∈ [−α, α] and substituting
x := u − (1 − t)v and y := u + tv into (3), we obtain that

(
tf

(
u − (1 − t)v

)
+ (1 − t)f

(
u + tv

))
ϕ(u)

= tf
(
u − (1 − t)v

)
ϕ
(
u − (1 − t)v

)
+ (1 − t)f

(
u + tv

)
ϕ
(
u + tv

)

holds for all u ∈ Iα and for all v ∈ [−α, α]. Integrating both sides of the
previous equation on v ∈ [−α, α] it follows that

ϕ(u)
∫ α

−α

(
tf

(
u − (1 − t)v

)
+ (1 − t)f

(
u + tv

))
dv

= t

∫ α

−α

f
(
u − (1 − t)v

)
ϕ
(
u − (1 − t)v

)
dv

+ (1 − t)
∫ α

−α

f
(
u + tv

)
ϕ
(
u + tv

)
dv.

After simple change of the variable transformations, for all u ∈ Iα, we get

ϕ(u)
(

t

1 − t

∫ u+(1−t)α

u−(1−t)α

f +
1 − t

t

∫ u+tα

u−tα

f

)

=
t

1 − t

∫ u+(1−t)α

u−(1−t)α

f · ϕ +
1 − t

t

∫ u+tα

u−tα

f · ϕ. (6)

Having that f is either positive everywhere or negative everywhere, it follows
that ϕ(u) is the ratio of two expressions that are continuous with respect to
u. Therefore, ϕ and hence f are continuous everywhere in Iα. This, together
with (6), implies that ϕ(u) is the ratio of two expressions that are continuously
differentiable with respect to u. Hence ϕ is continuously differentiable on Iα.
Since 0 < α < 1

2 |I| is arbitrary, it follows that ϕ is continuously differentiable
and f is continuous on

⋃
α>0 Iα = I. Going back to formula (5), the continuous

differentiability of ϕ implies that f is also continuously differentiable.
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Now, we show that ϕ and f are twice continuously differentiable. Differ-
entiating (3) with respect to x, we have

f ′(x)ϕ(tx + (1 − t)y) + (tf(x) + (1 − t)f(y))ϕ′(tx + (1 − t)y)
= (fϕ)′(x) (x, y ∈ I). (7)

By substituting x := u − (1 − t)v and y := u + tv into the previous equation
and integrating both sides on v ∈ [0, α], we get

ϕ′(u)
∫ α

−α

(
tf(u − (1 − t)v) + (1 − t)f(u + tv)

)
dv

= −ϕ(u)
∫ α

−α

f ′(u − (1 − t)v)dv +
∫ α

−α

(fϕ)′(u − (1 − t)v)dv (u ∈ Iα).

After similar change of the variable transformations as (6), for all u ∈ Iα, we
obtain

ϕ′(u)
(

t

1 − t

∫ u+(1−t)α

u−(1−t)α

f +
1 − t

t

∫ u+tα

u−tα

f

)

= − 1
1 − t

ϕ(u)
∫ u+(1−t)α

u−(1−t)α

f ′ +
1

1 − t

∫ u+(1−t)α

u−(1−t)α

(fϕ)′.

From here it follows that ϕ′ is the ratio of two continuously differentiable
functions on Iα. Thus ϕ is twice continuously differentiable on Iα and hence
on I. This result, combined with (5), implies that f is two times continuously
differentiable on I.

To prove that ϕ and f are infinitely many times differentiable, differen-
tiate (7) with respect to y, to get

(f ′(x)+f ′(y))ϕ′(tx+(1 − t)y)+(tf(x) + (1 − t)f(y))ϕ′′(tx + (1 − t)y) = 0.
(8)

Substituting y := x, we arrive at

2f ′ϕ′ + fϕ′′ = 0, (9)

or equivalently,

(f2ϕ′)′ = 0.

Hence there exists a real constant γ such that f2ϕ′ = γ. If γ were zero, then this
equation would imply that ϕ′ is identically zero, which contradicts the strict
monotonicity of ϕ. As a consequence, (4) holds. Finally, applying (4) and (5)
repeatedly, we get that ϕ and f are infinitely many times differentiable. �

In order to describe the solution of functional equation (3), we introduce
the following notation.



19 Page 8 of 19 Z. Páles and A. Zakaria Results Math

For a real parameter p ∈ R, introduce the sine and cosine type functions
Sp, Cp : R → R by

Sp(x) :=

⎧
⎪⎨

⎪⎩

sin(
√−px) if p < 0,

x if p = 0,

sinh(
√

px) if p > 0,

and Cp(x) :=

⎧
⎪⎨

⎪⎩

cos(
√−px) if p < 0,

1 if p = 0,

cosh(
√

px) if p > 0.

It is easily seen that the functions Sp and Cp form the fundamental system of
solutions for the second-order homogeneous linear differential equation h′′ =
ph.

Theorem 5. Let ϕ : I → R be a strictly monotone function, f : I → R be a
non-identically-zero function, and t ∈ ]0, 1[ . Then the following assertions are
equivalent:

(i) (ϕ, f) solves (3);
(ii) f is nowhere zero, f and ϕ are twice differentiable such that (9) holds

and there exists p ∈ R with (t − 1
2 )p = 0 such that f ′′ = pf ;

(iii) f is nowhere zero and there exists p ∈ R with (t − 1
2 )p = 0 such that

(f, f ·ϕ) ∼ (Sp, Cp). (10)

Proof. Assume that (ϕ, f) solves (3). Then, as we have proved in Theorem 4,
our conditions imply that f is nowhere zero, f and ϕ are infinitely many times
differentiable, and there exists a nonzero γ ∈ R such that (4) holds. As in the
proof of Theorem 4, differentiating (3) with respect to x and then with respect
to y, we get Eqs. (7) and (8), respectively. Substituting y := x into the last
equality, (9) follows immediately.

Differentiating (8) with respect to x, we obtain

f ′′(x)ϕ′(tx + (1 − t)y) + (2tf ′(x) + tf ′(y))ϕ′′(tx + (1 − t)y)
+ t(tf(x) + (1 − t)f(y))ϕ′′′(tx + (1 − t)y) = 0. (11)

Inserting y := x, it follows that

f ′′ϕ′ + t
(
3f ′ϕ′′ + fϕ′′′) = 0.

On the other hand, differentiating (9) with respect x, we obtain

2f ′′ϕ′ + 3f ′ϕ′′ + fϕ′′′ = 0. (12)

Combining the above equalities, we conclude that

(1 − 2t)f ′′ϕ′ = 0. (13)

Due to (4), ϕ′ is nowhere zero. Consequently, either t = 1
2 or f ′′ = 0 on I.

In the case when t �= 1
2 , then f ′′ = 0, and hence, assertion (ii) holds with

p = 0.
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In the case t = 1
2 , Eq. (13) does not provide any information on f and

ϕ. Therefore, we substitute t = 1
2 into (11), to get

f ′′(x)ϕ′
(x + y

2

)
+ (f ′(x) +

1
2
f ′(y))ϕ′′

(x + y

2

)

+
1
4
(f(x) + f(y))ϕ′′′

(x + y

2

)
= 0.

Differentiating this equality with respect to y, we obtain
1
2
(f ′′(x) + f ′′(y))ϕ′′

(x + y

2

)
+

1
2
(f ′(x) + f ′(y))ϕ′′′

(x + y

2

)

+
1
8
(f(x) + f(y))ϕ′′′′

(x + y

2

)
= 0.

Substituting y := x and multiplying by 4, we arrive at

4f ′′ϕ′′ + 4f ′ϕ′′′ + fϕ′′′′ = 0. (14)

However, differentiating (12), we obtain

2f ′′′ϕ′ + 5f ′′ϕ′′ + 4f ′ϕ′′′ + fϕ′′′′ = 0.

Subtracting (14) from this equality side by side, we get

2f ′′′ϕ′ + f ′′ϕ′′ = 0.

Using (4) and (9), we can eliminate ϕ′ and ϕ′′, and thus we get

f ′′′f − f ′′f ′

f2
= 0.

Equivalently,
(f ′′

f

)′
= 0,

which implies that there exists a constant p ∈ R such that f ′′ = pf . This
proves the last part of statement (ii).

Assume now that assertion (ii) holds, i.e., f is nowhere zero, Eq. (9) and
f ′′ = pf hold for some constant p ∈ R with (t− 1

2 )p = 0. Therefore, there exist
constants a, b ∈ R such that

f = aSp + bCp. (15)

On the other hand, using Eq. (9), it follows that

(f ·ϕ)′′ = f ′′ ·ϕ + 2f ′ ·ϕ′ + f ·ϕ′′ = f ′′ ·ϕ = pf ·ϕ,

which means that g := f ·ϕ satisfies the differential equation g′′ = pg. Hence,
there exist constants c, d ∈ R such that

f ·ϕ = cSp + dCp. (16)

From the two equalities (15) and (16), it follows that (f, f ·ϕ) ∼ (Sp, Cp), that
is, assertion (iii) holds.
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Finally, assume that (iii) is valid. Then f is nowhere zero on I and the
equivalence (10) holds on I for some p ∈ R with (t − 1

2 )p = 0. This, in view of
Lemma 3, implies that there exists a nonzero constant γ such that

Δf,f ·ϕ = γΔSp,Cp
.

On the other hand, the functional equation (3) holds if and only if

tΔf,f ·ϕ(x, tx + (1 − t)y) + (1 − t)Δf,f ·ϕ(y, tx + (1 − t)y) = 0 (x, y ∈ I).

Therefore, to complete the proof, it is sufficient to prove that

tΔSp,Cp
(x, tx + (1 − t)y) + (1 − t)ΔSp,Cp

(y, tx + (1 − t)y) = 0 (x, y ∈ I).
(17)

In the case p = 0, we have that

tΔS0,C0(x, tx + (1 − t)y) + (1 − t)ΔS0,C0(y, tx + (1 − t)y)

=
∣
∣
∣
∣
tx + (1 − t)y tx + (1 − t)y

1 1

∣
∣
∣
∣ = 0.

In the case t = 1
2 and p < 0, denote q :=

√−p. Using well-known identities for
trigonometric functions, we get

1
2
ΔSp,Cp

(
x,

x + y

2

)
+

1
2
ΔSp,Cp

(
y,

x + y

2

)

=

∣
∣
∣
∣
∣
∣
∣

sin(qx) + sin(qy)
2

sin
(
q
x + y

2

)

cos(qx) + cos(qy)
2

cos
(
q
x + y

2

)

∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

sin
(
q
x + y

2

)
cos

(
q
x − y

2

)
sin

(
q
x + y

2

)

cos
(
q
x + y

2

)
cos

(
q
x − y

2

)
cos

(
q
x + y

2

)

∣
∣
∣
∣
∣
∣
= 0.

Similar arguments apply to the case p > 0 by using identities for hyperbolic
functions, and therefore we leave it to the reader to verify (17). �

Given an at most second-degree polynomial P (u) := α+βu+γu2, where
α, β, γ ∈ R, we call the value DP := β2 − 4αγ the discriminant of P .

Lemma 6. If P is an at most second-degree polynomial, then DP = (P ′)2 −
2P ′′P .

Proof. Let P be of the form P (u) := α + βu + γu2, where α, β, γ ∈ R. Then

((P ′)2 − 2P ′′P )(u) = (β + 2γu)2 − 4γ(α + βu + γu2) = β2 − 4αγ = DP ,

which was to be proved. �

The following result is instrumental for our main results.
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Lemma 7. Let P be an at most second-degree polynomial which is positive on
I let DP denote its discriminant and let t ∈ ]0, 1[ with (t − 1

2 )DP = 0. Let ψ

be a primitive function of 1/P and � := 1/
√

P . Then the functions ϕ := ψ−1

and f := � ◦ ϕ satisfy Eq. (3) on the interval ψ(I).

Proof. In order to prove that (ϕ, f) solves (3), we show that Theorem 5 part
(ii) is valid. An easy computation shows that

ϕ′ =
1

ψ′ ◦ ψ−1
=

1
ψ′ ◦ ϕ

, ϕ′′ = − ψ′′ ◦ ψ−1

(ψ′ ◦ ψ−1)3
= − ψ′′ ◦ ϕ

(ψ′ ◦ ϕ)3
, and

ψ′ =
1
P

= �2. (18)

Therefore, it is obvious that

f2 · ϕ′ = (�2 ◦ ϕ) · 1
ψ′ ◦ ϕ

= 1.

As a consequence, after differentiating both sides, we get that (9) holds. Now,
we only need to show that there exists p ∈ R such that (t − 1

2 )p = 0 and
f ′′ = pf . After simple calculations, using (18) and Lemma 6, we get

f ′′ = (� ◦ ϕ)′′ = (�′′ ◦ ϕ)ϕ′2 + (�′ ◦ ϕ)ϕ′′ =
(

�′′ · 1
(ψ′)2

− �′ · ψ′′

(ψ′)3

)
◦ ϕ

=
(

�′′� − 2�′2

�5

)
◦ ϕ =

(
P ′2 − 2P ′′P

4
√

P

)
◦ ϕ =

(
DP

4
√

P

)
◦ ϕ =

DP

4
f.

Consequently, with p := DP /4 the equality f ′′ = pf holds on ψ(I) and hence
assertion (ii) of Theorem 5 is satisfied. �

3. Main Results

For simplicity, we introduce the following regularity classes for the generating
functions of Bajraktarević means as follows: Let the class B0(I) contain all
pairs (f, g) such that

(i) f is everywhere positive on I.
(ii) g/f is strictly monotone and continuous on I.

For n ≥ 1, let Bn(I) denote the class of all pairs (f, g) such that
(+i) f is everywhere positive on I and f, g : I → R are n times continuously

differentiable functions.
(+ii) (g/f)′ is nowhere zero on I.
For (f, g) ∈ Bn(I) and for i, j ∈ {0, . . . , n}, we introduce the following nota-
tions:

W i,j
f,g :=

∣
∣
∣
∣
f (i) f (j)

g(i) g(j)

∣
∣
∣
∣ and Φf,g :=

W 2,0
f,g

W 1,0
f,g

, Ψf,g := −W 2,1
f,g

W 1,0
f,g

. (19)

The following lemma was stated and verified in [14].
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Lemma 8. Let (f, g) ∈ B2(I). Then f, g form a fundamental system of solu-
tions of the second-order homogeneous linear differential equation

Y ′′ = Φf,gY
′ + Ψf,gY. (20)

As a consequence of Theorem 5, we can immediately obtain a characteri-
zation of the equality between two-variable weighted Bajraktarević means and
two-variable weighted quasi-arithmetic means.

Corollary 9. Let t ∈ ]0, 1[ , (f, g) ∈ B0(I), and let h : I → R be a continuous
strictly monotone function. Then

Bg,f ((x, y), (t, 1 − t)) = Ah((x, y), (t, 1 − t)) (x, y ∈ I) (21)

holds if and only if there exists p ∈ R with (t − 1
2 )p = 0 such that

(f, g) ∼ (Sp ◦ h,Cp ◦ h). (22)

Proof. Applying g/f to the both sides of (21) and substituting F := f ◦ h−1,

G := g◦h−1, and ϕ :=
G

F
, we get an equivalent formulation of (21) as follows:

(
tF (u) + (1 − t)F (v)

)
ϕ(tu + (1 − t)v)

= tF (u)ϕ(u) + (1 − t)F (v)ϕ(v) (u, v ∈ h(I)). (23)

Thus, the pair (ϕ,F ) satisfies (3) on the interval h(I). Therefore, by Theorem 5,
p ∈ R with (t − 1

2 )p = 0 such that (F,G) = (F, F ·ϕ) ∼ (Sp, Cp) holds on h(I).
After substitution, this yields that (22) holds on the interval I. �

The last two theorems contain the main results of our paper. They offer
various characterizations of the equality of a Bajraktarević mean to a quasi-
arithmetic mean. In the first result we consider such an equality for the (sym-
metric) two-variable setting.

Theorem 10. Let (f, g) ∈ B0(I). Then the following statements are equivalent.
(i) There exists a continuous strictly monotone function h : I → R such that

Bg,f (x, y) = Ah(x, y) (x, y ∈ I). (24)

(ii) There exist real constants α, β, γ such that

αf2 + βfg + γg2 = 1. (25)

In addition, if (f, g) ∈ B1(I), then the statements (i) and (ii) are also equiva-
lent to:
(iii) Equation (24) holds with h =

∫
W 1,0

f,g .

Furthermore, if (f, g) ∈ B2(I), then any of the statements (i) – (iii) is also
equivalent to each of the following two conditions:
(iv) There exists a real constant δ such that

W 2,1
f,g = δ(W 1,0

f,g )3. (26)
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(v) Ψf,g is differentiable and

Ψ′
f,g = 2Φf,gΨf,g. (27)

Proof. We will prove first the equivalence of statements (i) and (ii).
Assume first that (i) holds, i.e., there exists a continuous strictly mono-

tone function h : I → R such that (24) is valid. Then, applying Corollary 9
for t = 1

2 , it follows that there exists p ∈ R such that the equivalence in (22)
holds. Therefore, there exist a, b, c, d ∈ R with ad �= bc such that

Sp ◦ h = af + bg and Cp ◦ h = cf + dg. (28)

Using well-known trigonometric and hyperbolic identities, we have that

C2
p − sign(p)·S2

p = 1

holds on R, and hence C2
p ◦ h − sign(p)·S2

p ◦ h = 1 holds on I. Combining this
identity with the equalities in (28), we get

(cf + dg)2 − sign(p)·(af + bg)2 = 1

on I. Therefore, statement (ii) holds with

α := c2 − sign(p)a2, β := 2cd − 2 sign(p)·ab, and
γ := d2 − sign(p)b2.

Assume now that assertion (ii) is valid, i.e., (25) holds with some real
constants α, β, γ. Denote ϕ := g/f . Then, by (f, g) ∈ B0(I), we have that ϕ
is strictly monotone and continuous. Replacing g by f ·ϕ in (25), we get

α + βϕ + γϕ2 =
1
f2

. (29)

Hence

P (u) := α + βu + γu2 =
1

f2 ◦ ϕ−1(u)
(u ∈ ϕ(I)). (30)

Thus, P is an at most second-degree polynomial which is positive on the in-
terval J := ϕ(I). Now, we are in the position to apply Lemma 7 in the case
t = 1

2 . Let ψ be a primitive function of 1/P and � := 1/
√

P . Then the functions
ϕ∗ := ψ−1 and f∗ := � ◦ ϕ∗ satisfy Eq. (3) on ψ(J). This immediately implies
that the two-variable Bajraktarević mean Bf∗·ϕ∗,f∗ equals the two-variable
arithmetic mean on ψ(J), that is, for all u, v ∈ ψ(J),

(ϕ∗)−1

(
f∗(u)ϕ∗(u) + f∗(v)ϕ∗(v)

f∗(u) + f∗(v)

)
=

u + v

2
.

Now substituting u := (ϕ∗)−1 ◦ ϕ(x) and v := (ϕ∗)−1 ◦ ϕ(y) where x, y ∈ I,
and observing that

f∗ ◦ (ϕ∗)−1 ◦ ϕ = � ◦ ϕ =
1√

P ◦ ϕ
=

√
f2 ◦ ϕ−1 ◦ ϕ = f,



19 Page 14 of 19 Z. Páles and A. Zakaria Results Math

the above equality, for all x, y ∈ I, implies that

(ϕ∗)−1

(
f(x)ϕ(x) + f(y)ϕ(y)

f(x) + f(y)

)
=

(ϕ∗)−1 ◦ ϕ(x) + (ϕ∗)−1 ◦ ϕ(y)
2

.

Applying the function ϕ−1 ◦ϕ∗ to this equation side by side, it follows that the
two-variable Bajraktarević mean Bf·ϕ,f equals the two-variable quasi-arithmetic
mean Ah on I, where h := (ϕ∗)−1 ◦ ϕ.

The implication (iii)⇒(i)∼(ii) is obvious. Therefore, it remains to prove
the implication (ii)⇒(iii). Assume that (f, g) ∈ B1(I). If (ii) holds for some
α, β, γ ∈ R, then define the polynomial P by (30) and let ψ :=

∫
(1/P ). As we

have seen it before, then (i) holds with h := −(ϕ∗)−1 ◦ϕ = −ψ ◦ϕ. Therefore,

h′ = −(ψ′ ◦ ϕ)·ϕ′ = −
(

1
P

◦ ϕ

)
·
(

g

f

)′
=

W 1,0
f,g

(P ◦ ϕ)·f2
= W 1,0

f,g .

This completes the proof of assertion (iii).
To prove the implication (ii)⇒(iv), assume that (f, g) ∈ B2(I). If (ii)

holds for some α, β, γ ∈ R, then Eq. (29) is satisfied, where P is the polynomial
defined in (30) and hence 1

f2 = P ◦ ϕ. Differentiating this equality once and
twice, it follows that

−2
f ′

f3
=(P ′ ◦ ϕ)·ϕ′ and

6(f ′)2 − 2ff ′′

f4
=(P ′′ ◦ ϕ)·(ϕ′)2+(P ′ ◦ ϕ)·ϕ′′.

Solving this system of equations with respect to P ′ ◦ ϕ and P ′′ ◦ ϕ, we obtain

P ′ ◦ ϕ = −2
f ′

f3ϕ′ and P ′′ ◦ ϕ =
6(f ′)2ϕ′ − 2ff ′′ϕ′ + 2ff ′ϕ′′

f4(ϕ′)3
.

On the other hand, we have the following two equalities

ϕ′ =
(

g

f

)′
=

fg′ − f ′g
f2

= −W 1,0
f,g

f2

and

W 2,1
f,g = W 2,1

f,f ·ϕ =
∣
∣
∣
∣
f ′′ f ′

(fϕ)′′ (fϕ)′

∣
∣
∣
∣ = −2(f ′)2ϕ′ + ff ′′ϕ′ − ff ′ϕ′′.

Therefore, using Lemma 6, we get

DP = (P ′ ◦ ϕ)2 − 2(P ′′ ◦ ϕ)(P ◦ ϕ)

=
−8(f ′)2ϕ′ + 4ff ′′ϕ′ − 4ff ′ϕ′′

(f2ϕ′)3
=

4W 2,1
f,g

( − W 1,0
f,g

)3 ,

which shows that (iv) holds with δ := −DP /4.
To prove the implication (iv)⇒(i), let (f, g) ∈ B2(I). If (iv) holds for

some real constant δ, then

Ψf,g = −δ(W 1,0
f,g )2. (31)
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Let Y ∈ {f, g}. Then, as we have stated it in Lemma 8, Y is a solution of the
second-order homogeneous linear differential equation (20). In view of (31),
this differential equation is now of the form

Y ′′ = Φf,gY
′ − δ(W 1,0

f,g )2Y. (32)

In order to solve this equation, let ξ be an arbitrarily fixed point of the interval
I, define h : I → R by h(x) :=

∫ x

ξ
W 1,0

f,g . Then h is twice differentiable and
strictly monotone with a nonvanishing first derivative, hence its inverse is also
twice differentiable. Now define Z := Y ◦ h−1. Then Z : h(I) → R is a twice
differentiable function and we have Y = Z ◦ h. Differentiating Y once and
twice, we get

Y ′ = (Z ′ ◦ h)h′ and Y ′′ = (Z ′′ ◦ h)(h′)2 + (Z ′ ◦ h)h′′.

On the other hand Y satisfies (32), h′ = W 1,0
f,g and h′′ = (W 1,0

f,g )′ = W 2,0
f,g hold

on I, hence it follows that

(Z ′′ ◦ h)·(W 1,0
f,g )2 + (Z ′ ◦ h)·W 2,0

f,g =
W 2,0

f,g

W 1,0
f,g

·(Z ′ ◦ h)·W 1,0
f,g − δ(W 1,0

f,g )2 ·(Z ◦ h).

This reduces to the equality Z ′′ ◦ h = −δ(Z ◦ h) on I, which, on the interval
h(I), is equivalent to

Z ′′ = −δZ.

Thus, we have proved that Z := f ◦ h−1 and Z := g ◦ h−1 are solutions to
this second-order homogeneous linear differential equation. The functions S−δ

and C−δ form a fundamental system of solutions for this differential equation,
therefore,

(f ◦ h−1, g ◦ h−1) ∼ (S−δ, C−δ).

This shows that the relation (22) is satisfied with p := −δ, hence, from Corol-
lary 9, we conclude that the assertion (i) holds.

To complete the proof of the theorem it suffices to show that (iv) and
(v) are equivalent in the class B2(I). If (iv) holds for some δ ∈ R, then the
differentiability of W 1,0

f,g implies that W 2,1
f,g and hence Ψf,g are differentiable,

furthermore,

Ψf,g

(W 1,0
f,g )2

= −δ.

Differentiating this equation side by side, we obtain

(W 1,0
f,g )2Ψ′

f,g − 2Ψf,gW
1,0
f,g W 2,0

f,g

(W 1,0
f,g )4

= 0.

Simplifying this equality, we can see that (v) must be valid.
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Conversely, if Ψf,g is differentiable and (27) holds, that is, Y = Ψf,g

solves the first-order homogeneous linear differential equation Y ′ = 2Φf,gY ,
then there exists a constant δ such that

Ψf,g = δ exp
(

2
∫

Φf,g

)
= δ exp

(
2
∫ (W 1,0

f,g )′

W 1,0
f,g

)
= δ(W 1,0

f,g )2,

which implies assertion (iv) immediately. �
Theorem 11. Let (f, g) ∈ B0(I). Then the following six assertions are equiva-
lent.

(i) There exists a continuous strictly monotone function h : I → R such
that, for all n ∈ N, x ∈ In and λ ∈ Λn,

Bg,f (x, λ) = Ah(x, λ). (33)

(ii) There exists a continuous strictly monotone function h : I → R such
that, for all n ∈ N and x ∈ In,

Bg,f (x) = Ah(x). (34)

(iii) There exists a continuous strictly monotone function h : I → R and
n ≥ 3 such that, for all x ∈ In, Eq. (34) holds.

(iv) There exists a continuous strictly monotone function h : I → R such that
Eq. (33) holds for all x ∈ I2 and λ ∈ Λ2.

(v) There exist t ∈ ]0, 1
2 [∪ ]12 , 1[ and a continuous strictly monotone function

h : I → R such that Eq. (33) holds for all x ∈ I2 with λ := (t, 1 − t).
(vi) There exist constants a, b ∈ R such that

af + bg = 1. (35)

Furthermore, if (f, g) ∈ B2(I), then any of the statements (i) – (vi) is also
equivalent to the condition:
(vii) Ψf,g = 0.

Proof. The implications (i)⇒(ii), (ii)⇒(iii), (i)⇒(iv), and (iv)⇒(v) are obvi-
ous. To see that (iii)⇒(v), assume that there exists a continuous strictly mono-
tone function h : I → R and n ≥ 3 such that Eq. (34) is satisfied for all x ∈ In.
Let y1, y2 ∈ I be arbitrary and let x1 := y1, (x2, . . . , xn) := (y2, . . . , y2). Ap-
plying inequality (34) to the n-tuple x = (x1, . . . , xn), we get that

Bg,f

(
(y1, y2),

(
1
n , n−1

n

))
= Ah

(
(y1, y2),

(
1
n , n−1

n

))

is valid for all y1, y2 ∈ I. Therefore, assertion (v) holds with t := 1
n .

To prove the implication (v)⇒(vi), assume that assertion (v) is valid for
some continuous strictly monotone function h and t ∈ ]0, 1

2 [∪ ]12 , 1[ . Then we
have that (21) holds, hence, using Corollary 9, we get the existence of constants
a, b, c, d ∈ R with ad �= bc such that (22) holds with p = 0, therefore,

1 = C0 ◦ h = af + bg and S0 ◦ h = cf + dg. (36)

This proves that assertion (vi) is valid.
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Now assume that (vi) holds, i.e., there exist constants a, b ∈ R satisfying
(35). This equation yields that a2 + b2 > 0. Define h := −bf + ag. Then
we have that (1, h) ∼ (f, g), which implies that the Bajraktarević mean Bg,f

is identical with the Bajraktarević mean Bh,1, which is equal to the quasi-
arithmetic mean Ah. Therefore, (i) holds, and hence all the assertions from (i)
to (vi) are equivalent.

To obtain the implication (vi)⇒(vii), assume that (f, g) ∈ B2(I) and
that (vi) holds for some constants a, b ∈ R. Then af ′ + bg′ = 0 such that
(a, b) �= (0, 0). Therefore, f ′ and g′ are linearly dependent. Consequently, we
get

W 2,1
f,g = W 1,0

f ′,g′ = 0.

Thus, assertion (vii) is valid.
Finally, it remains to prove the implication (vii)⇒(vi). Let (vii) be satis-

fied. Then f and g form a system of fundamental solutions of the second-order
homogeneous linear differential equation (20). In light of assertion (vii), this
differential equation reduces to the form

Y ′′ = Φf,gY
′.

On the other hand, it is clear that Y = 1 is a solution of this differential
equation, therefore it has to be a linear combination of f and g. Hence there
exist constants a, b ∈ R such that (35) is satisfied. �
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