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Inequalities for Some Integrals Involving
Modified Lommel Functions of the First
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Abstract. In this paper, we obtain inequalities for some integrals involv-
ing the modified Lommel function of the first kind tμ,ν(x). In most cases,
these inequalities are tight in certain limits. We also deduce a tight double
inequality, involving the modified Lommel function tμ,ν(x), for a gener-
alized hypergeometric function. The inequalities obtained in this paper
generalise recent bounds for integrals involving the modified Struve func-
tion of the first kind.
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1. Introduction

In a series of recent papers [9–11,13,14], simple lower and upper bounds, in-
volving the modified Bessel function of the first kind Iν(x) and the modified
Struve function of the first kind Lν(x), respectively, were obtained for the
integrals ∫ x

0

e−βuu±νIν(u) du,

∫ x

0

e−βuu±νLν(u) du, (1.1)

where x > 0, 0 ≤ β < 1. The conditions imposed on ν were different for several
of the inequalities. Inequalities for some other closely related integrals were also
obtained. For β �= 0 there does not exist simple closed-form expressions for
the integrals in (1.1). The inequalities of [9,10] were essential in the develop-
ment of Stein’s method [6,20,23] for variance-gamma approximation [7,8,15].
Moreover, as the inequalities are simple and surprisingly accurate they may
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also prove useful in other problems involving modified Bessel functions; see for
example, [4,5] in which inequalities for modified Bessel functions are used to
obtain tight bounds for the generalized Marcum Q-function, which frequently
arises in radar signal processing.

In this paper, we address the natural problem of obtaining simple in-
equalities, involving the modified Lommel function tμ,ν(x), for the integrals

∫ x

0

e−βuu±νtμ,ν(u) du, (1.2)

where x > 0, 0 ≤ β < 1 and the conditions on μ and ν will vary from inequality
to inequality. We will also establish bounds for some closely related integrals.
Up to a multiplicative constant, the modified Lommel function tμ,ν(x) gen-
eralises the modified Struve function Lν(x) [see (1.5)], and a number of the
properties of Lν(x) that were exploited in derivations of the inequalities for
the integrals in (1.1) by [11,13] generalise in a natural manner. As such, the
bounds obtained in this paper generalise those of [11,13].

Modified Lommel functions are widely used special functions, arising in
areas of the applied sciences as diverse as the theory of steady-state tempera-
ture distribution [16], scattering amplitudes in quantum optics [25] and stress
distributions in cylindrical objects [22]; see [12] for a list of further applica-
tions. The modified Lommel function of the first kind tμ,ν(x) is defined by the
hypergeometric series

tμ,ν(x) =
xμ+1

(μ − ν + 1)(μ + ν + 1) 1F2

(
1;

μ − ν + 3
2

,
μ + ν + 3

2
;
x2

4

)

= 2μ−1Γ
(

μ−ν+1
2

)
Γ
(

μ+ν+1
2

) ∞∑
k=0

( 1
2x)μ+2k+1

Γ
(
k + μ−ν+3

2

)
Γ
(
k + μ+ν+3

2

) , (1.3)

and arises as a particular solution of the modified Lommel differential equation
[21,24]

x2f ′′(x) + xf ′(x) − (x2 + ν2)f(x) = xμ+1.

In the literature different notation is used for the modified Lommel functions;
we adopt that of [27]. The terminology modified Lommel function of the first
kind is also not standard in the literature, but has recently been adopted by
[12]. Also, [2] have used the terminology Lommel function of the first kind
for the function sμ,ν(x), which is related to the modified Lommel function of
the first kind by tμ,ν(x) = −i1−μsμ,ν(ix) (see [21,27]). From this relationship
many properties of modified Lommel functions can be inferred from those of
Lommel functions that are given in standard references, such as [1,17,19,26].

For the purposes of this paper, we follow [12] and use the following nor-
malization which will remove a number of multiplicative constants from our
calculations:
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t̃μ,ν(x) =
1

2μ−1Γ
(

μ−ν+1
2

)
Γ
(

μ+ν+1
2

) tμ,ν(x) =
∞∑

k=0

( 1
2x)μ+2k+1

Γ
(
k + μ−ν+3

2

)
Γ
(
k + μ+ν+3

2

) .

(1.4)

For ease of exposition, we shall also refer to t̃μ,ν(x) as the modified Lommel
function of the first kind. From this point on, we shall work with the function
t̃μ,ν(x). Results for tμ,ν(x) can be easily inferred. As an example, which is
relevant to the inequalities obtained in this paper, using the formula uΓ(u) =
Γ(u + 1) gives

tμ,ν(x)
t̃μ,ν(x)

= (μ + ν − 1)
tμ−1,ν−1(x)
t̃μ−1,ν−1(x)

.

We record the important special case

t̃ν,ν(x) = Lν(x). (1.5)

When β = 0 the integrals in (1.2) can be evaluated exactly in terms of the
generalized hypergeometric function. A straightforward calculation involving
simple manipulations of the formula (1.3) [followed by the normalization in
(1.4)], yields∫ x

0

uαt̃μ,ν(u) du =
xμ+α+2

2μ+1(μ + α + 2)Γ
(

ν−ν+3
2

)
Γ
(

μ+ν+3
2

)

× 2F3

(
1,

μ + α + 2
2

;
μ − ν + 3

2
,
μ + ν + 3

2
,
μ + α + 4

2
;
x2

4

)
,

(1.6)

where we require μ + α > −2 for the integral to exist. When β �= 0 a more
complicated formula is available:∫ x

0

e−βuu±ν t̃μ,ν(u) du

=
∞∑

k=0

2−μ−2k−1β−2k−μ∓ν−2

Γ
(
k + μ−ν+3

2

)
Γ
(
k + μ+ν+3

2

)γ(μ ± ν + 2k + 2, βx),

where γ(a, x) =
∫ x

0
ua−1e−u du is the lower incomplete gamma function, and

we require μ ± ν > −2 for the integral to exist. These complicated formulas
provide the motivation for establishing simple bounds, involving the modified
Lommel function t̃μ,ν(x) itself, for the integrals in (1.2).

The approach taken in this paper to bound the integrals in (1.2) is similar
to that used by [11,13] to bound the corresponding integrals involving the
modfied Struve function Lν(x), and the inequalities obtained in this paper
generalise those of [11,13] in a natural manner. In spite of their simple form,
in most cases, the bounds obtained in this paper will be tight in certain limits.

As already noted, the properties of the modified Struve function Lν(x)
that were exploited in the proofs of [11,13] are shared by the modified Lommel
function t̃μ,ν(x), which we now list. With the exception of the differentiation
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formula (1.9) (see [21]), the following basic properties can all be found in [12].
For x > 0, the function t̃μ,ν(x) is positive if μ − ν ≥ −3 and μ + ν ≥ −3. The
function t̃μ,ν(x) satisfies the recurrence relations and differentiation formula

t̃μ−1,ν−1(x) − t̃μ+1,ν+1(x) =
2ν

x
t̃μ,ν(x) + aμ,ν(x), (1.7)

t̃μ−1,ν−1(x) + t̃μ+1,ν+1(x) = 2t̃′μ,ν(x) − aμ,ν(x), (1.8)
d
dx

(
xν t̃μ,ν(x)

)
= xν t̃μ−1,ν−1(x), (1.9)

where aμ,ν(x) = (x/2)μ

Γ( μ−ν+1
2 )Γ( μ+ν+3

2 )
. We shall also need another differentation

formula that is not given in [12] or [21]. With the aid of (1.7) and (1.8) we
obtain

d
dx

(
t̃μ,ν(x)

xν

)
= − ν

xν+1
t̃μ,ν(x) +

1
xν

t̃′μ,ν(x)

= − 1
xν

(
t̃μ−1,ν−1(x) − t̃μ+1,ν+1(x) − aμ,ν(x)

)

+
1
xν

(
t̃μ−1,ν−1(x) + t̃μ+1,ν+1(x) + aμ,ν(x)

)

=
t̃μ+1,ν+1(x)

xν
+

aμ,ν(x)
xν

. (1.10)

The function t̃μ,ν(x) has the following asymptotic properties [12]:

t̃μ,ν(x) ∼ ( 1
2x)μ+1

Γ
(

μ−ν+3
2

)
Γ
(

μ+ν+3
2

)
(

1 +
x2

(μ + 3)2 − ν2

)
, x ↓ 0, μ > −3, |ν| < μ + 3,

(1.11)

t̃μ,ν(x) ∼ ex

√
2πx

(
1 − 4ν2 − 1

8x
+

(4ν2 − 1)(4ν2 − 9)

128x2

)
, x → ∞, μ, ν ∈ R. (1.12)

Let x > 0, μ > − 1
2 and 1

2 ≤ ν < μ + 1. Then

t̃μ,ν(x) < t̃μ−1,ν−1(x). (1.13)

This inequality was obtained by [12], and generalises an inequality of [3] for the
modified Struve function Lν(x). For other functional inequalities and mono-
tonicity results involving modified Lommel functions of the first kind see [18].

2. Inequalities for Integrals of Modified Lommel Functions

The inequalities in the following two theorems for integrals of the type∫ x

0
e−βuuν t̃μ,ν(u) du and

∫ x

0
e−βuu−ν t̃μ,ν(u) du generalise the inequalities of

Theorem 2.1 of [11] and Theorem 2.1 of [13] for analogous integrals involving
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the modified Struve function of the first kind. Before stating the theorems, we
introduce the notation

aμ,ν,n =
n + 1

2μ+n+1(2ν + n + 1)(μ + ν + n + 2)Γ
(

μ−ν+1
2

)
Γ
(

μ+ν+2n+5
2

) ,

bμ,ν,n =
2ν + n + 1

2μ+n+2(μ − ν + n + 2)(ν + n + 1)Γ
(

μ−ν+1
2

)
Γ
(

μ+ν+2n+5
2

) ,

cμ,ν,n =
(2ν + n + 1)(2ν + n + 3)

2μ+n+4(n + 1)(μ − ν + n + 4)(ν + n + 3)Γ
(

μ−ν+1
2

)
Γ
(

μ+ν+2n+9
2

) ,

dμ,ν,n =
2ν + n + 1

2μ+n+1(n + 1)(μ − ν + n + 2)Γ
(

μ−ν+1
2

)
Γ
(

μ+ν+2n+5
2

) .

Theorem 2.1. Let n > −1 and 0 ≤ β < 1. Then, for all x > 0,∫ x

0
e−βuuν t̃μ+n,ν+n(u) du > e−βxxν t̃μ+n+1,ν+n+1(x),

μ > − 1
2 (n + 5), −n − μ − 2 < ν ≤ μ + 3, (2.1)∫ x

0
uν t̃μ,ν(u) du < xν t̃μ,ν(x), μ > − 1

2 , 1
2 ≤ ν < μ + 1, (2.2)

∫ x

0
uν t̃μ+n,ν+n(u) du <

xν

2ν + n + 1

(
2(ν + n + 1)t̃μ+n+1,ν+n+1(x)

− (n + 1)t̃μ+n+3,ν+n+3(x)

)
− aμ,ν,nxμ+ν+n+2,

μ > − 1
2 (n + 3), − 1

2 (n + 1) < ν < μ + 1, (2.3)∫ x

0
e−βuuν t̃μ,ν(u) du ≤ e−βx

1 − β

∫ x

0
uν t̃μ,ν(u) du, μ > − 1

2 , 1
2 ≤ ν < μ + 1, (2.4)

∫ x

0
e−βuuν t̃μ,ν(u) du <

e−βxxν

(2ν + 1)(1 − β)

(
2(ν + 1)t̃μ+1,ν+1(x) − t̃μ+3,ν+3(x)

)

− aμ,ν,nxμ+ν+n+2, μ > − 1
2 , 1

2 ≤ ν < μ + 1, (2.5)∫ x

0
e−βuuν+1 t̃μ,ν(u) du ≥ e−βxxν+1 t̃μ+1,ν+1(x), μ > −3, |ν| < μ + 3, (2.6)

∫ x

0
e−βuuν+1 t̃μ,ν(u) du ≤ 1

1 − β
e−βxxν+1 t̃μ+1,ν+1(x), μ > − 3

2 , − 1
2 ≤ ν < μ + 1.

(2.7)

We have equality in (2.4), (2.6) and (2.7) if and only if β = 0. Inequalities
(2.2)–(2.7) are tight as x → ∞, and inequalities (2.3) and (2.6) are also tight
as x ↓ 0. Inequality (2.1) is tight as x → ∞ if β = 0. Inequalities (2.1) and
(2.6) hold for all β ≥ 0.

Proof. We prove inequalities (2.1)–(2.7), before verifying that they are tight
in certain limits.

(i) Let us first prove inequality (2.1). The conditions on μ, ν and n imply
that μ + ν + n > −2, and so the integral exists. The conditions also imply
that μ − ν ≥ −3 and μ + ν + 2n ≥ −3, and therefore t̃μ+n,ν+n(x) > 0 for all
x > 0. (The conditions on μ, ν and n for the other inequalities will also always
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guarantee that the integrals exist and that the modified Lommel functions are
positive for all x > 0, and we will not comment on this further in the proof of
these inequalities.) Now, since β ≥ 0 and n > −1, on using the differentiation
formula (1.9) we have

∫ x

0

e−βuuν t̃μ+n,ν+n(u) du =
∫ x

0

e−βu 1
un+1

uν+n+1t̃μ+n,ν+n(u) du

>
e−βx

xn+1

∫ x

0

uν+n+1t̃μ+n,ν+n(u) du

= e−βxxν t̃μ+n+1,ν+n+1(x),

as by (1.11) we have limx↓0 xν+n+1t̃μ+n+1,ν+n+1(x) = 0 if μ + ν + n > −2.

(ii) Using inequality (1.13) (which is valid for μ > − 1
2 , 1

2 ≤ ν < μ + 1)
and then applying (1.9) gives the inequality

∫ x

0

uν t̃μ,ν(u) du <

∫ x

0

uν t̃μ−1,ν−1(u) du = xν t̃μ,ν(x).

(iii) Let us first note that an application of the differentiation formula
(1.9) and the relation (1.7) gives that

d
du

(
uν t̃μ+n+1,ν+n+1(u)

)
=

d
du

(u−(n+1) · uν+n+1t̃μ+n+1,ν+n+1(u))

= uν t̃μ+n,ν+n(u) − (n + 1)uν−1t̃μ+n+1,ν+n+1(u)

= uν t̃μ+n,ν+n(u) − n + 1
2(ν + n + 1)

uν t̃μ+n,ν+n(u)

+
n + 1

2(ν + n + 1)
uν t̃μ+n+2,ν+n+2(u)

+ (n + 1)uν−1 · u

2(ν + n + 1)
aμ+n+1,ν+n+1(u)

=
2ν + n + 1

2(ν + n + 1)
uν t̃μ+n,ν+n(u) +

n + 1
2(ν + n + 1)

uν t̃μ+n+2,ν+n+2(u)

+
n + 1

2(ν + n + 1)
uνaμ+n+1,ν+n+1(u).

Now, on integrating both sides over (0, x), applying the fundamental theorem
of calculus and rearranging we obtain
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∫ x

0

uν t̃μ+n,ν+n(u) du

=
2(ν + n + 1)
2ν + n + 1

xν t̃μ+n+1,ν+n+1(x) − n + 1
2ν + n + 1

∫ x

0

uν t̃μ+n+2,ν+n+2(u) du

− n + 1
2ν + n + 1

∫ x

0

uνaμ+n+1,ν+n+1(u) du

=
2(ν + n + 1)
2ν + n + 1

xν t̃μ+n+1,ν+n+1(x) − n + 1
2ν + n + 1

∫ x

0

uν t̃μ+n+2,ν+n+2(u) du

− aμ,ν,nxμ+ν+n+2.

As the conditions on ν and n ensure that n+1
2ν+n+1 > 0, using inequality (2.1)

with β = 0 to bound the integral on the right hand-side of the above expression
then gives inequality (2.3).

(iv) Integration by parts and an application of inequality (2.2) gives

∫ x

0

e−βuuν t̃μ,ν(u) du = e−βx

∫ x

0

uν t̃μ,ν(u) du + β

∫ x

0

e−βu

( ∫ u

0

yν t̃μ,ν(y) dy

)
du

< e−βx

∫ x

0

uν t̃μ,ν(u) du + β

∫ x

0

e−βuuν t̃μ,ν(u) du,

and on rearranging we have inequality (2.4).
(v) Combine parts (iii) and (iv).
(vi) Since β ≥ 0, we have

∫ x

0

e−βuuν+1t̃μ,ν(u) du ≥ e−βx

∫ x

0

uν+1t̃μ,ν(u) du = e−βxxν+1t̃μ+1,ν+1(x),

with equality if and only if β = 0.
(vii) Let us consider the function

v(x) =
1

1 − β
e−βxxν+1t̃μ+1,ν+1(x) −

∫ x

0

e−βuuν+1t̃μ,ν(u) du.

We prove the result by arguing that v(x) ≥ 0 for all x > 0. Using the differen-
tiation formula (1.9) followed by inequality (1.13) we have that

v′(x) =
1

1 − β
e−βxxν+1

(
t̃μ,ν(x) − βt̃μ+1,ν+1(x)

) − e−βxxν+1t̃μ,ν(x)

=
β

1 − β
e−βxxν+1

(
t̃μ,ν(x) − t̃μ+1,ν+1(x)

) ≥ 0,



7 Page 8 of 15 R. E. Gaunt Results Math

and therefore v is a non-decreasing function of x on (0,∞) Also, from (1.11),
as x ↓ 0,

v(x) ∼ 1
1 − β

xμ+ν+3

2μ+2Γ
(

μ−ν+3
2

)
Γ
(

μ+ν+5
2

) −
∫ x

0

uμ+ν+2

2μ+1Γ
(

μ−ν+3
2

)
Γ
(

μ+ν+3
2

) du

=
1

1 − β

xμ+ν+3

2μ+2Γ
(

μ−ν+3
2

)
Γ
(

μ+ν+5
2

) − xμ+ν+3

2μ+1(μ + ν + 3)Γ
(

μ−ν+3
2

)
Γ
(

μ+ν+3
2

)

=
β

1 − β

xμ+ν+3

2μ+2Γ
(

μ−ν+3
2

)
Γ
(

μ+ν+5
2

) ≥ 0. (2.8)

Therefore v(x) ≥ 0 for all x > 0, as required. Clearly, the above argument
shows that if 0 < β < 1 then v(x) > 0 for all x > 0.

(viii) Finally, we establish the tightness of the inequalities as described
in the statement of the theorem. To this end, we note that a straightforward
asymptotic analysis using (1.12) gives that, for 0 ≤ β < 1 and μ+ν +n > −2,∫ x

0

e−βuuν t̃μ+n,ν+n(u) du ∼ 1√
2π(1 − β)

xν− 1
2 e(1−β)x, x → ∞, (2.9)

and we also have

e−βxxν t̃μ+n,ν+n(x) ∼ 1√
2π

xν− 1
2 e(1−β)x, x → ∞. (2.10)

From (2.9) and (2.10) it is readily seen that inequalities (2.2)–(2.7) are tight
as x → ∞, and that this is also so for (2.1) if β = 0.

Setting in β = 0 in (2.8) shows that (2.6) is tight as x ↓ 0. It now remains
to prove that (2.3) is tight as x ↓ 0. From (1.11), we have that, as x ↓ 0,

LHS =
∫ x

0

uν t̃μ+n,ν+n(u) du ∼
∫ x

0

uμ+ν+n+1

2μ+n+1Γ
(

μ−ν+3
2

)
Γ
(

μ+ν+2n+3
2

) du

=
xμ+ν+n+2

2μ+n+1(μ + ν + n + 2)Γ
(

μ−ν+3
2

)
Γ
(

μ+ν+2n+3
2

) ,

and

RHS ∼ xν

2ν + n + 1
· 2(ν + n + 1)xμ+n+2

2μ+n+2Γ
(

μ−ν+3
2

)
Γ
(

μ+ν+2n+5
2

)

− (n + 1)xμ+ν+n+2

2μ+n+1(2ν + n + 2)Γ
(

μ−ν+1
2

)
Γ
(

μ+ν+2n+5
2

)

=
(μ + ν + 2n + 3)xμ+ν+n+2

2ν+n+2(μ + ν + n + 2)Γ
(

μ−ν+3
2

)
Γ
(

μ+ν+2n+5
2

)

=
xμ+ν+n+2

2μ+n+1(μ + ν + n + 2)Γ
(

μ−ν+3
2

)
Γ
(

μ+ν+2n+3
2

) ,

as we required. �
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Theorem 2.2. Let 0 < β < 1 and n > −1. Then, for all x > 0,
∫ x

0

t̃μ,ν(u)

uν
du >

t̃μ,ν(x)

xν
− xμ−ν+1

2μ+1Γ
(

μ−ν+3
2

)
Γ
(

μ+ν+3
2

) , (2.11)

∫ x

0

t̃μ+n,ν+n(u)

uν
du >

t̃μ+n+1,ν+n+1(x)

xν
− bμ,ν,nxn+2, (2.12)

∫ x

0

t̃μ+n,ν+n(u)

uν
du <

2(ν + n + 1)

n + 1

t̃μ+n+1,ν+n+1(x)

xν
− 2ν + n + 1

n + 1

t̃μ+n+3,ν+n+3(x)

xν

+ cμ,ν,nxμ−ν+n+4 − dμ,ν,nxμ−ν+n+2, (2.13)
∫ x

0
e−βu t̃μ,ν(u)

uν
du >

1

1 − β

(
e−βx

∫ x

0

t̃μ,ν(u)

uν
du − β−(μ−ν+1)γ(μ − ν + 2, βx)

2μ+1Γ
(

μ−ν+3
2

)
Γ
(

μ+ν+3
2

)
)

,

(2.14)
∫ x

0
e−βu t̃μ,ν(u)

uν
du >

1

1 − β

(
e−βx t̃μ,ν(x)

xν
− (βx)μ−ν+1 + γ(μ − ν + 2, βx)

2μ+1βμ−ν+1Γ
(

μ−ν+3
2

)
Γ
(

μ+ν+3
2

)
)

.

(2.15)

Inequalities (2.11), (2.14) and (2.15) hold for μ > − 3
2 , − 1

2 ≤ ν < μ + 1, and
inequalities (2.12) and (2.13) are valid for ν > − 1

2 (n + 3), − 1
2 (n + 1) < ν <

μ + 1. We have equality in (2.12) and (2.13) if 2ν + n = −1. Inequalities
(2.11)–(2.15) are tight as x → ∞ and inequality (2.13) is also tight as x ↓ 0.
Here γ(a, x) =

∫ x

0
ua−1e−u du is the lower incomplete gamma function.

Proof. We restrict out attention to proving the inequalities; proving that the
bounds are tight in the limits x ↓ 0 and x → ∞ is similar to that carried out
in the proof of Theorem 2.1 and we omit the analysis. Also, we note that the
conditions on μ, ν and n ensure that the integrals in all inequalities exist and
are positive, and will also allow us to use inequality (1.13) when needed. As in
the proof of Theorem 2.1, we do not comment on this further.

(i) Applying inequality (1.13) gives
∫ x

0

t̃μ,ν(u)
uν

du >

∫ x

0

t̃μ+1,ν+1(u)
uν

du =
t̃μ,ν(x)

xν
− xμ−ν+1

2μ+1Γ
(

μ−ν+3
2

)
Γ
(

μ+ν+3
2

) ,

where we evaluated the integral using the differentiation formula (1.9) and the
limiting form (1.11).

(ii) The assertion that there is equality in (2.12) and (2.13) when 2ν+n =
−1 follows because both these upper and lower bounds (which we now prove)
are then equal. Suppose now that 2ν + n > −1, and consider the function

w(x) =
∫ x

0

t̃μ+n,ν+n(u)
uν

du − t̃μ+n+1,ν+n+1(x)
xν

+ bμ,ν,nxμ−ν+n+2.

We prove that w(x) > 0 for all x > 0, which will give the result. Let us first
note that using the differentiation formula (1.9) followed by the relation (1.7)
gives that
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d
dx

(
t̃μ+n+1,ν+n+1(x)

xν

)
=

d
dx

(
xn+1 · t̃μ+n+1,ν+n+1(x)

xν+n+1

)

= (n + 1)
t̃μ+n+1,ν+n+1(x)

xν+1
+

t̃μ+n+2,ν+n+2(x)
xν

+
aμ+n+1,ν+n+1(x)

xν

=
n + 1

2(ν + n + 1)

(
t̃μ+n,ν+n(x)

xν
− t̃μ+n+2,ν+n+2(x)

xν
− aμ+n+1,ν+n+1(x)

xν

)

+
t̃μ+n+2,ν+n+2(x)

xν
+

aμ+n+1,ν+n+1(x)
xν

=
n + 1

2(ν + n + 1)
t̃μ+n,ν+n(x)

xν
+

2ν + n + 1
2(ν + n + 1)

t̃μ+n+2,ν+n+2(x)
xν

+ (μ − ν + n + 2)bμ,ν,nxμ−ν+n+1. (2.16)

Therefore

w′(x) =
2ν + n + 1

2(ν + n + 1)

(
t̃μ+n,ν+n(x)

xν
− t̃μ+n+2,ν+n+2(x)

xν

)
> 0,

where we applied (1.13) to obtain the inequality. Also, from (1.11) we have,
as x ↓ 0,

w(x) ∼
∫ x

0

un+1

√
π2ν+nΓ(ν + n + 3

2 )
du − xn+2

√
π2ν+n+1Γ(ν + n + 5

2 )
+ bμ,ν,nxμ−ν+n+2

=
xn+2

√
π2ν+n(n + 2)Γ(n + ν + 3

2 )
− xn+2

√
π2ν+n+1Γ(ν + n + 5

2 )
+ bμ,ν,nxμ−ν+n+2

=
xn+2

√
π2ν+nΓ(ν + n + 3

2 )

(
1

n + 2
− 1

2(ν + n + 3
2 )

)
+ bμ,ν,nxμ−ν+n+2 > 0,

where the inequality holds because ν > − 1
2 (n + 1). Putting this together, we

conclude that w(x) > 0 for all x > 0, as we required.
(iii) On integrating both sides of (2.16) over (0, x), applying the funda-

mental theorem of calculus and rearranging we obtain

∫ x

0

t̃μ+n,ν+n(u)
uν

du =
2(ν + n + 1)

n + 1
t̃μ+n+1,ν+n+1(x)

xν

− 2ν + n + 1
n + 1

∫ x

0

t̃μ+n+2,ν+n+2(u)
uν

du

− 2ν + n + 1
n + 1

∫ x

0

(μ − ν + n + 2)bμ,ν,nuμ−ν+n+1 du.

Inequality (2.12) now follows on evaluating the second integral on the right
hand-side of the above expression and using inequality (2.12) to bound the
first integral.
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(iv) Integration by parts and inequality (2.11) gives that∫ x

0

e−βu t̃μ,ν(u)
uν

du = e−βx

∫ x

0

t̃μ,ν(u)
uν

du + β

∫ x

0

e−βu

( ∫ u

0

t̃μ,ν(y)
yν

dy

)
du

> e−βx

∫ x

0

t̃μ,ν(u)
uν

du + β

∫ x

0

e−βu t̃μ,ν(u)
uν

du

− β

∫ x

0

uμ−ν+1e−βu

2μ+1Γ
(

μ−ν+3
2

)
Γ
(

μ+ν+3
2

) du,

whence on rearranging and recognising the final integral as a lower incomplete
gamma function we obtain inequality (2.13).

(v) Combine parts (i) and (iv). �
We end with an example of how one can combine the inequalities of

Theorems 2.1 and 2.2 and the integral formula (1.6) to obtain lower and upper
bounds for a generalized hypergeometric function.

Corollary 2.3. Let μ > − 3
2 , − 1

2 < ν < μ + 1. Then, for all x > 0,

t̃μ+1,ν+1(x) <
xμ+2

2μ+1(μ + ν + 2)Γ
(

ν−ν+3
2

)
Γ
(

μ+ν+3
2

)

× 2F3

(
1,

μ + ν + 2
2

;
μ − ν + 3

2
,
μ + ν + 3

2
,
μ + ν + 4

2
;
x2

4

)

< t̃μ+1,ν+1(x)
{

1 +
1

2ν + 1

(
1 − t̃μ+3,ν+3(x)

t̃μ+1,ν+1(x)

)}
− aμ,ν,0x

μ+2.

Proof. Apply inequalities (2.1) and (2.3) (with β = n = 0) of Theorem 2.1 to
the integral formula (1.6) (with α = ν). �
Remark 2.4. We know from Theorem 2.1 that the double inequality in Corol-
lary 2.3 is tight in the limit ν → ∞, and that the the upper bound is tight at
x ↓ 0. The double inequality is also clearly tight as ν → ∞.

To gain further insight into the approximation, we obtained some numer-
ical results using Mathematica. Let Lμ,ν(x) and Uμ,ν(x) denote the lower and
upper bounds in the double inequality and let Fμ,ν(x) denote the expression
involving the generalized hypergeometric function which is bounded by these
quantities. We considered three cases of μ − ν = k, k = −0.5, 2, 5, and in
each case took ν = 0, 1, 2.5, 5, 10. (Tables for the case μ = ν can be found
in [11].) The relative error in approximating Fμ,ν(x) by Lμ,ν(x) and Uμ,ν(x)
are reported in Tables 1 and 2. For a given x and μ, we observe that the
relative error in approximating Fμ,ν(x) by either Lμ,ν(x) or Uμ,ν(x) decreases
as ν increases. We also notice that, for a given μ and ν, the relative error in
approximating Fμ,ν(x) by Lμ,ν(x) decreases as x increases. Although, from
Table 2 we see that, for a given μ and ν, as x increases the relative error in
approximating Fμ,ν(x) by Uμ,ν(x) initially increases before decreasing. Finally,
we observe that the bounds are most accurate in the case μ − ν = −0.5.
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