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1. Introduction

Let V denote the Sierpiński gasket in R
N−1, N ≥ 2, V0 its intrinsic boundary,

Δ the weak Laplacian on V and μ the restriction to V of the normalized
log N/log 2-dimensional Hausdorff measure, so that μ(V ) = 1. We assume
that

A a ∈ L1(V, μ), with a ≤ 0 almost everywhere in V or else∫
V

|a (y)| dμ <
1

(2N + 3)2
. (1.1)

Denote by Σ ⊂ R a fixed closed interval and

LΣ :=
{
w ∈ L2(V, μ) : w (y) ∈ Σ for a.e. y ∈ V

}
.

The aim of this note is investigate the dependence on parameters for mountain
pass solutions of solutions of problems on the fractal setting. Namely, we are
interested in the following problem subject to a parameter w ∈ LΣ{

Δu(y) + a(y)u(y) = f(y, u(y), w(y)) for a.e. y ∈ V \V0,
u|V0 = 0,

(1.2)
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where f : V ×R×Σ → R is a continuous function with some growth conditions
which we will formulate later.

The scheme which we apply can be summarized as follows: corresponding
to a sequence of parameters there exists a sequence of solutions. Supposing that
the sequence of parameters is convergent we arrive at the limit of a subsequence
selected from a sequence of solutions; this limit is a solution to the considered
problem and it corresponds to the limit of a sequence of parameters. Any
solution we investigate is reached via mountain pass approach apart from the
limit solution which need not have mountain geometry. It seems the outcome
would not put any new information on the solution. However, we prove that it
is a nontrivial solution to the problem under consideration whose localization
is known.

The approach towards investigation of a dependence on a functional pa-
rameter for solutions of ODE in case of coercive action functional originates
for example from [14]. It was further generalized to the case of solutions ob-
tained through mountain pass technique in [4] but the method applied there
is rather complicated while it provides that the limit solution is also reached
by the mountain geometry. Our approach does not involve the investigation of
action functional or operators for its dependence on a parameter. Instead we
show that it suffice to investigate the equations itself and apply some version of
the iterative technique. We have already undertaken investigations concerning
dependence on parameters for mountain pass solutions in [10] however only for
discrete problem. We used some results in the area of differential equations,
[12,20] in order to combine the critical point approach using the mountain
pass lemma in the discrete setting with some iterative technique. Now since we
work in an infinite dimensional Banach space, the approach must be suitably
modified. We would like to note that our results are new also for differential
equations considered on classical domains.

The Sierpiński gasket has its origin in a paper by Sierpiński [17]. In two
dimensions, this fractal domain can be described as the subset of the plane ob-
tained from an equilateral triangle by removing first the open middle inscribed
equilateral triangle of 1/4 of the area, then removing the corresponding open
triangle from each of the three constituent triangles and iterating this proce-
dure. It can also be viewed as the closure of the set of vertices arising in this
construction.

The background contributions to the theory of boundary value problems
for nonlinear elliptic equations on fractals are [5,8,9]. For the complete analysis
we refer to [13,18]. Recently existence and multiplicity results were obtained
by a number of variational methods and critical point theory in [1,2,6,16].

We recall some basic tools which we use from the critical point theory,
see [15,21]. Let E be a real reflexive Banach space and J : E → R. We say that
J satisfies Palais–Smale condition (PS) condition for short- if for any sequence
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(un) ⊂E, such that (J(un)) is bounded and J
′
(un) → 0 as n → ∞, there

exists a convergent subsequence.

Lemma 1 (Mountain pass lemma). Assume that J ∈ C1(E,R) and that J
satisfies (PS) condition. Suppose also that

1. J(0) = 0;
2. there exist ρ > 0 and α > 0 such that J(u) ≥ α for all u ∈ E with

‖u‖ = ρ;
3. there exist u1 in E with ‖u1‖ > ρ such that J(u1) < α.

Then J has a critical value c ≥ α. Moreover, c can be characterized as

inf
g∈Γ

max
t∈[0,1]

J(u (t)),

where Γ = {g ∈ C([0, 1], E) : g(0) = 0, g(1) = u1}.
For checking the (PS) condition the following result is of use

Theorem 1. Let J ∈ C1(E,R). Suppose that

J
′
(u) = Lu + K(u),

where L is an invertible linear continuous operator and K is a compact op-
erator. Suppose also that any (PS) sequence for J is bounded in E. Then, J
satisfies the (PS) condition.

2. Fractal and Variational Framework

In this section we describe the functional setting of problem (1.2) following [6]
where we also refer to some more detailed description.

Denote now by C(V ) the space of continuous functions on V and by

C0(V ) := {u ∈ C(V ) : u|V0 = 0};

endowed with supremum norm ‖·‖∞.
For u : V → R and n ∈ N, set

Wn(u) :=
(

N + 2
N

)n ∑
x,y∈Vn

|x−y|=2−n

(u(x) − u(y)) (u(x) − u(y))

and define W (u) := limn→∞ Wn(u). Put

H1
0 (V ) := {u ∈ C0(V ) : W (u) < ∞}.

Then H1
0 (V ) is a dense linear subset of L2(V, μ) endowed with a norm

‖u‖ :=
√

W (u).
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Such a norm is generated by the inner product W(u, v) := limn→∞ Wn(u, v),
where

Wn(u, v) :=
(

N + 2
N

)n ∑
x,y∈Vn

|x−y|=2−n

(u(x) − u(y)) (v(x) − v(y))

for any u, v ∈ H1
0 (V ), n ∈ N, and H1

0 (V ) is a real Hilbert space.
For every u ∈ H1

0 (V ), the following inequality holds

‖u‖∞ ≤ (2N + 3)‖u‖H1
0 (V ), (2.1)

and the following embedding is compact

(H1
0 (V ), ‖ · ‖) ↪→ (C0(V ), ‖ · ‖∞). (2.2)

Now, let Z be a linear subset of H1
0 (V ) which is dense in L2(V, μ). Then,

in [9] it is defined a linear, bijective, self-adjoint operator Δ : Z → L2(V, μ),
the weak Laplacian on V , such that

− W(u, v) =
∫

V

Δu · vdμ, (2.3)

for every (u, v) ∈ Z×H1
0 (V ). Indeed, if H−1(V ) denotes the closure of L2(V, μ)

with respect to the pre-norm

‖u‖−1 = sup
h∈H1

0 (V )
‖h‖=1

∣∣∣∣
∫

V

u (y) h (y) dμ

∣∣∣∣ , u ∈ L2(V, μ),

then the relation (2.3) uniquely defines a function Δu ∈ H−1(V ) for every
u ∈ H1

0 (V ).

Remark 1. Following [3] we observe that the norm

‖u‖1 :=
(

W(u, u) −
∫

V

a(y)u2 (y) dμ

)1/2

,

is equivalent to
√

W (u) in H1
0 (V ). We have√

1−(2N+3)2
∫

V

|a (y)| dμ‖u‖≤‖u‖1 ≤
√(

1+(2N+3)2
∫

V

|a (y)| dμ

)
‖u‖.

3. The Assumptions and Auxiliary Lemmas

Let F (y, u, w) =
∫ u

0
f(y, s, w)ds for (y, u, w) ∈ V ×R×Σ and observe that the

integration is with respect to the second variable which is real while (y, w) ∈
V × Σ are held fixed. We will employ the following assumptions.
H1 There exist constants c > 0 and r > 2 such that

|f(y, u, w)| ≤ c(1 + |u|r−1), for all y ∈ V, u ∈ R, w ∈ Σ;

H2 limx→0
f(y,x,w)

|x| = 0 uniformly for all y ∈ V , w ∈ Σ;
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H3 there exists a constant θ > 2 such that

uf(y, u, w) ≤ θF (y, u, w) < 0, for all y ∈ V, u ∈ R\ {0} , w ∈ Σ;

H4 there exist constants c1, c2 > 0 such that

F (y, u, w) ≤ −c1|u|θ + c2, for all y ∈ V, u ∈ R, w ∈ Σ.

Concerning the above assumptions a few remarks are in order.

Remark 2. Note that H2 implies assumption employed in [9]:
H2’ there are positive constants M1, β such that

max
y∈V,|v|≤M1,w∈Σ

|f(y, v, w)| ≤ M1

2 (β + 1) (2N + 3)2
. (3.1)

Moreover, instead of H3 we may impose a slightly weaker assumption
H3’ there exist a constant θ > 2 and a constant M > 0 such that

uf(y, u, w) ≤ θF (y, u, w) < 0, for all y ∈ V, |u| > M, w ∈ Σ.

We would obtain same results as here however with some minor technical
changes.

Remark 3. It is well known, see for example [19], that when functions f , F do
not depend on an additional parameter then from H3 it follows that there are
constants c1, c2 > 0 such that

F (y, u) ≤ −c1|u|θ + c2, for all y ∈ V, u ∈ R.

This is not the case with parameter dependence. Let θ = 4 and define f (u,w) =
−4u3 exp

(−w2
)

which satisfies H1–H3 and does not satisfy H4. We see that
F (u,w) = u4 exp

(−w2
)

and for any positive constants c1, c2 > 0 there exist
u,w ∈ R such that

F (u,w) ≥ −c1|u|4 + c2. (3.2)

When c1 > 1, c2 > 0 we take u =
(

c2
c1−1 + 1

) 1
4

, w = 0 so that to obtain (3.2).

When c1 ≤ 1, c2 > 0 we can find n ∈ N such that 1
c1

< n. We obtain (3.2)
putting

u = (c2n + 1)
1
4 , w =

(
ln

(
c1 − 1

n

)−1
) 1

2

.

Assume that w ∈ LΣ is fixed to the end of this section if it is not said
otherwise. We can derive the existence result for (1.2) from the main result
contained in [9]. We put however here a different proof leading to the (PS)
condition.

Theorem 2. The action functional Iw : H1
0 (V ) → R given by

Iw(u) =
1
2
‖u‖2

1 +
∫

V

F (y, u(y), w(y))dμ
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is continuously differentiable and its critical points correspond to weak solu-
tions to (1.2). For any h ∈ H1

0 (V )

I ′
w(u)(h) = W(u, h) −

∫
V

a(y)u(y)h(y)dμ +
∫

V

f(y, u(y), w(y))h(y)dμ.

We have the following simple proof of Proposition 2.24 from [9] which we
restate below in an equivalent form.

Proposition 1. If (un) ⊂ H1
0 (V ) is a Palais–Smale sequence for the functional

Iw and if it is bounded, then (un) is a Cauchy sequence, i.e. it is convergent.

Proof. Consider a continuously differentiable functional J1 : H1
0 (V ) → R de-

fined as

J1 (u) =
∫

V

F (y, u(y), w(y))dμ.

Then for any h ∈ H1
0 (V )

J ′
1(u)(h) =

∫
V

f(y, u(y), w(y))h(y)dμ.

Take a sequence (un) ⊂ H1
0 (V ) weakly convergent to some u0. Then (un)

is also uniformly convergent. By the Lebesgue Dominated Convergence The-
orem we reach that J

′
1 is a compact operator. Since the weak Laplacian

(−Δ) : H1
0 (V ) → H−1(V ) defines a linear invertible operator, we see that

the assumptions of Theorem 1 are now fulfilled. �

Lemma 2. Assume that H2, H3 are satisfied. Then functional Iw satisfies the
(PS) condition.

Proof. Suppose that |Iw (un)| ≤ b and limn→∞ I
′
w (un) = 0. Since for any n

I
′
w (un) un = ‖un‖1 +

∫
V

f(y, un(y), w(y))un(y)dμ,

then we see that for sufficiently large n

b +
1
θ
‖un‖1 ≥ Iw (un) − 1

θ
I

′
w (un) un

=
(

1
2

− 1
θ

)
‖un‖1 +

1
θ

∫
V

(θF (y, un(y), w(y)) − f(y, un(y), w(y)) un(y))dμ.

By H3, we have∫
V

(θF (y, un(y), w(y)) − f(y, un(y), w(y))un(y)) dμ ≥ 0

Since 1
2 − 1

θ > 0 we see that (un) is bounded in H1
0 (V ). Thus we get the

assertion by Proposition 1. �

Similarly to the proof in [9] we have
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Theorem 3. Assume that H2, H3, H4 are satisfied. Then problem (1.2) has
at least one nontrivial weak solution.

Now we adapt a result on continuity of the Niemytskij operator taken
from [11] to the case of our fractal setting.

Theorem 4. If for any sequences (uk) ⊂ L2 (V, μ) , (wk) ⊂ LΣ, convergent to
u ∈ L2 (V, μ) , w ∈ L2 (V, μ) , respectively, there exists a function h ∈ L2 (V, μ)
such that

|f (y, uk (y) , wk (y))| ≤ h (y) , for k ∈ N and a.e. y ∈ V, (3.3)

then the Niemytskij operator induced by f

Nf : L2 (V, μ) × L2 (V, μ) 	 (u (·) , w (·)) 
−→ f (·, u (·) , w (·)) ∈ L2 (V, μ) ,

is well defined and continuous.

Proof. Operator Nf is well defined by (3.3). By the assumptions both se-
quences have subsequences convergent almost everywhere, we denote them by
the same symbol. By the continuity of f we obtain that for a.e. y ∈ V

f (y, uk (y) , wk (y)) → f (y, u (y) , w (y))

Thus |f (y, u (y) , w (y))| ≤ h (y) for a.e. y ∈ V . Using (3.3) we obtain

|f (y, uk (y) , wk (y)) − f (y, u (y) , w (y))|2 ≤ 4h2 (y)

for a.e. y ∈ V . Now by the Lebesgue Dominated Convergence Theorem we
obtain

lim
k→∞

∫
Ω

|f (y, uk (y) , wk (y)) − f (y, u (y) , w (y))|2 dμ = 0.

�

4. Dependence on Parameters for (1.2)

We begin with providing some estimations on solutions which lead to the fact
that the limit solution is also non-trivial. We underline that the limit solution
need not be obtained via the mountain geometry and therefore it must be
proved that this is nontrivial.

Theorem 5. Assume that conditions H1–H4 hold. Then, there exist constants
C1, C2 > 0 such that for any w ∈ LΣ problem (1.2) has at least one nonzero
solution uw satisfying

C1 ≤ ||uw||1 ≤ C2. (4.1)

Proof. Let us fix w ∈ L2 (V, μ). By Theorem 3 there exists 0 �= u∗
w ∈ E and

c∗ > 0 such that

Iw(uw) = inf
g∈Γ

max
t∈[0,1]

Iw(g(t)) = c∗. (4.2)
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We will only prove that there is a constant α > 0 such that

Iw(uw) ≥ α for any w ∈ LΣ (4.3)

by recalling part of a original proof from [9]. Indeed, from Remark 2 there are
positive constants M1, β such that (3.1) holds. Denote

γ :=
2N + 3√

1 − (2N + 3)2
∫

V
|a (y)| dμ

.

If u ∈ H1
0 (V ) is such that ‖u‖1 = M1

γ we see by (2.1) and Remark 1 that
|u (y)| ≤ M1 and obviously
∫

V

|F (y, u (y), w (y))| dμ ≤
∫

V

∫ M1

0

|f(y, s, w (y))| dsdμ ≤ (M1)
1

2 (β + 1) (2N + 3)2

and therefore

Iw(u) ≥ β

(β + 1)
(M1)

1

2 (2N + 3)2
:= α > 0. (4.4)

From (4.4) and Lemma 1 we see that (4.3) holds.
We will show that (4.1) holds. From H1 and H2 for a given 0 < ε < 1

2γ2

there exists a positive constant cε, independent of w, such that

|f(y, u, w)| ≤ ε|u| + cε|u|r−1 (4.5)

for y ∈ V, u ∈ R. Since uw is a weak solution of (1.2) we can write

‖uw‖2
1 +

∫
V

f(y, uw(y), w (y))uw(y)dμ = 0

and we see by (4.5) and relations mentioned above that

‖uw‖2
1 ≤ ε

∫
V

|u (y) |2dμ + cε

∫
V

|u (y) |rdμ

εγ2 ‖uw‖2
1 + cr

εγ ‖uw‖r
1 ≤ 1

2
‖uw‖2

1 + cεγ
r ‖uw‖r

1 .

Therefore we may put

C1 = r−2

√
1

2cε(2N + 3)rγr
(4.6)

and we see that ||uw||1 ≥ C1.
From H4 it follows that for c3 = c1γ

θ

∫
V

F (y, uw(y), w (y))dμ ≤ −c3 ‖uw‖θ
1 + c2. (4.7)
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By (4.2), (4.7) and since uw is a solution to (1.2) we obtain

1
θ
(
θ

2
− 1)‖uw‖2

1 =
(

Iw(uw) −
∫

V

F (y, uw, w)dμ

)
+

1
θ

∫
V

f(y, uw, w)uw(y)dμ

≤ Iw(uw) = inf
g∈Γ

max
t∈[0,1]

Iw(g(t)) ≤ max
t∈[0,1]

Iw

(
t

uw

||uw||1

)

≤ max
t∈[0,1]

(
1
2
t2 − c3t

θ + c2

)
.

A continuous function r (t) = 1
2 t2 − c3t

θ achieves its maximum on [0, 1]
at some t0 ∈ [0, 1] . Since r (0) = 0, it follows that max

t∈[0,1]
(r (t) + c2) ≥ c2 > 0

and we put

C2 =
θ( 1

2 t20 − c3t
θ
0 + c2)

θ
2 − 1

. (4.8)

�

Now we prove the result concerning the existence of a limit solution.

Theorem 6. Assume that conditions H1–H4 are satisfied. Let (wk) ⊂ LΣ be
a convergent sequence of parameters with limk→∞ wk = w0. For any sequence
(uk) of nontrivial solutions to (1.2) corresponding to (wk), there exist a subse-
quence (uki

) ⊂ H1
0 (V ) and an element u0 ∈ H1

0 (V ) such that limi→∞ uki
= u0

(strongly) and that u0 is a non-zero solution to (1.2) corresponding to w0.
Moreover, C1 ≤ ||u0||1 ≤ C2.

Proof. We define sequence (un) ∈ H1
0 (V ) taking un as a solution to (1.2)

corresponding w = wn. We note that C1 ≤ ‖un‖1 ≤ C2 for n = 1, 2, ..., where
C1, C2 are determined by (4.6) and (4.8). Since ‖un‖1 ≤ C2, the sequence (un)
can be assumed weakly convergent, up to a subsequence which we still denote
(un). So there exists u0 ∈ H1

0 (V ) such that un ⇀ u0 and ‖u0‖1 ≤ C2. By
(2.2) we may assume that un → u0 in L2 (V, μ) . Since un is a weak solution
to (1.2) we see that for any h ∈ H1

0 (V ) it holds:

W(uu, h) −
∫

V

a(y)un(y)h(y)dμ +
∫

V

f(y, un(y), wn(y))h(y)dμ = 0.

Now we see by Theorem 4 that f(·, un(·), wn(·)) → f(·, u0(·), w0(·)) in L2 (V, μ) .
We observe that also W(uu, h) → W(u0, h) and (by the weak convergence)∫

V

a(y)un(y)h(y)dμ →
∫

V

a(y)u0(y)h(y)dμ

for any h ∈ H1
0 (V ). Thus we obtain that for any h ∈ H1

0 (V ) it holds:

W(u0, h) −
∫

V

a(y)u0(y)h(y)dμ +
∫

V

f(y, u0(y), w0(y))h(y)dμ = 0

which implies that u0 solves (1.2) for w0.
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Now we show that un → u0 in H1
0 (V ). Indeed, we see that

W(u0, u0) −
∫

V

a(y)u0(y)u0(y)dμ +
∫

V

f(y, u0(y), w0(y))u0(y)dμ = 0,

W(un, un) −
∫

V

a(y)u2
n(y)dμ +

∫
V

f(y, un(y), wn(y))un (y) dμ = 0.

Since by Theorem 4 it follows that∫
V

f(y, un(y), wn(y))un (y) dμ →
∫

V

f(y, u0(y), w0(y))u0(y)dμ (4.9)

and since obviously
∫

V
a(y)u2

n(y)dμ → ∫
V

a(y)u0(y)u0(y)dμ we obtain the
following relation

lim
n→∞ W(un, un) = W(u0, u0).

Since also un ⇀ u0 we see by the well known properties of a real Hilbert space
that un → u0.

Now we will prove that u0 is nontrivial. Recall that ‖un‖1 ≥ C1. Since
un → u0 in H1

0 (V ), we see that ‖u0‖1 ≥ C1. �

5. Examples and Some Applications

We provide some examples and a remark on the type of convergence of the
sequence of parameters. We finish our investigations with an application to a
certain optimization problem.

Example 1. Let g ∈ C (V ) be such that infy∈V |g (y)| > 0 and let Σ = [−1, 1].
Define f : V × R×Σ → R by

f (y, u, w) = −u3(y)
(
1 + w2 (y)

) |g (y)| .
Then

F (y, u, w) = −1
4
u4(y)

(
1 + w2 (y)

) |g (y)|
and θ = 4, c1 = 1

4 infy∈V |g (y)| , c2 = 0, c = 2 ‖g‖∞, r = 4. Thus assumptions
H1–H4 are satisfied.

In case parameter w is involved in f in a linear manner, we can consider
the case of weakly convergent sequences of parameters. The following theorem
holds in that case which retains the assertion of Theorem 6

Theorem 7. Assume that conditions H1–H4 are satisfied and that f (y, u, w) =
f1 (y, u) w + f2 (y, u) for all (y, u, w) ∈ V × R × LΣ, where fi : V × R → R

for i = 1, 2 are continuous. Let (wk) ⊂ LΣ be a weakly convergent sequence
of parameters such that limk→∞ wk = w0. For any sequence (uk) of nontriv-
ial solutions to (1.2) corresponding to (wk), there exist a subsequence (uki

) ⊂
H1

0 (V ) and an element u0 ∈ H1
0 (V ) such that limi→∞ uki

= u0 (strongly)
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and that u0 is a non-zero solution to (1.2) corresponding to w0. Moreover,
C1 ≤ ||u0||1 ≤ C2.

Proof. The only change in the proof arises in demonstrating that (4.9) holds.
By Theorem 4 it follows that f1(·, un(·))un(·) → f1(·, u0(·))u0(·) in L2 (V, μ) .
Since wk ⇀ w0 we see that∫

V

f1(y, un(y))un (y)wn(y)dμ →
∫

V

f1(y, u0(y))u0(y)w0(y)dμ.

This proves that (4.9) holds. The other parts of the proof follow exactly as the
proof of Theorem 6 and thus are omitted. �

As far as the example is concerned we modify a bit Example 1 as follows:

Example 2. Let gi ∈ C (V ) be such that infy∈V |gi (y)| > 0 and let Σ = [−1, 1].
Let f : V × R×Σ → R be given by

f (y, u, w) = −u3(y) |g1 (y)| − u3(y) |g2 (y)|w (y) .

We observe that all calculations employed in Example 1 remain valid.

Now we consider an optimal control problem of minimizing the action
functional

J0 =
∫

V

f0 (y, u (y) , w (y)) dμ

where the admissible pairs satisfy (1.2) and where
H5 f0 : V × R × Σ → R is continuous and for any fixed (y, u) ∈ V × R

function w → f0 (y, u, w) is convex.
We construct a set A ⊂ H1

0 (V ) × LΣ ⊂ H1
0 (V ) × L2 (V, μ) consisting

of pairs (uw, w) chosen as follows: we fix a function w ∈ LΣ and next using
Theorem 5 we take uw as a solution to (1.2) corresponding to w. We note that
since the functions from LΣ are pointwisely equibounded we get limk→∞ wk =
w weakly in L2 (V, μ), up to a subsequence, for any sequence (wk) ⊂ LΣ.
Moreover, there is some d > 0 such that ‖uw‖∞ ≤ d when (uw, w) ∈ A.

Theorem 8. Assume that conditions H1–H5 hold. Then there exists a pair
(uw, w) ∈ H1

0 (V ) × L2 (V, μ) such that J0 (uw, w) = inf(uw,w)∈A J0 (uw, w).

Proof. Since by the remarks preceding the theorem functional J0 is bounded
from below on A, we may choose a minimizing sequence (uwk

, wk), that is

lim
k→∞

J (uwk
, wk) = inf

(uw,w)∈A
J0 (uw, w) .

Then sequence (wk) can be assumed to be weakly convergent in L2 (V, μ) to
a certain w, possibly up to a subsequence. By Theorem 5 sequence (uwk

) can
be chosen so that it is norm convergent, again possibly up to a subsequence.
Therefore, by convexity of J0 with respect to the second variable

inf
(uw,w)∈A

J0 (uw, w) = lim inf
k→∞

J0 (uwk
, wk) ≥ J0 (uw, w) ≥ inf

(uw,w)∈A
J0 (uw, w) .
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Therefore (uw, w) solves our optimization problem. �

Example 3. We conclude with the example of the integrand f0 for which the
assumptions of Theorem 8 hold. We put

f0 (y, u, w) = h (y)u3w2,

where h ∈ C (V, μ) is positive on V .
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Dirichlet problem on the Sierpiński gasket. Anal. Appl. 9, 235–248 (2011)

[7] Falconer, K.J.: Fractal Geometry: Mathematical Foundations and Applications,
2nd edn. Wiley, Hoboken (2003)

[8] Falconer, K.J.: Semilinear PDEs on self-similar fractals. Commun. Math. Phys.
206, 235–245 (1999)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Vol. 74 (2019) On the Mountain Pass Solutions to Boundary Value ProblemsPage 13 of 13 167

[9] Falconer, K.J., Hu, J.: Nonlinear elliptical equations on the Sierpiński gasket. J.
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[16] Molica Bisci, G., Rădulescu, V.: A characterization for elliptic problems on frac-
tal sets. Proc. Am. Math. Soc. 143(7), 2959–2968 (2015)
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