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Abstract. We consider the pseudo-Euclidean space (Rn, g), with n ≥ 3
and gij = δijεi, where εi = ±1, with at least one positive εi and non-
diagonal symmetric tensors T =

∑
i,j fij(x)dxi ⊗ dxj . Assuming that the

solutions are invariant by the action of a translation (n− 1)- dimensional
group, we find the necessary and sufficient conditions for the existence of
a metric ḡ conformal to g, such that the Schouten tensor ḡ, is equal to T .
From the obtained results, we show that for certain functions h, defined
in R

n, there exist complete metrics ḡ, conformal to the Euclidean metric
g, whose curvature σ2(ḡ) = h.

Mathematics Subject Classification. 53A30, 53C21, 53C50.

Keywords. Schouten tensor, conformal metric, Schouten curvature
functions.

1. Introduction

In recent years, problems involving the Ricci curvature have aroused great in-
terest. Among the problems studied, we highlight the Einstein manifolds, Ricci
solitons gradient, prescribed Ricci and Schouten tensor, prescribed curvature
tensor, and Einstein field equation. For more details see [1,3,6,10,14,19]. In
[5], Deturck and Yang considered the following problem:

Given a Riemannian manifold (Mn, g0), with n ≥ 3, and a symmet-
ric tensor of order 2, T , defined in Mn, find a Riemannian metric g
such that

Ricg + λKgg = T (1.1)

where λ ∈ R is a constant and Ricg and Kg are the Ricci tensor and scalar
curvature of g, respectively. They have shown that when T is non-singular,
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the problem (1.1) has always a local solution. In this case, because the prob-
lem (1.1) admits local solutions, it makes sense to consider the following: find
necessary and sufficient conditions so that problem (1.1) has a global solution;
further, once global solutions are found, under what conditions are they com-
plete? When λ = 0 and λ = − 1

2 , the problem (1.1)is known in the literature as
the prescribed Ricci and Einstein tensor, respectively. This problem has been
studied for a particular family of tensors (see [16–20]). Recently, Pulemotov
studied the problem (1.1) for λ = 0 in homogeneous manifolds (see [21]). When
λ = −1

2(n−1) , the problem (1.1) is equivalent to the prescribed Schouten tensor,
because the Schouten tensor of a metric g is defined by

Ag =
1

n − 2

(

Ricg − K

2(n − 1)
g

)

.

Problem (1.1) has also been studied locally by Robert Brayant for any
value of λ, proving that the problem always has local solutions when the com-
ponents of the tensor are analytic functions. Motivated by the work of Deturck
and Yang [5], our goal is to find global solutions to the following problem:

Given a (0, 2)symmetrical tensor T defined in a manifold (Mn, g0),
with n ≥ 3, is there a metric g such that

Ag = T? (1.2)

This problem corresponds to studying a system of nonlinear second order
partial differential equations. The importance of Schouten tensors in conformal
geometry can be seen in the following decomposition of the Riemann curvature
tensor

Rg = Wg + Ag � g,

where Rg is the Riemann curvature tensor, � is the Kulkarni–Nomizu product,
and Wg is the Weyl tensor of g (see [2]). Because the Weyl tensor is conformally
invariant, i. e., g−1Wg is invariant in a given conformal class, in a conformal
class the Schouten tensor is important, especially when g is locally conformally
flat (Wg = 0). Therefore, if g is locally conformally flat, the Riemann curva-
ture tensor is determined by the Schouten tensor. From the Schouten tensor,
curvatures that extend the concept of the scalar curvature can be defined. This
study was first conducted by Jeff Viaclovsky in [22]. For an integer 1 ≤ k ≤ n
and σk- or k-scalar curvature, the Schouten curvature is defined by

σk(g) := σk(g−1 · Ag),

where (g−1 · Ag) is defined locally by (g−1 · Ag)ij =
∑

k gik(Ag)kj and σk and
the k-th symmetrical elementary function. Thus, we define σk(g) as being the
k-th elementary symmetric function of the auto-values of the operator g−1Ag,
to 1 ≤ k ≤ n, where σ0(g) = 1. Considering the eigenvalues of the Schouten
tensor Ag (λ1, λ2, . . . , λn) with respect to the metric g, to 1 ≤ k ≤ n, the
kth polymorphic elementary symmetric functions σk are given by σk(Ag) =
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σk(λ) =
∑

i1<···<ik
λi1 · · · λik . When k = 1, a σ1(g)-scalar curvature is exactly

the scalar curvature (less than one constant). Thus, σ1(g) is constant if and
only if (Mn, g) has constant scalar curvature. In [11], the authors considered
the problem of classifying compact Riemannian manifolds locally conformally
flat with σk(g) constant for some k ≥ 2.

In [22], Viaclovsky also noted that σ2(g) has still a variational structure.
For k > 2, σk(g) has a variational structure, if and only if the manifold con-
sidered is locally conformally flat. From this work of Viaclovisky and the work
of Chang, Gursky, and Yang in [4],an intensive investigation started for the
variational problem related to the Schouten curvature σk(g), seeking to find a
metric g, in the class of [g0], satisfying

σk(g) = c, (1.3)

where

g ∈ [g0]
⋂

Γ+
k .

and Γ+
k is a convex open cone (the Garding cone) defined by

Γ+
k = {Λ = (λ1, λ2, . . . , λn) ∈ Rn|σj(Λ) > 0,∀j ≤ k}.

Here, g ∈ Γ+
k represents the Schouten tensor Ag(x) ∈ Γ+

k , for any x ∈ M ;
an important fact is that g ∈ Γ+

k guarantees that equation (1.3) is elliptic.
Several authors have recently studied subjects related to the Schouten

curvature, see for example [7,8], and [11]. In [7], the authors consider the
problem σ2

σ1
= f , where f is a given differentiable function.

In [12], Simon et al. showed that, if (Mn; g) is a compact locally confor-
mally flat manifold with nonzero curvature σk(Ag) for some 2 ≤ k ≤ n and
Ag defined as semi-positive, then (Mn, g) is a space form of positive sectional
curvature. In [13], Simon et al. studied the extreme properties of the Schouten
function defined in the quotient of the Riemannian metric space by the group
of diffeomorphisms.

In [15], the authors considered the pseudo-Euclidean space (Rn, g), with
n ≥ 3 and gij = δijεi, εi = ±1, and tensors of the form T =

∑
i εifi(x)dx2

i ,
and found necessary and sufficient conditions for the existence of a metric ḡ,
conformal to g, such that Aḡ = T . The solution to this problem was explicitly
given for special cases of the tensor T , including a case where the metric ḡ
is complete in R

n. Similar problems were considered for locally conformally
flat manifolds. As an application of these results, the authors considered the
problem of finding metrics ḡ, conformal to g, such that σ2(ḡ) or σ2(ḡ)

σ1(ḡ)
are equal

to a certain function.
In this work we will consider the pseudo-Euclidean space (Rn, g), with

n ≥ 3, coordinates x = (x1, .., xn), and metric g, where gij = δijεi, with
εi = ±1, with at least one positive εi, and a non-diagonal tensor of order 2 of
the form T =

∑
i,j fij(x)dxi⊗dxj , where fij(x), 1 ≤ i, j ≤ n, are differentiable
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functions. We want to find metrics ḡ = 1
ϕ2 g, such that the Schouten tensor of

the metric ḡ is T , that is, we want to solve the following problem:
{

Aḡ = T
ḡ = 1

ϕ2 g.
(1.4)

To obtain solutions to the problem (1.4), let us assume that the metric ḡ
is invariant by the action of a (n− 1)−dimensional translation group. In this
case, we find necessary conditions on the tensor T , so that the problem admits
solution (Lemma 2.2). For this special class of metrics, we find necessary and
sufficient conditions for the problem to have solutions (Theorem 2.3). As a
consequence of the Theorems (2.3) and (2.5) we obtain complete metrics in
Euclidean space R

n, with prescribed Schouten tensors. The results obtained
were extended to locally conformally flat manifolds (Theorem 2.6).

As applications of these results, we show explicit solutions for a second
order nonlinear partial differential equation in R

n. The geometric interpreta-
tion of this result is equivalent to finding conformal metrics in R

n with σ2(ḡ)
prescribed. In particular, by considering f : Rn −→ R, we find examples of
complete metrics ḡ, conformal to the Euclidean metric, such that σ2(ḡ) = f .

2. Main Results

Let ϕ,xixj
and fij,xk

denote the second order derivatives of ϕ with respect to
xixj and the derivative of fij with respect to xk, respectively.

Theorem 2.1. Let (Rn, g), with n ≥ 3, be the pseudo-Euclidean space, with
coordinates x = (x1, . . . , xn) and gij = δijεi, and T =

∑n
i,j=1 fij(x)dxi ⊗ dxj

be a non-diagonal tensor of order 2, where fij(x) are differentiable functions.
Then, there exists a positive function ϕ such that the metric ḡ = 1

ϕ2 g satisfies
Aḡ = T if and only if the functions fij and ϕ satisfy the following set of
equations:

{
2ϕϕxixi

− ∑n
k=1 εk (ϕxk

)2 εi − 2ϕ2fii = 0 ∀ i : 1, . . . , n,
ϕxixj

− fijϕ = 0 ∀ i 	= j.
(2.1)

In an attempt to find solutions to the system (2.1) we will consider the so-
lutions g = 1

ϕ2 g to be invariant under the action of a group (n−1)-dimensional,
where ξ =

∑n
i=1 aixi, with ai ∈ R, is a basic invariant of the group.

Initially, we will determine the necessary conditions on the tensor T .

Lemma 2.2. Consider ϕ = ϕ(ξ), where ξ =
∑n

i aixi, with ai ∈ R. If ϕ = ϕ(ξ)
is the solution of the system (2.1), then fij = aiajf(ξ) ∀, with i 	= j = 1, . . . , n,
and fii = fii(ξ) , ∀ i = 1, . . . , n, where f is a differentiable function.

From Lemma (2.2), we can state one of the main theorems of this section.
We consider

∑n
k=1 εka2

k 	= 0 and, without loss of generality, we assume that∑n
k=1 εka2

k = ε = ±1, and the case where
∑n

k=1 εka2
k = 0 will be dealt with

later.
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Theorem 2.3. Let (Rn, g), with n ≥ 3, be the pseudo Euclidean space, with
coordinates x = (x1, . . . , xn) and metric gij = δijεi. Consider the non-diagonal
tensor of order 2 T =

∑n
i=1 fij(ξ)dxi ⊗dxj, where fii = fii(ξ), fij = aiajf(ξ),

ξ =
∑n

i=1 aixi, ai 	= 0, ∀ i = 1, . . . , n, and
∑n

k=1 a2
i εi = ε. Then, there is a

metric ḡ = 1
ϕ2 g such that Aḡ = T , with ϕ = ϕ(ξ), if and only if the components

of the tensor satisfy the following equations
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

εi(fa2
i − fii) = εj(fa2

j − fjj) ∀ i, j = 1, . . . , n

2εεi(fa2
i − fii) > 0

2εεi(fa2
i − fii) +

ε0εiε(f ′a2
i − f ′

ii)√
2εεi(fa2

i − fii)
= f ∀ i = 1, . . . , n,

(2.2)

and
ϕ(ξ) = Keε0

∫√
2εεi(fa2

i −fii)dξ,

where ε0 = ±1 and K is a positive constant.

As a direct consequence of the Theorem (2.3), we obtain the following
example in the Riemannian case.

Example. Consider the Euclidean space (Rn, g) n ≥ 3, with coordinates x =
(x1, . . . , xn). Given the tensor T =

∑n
i=1 fiidx2

i +
∑n

i�=j=1 fijdxi ⊗ dxj , where

fii =
(
2−n
2n

)
g− g′

2n
√

g and fij = 1
n

(
g − g′

2
√

g

)
, ai = aj = a, ε = 1, ε0 = −1, and

g is a positive function. Then, there is a metric ḡ = 1
ϕ2 g such that Aḡ = T ,

where:
ϕ(ξ) = Ke−∫ √

gdξ. (2.3)
Moreover, if | ∫ √

gdξ |≤ C1, C1 is a positive constant, then the metric ḡ
is complete in R

n.

The case where ξ = akxk for some fixed k, will be treated in the next
Theorem. Note that, in this case, in (2.1), ϕxi

= ϕ′ai, ϕxixi
= ϕ′′a2

i ∀i =
1, . . . n, and ϕxixj

= 0, ∀ i 	= j. Then, for the second equation, we have
fijϕ = 0, which is equivalent to the given tensor T being diagonal, because, in
this case, fij = 0 ∀ i 	= j. Without loss of generality, let us consider ξ = a1x1

and ε1a
2
1 = ε.

Theorem 2.4. Let (Rn, g), with n ≥ 3, be the pseudo Euclidean space, with
coordinates x = (x1, . . . , xn), and metric gij = δijεi. Consider T =

∑n
i=1 fii(ξ)

dx2
i , where ξ = a1x1, ε1a

2
1 = ε = ±1. Then, there is a metric ḡ = 1

ϕ2 g, with
ϕ = ϕ(ξ), such that Aḡ = T , if and only if the components of the tensor satisfy
the equations:

εifii = εjfjj ∀ i 	= j = 2, . . . , n

−2εεifii > 0 ∀ i = 2, . . . , n

f11 = −2a2
1εεifii − εε0εif

′
iia

2
i√−2εεifii

+ εiε1fii
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and

ϕ(ξ) = Keε0
∫ √−2εεifiidξ

where K is a positive constant and ε0 = ±1.

As a consequence of Theorem (2.4), we will show an example in the
Riemannian case.

Example. Consider the Euclidean space (Rn, g) n ≥ 3, with coordinates x =
(x1, . . . , xn). Given the tensor T = f11dx2

1 +
∑n

i=2 g(ξ)dx2
i , where f11 = g(1 +

2a2
1) + g′a2

1√−2g
, ε = 1, ε0 = −1, and fii = fjj = g ∀i 	= j = 2, . . . , n, where g is a

differentiable function smaller than zero. Then, there is a metric ḡ = 1
ϕ2 g such

that Aḡ = T , where
ϕ(ξ) = Ke−∫ √−2gdξ. (2.4)

Note that in the above theorem, conditions (2.4) are checked. Because
the g < 0 function is arbitrary, it can be chosen so that

∫ √−2gdξ is limited,
and, in this case, the metric ḡ will be complete in R

n.
Considering now the case where ξ =

∑
aixi and

∑
a2

i εi = 0, we obtain
the following result.

Theorem 2.5. Let (Rn, g), with n ≥ 3, be the pseudo Euclidean space, with
coordinates x = (x1, . . . , xn) and metric gij = δijεi. Consider T =

∑n
i,j fij(ξ)

dxi ⊗ dxj, where fii = fii(ξ), fij = aiajf(ξ), and ξ =
∑n

i=1 aixi, with∑n
i=1 a2

i εi = 0 and ai 	= 0, for at least one pair of indexes and the differ-
entiable function f . Then, there is a metric ḡ = 1

ϕ2 g such that Aḡ = T if and
only if fii = a2

i f , ∀ i = 1, . . . , n, and ϕ is a solution of the equation

ϕ′′ − fϕ = 0.

Next we present two examples for the Theorem (2.5), considering partic-
ular solutions for the equation ϕ′′ − fϕ = 0.

The study of oscillations is an important part of mechanics because of
the frequency with which they occur. The simple swaying of leaves of a tree,
radio waves, sound, and light are typical examples where oscillatory motion
occurs. Below, we present an application of the physics of the above theorem,
with the equation of free oscillations, obtained when f = k.

Example. Let (Rn, g), with n ≥ 3, be a pseudo Euclidean space, with coordi-
nates x = (x1, . . . , xn) and metric gij = δijεi. Consider T =

∑n
i,j fijdxi ⊗ dxj ,

where fii = ka2
i , ∀ i = 1, . . . , n, and fij = kaiaj , ∀ i 	= j = 1, . . . , n, and∑n

i=1 a2
i εi = 0. Then, there exists a ḡ = 1

ϕ2 g such that Aḡ = T , if and only if
the function ϕ is satisfies:

ϕ(ξ) =

⎧
⎨

⎩

C1 sinh(ξ
√|k|) + C2 cosh(ξ

√|k|) if k < 0
C1 + C2ξ if k = 0
C1 sin(ξ

√
k) + C2 cos(ξ

√
k) if k > 0.
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Example. Let (Rn, g), with n ≥ 3, be a pseudo Euclidean space, with coordi-
nates x = (x1, . . . , xn) and metric gij = δijεi. Consider T =

∑n
i,j fijdxi ⊗ dxj ,

where fii = (h2+h′)a2
i ∀ i = 1, . . . , n and fij = (h2+h′)aiaj ∀ i 	= j = 1, . . . , n,

and
∑n

i=1 a2
i εi = 0, and a differentiable function h. Then, there exists a

ḡ = 1
ϕ2 g such that Aḡ = T , if and only if the function ϕ is given by

ϕ(ξ) = C1ϕ0 + c2ϕ0

∫
dξ

ϕ2
0

,

where C1 and C2 are arbitrary constants and ϕ0 = e
∫

hdξ, with h = h(ξ).

Next, we present a generalization of the Theorem (2.3), for locally con-
formally flat manifolds.

Let us now consider a locally conformally flat Riemannian manifold
(Mn, g). We can consider the problem (1.4) for a neighborhood V ⊂ M with
coordinates x = (x1, . . . , xn) such that gij = δij

F 2 , where F is a non-null, dif-
ferentiable function in V . Given a tensor T =

∑
i,j fij(x)dxi ⊗ dxj defined in

V , we want to find a metric ḡ = 1
φ2 g such that Aḡ = T . Considering that g

and ḡ are translation invariant, where ξ =
∑

aixi is the basic invariant of the
action, we have, in a way analogous to Lemma (2.2), that the components of
the given tensor T , are necessarily given by fij = aiajf(ξ) and fii = fii(ξ),
where f is a differentiable function.

Theorem 2.6. Let (Mn, g), with n ≥ 3, be a locally conformally flat Riemann-
ian manifold. Let V be an open subset of M with coordinates x = (x1, x2, . . . ,

xn) with gij =
1

F 2(ξ)
δij. Consider a non-diagonal tensor T =

∑n
i=1 fij(ξ)dxi⊗

dxj. Then, there is a metric ḡ = 1
φ2 g, with φ = φ(ξ), such that Aḡ = T if and

only if the functions fij and ϕ are given in Theorem (2.3) and φ = ϕ
F .

Analogously, the Theorems (2.4) and (2.5) can be extended to locally
conformally flat manifolds.

In [22], Vioclovisk extended the concept of scalar curvature using the
Schouten tensor, by introducing the σk curvatures, which are obtained from
the eigenvalues of the Schouten tensor. Recall that σ0(g) has been defined as
1 and σ1(g) is the scalar curvature less than constant. Recently, many works
have considered the σ2(g) prescribed problem. For more details see [7,11], and
[22].

We know that, given a function h : Mn −→ R, finding a metric ḡ = 1
ϕ2 g

such that σ2(ḡ) = h is equivalent to studying the following partial differential
equation (ver [9]).

[
(Δϕ)2 − |Hessgϕ|2

]
ϕ2 − (n − 1)Δϕ|∇ϕ|2ϕ +

n(n − 1)
4

|∇ϕ|4 = 2h. (2.5)

Let us show that, for certain functions h, the above equation admits
infinite solutions.
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Corollary 2.7. Let (Rn, g), with n ≥ 3, be the Euclidean space, with coordinates
x = (x1, . . . , xn) and metric gij = δij. Given the function g, which can be any
positive function, K is a positive constant and a ∈ R

h(ξ) =
K(n − 1)

2
n2a4ge−4

∫ √
gdξ

[
ng

4
−

(

g − g′

2
√

g

)]

, (2.6)

Then, the partial differential equation,
[
(Δϕ)2 − |Hessgϕ|2

]
ϕ2 − (n − 1)Δϕ|∇ϕ|2ϕ +

n(n − 1)
4

|∇ϕ|4 = 2h,

has infinite solutions, globally defined in R
n, given by

ϕ(ξ) = Ke− ∫ √
gdξ.

The geometric interpretation of this result is presented below. We show
an example of a metric ḡ, conformal to the Euclidean metric, complete in R

n,
with curvature σ2(ḡ) prescribed for h.

Corollary 2.8. Let (Rn, g), with n ≥ 3, be the Euclidean space, with coordinates
x = (x1, . . . , xn) and metric gij = δijεi. Given a function h, in (2.6) there
exists a metric ḡ = 1

ϕ2 g with ϕ given by (2.3) such that σ2(ḡ) = h.

By choosing the function g so that ϕ is limited, the metrics obtained in
the corollary (2.8) will be complete in Rn.

3. Proof of the Main Results

Before proving our results, it follows from [15], that if (Rn, g) is a pseudo-
Euclidean space and ḡ = g/ϕ2 Is a conformal metric, then the Ricci tensor ḡ
is given by

Ric ḡ =
1
ϕ2

{
(n − 2)ϕHessgϕ +

(
ϕΔgϕ − (n − 1)|∇gϕ|2) g

}
(3.1)

and the scalar curvature of ḡ is given by

K̄ = (n − 1)
(
2ϕΔgϕ − n|∇gϕ|2) . (3.2)

In the rest of this section, we demonstrate the main results of this article.

Proof [Theorem 2.1]. Using the expressions (3.1) and (3.2), we can write the
Schouten tensor of the metric ḡ as:

Aḡ =
Hessgϕ

ϕ
− ‖∇gϕ‖2

2ϕ2
g,

where ∇g denotes the gradient of the pseudo-Euclidean metric g.
In this case, studying the problem (1.4) with T =

∑n
ij fij(x)dxi ⊗ dxj , is

equivalent to studying the following system of equations:



Vol. 74 (2019) Prescribed Schouten Tensor in Locally Conformally Flat Manifolds Page 9 of 12 168

{
2ϕϕ,xixi

− ∑n
k=1 εk (ϕ,xk

)2 εi − 2ϕ2fii = 0, ∀ i : 1, . . . , n,
ϕ,xixj

− fijϕ = 0, ∀ i 	= j,
(3.3)

�

Proof [Lemma 2.2]. Because ϕ = ϕ(ξ), we have that:
ϕxi

= ϕ′ai, ϕxixi
= ϕ′′a2

i ∀ i = 1, . . . n, ϕxixj
= ϕ′′aiaj ∀ i 	= j, and

||∇gϕ||2 =
∑n

i=k εk(ϕxk
)2 = (ϕ′)2ε.

Substituting these in the system (3.3), we obtain:
{

2ϕϕ′′a2
i − (ϕ′)2εεi = 2ϕ2fii, ∀ i : 1, . . . , n,

ϕ′′aiaj − fijϕ = 0, ∀ i 	= j.
(3.4)

In this case, it follows directly from the second equation of (3.4) that
fij = f(ξ)aiaj , for i 	= j = 1, . . . , n, where ϕ′′

ϕ = f(ξ). Similarly, it follows
from the first equation of the system (3.4) that fii = fii(ξ), because

fii =
ϕ′′

ϕ
a2

i −
(

ϕ′
√

2ϕ

)2

εεi ∀ i = 1, . . . , n.

�

Proof [Theorem 2.3]. It follows by Lemma (2.2) that finding ḡ = 1
ϕ2 g such

that Aḡ = T , with ϕ = ϕ(ξ), is equivalent to studying the following system of
equations:

{
2ϕϕ′′a2

i − (ϕ′)2εεi = 2ϕ2fii, ∀ i : 1, . . . , n,
ϕ′′ − f (ξ) ϕ = 0, ∀ i 	= j.

From the second equation we have ϕ′′ = fϕ; substituting this in first equation
above, we obtain

2a2
i f −

(
ϕ′

ϕ

)2

ε = 2fii, ∀ i : 1, . . . , n.

Because fii depends only on ξ, we also have:
(

ϕ′

ϕ

)2

= 2(fa2
i − fii)∀ i : 1, . . . , n

which is equivalent to
ϕ′

ϕ
= ±

√
2ε(fa2

i − fii) (3.5)

And it follows directly from Eq. (3.5) that
{

2ε(fa2
i − fii) > 0, ∀ i : 1, . . . , n,

fa2
i − fii = fa2

j − fjj , ∀ i 	= j.

Considering ε0 = ±1 and integrating Eq. (3.5), we obtain

ϕ(ξ) = Keε0
∫ √

2ε(fa2
i −fii)dξ,
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where K is a positive constant. Because ϕ′′ = fϕ, we get:

2ε20εεi(fa2
i − fii) +

εεi(f ′a2
i − f ′

ii)√
2εεi(fa2

i − fii)
= f ∀ i = 1, . . . , n

which concludes the proof. �
Proof [Theorem 2.4]. If ϕ = ϕ(ξ) and ξ = a1x1, then ϕ,xi

= ϕai, ϕ,xixi
=

ϕ′′a2
i , ∀ i = 1, . . . , n, and ϕ,xixj

= 0, ∀ i 	= j. It follows from (3.3) that
fijϕ = 0, that is, fij = 0 ∀ i 	= j, this is the tensor diagonal. In this case, the
system (3.3) is equivalent to

{
2ϕϕ′′a2

1 − (ϕ′)2 εiε − 2ϕ2f11 = 0, ∀ i : 1, . . . , n

(ϕ′)2 εiε + 2ϕ2fii = 0, ∀ i 	= 1, i = 1, . . . , n.
(3.6)

From the second equation, we have
(

ϕ′

ϕ

)2

= −2εεifii. (3.7)

and follows from (3.7) that:
{−2εεifii > 0, ∀ i : 2, . . . , n,

εifii = εjfjj , ∀ i 	= j,

Considering ε0 = ±1 and integrating Eq. (3.7), we obtain

ϕ(ξ) = Keε0
∫ √−2εεifiidξ.

where K is a positive constant. Substituting ϕ(ξ) in the first equation in (3.6),
we obtain

f11 = −2a2
1ε

2
0εεif11 − εε0εif

′a2
i√−2εεifii

+ ε20ε
2εifii ∀ i = 1, . . . , n,

which concludes the proof. �
Proof [Theorem 2.5]. Because

∑n
k=1 εka2

k = ε = 0, it follows that the system
(3.4) can be reduced to ϕ′′ − fϕ = 0 and fii = a2

i f , ∀ i = 1, . . . , n. In this
case, the tensor T is given by:

T = f

⎛

⎜
⎝

a2
1 a1a2 · · · a1an

... a2
2

. . .
...

−ana1 · · · a2
n

⎞

⎟
⎠

�
Proof [Theorem 2.6]. Consider φ = ϕF and apply Theorem (2.3). �
Proof [Corollary 2.7]. Note that the functions ϕ(ξ) and h(ξ) clearly satisfy the
given partial differential equation. �
Proof [Corollary 2.8]. The proof is an immediate consequence of equation (2.5)
and Corollary (2.7). �
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