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Abstract. We describe the effect of ramified morphisms on Harbourne
constants of reduced effective divisors. With this goal, we introduce the
pullback of a weighted cluster of infinitely near points under a dominant
morphism between surfaces, and describe some of its basic properties.
As an application, we describe configurations of curves with transversal
intersections and H-index arbitrarily close to −25/7 � −3.571, smaller
than any previously known result.
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1. Introduction

The question whether, in every algebraic surface, self-intersections of irre-
ducible and reduced curves are bounded from below has intrigued algebraic
geometers for decades, and continues to do so. The so-called Bounded Nega-
tivity Conjecture (BNC for short) is an old folklore conjecture, now formally
posed by Bauer et al. in [4] (where some of its history is also explained), that
asserts an affirmative answer:

Conjecture 1.1 (BNC). Let S be a smooth complex projective surface. Then
there exists a positive integer b(S) ∈ Z such that for every irreducible and
reduced curve C ⊂ S one has C2 ≥ −b(S).

By curve in this paper we mean an effective (reduced) divisor on S.
In recent years the question of bounded negativity has received consid-

erable attention, especially via the approach of trying to determine classes
of surfaces S which satisfy Conjecture 1.1 (see [4,8,9,12]). In particular, [3,
Problem 1.2] raised the question whether bounded negativity is a birational
property, which leads to the following question:
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Question 1.2. Let S be a smooth complex projective surface, and assume that
b(S) ∈ Z is a positive integer such that for every irreducible and reduced curve
C ⊂ S one has C2 ≥ −b(S). Let n ≥ 1 be an integer. Is there a positive integer
b(S, n) ∈ Z such that for every morphism Sπ

π→ S which is the composition of
n point blowups, and every irreducible curve C ⊂ Sπ, one has C2 ≥ −b(S, n)?

If the answer to this question were positive for a given surface S and
every n ≥ 1, then all smooth projective surfaces birational to S would satisfy
the BNC, but there is not a single surface on which the answer is known for all
n. Even for the simplest case of S = P

2, the existence of b(P2, n) is unknown
for all n > 9.

Since the self-intersection of the strict transform C̃ by the blowup πp of
S at a point p ∈ C is C̃2 = C2 − mult2p C, we expect b(S, n), if it exists, to be
an increasing function with respect to n. In the case of the plane, the existence
of rational nodal curves of every degree shows that if b(P2, n) exists for all n,
then lim infn→∞(b(P2, n)/n) ≥ 2 (indeed, a rational nodal curve of degree d
has exactly n = (d − 1)(d − 2)/2 nodes, and after blowing up these points its
strict transform has self-intersection d2 − 4n � −2n + 3

√
2n). In particular

b(P2, n) must grow at least linearly with n.
No sequence of irreducible curves with negativity growing faster than 2n

is known, but it was shown in [2, Proposition 3.8.2] (see also [4, Proposition
5.1]) that the existence of a bound like b(S, n) for prime or merely reduced
divisors is equivalent. This has led to the search of new examples considering
possibly reducible reduced curves. Define

h(S, n) = inf
Sπ→S

n-pt blowup

{
inf

C⊂Sπ
reduced

C2

n

}
∈ R ∪ {−∞},

so that b(S, n) exists if and only if h(S, n) is finite. Examples show that
lim infn→∞ h(P2, n) ≤ −4 (see [12]) and no sequence of examples has been
found with larger than linear growth, so [3, Problem 3.10] asks whether in fact
limn→∞ h(P2, n) = −4.

A consequence of our work is that, even if infn h(P2, n) were finite (which
remains unknown), it would not be equal to C2/n for any curve in a blowup
Sπ → P

2 of P2 at n points:

Theorem A. Let h = infn h(P2, n). For every morphism Sπ
π→ P

2 which is an
n point blowup, and every reduced curve C ⊂ Sπ, one has C2 > h · n.

Considerations like above led to the introduction of H-constants and H-
indices1 for reduced curves on smooth projective surfaces, with special empha-
sis on the plane case [3]. These indices can be viewed as the average intersection
numbers of negative curves by the number of singular points that they possess.

1The H in the name of the invariants may refer to the Hades, or underworld, of unknown
negative curves, or to Brian Harbourne, one of the main contributors in these developments.
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Definition 1.3. Let C ⊂ P
2 be a reduced curve of degree d, and let K ⊂ P

2 be
a finite set. The Harbourne constant of C at K is defined as

H(C,K) =
d2 −

∑
p∈K multp(C)2

|K| ,

where |K| denotes the cardinality of K.
The Harbourne index of a curve C with ordinary singularities (a curve

singularity is ordinary if it consists of smooth branches meeting transversely)
is the Harbourne constant of C at the set of singular points:

h(C) = H(C,Sing(C)).

The most negative Harbourne index for curves with ordinary singularities
found so far in the literature is provided by Wiman’s configuration of lines W
[3], which has h(W ) = −225/67 � −3.358. In this work we provide more
negative examples:

Theorem B. There exist reduced curves C ⊂ P
2 with ordinary singularities

and Harbourne indices h(C) arbitrarily close to −25/7 � −3.571.

In sharp contrast with all previously known examples with very negative
Harbourne index, the curves in Theorem B do not have a large stabilizer group
in PGL3(C).

For curves with non-ordinary singularities (such as the examples men-
tioned above showing lim infn→∞ h(P2, n) ≤ −4), it is natural to modify the
definition of Harbourne constants and indices by allowing some of the points
in K to be infinitely near. In Sect. 2.1 we introduce the notion of Harbourne
constant at a multi-cluster of infinitely near points and extend the definition
of Harbourne index to arbitrary curves on smooth surfaces.

In order to prove Theorems A and B, we study pullbacks of suitable
curves by ramified morphisms; in fact, the effect of ramified morphisms on
H-constants is the main theme of this work. Our motivation for this study
stems from [11], where we observed that the pullback of a reduced curve C ⊂
P
2 by a ramified morphism P

2 → P
2 may have a more negative H-index

than the original curve C. Even if one is primarily interested in curves with
ordinary singularities, their pullbacks by ramified morphisms may acquire non-
ordinary singularities; to understand these, we apply the methods of [6]. In
particular, clusters of infinitely near points and the corresponding extension
of Definition 1.3 become essential tools.

Let us stress that the idea to use pullback curves is rather natural in the
context of negative curves. For instance, in positive characteristic it leads to
a well-known counterexample to the BNC—using the powers of the Frobenius
endomorphism on the product X = C × C, where C is a genus g(C) ≥ 2
curve, one can create an unbounded negativity phenomenon. In sharp con-
trast, T. Bauer et al. proved in [4] that over the complex numbers every
surface admitting a surjective endomorphism which is not an isomorphism
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has bounded negativity. We expect that Theorem A actually holds on every
smooth projective surface admitting a ramified endomorphism; such a surface
S must have κ(S) = −∞ by [7, Lemma 2.3].

Given a surjective morphism f : S → S′ of surfaces and a set K of
proper and infinitely near points (more precisely, a multi-cluster, see Sect. 2.1)
on S′ with assigned multiplicities, we define in Sect. 3.1 a pull-back multi-
cluster f∗(K) with multiplicities, such that for every curve C going through
the points of K with the assigned multiplicities, f∗(C) goes through f∗(K)
with the pullback multiplicities. If f does not contract any curve to a point,
we can control the number of points in f∗(K) and their multiplicities using
the local multiplicity νp(f) of f at each proper point p ∈ f∗(K) (writing f in
local coordinates as a pair of power series, νp(f) is the minimum of the orders
of both power series, see Sect. 3.1 or [6]). We obtain the following (cf. [12,
Lemma 7]).

Theorem C. Let f : S → S′ be a finite morphism of smooth projective surfaces,
C ⊂ S′ a reduced curve, and K a multi-cluster on S′. Assume that f∗(C) is
reduced and H(C,K) ≤ 0. Then

H(f∗(C), f∗(K)) ≤ H(C,K),

with a strict inequality if there is a point p ∈ f∗(K) with νp(f) > 1.

The notion of pullback cluster and Theorem C form the technical core
of this paper. Because of their generality we expect that their application will
not be restricted to the bounded negativity conjecture, so these might be of
independent interest.

2. Preliminaries

By a surface S we mean a connected 2-dimensional complex (analytic) mani-
fold (so, smooth and irreducible). Unless otherwise stated we always work with
the analytic topology.

A bimeromorphic map between surfaces is a proper holomorphic map
π : Sπ → S such that there exist proper analytic subsets T ⊂ S and T ′ ⊂ Sπ

such that π restricts to an isomorphism Sπ\T ′ → S\T . A bimeromorphic
model dominating a given surface S is a surface Sπ with a bimeromorphic
map π : Sπ → S.

2.1. Clusters and H-Constants

Singularities of curves on a smooth surface S will be described in terms of
their clusters of multiple points, in the spirit of [5], i.e., taking into account
the infinitely near multiple points—which have to be blown up in every embed-
ded resolution. This description will allow a convenient treatment of pullback
curves and their H-constants. We begin by recalling the notions of infinitely
near points and clusters.
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Definition 2.1. ([5, 3.3]) Given a surface S and a point p ∈ S, denote πp :
Sp → S the blowup of S at p. Points in the exceptional curve Ep = π−1(p) are
called points in the first (infinitesimal) neighborhood of p. Iteratively, a point
q in the kth neighborhood of p is defined as a point in the first neighborhood
of a point in the (k − 1)th neighborhood of p. Note that in this case, the
point in the (k − 1)th neighborhood is uniquely determined; it is called the
immediate predecessor of q. More generally, for every 1 ≤ i ≤ k −1, q is in the
ith neighborhood of a unique point in the (k − i)th neighborhood of p. The
point p itself can be considered to be its 0th neighborhood.

On every blowup such as πp : Sp → S, it is convenient and natural to
identify each point q ∈ S, q �= p, with its unique preimage in Sp. To do such
identifications consistently across different blowups, and more generally across
bimeromorphic models dominating S, we shall rely on infinitely-near-ness, a
pre-order relation between points on such models. Points in the infinitesimal
neighborhoods of p ∈ S provide paradigmatic instances. The equivalence rela-
tion induced by the pre-order will provide the desired identification of points,
so the set of equivalence classes inherits a partial ordering by infinitely-near-
ness.

Definition 2.2. If π1 : Sπ1 → S, π2 : Sπ2 → S are bimeromorphic maps,
q1 ∈ Sπ1 , and q2 ∈ Sπ2 , then q2 is infinitely near to q1 (we also write q2 ≥ q1
and say q1 precedes q2) whenever there exist an open neighborhood U ⊂ Sπ2

of q2 and a holomorphic map � : U → Sπ1 , with �(q2) = q1, such that the
restriction π2|U : U → S factors as π2 = π1 ◦ �.

In particular, every point on a bimeromorphic model, q ∈ Sπ → S, is
infinitely near to a unique point on S, namely π(q). Obviously, if q is in the
kth infinitesimal neighborhood of p for some k ≥ 1, then q ≥ p. Denote ≈ the
equivalence relation induced by the pre-order, so that q1 ≈ q2 if q1 ≥ q2 and
q2 ≥ q1.

Lemma 2.3. Let q1 ∈ Sπ1 , and q2 ∈ Sπ2 be points in two bimeromorphic models
of S. Then q1 ≈ q2 if and only if there exist open neighborhoods Ui ⊂ Sπi

of
qi and an S-biholomorphism � : U1 → U2, with �(q1) = q2.

Proof. Let us prove the “if” part, as the “only if” part is obvious.
By definition, qi ≥ qj if and only if there is an open neighborhood Ui ⊂

Sπi
of qi and a holomorphic map �i : Ui → Sπj

with pj = �i(pi) and πi|Ui
=

πj ◦ �i. If p1 ≥ p2 and p2 ≥ p1, then in the open neighborhood U = U1 ∩
�−1

1 (U2) of p1, the map f = �2 ◦ �1 : U → U satisfies π1|U = π1 ◦ f . Since
π1 : Sπ1 → S is bimeromorphic, this implies that f = idU on a dense open
subset of U , and hence f is the identity map of U . By symmetry, �1 and �2

are mutual inverses on suitable open neighborhoods, and the claim follows.
�
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Proposition 2.4. For every p ∈ S and every q ≥ p there is a unique n ≥ 0 and
a unique point in the nth neighborhood of p equivalent to q.

Proof. There is a bimeromorphic map π : Sπ → S with q ∈ Sπ and π(q) = p.
First we observe that

(1) q is equivalent to a point of S (which must be q ≈ p) if and only if π is
a biholomorphism around q.

Factor π : Sπ → S as a finite sequence of point blowups, which is possible [1,
III,4.4], and denote {p1, . . . , pm} the set of centers of blowups that are images
of q. We will show, by induction on m, that q is equivalent to a point in the
mth neighborhood of p, and that m and the equivalence classes of p1, . . . , pm

are independent of the factorization.
The case m = 0 follows by (1), so assume m > 0 and π is not a biholo-

morphism around q. The points pi are totally ordered by infinitely-near-ness,
i.e., p1 < · · · < pn < q, with strict infinitely-near-ness < because of (1).

Since π(q) = p, p1 is equivalent to p, and since blowups of distinct proper
points commute [5, 4.3.1], we may rearrange the sequence of blowups so that
p1 = p is the center of the first blowup. This rearranging affects neither m nor
the equivalence class of the pi.

Now π factors through Blp(S), and the image of q in Blp(S) is a well
defined point r. We have q ≥ r, and the bimeromorphic map Sπ → Blp(S)
factors as a finite sequence of point blowups, where the centers of blowups that
are images of q are {p2, . . . , pm}. By induction it follows that q is equivalent
to a point in the mth neighborhood of p.

Now assume there is a second factorization, whose centers that are images
of q are p̃1, . . . , p̃m̃. As before, p̃1 is equivalent to p and we may in fact assume
p̃1 = p. Because the blowup of p is bimeromorphic, the factorization through
Blp(S) is unique, and the image of q in Blp(S) obtained from the second
factorization is still r. By the induction hypothesis again, m̃ = m and all
centers are equivalent. �
Corollary 2.5. There is a bijection

{q s.t. q ≥ p}
≈ ←→ {q̃ in some infinitesimal neighborhood of p} .

Definition 2.6. In the sequel, we shall identify equivalent points; thus for us
a point infinitely near to p is by definition an equivalence class of points in
bimeromorphic models of S mapping to p. Infinitely-near-ness is then a partial
order on the set of points infinitely near to p. An infinitely near point of S is
a point infinitely near to some p ∈ S. If q is a point in a bimeromorphic model
of S, we will denote the infinitely near point it determines by the same symbol
q, recalling that equality of infinitely near points means equivalence of points
in models of S.

We also observe that it follows from the proof of the previous proposition
that a point in the nth neighborhood of p is infinitely near to exactly n + 1
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points infinitely near to p (including p and q). Sometimes we call points p ∈ S
proper points of S.

Definition 2.7. A cluster based at p is a finite set of points K infinitely near
to p such that, for every q ∈ K, if q′ is a point infinitely near to p and q is
infinitely near to q′, then q′ ∈ K. A multi-cluster is a finite union of clusters
based at distinct points of S.

By Proposition 2.4 and its Corollary 2.5, our notion of cluster agrees with
the one in [5].

A curve C is said to go through the infinitely near point q ∈ Sπ → S if
its strict transform in Sπ goes through q. The property is well defined, because
clearly if q′ ∈ Sπ′ → S is equivalent to q′, then the strict transform of C in Sπ

goes through p if and only if the strict transform of C in Sπ′ goes through p′; in
the sequel we implicitly leave such routine checks to the reader. For instance,
the multiplicity of C at q, denoted multq C, is well defined as the multiplicity
of its strict transform. For every curve C on S, the set of all points infinitely
near to p, where C has multiplicity > 1, is a cluster [5, 3.7.1], which we denote
Multp(C), and the set of all points, proper and infinitely near, where C has
multiplicity > 1, is a multi-cluster Mult(C).

Remark 2.8. The multi-cluster Mult(C) just defined may be strictly contained
in the multi-cluster of singular points of C [5, Section 3.8], which is formed
by all points that have to be blown up to obtain an embedded resolution (also
called good resolution in the literature) of C.

Given a multi-cluster K on S, one may blow up all points in K, as follows.
First blow up S with center at one of the proper points p of K, then perform
successive blowups on the resulting surfaces, with centers which belong to K
and are proper points of the surfaces obtained by previous blowups. Subsequent
centers may be chosen in any order compatible with the natural ordering by
infinitely-near-ness (if q1 precedes q2, then q1 must be blown up first); the final
surface and bimeromorpic map obtained as the composition of all blowups,
which will be denoted πK : SK → S, are independent on the order of these
blowups – up to unique S-biholomorphism (a detailed proof in the case of a
single cluster can be found in [5, Proposition 4.3.2], the general case follows
easily).

In fact, every bimeromorphic model of S is the blowup of all points in
a convenient cluster: if π : Sπ → S is a bimeromorphic map, for every factor-
ization of π as a finite sequence of point blowups, the centers of the blowups
clearly form a multi-cluster K. The proof of Proposition 2.4 can be easily mod-
ified to show that this multi-cluster is independent of the factorization (i.e.,
two distinct factorizations consist of the same number of blowups, and the
centers are equivalent) and there is a unique S-biholomorphism Sπ

∼= SK .
We denote by Eq (respectively, Ẽq) the pullback or total transform

(respectively, the strict transform) in SK of the exceptional divisor of the
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blowup centered at q. It is not hard to see that q1 precedes q2 if and only if
Eq2 − Eq1 is an effective divisor.

Definition 2.9. Let C ⊂ S be a reduced curve, and let K be a multi-cluster on
the surface S. The Harbourne constant of C at K is

H(C,K) =
C2 −

∑
q∈K multq(C)2

|K| .

Note that the strict transform of C on the blowup SK of all points in K is

C̃ = π∗
K(C) −

∑
q∈K

multq(C)Eq (1)

so the numerator in the definition of H(C,K) is the self-intersection of C̃ in
SK . We define the Harbourne index of C as its Harbourne constant at its
cluster of multiple points, i.e.,

h(C) = H(C,Mult(C)).

If the singularities of C are ordinary, then the multi-cluster Mult(C) con-
sists of proper points of S only, so this definition of Harbourne index extends
the one recalled in the introduction.

Remark 2.10. Fix a reduced curve C on S. For every multi-cluster K and
every point (proper or infinitely near) q of S, let K + q be the minimal multi-
cluster which contains both K and q. Note that all points preceding q which
are not in K belong to (K + q)\K. Assume K is such that there is a point
q ∈ Mult(C)\K. Then C has multiplicity at least 2 at all points in (K +q)\K,
i.e., multq(C)2 ≥ 4 for every such point. Therefore, if H(C,K) ≥ −4, then

H(C,K + q) ≤
C2 −

∑
q∈K multq(C)2 − 4|(K + q)\K|

|K| + |(K + q)\K| ≤ H(C,K),

and by induction on |Mult(C)| − |K|, if H(C,K) ≥ −4, then H(C,K) ≥
H(C,Mult(C)). On the other hand, in the case of S = P

2 every known value
H(C,K) is larger than −4, so in all known cases for plane curves the cluster
that gives the smallest value for H(C,K) is K = Mult(C), and the value is
h(C).

2.2. Singularities of Curves in Smooth Surfaces

By assigning integral multiplicities ν = {νq}q∈K to the points of a cluster K
one gets a weighted cluster.

Definition 2.11. A weighted cluster K = (K, ν) is consistent if there exist
germs of curve in S whose strict transform at each q ∈ K has multiplicity
exactly νq. The cluster Multp(C) of multiple points on C infinitely near to
p ∈ S, weighted with the multiplicity of C at each point, will be denoted by
MultpC.
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Let K = (K, ν) be a given weighted cluster of points infinitely near to
p, and πK : SK → S the blowup of S at all points of K, introduced above.
Continuing to denote by Eq the total transform in SK of the exceptional divisor
above each q ∈ K, we associate to the weights ν an effective divisor on SK ,
DK =

∑
νqEq.

Definition 2.12. A curve C on S is said to go through the weighted cluster
K = (K, ν) if π∗

K(C) − DK is effective in SK (see [5, Chapter 4]).

In particular, if the strict transform of a curve C at every q ∈ K has
multiplicity equal to νq, then C goes through K. The complete ideal HK =
πK∗(−DK,ν) ⊂ OS,q is formed by the equations of germs of curve at p going
through K.

Definition 2.13. The cluster (K, ν) is consistent if and only if it satisfies
Enriques’ proximity inequalities, which can be stated as the non-positivity
of the intersection numbers DK ·Ẽq ≤ 0 on SK for every q ∈ K, see [5, sections
4.2 and 4.5].

The self-intersection of K is defined as the opposite of the self-intersection
of DK: K2 =

∑
ν2

q . If K is consistent, then its self-intersection equals the
intersection multiplicity at q of two sufficiently general germs of curve going
through K with multiplicities equal to ν [5, 3.3.1 and 4.2.3].

The notions of weighted cluster, and hence of going through a weighted
cluster, consistency and self-intersection carry over to the multi-cluster setting
verbatim. We will denote Mult(C) the weighted multi-cluster obtained as the
union of all weighted clusters MultpC, where p ∈ S is a singular point of C.

Definition 2.14. For an mp-primary ideal I ⊂ OS,p, the Hilbert-Samuel multi-
plicity of I is the number e(I) such that, for k � 0,

dim
OS,p

Ik
= e(I)

k2

2!
+ O(k).

Lemma 2.15. The Hilbert-Samuel multiplicity of a complete ideal HK, where
K = (K, ν) is a consistent cluster, is e(HK) = K2.

Proof. For every positive integer k, let kK = (K, kν) be the weighted cluster
consisting of the same points as K and all weights multiplied by k. It satisfies
the proximity inequalities, so it is consistent. By [5, Theorem 8.4.11], Hk

K =
HkK. On the other hand, by the codimension formula for consistent clusters
[5, Proposition 4.7.1], one has

dim
OS,p

HK,kν
=

∑
p∈K

kνp(kνp + 1)
2

= K2 k2

2
+ O(k).

�
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Lemma 2.16. Let S be a smooth projective surface, let p1, . . . , pr ∈ S, and for
every i = 1, . . . , r we denote by Ki = (Ki, ν

(i)) a consistent weighted cluster of
points infinitely near to pi. Let K = (K, ν) be the multi-cluster formed by all
these clusters and C ⊂ S a reduced curve going through K. Then

H(C,K) ≤ C2 − K2

|K|

Proof. Denote by μ
(i)
q the multiplicity of the strict transform of C at the point

q ∈ Ki. Then the clusters K′
i = (Ki, μ

(i)), for i = 1 . . . , r, are consistent.
Moreover, the strict transform of C on the blowup πK : SK → S at all points
of the multi-cluster K is C̃ = π∗(C) − DK′ whereas, since C goes through all
clusters with multiplicities ν(i), the divisor π∗(C) − DK is effective. It follows
that for each i, DK′

i
≥ DKi

, and therefore there is an inclusion of ideals

HK′
i
= πKi∗(−DK′

i
) ⊂ πKi∗(−DKi

) = HKi

in OS,pi
for i = 1, . . . , r. Thus for every k, Hk

K′
i
⊂ Hk

Ki
, so the Hilbert-Samuel

multiplicities satisfy e(HK′
i
) ≥ e(HKi

), and by the lemma above (K′
i)

2 ≥ K2
i .

Finally, this implies

H(C,K) =
C2 − K′2

|K| ≤ C2 − K2

|K|
as wanted. �

3. Harbourne Constants Under Ramified Morphisms

Our next goal is to describe the singularities of preimages of curves under rami-
fied holomorphic surface maps, in enough detail to first show that H-constants
can only drop under such a process on projective surfaces, and secondly to
provide new examples of plane curve arrangements in the complex projective
plane with very negative H-indices.

3.1. The Pullback Cluster

Fix for this section the following notation: S, S′ are two smooth complex sur-
faces, f : S → S′ is a dominant holomorphic map [i.e., f(S) is not contained
in a curve of S′], p ∈ S and p′ = f(p) are points, and we are interested in
the singularity at p of the pullback (or preimage) of a curve C ′ ⊂ S′ whose
singularity at p′ is known.

Take x, y and u, v as local coordinates on S and S′ with origins at p and
p′, respectively, and assume that on a suitable open neighborhood U at p,
f : S → S′ is given by the equalities u = f1(x, y), v = f2(x, y), where fi’s are
non-invertible convergent series in x, y. The multiplicity of f at p, denoted by
νp(f) or simply ν(f) if there is no risk of ambiguity, is the minimum of the
orders of vanishing of f1 and f2 at p.
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Put d = gcd(f1, f2), as elements in OS,p. The pencil of curves in U
defined by {Cα : α1f1 + α2f2 = 0}, α = α1/α2 ∈ C ∪ {∞}, formed by the
pullbacks of the curves α1u + α2v = 0, has a fixed part F : d = 0 (which
might be empty) and a variable part {Dα : α1f1/d + α2f2/d = 0}. We call
F the curve contracted to p′, as f(F ) = p′. On the other hand, the variable
part of the pencil has, like every pencil without fixed part, a weighted cluster
of base points which consists of the points and multiplicities shared by all but
finitely many curves in the pencil [5, 7.2]. This cluster is called the cluster
of base points of f , and denoted BPp(f), or simply BP(f) if no confusion is
likely. By definition, BP(f) is a consistent cluster, and for every curve C ′ ⊂ S′

through p′, the pullback f∗(C ′) goes through BP(f) (if F is nonempty, then
f∗(C ′) − F goes through BP(f)). It may happen that only finitely many Dα

go through p; in this case the cluster BP(f) is empty. The multiplicity of f
satisfies ν(f) = νp + multp(F ), where νp is the multiplicity of p in BP(f).

Remark 3.1. Given a dominant holomorphic map f : S → S′ and a point
p′ ∈ S′. The set of points p ∈ S such that f(p) = p′ and BPp(f) is nonempty
is discrete. Indeed, let p satisfy f(p) = p′, and write f in local coordinates as
above, (f1(x, y), f2(x, y)) in a neighborhood U of p. Let d = gcd(f1, f2). Since
f1/d, f2/d have no common factor in OS,p, their common zeros in a possibly
smaller neighborhood U ′ ⊂ U are a discrete set, and for q ∈ U ′, the cluster
BPq is nonempty if and only if q is a common zero of f1/d and f2/d.

Note that if d is invertible in OS,p, then p is an isolated preimage.

Let πp′ : S′
p′ → S′ be the blowup centered at p′. It is natural to describe

BP(f) as the cluster of points which need to be blown up to resolve the
indetermination at p of the “meromorphic map” f̃ = π−1

p′ ◦ f : S ��� Sp′ ; we
include a proof for completeness, since this characterization will be the starting
point for our definition of the pullback cluster.

Lemma 3.2. Keeping the same notation as above, assume f(p) = p′ and let U
be a neighborhood of p such that BPq(f) is empty for all q ∈ U , q �= p. There
is a unique local lift f̃ of f to the blowup of the points of BP(f) which makes
the following diagram commute:

UBP(f) S′
p′

U S′

f̃

πBP(f) πp′

f

Moreover, if π : Uπ → U is a bimeromorphic model of U which admits a lift
f̄ : Uπ → S′

p′ , then π factors through πBP(f).
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The weights νq of the base points are determined by the formula

f̃∗(Ep′) = π∗
BP(f)(F ) +

∑
q∈BP(f)

νqEq. (2)

Remark 3.3. If q is a point infinitely near to p, which belongs as a proper point
to the model Sπ → S, then (f ◦ π)(q) = p′. It then follows from the definition
that q ∈ BPp(f) if and only if q ∈ BPq(f ◦ π) (see also [5, section 7.2]).

Proof. Write f in local coordinates as above, (u, v) = (f1(x, y), f2(x, y)), and
let d = gcd(f1, f2).

Assume first that BP(f) is empty, which by definition means that either
f1/d or f2/d does not vanish at p; without loss of generality we assume f2/d
does not vanish. Consider the chart V of S′

p′ which admits (u/v, v) as local
coordinates, and let U ′ ⊂ U be the open set where f is given by (f1, f2) and
f2/d does not vanish. Then the restriction f |U ′ lifts uniquely to f̃ : U ′ → V ,
given in coordinates as (u/v, v) = (f1(x, y)/f2(x, y), f2(x, y)).

Conversely, if there is a neighborhood U ′ of p where f lifts to f̃ : U ′ → S′
p′ ,

then f̃(p) belongs either to the chart where (u/v, v) are local coordinates, or
to the chart where (u, v/u) are local coordinates; without loss of generality
we assume it is the first case. Then (u/v) ◦ f̃ = f1(x, y)/f2(x, y) is a regular
function in a neighborhood of p, so f2/d does not vanish and BP(f) is empty.

So BP(f) is empty if and only if there is a lift f̃ : U ′ → S′
p′ in some

neighborhood U ′ of p. We now observe that uniqueness of a lift f̃ if it exists
is clear because πBP(f) is bimeromorphic. Therefore, to show existence in the
general case it is enough to prove it in a neighborhood of a point q ∈ UBP(f),
because by uniqueness local lifts will match to the desired f̃ .

Now, by assumption BPq(f) is empty for all q ∈ U, q �= p, so BPq(f ◦
πBP(f)) is empty for all q ∈ U, f(q) �= p, and by Remark 3.3, BPq(f ◦ πBP(f))
is empty for all q ∈ U, f(q) = p. Therefore the previous paragraph shows that
there is a lift f̃ as claimed.

Moreover, if p ∈ BP(f) then as observed above there is no lift of f to
any neighborhood U ′ of p. Therefore, if π : Uπ → U is a bimeromorphic model
of U which admits a lift f̄ : Uπ → S′

p′ , then π is not biholomorphic onto any
neighborhood of p, and so it factors through πp. The second claim now follows
by induction on |BP(f)|.

Let now (ν̄q)q∈BP(f) be the weights determined by (2). It remains to show
that νq = ν̄q for each q, which we do by induction on |BP(f)|. To this end,
let q be a point in the first neighborhood of p, not in BP(f) nor on F ; this
means that not all (strict transforms of) Dα go through q, and without loss
of generality we assume that the strict transform of f2/d does not go through
q. Then a direct computation in coordinates shows that the pullback π∗

p(f2)
of Ep′ : v = 0 vanishes to order exactly νp along Ep at q, i.e., νp = ν̄p. This
in particular gives the desired equality if BP(f) consists only of the point p.
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Finally, let q1, . . . , qr be the points of BP(f) in the first neighborhood of p;
the induction hypothesis applied to BPqi

(f ◦ πp) finishes the proof. �

According to [6], the local degree of f at p, denoted by degp(f), is the
number of points in f−1(q) that approach p when q approaches p′ along α1u+
α2v = 0 for a general α. If the contracted curve F is empty, then this is simply
the number of points in f−1(q) that approach p when q approaches p′. In
general, it satisfies

degp(f) =
∑

q∈BPp(f)

(
ν2

q + νq · multq(F )
)
, (3)

where νq are the weights of the cluster of base points BPp(f). Note that∑
ν2

q = BPp(f)2 is the intersection multiplicity at p of any two distinct curves
Dα,Dα′ in the pencil of variable parts [5, Ex. 7.2], whereas

∑
νq · multq(F ) is

the intersection multiplicity at p of a general Dα with the fixed part F .

Remark 3.4. By definition, the local degree is multiplicative under composition
of finite maps. More precisely, if f : S → S′ and g : S′ → S′′ are holomorphic
maps and f has empty contracted curve, denoting p′ = f(p), one has degp(g ◦
f) = degp′(g) · degp(f).

Let K = (K,μ) be an arbitrary weighted cluster of points infinitely near
to the target point p′ of f . Generalizing the cluster of base points of f which
describes the singularities of pullbacks of general curves smooth at p′, we next
associate to K a pullback cluster f∗(K) = (f∗(K), f∗μ) of points infinitely near
to p in order to describe the singularities of pullbacks of general curves going
through K. Following the characterization of BP(f) given as Lemma 3.2, let
πK : S′

K → S′ be the composition of the blowups centered at all points of K,
and let DK =

∑
q∈K μqEq be the associated divisor on S′

K . Then we define
f∗(K) as the cluster of all points which need to be blown up to resolve the
indeterminacy at p of the composition π−1

K′ ◦ f , and its multiplicities f∗μ as
determined by

f̃∗(DK) = FK +
∑

q∈f∗(K)

(f∗μ)qEq.

where FK is formed by all components of f̃∗(DK) which do not contract to p
in S. FK can be called the fixed part of f∗(HK); all of its components map in
S to components of the contracted curve F of f , with multiplicities depending
on K. If the weighted cluster K is consistent, the pullback cluster f∗(K) can
be described as a suitable cluster of base points; the following lemma gives the
precise statement.

Lemma 3.5. Let w, z ∈ OS′,p′ be local equations of two curves going through
K with multiplicities exactly μ and sharing no further point (see [5, Section
4.2]). Let V ⊂ S′ be an open neighborhood of p′ such that (w, z) determine a
dominant holomorphic map g : V → C

2. Then FK is the pullback in Sf∗(K) of
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the contracted germ of the holomorphic map g ◦ f , and f∗(K) differs from the
cluster of base points at p of g ◦ f at most in some points of multiplicity 0.

Proof. (Sketch of proof). The key point of the proof is to show that there is
a lift Uf∗(K) → Bl0(C2) of g ◦ f , which follows from the straightforward fact
that g lifts to BlK(V ) → Bl0(C2) (in fact by the definitions K is the cluster
of base points of g). �

Put d = gcd(f∗(w), f∗(z)). It follows from the lemma that the curve FK
is given by d = 0, and the multiplicities of all but finitely many curves in
the pencil {α1f

∗(w)/d + α2f
∗(z)/d} at the points of f∗(K) are exactly the

weights f∗μ. More precisely, the cluster of base points of this pencil consists of
the subcluster of f∗K of the points with positive multiplicity. If K is consistent,
then f∗K is consistent as well. However, when K has points q whose excess
DK · Ẽq is zero [5, Section 4.2], f∗K may have points with multiplicity zero.

Corollary 3.6. Let f : S → S′ be a dominant holomorphic map between smooth
complex surfaces, p ∈ S a point with f(p) = p′, and let K = (K,μ) be a
consistent weighted cluster of points infinitely near to p′. If the curve contracted
to p′ is empty, then

(f∗K)2 = degp(f) · K2.

Proof. Let w, z ∈ OS′,p′ be the local equations of two distinct curves going
through K with multiplicities exactly μ, and sharing no further point. Consider
the dominant holomorphic map g : V → C

2 determined by (w, z) as above.
Since it has empty contracted curve, by (3), degp′(g) = K2, and by the lemma,
degp(g ◦ f) = (f∗K)2. Since by Remark 3.4, degp(g ◦ f) = degp(f) · degp′(g),
the claim follows. �
Proposition 3.7. Let f : S → S′ be a dominant holomorphic map between
smooth complex surfaces, and p ∈ S such that f−1(p′) = {p}. For every cluster
K of points infinitely near to p′, |f∗(K)| ≤ degp(f) · |K|. Moreover, if the
multiplicity of f is ν(f) > 1, then the inequality is strict.

Proof. Note that p is an isolated preimage of p′, so in particular the curve
contracted to p′ is empty.

We argue by induction on |K|. If |K| = 1, then K = {p′} and
f∗(K) = BP(f). Since degp(f) =

∑
q∈BP(f) ν2

q and νq ≥ 1 for all q ∈ BP(f)
by definition, the claims follow.

Now assume |K| > 1, and let q′
0 be a maximal point by the partial

ordering by infinitely-near-ness, so that K0 = K\{q′
0} is a cluster. By induction

we may assume that

|f∗(K0)| ≤ degp(f) · |K0| = degp(f) · (|K| − 1) . (4)

Since p is an isolated preimage of p′, there exist open neighborhoods
U ⊂ S of p and V ⊂ S′ of p′ such that f |U : U → V is a surjective proper
holomorphic map. Then
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degp(f) = |f−1(q′)|,∀q′ ∈ V \{p′} (5)

(see [10, §3.A]). Consider the blowups πf∗(K0) and πK0 of all points in the
clusters f∗(K0), K0, and the corresponding lift of f ,

Ũ Ṽ

U V

f̃

πf∗(K0) πK0

f

The point q′
0 belongs to Ṽ . More precisely, to the preimage of p′, which

is an effective divisor D in Ṽ , and f̃−1(q′
0) is contained in the divisor f̃∗(D),

which is the preimage of p in Ũ .
Choose local coordinates u, v in an open neighborhood V ′ ⊂ Ṽ of q′

0,
such that uv = 0 along D ∩ V ′ (this is possible because at most two prime
components of D meet at q′

0). Then for a general member of the pencil {Lα :
α1u + α2v = 0}, every point on Lα except q′

0 has exactly degp(f) preimages
by f̃ , (5). The set f̃−1(q′

0) need not be finite, but it is easy to see that

Q = {q ∈ Ũ | f̃(q) = q′
0,degq(f̃) > 0}

is finite, and in fact ∑
q∈Q

degq(f̃) ≤ degp(f).

Notice that Q is also the set of indeterminacy points of π−1
q′
0

◦f̃ , where πq′
0

is the

blowup centered at q′
0. Consider, for each q ∈ Q, the cluster BPq(f̃). It is clear

that blowing up Ũ at all points of
⋃

q∈Q BPq(f̃) resolves the indeterminacies
of π−1

q′
0

◦ f̃ . Therefore, blowing up all points in the cluster

K1 = f∗(K)0 ∪
⋃

q∈Q
BPq(f̃)

resolves the indeterminacies of π−1
K ◦f = π−1

q′
0

◦π−1
K0

◦f . By definition, it follows
that f∗(K) ⊂ K1, and therefore

|f∗(K)| ≤ |K1| ≤ |f∗(K)0| +
∑
q∈Q

degq f̃ ≤ degp(f) · (|K| − 1) + degp(f)

so we are done. Note that if ν(f) > 1, then (by the induction hypothesis) the
inequality |f∗(K)0| < degp(f) · (|K| − 1) is strict and hence also |f∗(K)| <
degp(f) · |K|. �
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3.2. Pullback of Multi-Clusters and H-Indices

We are now going to apply the local results from the previous section in the
global setting of finite morphisms f : P2 → P

2 in order to study the behavior
of H-constants under pullbacks.

Theorem 3.8. (Theorem C) Let f : S → S′ be a finite morphism of complex
projective surfaces, C ⊂ S′ a reduced curve, and K a multi-cluster on S′.
Assume that f∗(C) is reduced and H(C,K) ≤ 0. Then

H(f∗(C), f∗(K)) ≤ H(C,K),

with a strict inequality if there is a proper point p ∈ f∗(K) with νp(f) > 1.

Proof. Let k = deg(f). By definition,

H(C,K) =
C2 −

∑
q∈K(multq(C))2

|K| ,

H(f∗(C), f∗(K)) =
k C2 −

∑
q∈f∗(K)(multq(f∗(C)))2

|f∗(K)| ,

Let Ki, for i = 1, . . . , r, be the clusters composing K, with Ki a cluster
of points infinitely near to pi ∈ S′. For each p ∈ S with f(p) = pi, denote fp

be the restriction of f to a neighborhood Up of p such that f−1(pi)∩Up = {p}.
Consider the cluster (Ki,Mult(C)) weighted with the multiplicities of C at the
points of Ki, and let Kp be the weighted cluster f∗(K,Mult(C)) obtained by
the pullback. The properties of the pullback cluster from the previous section
immediately give that:

1. Kp is a weighted cluster of points infinitely near to p,
2. f∗(C) goes through Kp,
3. f∗(K) =

⋃
f(p)∈{p1,...,pr} Kp.

Therefore,

H(f∗(C), f∗(K)) =
k C2 −

∑r
i=1

∑
f(p)=pi

K2
p∑r

i=1

∑
f(p)=pi

|Kp|
. (6)

For each i = 1, . . . , r, Corollary 3.6 gives∑
f(p)=pi

K2
p =

∑
f(p)=pi

degp(f) (Ki,Mult(C))2 = k (Ki,Mult(C))2,

and Proposition 3.7 gives∑
f(p)=pi

|Kp| ≤
∑

f(p)=pi

degp(f) |Ki| = k |Ki|,

with a strict inequality if νpf > 1 at some p with f(p) = pi. Taking into
account that H(C,K) ≤ 0, the Eq. (6) now gives

H(f∗(C), f∗(K)) ≤
k

(
C2 −

∑
q∈K(multq(C))2

)
k

∑r
i=1 |Ki|

,
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with a strict inequality if there exist some i and p with f(p) = pi, and
νpf > 1. �

For plane curves and in terms of h-indices, we have the following corollary:

Corollary 3.9. Let f : P
2 → P

2 be a finite morphism, and let C ⊂ P
2 be a

reduced curve with f∗(C) reduced.
1. if −4 ≤ h(C) < 0, then h(f∗(C)) ≤ h(C),
2. if there is a proper point p ∈ f−1(Mult(C)), then the above inequality is

strict.

Proof. By the theorem, H(f∗(C), f∗(Mult(C)) ≤ H(C,Mult(C)) = h(C),
with strict inequality if there is a proper point p ∈ f−1(Mult(C)) with
νp(f) > 1. By Remark 2.10, either h(f∗(C)) < −4 ≤ h(C) or h(f∗(C)) ≤
H(f∗(C), f∗(Mult(C)), and we are done. �

Theorem 3.8 means that H-constants of negative curves can only decrease
under pullbacks. By using suitable ramified morphisms we can now prove The-
orem A.

Proof of Theorem A. Let Sπ → P
2 be the composition of n point blowups,

and let K be the multi-cluster formed by the n points blown up. Let C be a
reduced curve on Sπ. We want to show that C2/|K| > h. By Lemma 2.16, we
may assume that C is the strict transform of a reduced curve C ′ on P

2. By
Theorem 3.8, it will be enough to show that there exists f : P2 → P

2 satisfying:
1. f∗(C) is reduced;
2. There exists p ∈ S such that νp(f) > 1 and f(p) is a proper point of K.

This is obviously possible: let f : P2 → P
2 be a Kummer cover given in suitable

coordinates by f([x : y : z]) = [xn : yn : zn]) with n ≥ 2, where the coordinates
are chosen such that no coordinate line is a component of C (hence f∗(C) is
reduced) and at least one coordinate point belongs to K. �

Furthermore, we prove that there is no minimal h-index in any sense:

Proposition 3.10. 1. There is no curve C0 ⊂ P
2 such that

h(C0) = inf
C⊂P2

h(C).

2. There is no curve C0 ⊂ P
2 with ordinary singularities such that

h(C0) = inf
C⊂P

2

ordinary singularities

h(C).

Proof. We shall show that, given a particular reduced curve C ⊂ P
2 with r ≥ 2

singular points and h(C) < 0, there exists another curve C ′ with h(C ′) <
h(C), and if C has ordinary singularities then C ′ can be chosen with ordinary
singularities too. So let p be a nonsingular point of C, and choose coordinates
in P

2 such that
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1. p = [1 : 0 : 0]
2. The points [0 : 1 : 0] and [0 : 0 : 1] do not belong to the curve, and none

of the coordinate lines is tangent to C or passes through a singular point
of C at P .

Choose an integer k such that −k2 < h(C) and consider the Kummer cover
f : P2 → P

2 given coordinate-wise by f([x : y : z]) = [xk : yk : zk], which
is a morphism of degree k2 branched along the coordinate triangle and has
multiplicity k at the (fixed) point p. The singularities of f∗(C) are as follows:

• For each singular point q of C there are k2 locally isomorphic singularities
in the k2 distinct preimage points of q.

• There is an ordinary singularity of multiplicity k at p.

Note that, if C has ordinary singularities, then so does f∗(C).
Denote K = Mult(C) the weighted multi-cluster of multiple points of C.

We have

h(f∗(C)) = H(f∗(C), f∗(K) ∪ {p}) =
k2d2 − k2K2 − k2

k2|K| + 1

=
k2|K|H(C,K) − k2

k2|K| + 1
<

k2|K|h(C) + h(C)
k2|K| + 1

= h(C), (7)

as claimed. �

Note that Theorem A and Proposition 3.10 do not mean that the values
of H-constants are not bounded from below—some examples of sequences of
reduced curves with decreasing H-indices are known, which converge to finite
limits. So the question whether the BNC holds for blowups of the complex
projective plane is open. The method of Proposition 3.10 does mean that, if
there is a uniform bound h(C) ≥ h, then for curves with a fixed number of
singular points s a stronger bound than h can be given:

Proposition 3.11. Suppose that infC⊂P2 h(C) = h for some h ∈ R. Then, for
every reduced curve C ⊂ P

2,

h(C) ≥ h +
3

|Mult(C)| .

Proof. Choose coordinates on P
2 such that the three coordinate vertices lie on

smooth points of C, and each coordinate line meets C in exactly d = deg(C)
distinct points. Consider the Kummer cover f([x : y : z]) = [xk : yk : zk], and
let K = Mult(C) as before. Then

h ≤ h(f∗(C)) =
k2d2 − k2K2 − 3k2

k2|K| + 3
= h(C)

k2|K|
k2|K| + 3

− 3k2

k2|K| + 3
.

The limit of the right hand side for k → ∞ is h(C) − 3/|K|, whence the
claim. �
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3.3. Examples

Fermat Arrangements. We observe that some of the known curve arrange-
ments with negative H-indices can be obtained as pullbacks of simpler arrange-
ments by suitable ramified maps.

Let C ⊂ P
2 be a reducible cubic made up of three concurrent lines;

for simplicity assume it is given by the homogeneous equation (x − y)(y −
z)(z − x) = 0. Obviously Mult(C) = {p} is the single point p = [1 : 1 : 1]
with multiplicity 3, and h(C) = 0. Let fk : P2 → P

2 be the Kummer cover
fk([x : y : z]) = [xk : yk : zk]. The so-called kth Fermat arrangement of
lines is the reduced curve f∗

k (C), which has k2 triple points, three points of
multiplicity k, and computing as in (7) we obtain h(f∗

k (C)) = −3k2/(k2 + 3).

Curves with Ordinary Singularities. In the proof of Propositions 3.10 and 3.11
we used morphisms which have multiplicity > 1 at smooth points of a given
curve C, for simplicity. In practice, in the search for curves with very negative
H-indices, using a morphism with multiplicity > 1 at singular points of C
turns out to be more effective.

For instance, if we apply the strategy of Proposition 3.7 to the Wiman
configuration W of 45 lines with 201 singular points and h-index −225/67 �
−3.358 we can deduce the existence of curves with ordinary singularities and
h-index arbitrarily close to −225/67 − 3/201 = −226/67 � −3.373.

However, we can obtain a more negative index. Consider a projective
coordinate system which has its three coordinate points sitting in triple points
of the Wiman configuration W of 45 lines [3] and such that none of the coor-
dinate lines belong to W . Then the intersection of each coordinate line with
W consists of the two chosen triple points and 39 transverse intersections with
the lines not going through the triple points (this is presumably well known,
we checked it using Singular). Denote as before K = Mult(W ), and apply the
Kummer cover f([x : y : z]) = [xk : yk : zk] to W . Each vertex p of the coor-
dinate system is its unique preimage, and f∗(W ) has an ordinary singularity
of multiplicity k2 multp(W ) there, so:

h(f∗(W )) =
452 k2 − k2K2

k2(|K| − 3) + 3
= h(C)

k2|K|
k2(|K| − 3) + 3

= −225
67

· 201 k2

198 k2 + 3
.

By taking large values of k, we see that there exist reduced curves C ⊂ P
2

with ordinary singularities and Harbourne index arbitrarily close to

−225
67

· 201
198

= −25
7

� −3.571.

This proves Theorem B.

Klein-Invariant Configurations of Higher Degree. In [11], we described the
singularities of the configuration of 21 reducible polars to the Klein quartic

Φ4 : x3y + y3z + z3x,
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computing in particular their H-constants, and we introduced additional very
negative configurations of curves of higher degree. We next recall the construc-
tion and give an explicit description of some clusters of singular points of these
configurations, leading to a bound on their h-indices.

Denote f : P2 → P
2 the gradient map given by the partial derivatives of

Klein’s quartic equation, explicitly

P
2 � [x : y : z] 9:1�−→ [u : v : w] =

[
3x2y + z3 : 3y2z + x3 : 3z2x + y3

]
∈ P

2.

Let also Φ21 be the polynomial of degree 21, invariant under the group
G168 of projectivities fixing Φ4, which defines the so-called Klein configuration
K = K0 of 21 lines. It was showed in [11, Proposition 2.1] that Φ63 = f∗(Φ21)
defines the configuration K1 of 21 reducible polars of Klein’s quartic, which
splits as Φ63 = Φ42Φ21, where Φ42 = 0 is a configuration of 21 irreducible con-
ics. Iterating the process, let Φ189 = f∗(Φ63), splitting as Φ189 = Φ126Φ42Φ21,
where Φ126 = f∗(Φ42) is an invariant configuration of 21 sextics, and in general
for k ≥ 1,

(fk)∗(Φ21) = Φ14·3k · · · Φ42Φ21.

We shall not attempt at a complete description of the singularities of the
configurations Kk : (fk)∗(Φ21) = 0, but we focus on the singularities lying on
the preimage of the singular points of K2 : Φ63 = 0; these are enough to show
that the Harbourne index hk of Kk is a decreasing sequence whose limit is at
most −1283/410 � −3.123.

Proposition 3.12. The singularities of the arrangement K2 are 42 nodes, 252
ordinary triple points and 189 ordinary quadruple points.

This can be equivalently stated as follows:

Proposition 3.13. The multi-cluster Mult(K1) of singularities of the arrange-
ment of reducible polars of Klein’s quartic consists of 483 clusters of one point
each, of which 42 have multiplicity 2, 252 have multiplicity 3, and 189 have
multiplicity 4.

Proposition 3.12 and Lemmas 3.14, 3.15 below were proven in [11]. We
denote O42 the set of 42 nodes of K2 (which is the unique orbit of size 42 for
the Klein group G168).

Lemma 3.14. For every k ≥ 1, Φ14·3k is smooth along O42. Moreover, the local
intersection multiplicity at p ∈ O42 of Φ14·3k and Φ14·3k+1 is 2 · 3k−1.

Lemma 3.15. For every k ≥ 1, Kk is reduced.

Proposition 3.16. For every k ≥ 2, the cluster Sp.k of singular points at p ∈
O42 of (fk)∗(Φ21) consists of 2 ·3k−2 points, totally ordered by infinitely-near-
ness, of which

1. p has multiplicity k + 1,
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2. the first point infinitely near to p has multiplicity k,
3. for every m = 2, . . . , k − 1, there are exactly 4 · 3k−m−1 points of multi-

plicity m.

Proof. Let L be the line, component of the Klein configuration K0, through
p, and let C be the conic, component of K1 through p. By Lemma 3.14,
the singularity of (fk)∗(Φ21) at p consists of k + 1 smooth branches, of
which all but L are tangent. This proves the first two items. Also by
Lemma 3.14, if k ≥ 3 the m branches of (fk)∗(Φ21) corresponding to the curves
(fk−1)∗(C), (fk−2)∗(C), . . . (fk−m+1)∗(C) share their first 2·3k−m points infin-
itely near to p (including p); in particular all singular points at p ∈ O42 of
(fk)∗(Φ21) belong to the smooth branch of (fk−1)∗(C) through p and hence
they are totally ordered by infinitely-near-ness. The third item follows by
observing that 4 · 3k−m−1 = 2 · 3k−m − 2 · 3k−(m+1). �

Next, we will define iteratively a weighted multi-cluster which will give
our upper bound for the h-index of the configurations Kk. Let K1 = Mult(K1).
By Proposition 3.13, we can split

K1 = S ∪ T

where S consists of the points in O42 with multiplicity 2, and T consists of 252
points of multiplicity 3 and 189 of multiplicity 4. For every p ∈ O42, denoting
again by L and C the line and conic components of K1 through p, Lemma 3.14
shows that the local intersection multiplicity at p of f∗L and f∗C is 2+1 = 3,
so f(O42) = O42 and f has local degree 3 at every point of O42. Therefore we
can write

f−1(O42) = O42 ∪ X

where X is a finite set of points with
∑

p∈X degp f = 6 · 42. Denote, for each
k ≥ 2, Sk =

⋃
p∈O42

Sp,k the multi-cluster of singular points of (fk)∗(Φ21)
supported at O42, and split its pullback as

f∗(Sk) = S42
k ∪ SX

k

where S42
k is the subcluster supported at O42 and SX

k is the subcluster sup-
ported at X.

Finally, define

Kk = Sk ∪ SX
k−1 ∪ f∗(SX

k−2) ∪ · · · ∪ (fk−2)∗(SX
1 ) ∪ (fk−1)∗(T )

Proposition 3.17. For every k ≥ 1, the arrangement Kk goes through the
weighted multi-cluster Kk. Moreover, for every k ≥ 2, the self-intersection
and cardinality of Kk satisfies:

K2
k =

21
2

(53 · 9k + 3) − 196 · 3k+1, |Kk| ≤ 84 · 9k − 28 · 3k+1.
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Proof. The fact that Kk goes through Kk is clear by the construction of Kk.
By Corollary 3.6 and Proposition 3.7,

((fk−1)∗T )2 = 9k−1 · T 2 = 9k · 588, |(fk−1)∗T | ≤ 9k−1 · |T | = 9k · 49. (8)

On the other hand, by Proposition 3.16, for k ≥ 2,

S2
k = 42

(
(k + 1)2 + k2 + 4 ·

k−1∑
m=2

3k−m−1m2

)
= 588 · 3k−2 − 42, (9)

|Sk| = 42

(
2 +

k−1∑
m=2

3k−m−1

)
= 84 · 3k−2, (10)

and therefore, for � = 2, . . . , k − 1, we obtain applying Corollary 3.6 and
Proposition 3.7 again,(

(fk−�−1)∗(SX
� )

)2
= 1176 · 3k+�−4 − 28 · 9�−1, (11)∣∣(fk−�−1)∗(SX

� )
∣∣ ≤ 168 · 3k+�−4, (12)

and, finally, since (SX
1 )2 = 6 · 42 · 4 and |SX

1 | ≤ 6 · 42,(
(fk−2)∗(SX

1 )
)2

= 112 · 9k−1, (13)∣∣(fk−2)∗(SX
1 )

∣∣ ≤ 28 · 9k−1. (14)

Summing up (8)–(14), we obtain the claim. �

Corollary 3.18. For all k ≥ 2,

h(Kk) ≤ −1283 · 9k − 81
410 · 9k

−→
k→∞

−1283
410

� −3.12927.
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[11] Pokora, P., Roé, J.: The 21 reducible polars of Klein’s quartic. Exp. Math. (2018).
https://doi.org/10.1080/10586458.2018.1488155

[12] Roulleau, X.: Bounded negativity, Miyaoka–Sakai inequality, and elliptic curve
configurations. Int. Math. Res. Not. IMRN 8, 2480–2496 (2017). https://doi.
org/10.1093/imrn/rnw107

Piotr Pokora
Institute of Mathematics, Polish Academy of Sciences
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