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1. Introduction

Given r > 0, let Dr := {z ∈ C: |z| < r}, and let D := D1. Let D := {z ∈
C: |z| ≤ 1} and T := ∂D. Let H be the class of all analytic functions in D and
A be its subclass of f normalized by f(0) := 0 and f ′(0) := 1, i.e., of the form

f(z) =
∞∑

n=1

anzn, a1 := 1, z ∈ D. (1.1)

Let S be the subclass of A of all univalent functions and S∗ be the subclass
of S of all starlike functions, namely, f ∈ S∗ if f ∈ A and

Re
zf ′(z)
f(z)

> 0, z ∈ D.

A function f ∈ A is called close-to-star if there exist g ∈ S∗ and β ∈ R such
that

Re
eiβf(z)
g(z)

> 0, z ∈ D. (1.2)
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Denote by CST the class of all close-to-star functions introduced by Reade [30].
Note that f ∈ CST if and only if a function

F (z) :=
∫ z

0

f(t)
t

dt, z ∈ D, (1.3)

is close-to-convex [15], [12, Vol. II, p. 3]. The class of close-to-star functions
and its subclasses were intensively studied by various authors (e.g., MacGregor
[25], Sakaguchi [32], Causey and Merkes [4]; for further references, see [12, Vol.
II, pp. 97–104]). Given g ∈ S∗ and β ∈ R, let CSTβ(g) be the subclass of CST
of all f satisfying (1.2). The classes CST0(gi), i = 1, 2, 3, where

g1(z) :=
z

1 − z2
, g2(z) :=

z

(1 − z)2
, g3(z) := z, z ∈ D,

are particularly interesting and were separately studied by authors. In this
paper we deal with the classes CST0(g1) =: ST (i) and CST0(g2) =: ST (1)
which elements f in view of (1.2) satisfy the condition

Re
{

(1 − z2)
f(z)

z

}
> 0, z ∈ D, (1.4)

and

Re
{

(1 − z)2
f(z)

z

}
> 0, z ∈ D, (1.5)

respectively. Let us add the inequality (1.4) defines the subclass of the class of
functions starlike in the direction of the real axis introduced by Robertson [31].
Moreover, each function F given by (1.3) over the class ST (i) maps univalently
D onto a domain F (D) convex in the direction of the imaginary axis. The
concept of convexity in one direction belongs to Roberston [31] (see e.g., [12,
p. 199]). Each function F given by (1.3) over the class ST (1) maps univalently
D onto a domain F (D) called convex in the positive the direction of the real
axis, i.e., {w + it: t ≥ 0} ⊂ f(D) for every w ∈ f(D) [2,8,9,11,20,21]. Let us
remark that the condition (1.4) was generalized by replacing the expression
1 − z2 by the expression 1 − α2z2 with α ∈ [0, 1] in [13].

In this paper we find the sharp estimates of early logarithmic coeffi-
cients (Sect. 2), of the Hankel determinant H2,2 and of Zalcman functional
J2,3 (Sect. 3) and of the early inverse coefficients (Sect. 4) of functions in the
classes ST (i) and ST (1). Since both classes ST (i) and ST (1) have a repre-
sentation using the Carathéodory class P, i.e., the class of functions p ∈ H of
the form

p(z) = 1 +
∞∑

n=1

cnzn, z ∈ D, (1.6)

having a positive real part in D, the coefficients of functions in ST (i) and
ST (1) have a suitable representation expressed by the coefficients of functions
in P. Therefore to get the upper bounds of considered functionals our com-
puting is based on parametric formulas for the second and third coefficients
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in P. However both classes are rotation non-invariant. Thus to solve discussed
problems we will apply a general formula for c3 recently found in [7]. The for-
mula (1.7) was proved by Carathéodory [3] (see e.g., [10, p. 41]). The formula
(1.8) can be found in [28, p. 166]. The formula (1.9) was shown in a recent
paper [7], where the extremal functions (1.11) and (1.12) were computed also.
For c1 ≥ 0 the formula (1.9) is due to by Libera and Zlotkiewicz [22,23].

Lemma 1.1. If p ∈ P is of the form (1.6), then

c1 = 2ζ1, (1.7)
c2 = 2ζ2

1 + 2(1 − |ζ1|2)ζ2 (1.8)

and

c3 = 2ζ3
1 + 4(1 − |ζ1|2)ζ1ζ2

− 2(1 − |ζ1|2)ζ1ζ
2
2 + 2(1 − |ζ1|2)(1 − |ζ2|2)ζ3

(1.9)

for some ζi ∈ D, i ∈ {1, 2, 3}.

For ζ1 ∈ T, there is a unique function p ∈ P with c1 as in (1.7), namely,

p(z) =
1 + ζ1z

1 − ζ1z
, z ∈ D. (1.10)

For ζ1 ∈ D and ζ2 ∈ T, there is a unique function p ∈ P with c1 and c2

as in (1.7)–(1.8), namely,

p(z) =
1 +

(
ζ1ζ2 + ζ1

)
z + ζ2z

2

1 +
(
ζ1ζ2 − ζ1

)
z − ζ2z2

, z ∈ D. (1.11)

For ζ1, ζ2 ∈ D and ζ3 ∈ T, there is a unique function p ∈ P with c1, c2

and c3 as in (1.7)–(1.9), namely,

p(z)

=
1 +

(
ζ2ζ3 + ζ1ζ2 + ζ1

)
z +

(
ζ1ζ3 + ζ1ζ2ζ3 + ζ2

)
z2 + ζ3z

3

1 +
(
ζ2ζ3 + ζ1ζ2 − ζ1

)
z +

(
ζ1ζ3 − ζ1ζ2ζ3 − ζ2

)
z2 − ζ3z3

, z ∈ D.

(1.12)

2. Logarithmic Coefficients

Given f ∈ S let

log
f(z)

z
= 2

∞∑

n=1

γnzn, z ∈ D\{0}, log 1 := 0. (2.1)
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The numbers γn are called logarithmic coefficients of f. Differentiating (2.1)
and using (1.1) we get

γ1 =
1
2
a2, γ2 =

1
2

(
a3 − 1

2
a2
2

)
,

γ3 =
1
2

(
a4 − a2a3 +

1
3
a3
2

)
.

(2.2)

As it well known, the logarithmic coefficients play a crucial role in Milin con-
jecture ([26], see also [10, p. 155]). It is surprising that for the class S the
sharp estimates of single logarithmic coefficients S are known only for γ1 and
γ2, namely,

|γ1| ≤ 1, |γ2| ≤ 1
2

+
1
e

= 0.635 . . .

and are unknown for n ≥ 3. Logarithmic coefficients is one of the topic recently
being of interest by various authors (e.g., [1,18,33]).

Logarithmic coefficients can be considered for functions f from the class
A however under the assumption that the branch of logarithm D � z �→
log f(z)/z exists. From (1.4) and (1.5) it follows that g(z) := f(z)/z 	= 0 in
D\{0} for f ∈ ST (i) and f ∈ ST (1). However g(D) needs not be necessarily
a simply connected domain. Therefore, let ST 0(i) and ST 0(1) be the sub-
classes of ST (i) and ST (1) respectively, of all functions f for which the branch
D � z �→ log f(z)/z with log 1 := 0 exists.

Theorem 2.1. If f ∈ ST 0(i) is of the form (1.1), then

|γ1| ≤ 1, |γ2| ≤ 3
2
, |γ3| ≤ 1.

All inequalities are sharp.

Proof. By (1.4) there exists p ∈ P of the form (1.6) such that

(1 − z2)
f(z)

z
= p(z). (2.3)

Substituting the series (1.1) and (1.6) into (2.3) by equating the coefficients
we get

a2 = c1, a3 = c2 + 1, a4 = c1 + c3. (2.4)

The inequality |γ1| ≤ 1 follows directly from (2.2), (2.4) and (1.7) with
sharpness for the function f given by (2.3), where p is as in (1.10).

Substituting (1.7) and (1.8) into (2.4) from (2.2) it follows that

|γ2| =
1
2

∣∣∣∣a3 − 1
2
a2
2

∣∣∣∣ =
1
2

∣∣∣∣c2 − 1
2
c2
1 + 1

∣∣∣∣

=
1
2

∣∣2(1 − |ζ1|2)ζ2 + 1
∣∣ ≤ 1

2
+ (1 − |ζ1|2)|ζ2| ≤ 3

2
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with sharpness for the function f given by (2.3), where p is as in (1.11) with
ζ1 = 0 and any ζ2 ∈ T.

By (2.2) and (2.4) we have

6γ3 = c3
1 − 3c1c2 + 3c3.

Hence and by (1.7)–(1.9) we get

3γ3 = 2ζ3
1 − 3(1 − |ζ1|2)ζ1ζ

2
2 + 3(1 − |ζ1|2)(1 − |ζ2|2)ζ3,

where ζi ∈ D, i = 1, 2, 3. Thus by setting x := |ζ1| ∈ [0, 1] and y := |ζ2| ∈ [0, 1]
we obtain

3|γ3| ≤ 2x3 + 3(1 − x2)xy2 + 3(1 − x2)(1 − y2)

= 2x3 − 3x2 + 3 − 3(1 − x2)(1 − x)y2

≤ 2x3 − 3x2 + 3 ≤ 3, (x, y) ∈ [0, 1] × [0, 1].

Thus |γ3| ≤ 1 with sharpness for the function f given by (2.3), where p is as
in (1.12) with ζ1 = ζ2 = 0 and any ζ3 ∈ T. �

Theorem 2.2. If f ∈ ST 0(1) is of the form (1.1), then

|γ1| ≤ 2, |γ2| ≤ 3
2
, |γ3| ≤ 1

3
(1 +

√
2).

All inequalities are sharp.

Proof. By (1.5) there exists p ∈ P of the form (1.6) such that

(1 − z)2
f(z)

z
= p(z). (2.5)

Substituting the series (1.1) and (1.6) into (2.5) by equating the coefficients
we get

a2 = c1 + 2, a3 = 3 + 2c1 + c2, a4 = 4 + 3c1 + 2c2 + c3. (2.6)

The inequality |γ1| ≤ 2 follows directly from (2.2), (2.6) and (1.7) with
sharpness for the function f given by (2.5), where p is as in (1.10).

Substituting (1.7) and (1.8) into (2.6) from (2.2) it follows that

|γ2| =
1
2

∣∣∣∣a3 − 1
2
a2
2

∣∣∣∣ =
1
2

∣∣∣∣c2 − 1
2
c2
1 + 1

∣∣∣∣

=
1
2

∣∣2(1 − |ζ1|2)ζ2 + 1
∣∣ ≤ 1

2
+ (1 − |ζ1|2)|ζ2| ≤ 3

2
with sharpness for the function f given by (2.3), where p is as in (1.11) with
ζ1 = 0 and any ζ2 ∈ T.

By (2.2) and (2.6) we have

6γ3 = 2 + c3
1 + 3c3 − 3c1c2.

Hence and by (1.7)–(1.9) we get

3γ3 = 1 + ζ3
1 − 3(1 − |ζ1|2)ζ1ζ

2
2 + (1 − |ζ1|2)(1 − |ζ2|2)ζ3,
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where ζi ∈ D, i = 1, 2, 3. Thus by setting x := |ζ1| ∈ [0, 1] and y := |ζ2| ∈ [0, 1]
we obtain

3|γ3| ≤ 1 + x3 − 3(1 − x2)xy2 + (1 − x2)(1 − y2)

= 2 − x2 + x3 + (1 − x2)(3x − 1)y2 =: F (x, y).
(2.7)

We have F (1/3, y) = 52/27. Moreover for x ∈ (1/3, 1] and x ∈ [0, 1/3) we get

F (x, y) ≤ F (x, 1) ≤ 1 + 3x − 2x3 ≤ 1 +
√

2, y ∈ [0, 1],

and

F (x, y) ≤ F (x, 0) ≤ 2 − x2 + x3 ≤ 2, y ∈ [0, 1],

respectively. Thus by (2.7), |γ3| ≤ (1 +
√

2)/3 with sharpness for the function
f given by (2.3), where p is as in (1.12) with ζ1 = 1/

√
2, ζ2 = i and any

ζ3 ∈ T. �

3. Zalcman Functional and Hankel Determinant

Now we compute the sharp upper bound of the Zalcman functional J2,3(f) :=
a2a3−a4 being a special case of the generalized Zalcman functional Jn,m(f) :=
anam − an+m−1, n,m ∈ N\{1}, which was investigated by Ma [24] for f ∈ S
(see also [29] for relevant results on this functional). We will find also the
sharp bound of the second Hankel determinant H2,2(f) = a2a4 − a2

3. Both
functionals J2,3 and H2,2 have been studied recently by various authors (see
e.g., [5,6,14,16,17,19,27]).

Theorem 3.1. If f ∈ ST (i) is of the form (1.1), then

|a2a3 − a4| ≤ 2.

The inequality is sharp with the extremal function

f(z) =
z

(1 − z)2
, z ∈ D. (3.1)

Proof. From (2.4) by using (1.7)–(1.9) it follows that

|a2a3 − a4| = |c1c2 − c3|
= 2

∣∣ζ3
1 + 2(1 − |ζ1|2)ζ1ζ

2
2 − (1 − |ζ1|2)(1 − |ζ2|2)ζ3

∣∣

≤ 2
[
|ζ1|3 + 2(1 − |ζ1|2)|ζ1||ζ2|2 − (1 − |ζ1|2)(1 − |ζ2|2

]

= 2
[
1 − |ζ1|2 + |ζ1|3 − 2(1 − |ζ1|2)(1 − |ζ1|)|ζ2|2

]

≤ 2
(
1 − |ζ1|2 + |ζ1|3

)
≤ 2,

(3.2)

with sharpness for the function (3.1).
To find sharp estimate for H2,2 over ST (i) we use the following lemma.

�
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Proposition 3.2.

|4z2 − 4z − 1| ≤
{

1 + 4|z| − 4|z|2, |z| ≤ (−1 +
√

2)/2,√
2(1 + 4|z|2), (−1 +

√
2)/2 ≤ |z| ≤ 1.

(3.3)

Proof. Since the inequality (3.3) clearly holds for z = 0, assume that z = reiθ

with 0 < r ≤ 1 and 0 ≤ θ < 2π. A simple computation gives

|4z2 − 4z − 1|2 = ϕ(cos θ), (3.4)

where ϕ: [−1, 1] → R is a function defined by

ϕ(x) := −16r2x2 − 8r(4r2 − 1)x + 16r4 + 24r2 + 1.

Note that ϕ′(x) = 0 occurs only when x = (1 − 4r2)/(4r) =: x0.
When r ≤ (−1 +

√
2)/2, we have x0 > 1 or 1 − 4r − 4r2 > 0. Therefore

ϕ′(x) ≥ 8r(1 − 4r − 4r2) > 0, x ∈ [−1, 1].

Hence we get

ϕ(x) ≤ ϕ(1) = (1 + 4r − 4r2)2. (3.5)

Thus from (3.4) and (3.5) it follows that the inequality (3.3) holds for
|z| ≤ (−1 +

√
2)/2.

When (−1 +
√

2)/2 ≤ r ≤ 1, we have x0 ∈ [−1, 1]. Then

ϕ(x) ≤ ϕ(x0) = 2(1 + 4r2)2, x ∈ [−1, 1]. (3.6)

Combining (3.4) and (3.6) we see that the inequality (3.3) holds for
(−1 +

√
2)/2 ≤ |z| ≤ 1. �

Theorem 3.3. If f ∈ ST (i) is of the form (1.1), then

|a2a4 − a2
3| ≤ 28

3
. (3.7)

The inequality is sharp with the extremal function

f(z) =
z(3 + z + 3z2)

3(1 − z2)2
, z ∈ D. (3.8)

Proof. From (2.4) by using (1.7)–(1.9)we have

a2a4 − a2
3 = c2

1 + c1c3 − c2
2 − 2c2 − 1

= 4ζ2
1 − 4ζ1 − 1 − 4(1 − |ζ1|2)ζ2 − 4(1 − |ζ1|2)ζ2

2

+ 4ζ1(1 − |ζ1|2)(1 − |ζ2|2)ζ3,

(3.9)

where ζi ∈ D, i = 1, 2, 3. Let x := |ζ1| ∈ [0, 1] and y = |ζ2| ∈ [0, 1].
Assume first that x ∈ [0, x0], where x0 := (−1 +

√
2)/2. Then by (3.9)

and Proposition 3.2 for y ∈ [0, 1] we get

|a2a4 − a2
3| ≤ 1 + 8x − 4x2 − 4x3 + 4(1 − x2)y

+ 4x(1 − x2)y2 =: F (x, y).
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Clearly, for each x ∈ [0, x0], the function [0, 1] � y �→ F (·, y) is increasing and
therefore for y ∈ [0, 1],

F (x, y) ≤ F (x, 1) = 9 + 4x − 12x2 ≤ 28
3

= 9.333 . . . . (3.10)

Assume now that x ∈ [x0, 1]. Then by (3.9) and Proposition 3.2 for
y ∈ [0, 1] we get

|a2a4 − a2
3| ≤

√
2 + 4x + 4

√
2x2 − 4x3 + 4(1 − x2)y

+ 4(1 − x2)(1 − x)y2 =: G(x, y).

Note first that

G(1, y) = 5
√

2 = 7.071 . . . , y ∈ [0, 1]. (3.11)

Clearly, for each x ∈ [x0, 1], the function [0, 1] � y �→ G(·, y) is increasing and
therefore for y ∈ [0, 1],

G(x, y) ≤ G(x, 1) = 8 +
√

2 − 4(2 −
√

2)x2

≤ −2 + 8
√

2 = 9.133 . . . .

Hence, from (3.10) and (3.11) it follows that the inequality (3.7) is true.
Equality in (3.7) holds for the function f given by (2.3), where p is given by
(1.12) with ζ1 := 1/6 and ζ2 = ζ3 := 1, i.e., for the function (3.8). �

Theorem 3.4. If f ∈ ST (1) is of the form (1.1), then

|a2a3 − a4| ≤ 20.

The inequality is sharp with the extremal function

f(z) =
z(1 + z)
(1 − z)3

, z ∈ D. (3.12)

Proof. From (2.6), by using (1.7) and the inequality |c1c2 − c3| ≤ 2 which was
proved in (3.2), we obtain

|a2a3 − a4| = |2 + 4c1 + 2c2
1 + c1c2 − c3|

≤ 2 + 4|c1| + 2|c1|2 + |c1c2 − c3| ≤ 20.

with sharpness for the function (3.12). �

Theorem 3.5. If f ∈ ST (1) is of the form (1.1), then

|a2a4 − a2
3| ≤ 17. (3.13)

The inequality is sharp with the extremal function (3.12).
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Proof. From (2.6) by using (1.7)–(1.9)we have

a2a4 − a2
3 = −1 − 2c1 − c2

1 − 2c1c2 − 2c2 − c2
2 + c1c3 + 2c3

= −1 − 4ζ1 − 8ζ2
1 − 4ζ3

1 − 4(1 − |ζ1|2)ζ2

− 4(1 + ζ1)(1 − |ζ1|2)ζ1ζ
2
2

+ 4(1 + ζ1)(1 − |ζ1|2)(1 − |ζ2|2)ζ3,

(3.14)

where ζi ∈ D, i ∈ {1, 2, 3}. Set x := |ζ1| ∈ [0, 1] and y =: |ζ2| ∈ [0, 1]. By
(3.14) we have

|a2a4 − a2
3| ≤ 5 + 8x + 4x2 + 4(1 − x2)y

− 4(1 − x2)2y2 =: F (x, y), x, y ∈ [0, 1].

Note first that

F (1, y) = 17, y ∈ [0, 1]. (3.15)

Let now x ∈ [0, 1). Then for y ∈ [0, 1] we have
∂F

∂y
= 4(1 − x2)[1 − 2(1 − x2)y] = 0

iff y = 1/2(1 − x2) =: y0. Since y0 ≥ 1 for each x ∈ [1/
√

2, 1), so then the
function [0, 1] � y �→ F (·, y) is increasing and therefore

F (x, y) ≤ F (x, 1) = 5 + 8x + 8x2 − 4x4 ≤ 17, y ∈ [0, 1]. (3.16)

For x ∈ [0, 1/
√

2) we have

F (x, y) ≤ F (x, y0) = F

(
x,

1
2(1 − x2)

)

= 6 + 8x + 4x2 ≤ 8 + 4
√

2 = 13.656 . . . , y ∈ [0, 1].

Hence by (3.15) and (3.16) it follows that the inequality (3.13) is true. Equality
in (3.13) holds for the function f defined by (3.12). �

4. Inverse Coefficients

Since ST (i) is a compact class and f ′(0) = 1 for every f ∈ ST (i), there exists
r0 ∈ (0, 1) such that every f ∈ ST (i) is invertible in the disk Dr0 . Thus there
exists δ > 0 such that the inverse function f̂ of f|Dr0

has a series expansion in
the disk Dδ of the form

f̂(w) = w +
∞∑

n=2

βnwn, w ∈ Dδ. (4.1)

Thus for f ∈ ST (i) of the form (1.1) the following relations hold (see e.g., [12,
Vol. I, p. 57])

β2 = −a2, β3 = 2a2
2 − a3, β4 = −5a3

2 + 5a2a3 − a4. (4.2)
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Similar situation holds for the class ST (1).

Theorem 4.1. If f̂ is the inverse function of f ∈ ST (i) of the form (4.1), then
(i) |β2| ≤ 2;
(ii) |β3| ≤ 7;
(iii) |β4| ≤ 30.
All inequalities are sharp with the extremal function

f(z) =
z(1 + iz)

(1 − z2)(1 − iz)
, z ∈ D. (4.3)

Proof. Substituting (2.4) into (4.2) we get

β2 = −c1, β3 = 2c2
1 − c2 − 1 (4.4)

and

β4 = −5c3
1 + 5c1c2 + 4c1 − c3. (4.5)

By (4.4) and (1.7) the inequality (i) follows immediately. From (4.4) with
(1.7) and (1.8) we have

|β3| = |2c2
1 − c2 − 1| =

∣∣6ζ2
1 − 2(1 − |ζ1|2)ζ2 − 1

∣∣

≤ 6|ζ1|2 + 2(1 − |ζ1|2)||ζ2| + 1 ≤ 4|ζ1|2 + 3 ≤ 7.

Now we prove (iii). By (4.5) and (1.7)–(1.9) we have

|β4| =
∣∣−22ζ3

1 + 8ζ1 + 16(1 − |ζ1|2)ζ1ζ2

+ 2(1 − |ζ1|2)ζ1ζ
2
2 − 2(1 − |ζ1|2)(1 − |ζ2|2)ζ3

∣∣

≤ 2 + 8x − 2x2 + 22x3 + 16x(1 − x2)y − 2(1 − x)2(1 + x)y2

=: F (x, y),

where ζi ∈ D, i = 1, 2, 3, x := |ζ1| ∈ [0, 1] and y := |ζ2| ∈ [0, 1].
Note first that

F (1, y) = 30, y ∈ [0, 1]. (4.6)

Let now x ∈ [0, 1). Then for y ∈ [0, 1] we have
∂F

∂y
= 4(1 − x2)[4x − (1 − x)y] = 0

iff y = 4x/(1−x) =: y0. Since y0 ≥ 1 for each x ∈ [1/5, 1), so then the function
[0, 1] � y �→ F (·, y) is increasing and therefore

F (x, y) ≤ F (x, 1) = 26x + 4x3 ≤ 30, y ∈ [0, 1]. (4.7)

For x ∈ [0, 1/5) we have

F (x, y) ≤ F (x, y0) = F

(
x,

4x

1 − x

)

= 2 + 72x + 30x2 − 10x3 ≤ 438
25

= 15.52, y ∈ [0, 1].
(4.8)
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Hence by (4.6)–(4.8) it follows that the inequality in (iii) is true.
All inequalities are sharp with the extremal function (4.3). �

Theorem 4.2. If f̂ is the inverse function of f ∈ ST (1) of the form (4.1), then
(i) |β2| ≤ 4;
(ii) |β3| ≤ 23;
(iii) |β4| ≤ 156.
All inequalities are sharp with the extremal function

f(z) =
z(1 + z)
(1 − z)3

, z ∈ D. (4.9)

Proof. Substituting (2.6) into (4.2) we get

β2 = −c1 − 2, β3 = 2c2
1 + 6c1 − c2 + 5 (4.10)

and

β4 = −5c3
1 − 20c2

1 + 2c1 + 5c1c2 + 8c2 − c3 − 14. (4.11)

By (4.10) and (1.7) the inequality (i) follows immediately. From (4.10) with
(1.7) and (1.8) we have

|β3| = |2c2
1 + 6c1 − c2 + 5| =

∣∣6ζ2
1 + 12ζ1 − 2(1 − |ζ1|2)ζ2 + 5

∣∣

≤ 6|ζ1|2 + 12|ζ1| + 2(1 − |ζ1|2) + 5 = 4|ζ|2 + 12|ζ| + 7 ≤ 23.

Now we prove (iii). By (4.11) and (1.7)–(1.9) we have

|β4| =
∣∣−22ζ3

1 − 64ζ2
1 − 56ζ1 − 14 + 16(1 − |ζ1|2)ζ2

+ 16(1 − |ζ1|2)ζ1ζ2 + 2(1 − |ζ1|2)ζ1ζ
2
2

− 2(1 − |ζ1|2)(1 − |ζ2|2)ζ3

∣∣

≤ 22x3 + 62x2 + 56x + 16 + 16(1 − x2)(1 + x)y

− 2(1 − x2)(1 − x)y2 =: F (x, y),

where ζi ∈ D, i = 1, 2, 3, x := |ζ1| ∈ [0, 1] and y := |ζ2| ∈ [0, 1].
Note first that

F (1, y) = 156, y ∈ [0, 1]. (4.12)

Let now x ∈ [0, 1). Then for y ∈ [0, 1] we have
∂F

∂y
= 4(1 − x2)[4(1 + x) − (1 − x)y = 0

iff y = 4(1 + x)/(1 − x) =: y0. Since y0 ≥ 1 for each x ∈ (0, 1), so the function
[0, 1] � y �→ F (·, y) is increasing and therefore

F (x, y) ≤ F (x, 1) = 4x3 + 48x2 + 74x + 30 ≤ 156, y ∈ [0, 1].

Hence and from (4.12) it follows that the inequality in (iii) is true.
All inequalities are sharp with the extremal function (4.9). �
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