Coefficient Problems in the Subclasses of Close-to-Star Functions

Adam Lecko© and Young Jae Sim

Abstract

For two subclasses of close-to-star functions we estimate early logarithmic coefficients, coefficients of inverse functions, Hankel determinant $H_{2,2}$ and Zalcman functional $J_{2,3}$. All results are sharp.

Mathematics Subject Classification. 30C45.
Keywords. Univalent functions, close-to-star functions, functions starlike in the direction of the real axis, functions convex in the direction of the imaginary axis, Hankel determinant, Zalcman functional, logarithmic coefficients, inverse functions, Carathéodory class.

1. Introduction

Given $r>0$, let $\mathbb{D}_{r}:=\{z \in \mathbb{C}:|z|<r\}$, and let $\mathbb{D}:=\mathbb{D}_{1}$. Let $\overline{\mathbb{D}}:=\{z \in$ $\mathbb{C}:|z| \leq 1\}$ and $\mathbb{T}:=\partial \mathbb{D}$. Let \mathcal{H} be the class of all analytic functions in \mathbb{D} and \mathcal{A} be its subclass of f normalized by $f(0):=0$ and $f^{\prime}(0):=1$, i.e., of the form

$$
\begin{equation*}
f(z)=\sum_{n=1}^{\infty} a_{n} z^{n}, \quad a_{1}:=1, z \in \mathbb{D} . \tag{1.1}
\end{equation*}
$$

Let \mathcal{S} be the subclass of \mathcal{A} of all univalent functions and \mathcal{S}^{*} be the subclass of \mathcal{S} of all starlike functions, namely, $f \in \mathcal{S}^{*}$ if $f \in \mathcal{A}$ and

$$
\operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}>0, \quad z \in \mathbb{D}
$$

A function $f \in \mathcal{A}$ is called close-to-star if there exist $g \in \mathcal{S}^{*}$ and $\beta \in \mathbb{R}$ such that

$$
\begin{equation*}
\operatorname{Re} \frac{\mathrm{e}^{\mathrm{i} \beta} f(z)}{g(z)}>0, \quad z \in \mathbb{D} \tag{1.2}
\end{equation*}
$$

Denote by $\mathcal{C S T}$ the class of all close-to-star functions introduced by Reade [30]. Note that $f \in \mathcal{C S T}$ if and only if a function

$$
\begin{equation*}
F(z):=\int_{0}^{z} \frac{f(t)}{t} d t, \quad z \in \mathbb{D} \tag{1.3}
\end{equation*}
$$

is close-to-convex [15], [12, Vol. II, p. 3]. The class of close-to-star functions and its subclasses were intensively studied by various authors (e.g., MacGregor [25], Sakaguchi [32], Causey and Merkes [4]; for further references, see [12, Vol. II, pp. 97-104]). Given $g \in \mathcal{S}^{*}$ and $\beta \in \mathbb{R}$, let $\mathcal{C S T}_{\beta}(g)$ be the subclass of $\mathcal{C S T}$ of all f satisfying (1.2). The classes $\mathcal{C S} \mathcal{T}_{0}\left(g_{i}\right), i=1,2,3$, where

$$
g_{1}(z):=\frac{z}{1-z^{2}}, \quad g_{2}(z):=\frac{z}{(1-z)^{2}}, \quad g_{3}(z):=z, \quad z \in \mathbb{D},
$$

are particularly interesting and were separately studied by authors. In this paper we deal with the classes $\mathcal{C S T}_{0}\left(g_{1}\right)=: \mathcal{S T}(\mathrm{i})$ and $\mathcal{C S} \mathcal{T}_{0}\left(g_{2}\right)=: \mathcal{S T}(1)$ which elements f in view of (1.2) satisfy the condition

$$
\begin{equation*}
\operatorname{Re}\left\{\left(1-z^{2}\right) \frac{f(z)}{z}\right\}>0, \quad z \in \mathbb{D} \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re}\left\{(1-z)^{2} \frac{f(z)}{z}\right\}>0, \quad z \in \mathbb{D} \tag{1.5}
\end{equation*}
$$

respectively. Let us add the inequality (1.4) defines the subclass of the class of functions starlike in the direction of the real axis introduced by Robertson [31]. Moreover, each function F given by (1.3) over the class $\mathcal{S} \mathcal{T}$ (i) maps univalently \mathbb{D} onto a domain $F(\mathbb{D})$ convex in the direction of the imaginary axis. The concept of convexity in one direction belongs to Roberston [31] (see e.g., [12, p. 199]). Each function F given by (1.3) over the class $\mathcal{S} \mathcal{T}$ (1) maps univalently \mathbb{D} onto a domain $F(\mathbb{D})$ called convex in the positive the direction of the real axis, i.e., $\{w+i t: t \geq 0\} \subset f(\mathbb{D})$ for every $w \in f(\mathbb{D})[2,8,9,11,20,21]$. Let us remark that the condition (1.4) was generalized by replacing the expression $1-z^{2}$ by the expression $1-\alpha^{2} z^{2}$ with $\alpha \in[0,1]$ in [13].

In this paper we find the sharp estimates of early logarithmic coefficients (Sect. 2), of the Hankel determinant $H_{2,2}$ and of Zalcman functional $J_{2,3}$ (Sect. 3) and of the early inverse coefficients (Sect. 4) of functions in the classes $\mathcal{S T}$ (i) and $\mathcal{S T}$ (1). Since both classes $\mathcal{S T}$ (i) and $\mathcal{S T}$ (1) have a representation using the Carathéodory class \mathcal{P}, i.e., the class of functions $p \in \mathcal{H}$ of the form

$$
\begin{equation*}
p(z)=1+\sum_{n=1}^{\infty} c_{n} z^{n}, \quad z \in \mathbb{D} \tag{1.6}
\end{equation*}
$$

having a positive real part in \mathbb{D}, the coefficients of functions in $\mathcal{S T}$ (i) and $\mathcal{S T}$ (1) have a suitable representation expressed by the coefficients of functions in \mathcal{P}. Therefore to get the upper bounds of considered functionals our computing is based on parametric formulas for the second and third coefficients
in \mathcal{P}. However both classes are rotation non-invariant. Thus to solve discussed problems we will apply a general formula for c_{3} recently found in [7]. The formula (1.7) was proved by Carathéodory [3] (see e.g., [10, p. 41]). The formula (1.8) can be found in [28, p. 166]. The formula (1.9) was shown in a recent paper [7], where the extremal functions (1.11) and (1.12) were computed also. For $c_{1} \geq 0$ the formula (1.9) is due to by Libera and Zlotkiewicz [22,23].

Lemma 1.1. If $p \in \mathcal{P}$ is of the form (1.6), then

$$
\begin{align*}
& c_{1}=2 \zeta_{1} \tag{1.7}\\
& c_{2}=2 \zeta_{1}^{2}+2\left(1-\left|\zeta_{1}\right|^{2}\right) \zeta_{2} \tag{1.8}
\end{align*}
$$

and

$$
\begin{align*}
c_{3}= & 2 \zeta_{1}^{3}+4\left(1-\left|\zeta_{1}\right|^{2}\right) \zeta_{1} \zeta_{2} \tag{1.9}\\
& -2\left(1-\left|\zeta_{1}\right|^{2}\right) \overline{\zeta_{1}} \zeta_{2}^{2}+2\left(1-\left|\zeta_{1}\right|^{2}\right)\left(1-\left|\zeta_{2}\right|^{2}\right) \zeta_{3}
\end{align*}
$$

for some $\zeta_{i} \in \overline{\mathbb{D}}, i \in\{1,2,3\}$.
For $\zeta_{1} \in \mathbb{T}$, there is a unique function $p \in \mathcal{P}$ with c_{1} as in (1.7), namely,

$$
\begin{equation*}
p(z)=\frac{1+\zeta_{1} z}{1-\zeta_{1} z}, \quad z \in \mathbb{D} \tag{1.10}
\end{equation*}
$$

For $\zeta_{1} \in \mathbb{D}$ and $\zeta_{2} \in \mathbb{T}$, there is a unique function $p \in \mathcal{P}$ with c_{1} and c_{2} as in (1.7)-(1.8), namely,

$$
\begin{equation*}
p(z)=\frac{1+\left(\overline{\zeta_{1}} \zeta_{2}+\zeta_{1}\right) z+\zeta_{2} z^{2}}{1+\left(\overline{\zeta_{1}} \zeta_{2}-\zeta_{1}\right) z-\zeta_{2} z^{2}}, \quad z \in \mathbb{D} \tag{1.11}
\end{equation*}
$$

For $\zeta_{1}, \zeta_{2} \in \mathbb{D}$ and $\zeta_{3} \in \mathbb{T}$, there is a unique function $p \in \mathcal{P}$ with c_{1}, c_{2} and c_{3} as in (1.7)-(1.9), namely,

$$
\begin{align*}
& p(z) \\
& \quad=\frac{1+\left(\overline{\zeta_{2}} \zeta_{3}+\overline{\zeta_{1}} \zeta_{2}+\zeta_{1}\right) z+\left(\overline{\zeta_{1}} \zeta_{3}+\zeta_{1} \overline{\zeta_{2}} \zeta_{3}+\zeta_{2}\right) z^{2}+\zeta_{3} z^{3}}{1+\left(\overline{\zeta_{2}} \zeta_{3}+\overline{\zeta_{1}} \zeta_{2}-\zeta_{1}\right) z+\left(\overline{\zeta_{1}} \zeta_{3}-\zeta_{1} \overline{\zeta_{2}} \zeta_{3}-\zeta_{2}\right) z^{2}-\zeta_{3} z^{3}}, \quad z \in \mathbb{D} \tag{1.12}
\end{align*}
$$

2. Logarithmic Coefficients

Given $f \in \mathcal{S}$ let

$$
\begin{equation*}
\log \frac{f(z)}{z}=2 \sum_{n=1}^{\infty} \gamma_{n} z^{n}, \quad z \in \mathbb{D} \backslash\{0\}, \log 1:=0 \tag{2.1}
\end{equation*}
$$

The numbers γ_{n} are called logarithmic coefficients of f. Differentiating (2.1) and using (1.1) we get

$$
\begin{align*}
& \gamma_{1}=\frac{1}{2} a_{2}, \quad \gamma_{2}=\frac{1}{2}\left(a_{3}-\frac{1}{2} a_{2}^{2}\right), \\
& \gamma_{3}=\frac{1}{2}\left(a_{4}-a_{2} a_{3}+\frac{1}{3} a_{2}^{3}\right) . \tag{2.2}
\end{align*}
$$

As it well known, the logarithmic coefficients play a crucial role in Milin conjecture ([26], see also [10, p. 155]). It is surprising that for the class \mathcal{S} the sharp estimates of single logarithmic coefficients \mathcal{S} are known only for γ_{1} and γ_{2}, namely,

$$
\left|\gamma_{1}\right| \leq 1, \quad\left|\gamma_{2}\right| \leq \frac{1}{2}+\frac{1}{\mathrm{e}}=0.635 \ldots
$$

and are unknown for $n \geq 3$. Logarithmic coefficients is one of the topic recently being of interest by various authors (e.g., $[1,18,33]$).

Logarithmic coefficients can be considered for functions f from the class \mathcal{A} however under the assumption that the branch of logarithm $\mathbb{D} \ni z \mapsto$ $\log f(z) / z$ exists. From (1.4) and (1.5) it follows that $g(z):=f(z) / z \neq 0$ in $\mathbb{D} \backslash\{0\}$ for $f \in \mathcal{S T}$ (i) and $f \in \mathcal{S T}(1)$. However $g(\mathbb{D})$ needs not be necessarily a simply connected domain. Therefore, let $\mathcal{S T}_{0}(\mathrm{i})$ and $\mathcal{S} \mathcal{T}_{0}(1)$ be the subclasses of $\mathcal{S T}$ (i) and $\mathcal{S T}$ (1) respectively, of all functions f for which the branch $\mathbb{D} \ni z \mapsto \log f(z) / z$ with $\log 1:=0$ exists.

Theorem 2.1. If $f \in \mathcal{S T}_{0}(\mathrm{i})$ is of the form (1.1), then

$$
\left|\gamma_{1}\right| \leq 1, \quad\left|\gamma_{2}\right| \leq \frac{3}{2}, \quad\left|\gamma_{3}\right| \leq 1
$$

All inequalities are sharp.
Proof. By (1.4) there exists $p \in \mathcal{P}$ of the form (1.6) such that

$$
\begin{equation*}
\left(1-z^{2}\right) \frac{f(z)}{z}=p(z) \tag{2.3}
\end{equation*}
$$

Substituting the series (1.1) and (1.6) into (2.3) by equating the coefficients we get

$$
\begin{equation*}
a_{2}=c_{1}, \quad a_{3}=c_{2}+1, \quad a_{4}=c_{1}+c_{3} . \tag{2.4}
\end{equation*}
$$

The inequality $\left|\gamma_{1}\right| \leq 1$ follows directly from (2.2), (2.4) and (1.7) with sharpness for the function f given by (2.3), where p is as in (1.10).

Substituting (1.7) and (1.8) into (2.4) from (2.2) it follows that

$$
\begin{aligned}
\left|\gamma_{2}\right| & =\frac{1}{2}\left|a_{3}-\frac{1}{2} a_{2}^{2}\right|=\frac{1}{2}\left|c_{2}-\frac{1}{2} c_{1}^{2}+1\right| \\
& =\frac{1}{2}\left|2\left(1-\left|\zeta_{1}\right|^{2}\right) \zeta_{2}+1\right| \leq \frac{1}{2}+\left(1-\left|\zeta_{1}\right|^{2}\right)\left|\zeta_{2}\right| \leq \frac{3}{2}
\end{aligned}
$$

with sharpness for the function f given by (2.3), where p is as in (1.11) with $\zeta_{1}=0$ and any $\zeta_{2} \in \mathbb{T}$.

By (2.2) and (2.4) we have

$$
6 \gamma_{3}=c_{1}^{3}-3 c_{1} c_{2}+3 c_{3}
$$

Hence and by (1.7)-(1.9) we get

$$
3 \gamma_{3}=2 \zeta_{1}^{3}-3\left(1-\left|\zeta_{1}\right|^{2}\right) \bar{\zeta}_{1} \zeta_{2}^{2}+3\left(1-\left|\zeta_{1}\right|^{2}\right)\left(1-\left|\zeta_{2}\right|^{2}\right) \zeta_{3}
$$

where $\zeta_{i} \in \overline{\mathbb{D}}, i=1,2,3$. Thus by setting $x:=\left|\zeta_{1}\right| \in[0,1]$ and $y:=\left|\zeta_{2}\right| \in[0,1]$ we obtain

$$
\begin{aligned}
3\left|\gamma_{3}\right| & \leq 2 x^{3}+3\left(1-x^{2}\right) x y^{2}+3\left(1-x^{2}\right)\left(1-y^{2}\right) \\
& =2 x^{3}-3 x^{2}+3-3\left(1-x^{2}\right)(1-x) y^{2} \\
& \leq 2 x^{3}-3 x^{2}+3 \leq 3, \quad(x, y) \in[0,1] \times[0,1]
\end{aligned}
$$

Thus $\left|\gamma_{3}\right| \leq 1$ with sharpness for the function f given by (2.3), where p is as in (1.12) with $\zeta_{1}=\zeta_{2}=0$ and any $\zeta_{3} \in \mathbb{T}$.
Theorem 2.2. If $f \in \mathcal{S} \mathcal{T}_{0}(1)$ is of the form (1.1), then

$$
\left|\gamma_{1}\right| \leq 2, \quad\left|\gamma_{2}\right| \leq \frac{3}{2}, \quad\left|\gamma_{3}\right| \leq \frac{1}{3}(1+\sqrt{2})
$$

All inequalities are sharp.
Proof. By (1.5) there exists $p \in \mathcal{P}$ of the form (1.6) such that

$$
\begin{equation*}
(1-z)^{2} \frac{f(z)}{z}=p(z) \tag{2.5}
\end{equation*}
$$

Substituting the series (1.1) and (1.6) into (2.5) by equating the coefficients we get

$$
\begin{equation*}
a_{2}=c_{1}+2, \quad a_{3}=3+2 c_{1}+c_{2}, \quad a_{4}=4+3 c_{1}+2 c_{2}+c_{3} . \tag{2.6}
\end{equation*}
$$

The inequality $\left|\gamma_{1}\right| \leq 2$ follows directly from (2.2), (2.6) and (1.7) with sharpness for the function f given by (2.5), where p is as in (1.10).

Substituting (1.7) and (1.8) into (2.6) from (2.2) it follows that

$$
\begin{aligned}
\left|\gamma_{2}\right| & =\frac{1}{2}\left|a_{3}-\frac{1}{2} a_{2}^{2}\right|=\frac{1}{2}\left|c_{2}-\frac{1}{2} c_{1}^{2}+1\right| \\
& =\frac{1}{2}\left|2\left(1-\left|\zeta_{1}\right|^{2}\right) \zeta_{2}+1\right| \leq \frac{1}{2}+\left(1-\left|\zeta_{1}\right|^{2}\right)\left|\zeta_{2}\right| \leq \frac{3}{2}
\end{aligned}
$$

with sharpness for the function f given by (2.3), where p is as in (1.11) with $\zeta_{1}=0$ and any $\zeta_{2} \in \mathbb{T}$.

By (2.2) and (2.6) we have

$$
6 \gamma_{3}=2+c_{1}^{3}+3 c_{3}-3 c_{1} c_{2} .
$$

Hence and by (1.7)-(1.9) we get

$$
3 \gamma_{3}=1+\zeta_{1}^{3}-3\left(1-\left|\zeta_{1}\right|^{2}\right) \bar{\zeta}_{1} \zeta_{2}^{2}+\left(1-\left|\zeta_{1}\right|^{2}\right)\left(1-\left|\zeta_{2}\right|^{2}\right) \zeta_{3}
$$

where $\zeta_{i} \in \overline{\mathbb{D}}, i=1,2,3$. Thus by setting $x:=\left|\zeta_{1}\right| \in[0,1]$ and $y:=\left|\zeta_{2}\right| \in[0,1]$ we obtain

$$
\begin{align*}
3\left|\gamma_{3}\right| & \leq 1+x^{3}-3\left(1-x^{2}\right) x y^{2}+\left(1-x^{2}\right)\left(1-y^{2}\right) \\
& =2-x^{2}+x^{3}+\left(1-x^{2}\right)(3 x-1) y^{2}=: F(x, y) \tag{2.7}
\end{align*}
$$

We have $F(1 / 3, y)=52 / 27$. Moreover for $x \in(1 / 3,1]$ and $x \in[0,1 / 3)$ we get

$$
F(x, y) \leq F(x, 1) \leq 1+3 x-2 x^{3} \leq 1+\sqrt{2}, \quad y \in[0,1]
$$

and

$$
F(x, y) \leq F(x, 0) \leq 2-x^{2}+x^{3} \leq 2, \quad y \in[0,1]
$$

respectively. Thus by $(2.7),\left|\gamma_{3}\right| \leq(1+\sqrt{2}) / 3$ with sharpness for the function f given by (2.3), where p is as in (1.12) with $\zeta_{1}=1 / \sqrt{2}, \zeta_{2}=\mathrm{i}$ and any $\zeta_{3} \in \mathbb{T}$.

3. Zalcman Functional and Hankel Determinant

Now we compute the sharp upper bound of the Zalcman functional $J_{2,3}(f):=$ $a_{2} a_{3}-a_{4}$ being a special case of the generalized Zalcman functional $J_{n, m}(f):=$ $a_{n} a_{m}-a_{n+m-1}, n, m \in \mathbb{N} \backslash\{1\}$, which was investigated by Ma [24] for $f \in \mathcal{S}$ (see also [29] for relevant results on this functional). We will find also the sharp bound of the second Hankel determinant $H_{2,2}(f)=a_{2} a_{4}-a_{3}^{2}$. Both functionals $J_{2,3}$ and $H_{2,2}$ have been studied recently by various authors (see e.g., $[5,6,14,16,17,19,27])$.

Theorem 3.1. If $f \in \mathcal{S T}$ (i) is of the form (1.1), then

$$
\left|a_{2} a_{3}-a_{4}\right| \leq 2
$$

The inequality is sharp with the extremal function

$$
\begin{equation*}
f(z)=\frac{z}{(1-z)^{2}}, \quad z \in \mathbb{D} \tag{3.1}
\end{equation*}
$$

Proof. From (2.4) by using (1.7)-(1.9) it follows that

$$
\begin{align*}
\left|a_{2} a_{3}-a_{4}\right| & =\left|c_{1} c_{2}-c_{3}\right| \\
& =2\left|\zeta_{1}^{3}+2\left(1-\left|\zeta_{1}\right|^{2}\right) \overline{\zeta_{1}} \zeta_{2}^{2}-\left(1-\left|\zeta_{1}\right|^{2}\right)\left(1-\left|\zeta_{2}\right|^{2}\right) \zeta_{3}\right| \\
& \leq 2\left[\left|\zeta_{1}\right|^{3}+2\left(1-\left|\zeta_{1}\right|^{2}\right)\left|\zeta_{1}\right|\left|\zeta_{2}\right|^{2}-\left(1-\left|\zeta_{1}\right|^{2}\right)\left(1-\left|\zeta_{2}\right|^{2}\right]\right. \tag{3.2}\\
& =2\left[1-\left|\zeta_{1}\right|^{2}+\left|\zeta_{1}\right|^{3}-2\left(1-\left|\zeta_{1}\right|^{2}\right)\left(1-\left|\zeta_{1}\right|\right)\left|\zeta_{2}\right|^{2}\right] \\
& \leq 2\left(1-\left|\zeta_{1}\right|^{2}+\left|\zeta_{1}\right|^{3}\right) \leq 2,
\end{align*}
$$

with sharpness for the function (3.1).
To find sharp estimate for $H_{2,2}$ over $\mathcal{S T}$ (i) we use the following lemma.

Proposition 3.2.

$$
\left|4 z^{2}-4 z-1\right| \leq \begin{cases}1+4|z|-4|z|^{2}, & |z| \leq(-1+\sqrt{2}) / 2 \tag{3.3}\\ \sqrt{2}\left(1+4|z|^{2}\right), & (-1+\sqrt{2}) / 2 \leq|z| \leq 1\end{cases}
$$

Proof. Since the inequality (3.3) clearly holds for $z=0$, assume that $z=r \mathrm{e}^{\mathrm{i} \theta}$ with $0<r \leq 1$ and $0 \leq \theta<2 \pi$. A simple computation gives

$$
\begin{equation*}
\left|4 z^{2}-4 z-1\right|^{2}=\varphi(\cos \theta) \tag{3.4}
\end{equation*}
$$

where $\varphi:[-1,1] \rightarrow \mathbb{R}$ is a function defined by

$$
\varphi(x):=-16 r^{2} x^{2}-8 r\left(4 r^{2}-1\right) x+16 r^{4}+24 r^{2}+1
$$

Note that $\varphi^{\prime}(x)=0$ occurs only when $x=\left(1-4 r^{2}\right) /(4 r)=: x_{0}$.
When $r \leq(-1+\sqrt{2}) / 2$, we have $x_{0}>1$ or $1-4 r-4 r^{2}>0$. Therefore

$$
\varphi^{\prime}(x) \geq 8 r\left(1-4 r-4 r^{2}\right)>0, \quad x \in[-1,1] .
$$

Hence we get

$$
\begin{equation*}
\varphi(x) \leq \varphi(1)=\left(1+4 r-4 r^{2}\right)^{2} \tag{3.5}
\end{equation*}
$$

Thus from (3.4) and (3.5) it follows that the inequality (3.3) holds for $|z| \leq(-1+\sqrt{2}) / 2$.

When $(-1+\sqrt{2}) / 2 \leq r \leq 1$, we have $x_{0} \in[-1,1]$. Then

$$
\begin{equation*}
\varphi(x) \leq \varphi\left(x_{0}\right)=2\left(1+4 r^{2}\right)^{2}, \quad x \in[-1,1] \tag{3.6}
\end{equation*}
$$

Combining (3.4) and (3.6) we see that the inequality (3.3) holds for $(-1+\sqrt{2}) / 2 \leq|z| \leq 1$.

Theorem 3.3. If $f \in \mathcal{S T}$ (i) is of the form (1.1), then

$$
\begin{equation*}
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{28}{3} \tag{3.7}
\end{equation*}
$$

The inequality is sharp with the extremal function

$$
\begin{equation*}
f(z)=\frac{z\left(3+z+3 z^{2}\right)}{3\left(1-z^{2}\right)^{2}}, \quad z \in \mathbb{D} \tag{3.8}
\end{equation*}
$$

Proof. From (2.4) by using (1.7)-(1.9)we have

$$
\begin{align*}
a_{2} a_{4}-a_{3}^{2}= & c_{1}^{2}+c_{1} c_{3}-c_{2}^{2}-2 c_{2}-1 \\
= & 4 \zeta_{1}^{2}-4 \zeta_{1}-1-4\left(1-\left|\zeta_{1}\right|^{2}\right) \zeta_{2}-4\left(1-\left|\zeta_{1}\right|^{2}\right) \zeta_{2}^{2} \tag{3.9}\\
& +4 \zeta_{1}\left(1-\left|\zeta_{1}\right|^{2}\right)\left(1-\left|\zeta_{2}\right|^{2}\right) \zeta_{3},
\end{align*}
$$

where $\zeta_{i} \in \overline{\mathbb{D}}, i=1,2,3$. Let $x:=\left|\zeta_{1}\right| \in[0,1]$ and $y=\left|\zeta_{2}\right| \in[0,1]$.
Assume first that $x \in\left[0, x_{0}\right]$, where $x_{0}:=(-1+\sqrt{2}) / 2$. Then by (3.9) and Proposition 3.2 for $y \in[0,1]$ we get

$$
\begin{aligned}
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq & 1+8 x-4 x^{2}-4 x^{3}+4\left(1-x^{2}\right) y \\
& +4 x\left(1-x^{2}\right) y^{2}=: F(x, y)
\end{aligned}
$$

Clearly, for each $x \in\left[0, x_{0}\right]$, the function $[0,1] \ni y \mapsto F(\cdot, y)$ is increasing and therefore for $y \in[0,1]$,

$$
\begin{equation*}
F(x, y) \leq F(x, 1)=9+4 x-12 x^{2} \leq \frac{28}{3}=9.333 \ldots \tag{3.10}
\end{equation*}
$$

Assume now that $x \in\left[x_{0}, 1\right]$. Then by (3.9) and Proposition 3.2 for $y \in[0,1]$ we get

$$
\begin{aligned}
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq & \sqrt{2}+4 x+4 \sqrt{2} x^{2}-4 x^{3}+4\left(1-x^{2}\right) y \\
& +4\left(1-x^{2}\right)(1-x) y^{2}=: G(x, y)
\end{aligned}
$$

Note first that

$$
\begin{equation*}
G(1, y)=5 \sqrt{2}=7.071 \ldots, \quad y \in[0,1] \tag{3.11}
\end{equation*}
$$

Clearly, for each $x \in\left[x_{0}, 1\right]$, the function $[0,1] \ni y \mapsto G(\cdot, y)$ is increasing and therefore for $y \in[0,1]$,

$$
\begin{aligned}
G(x, y) & \leq G(x, 1)=8+\sqrt{2}-4(2-\sqrt{2}) x^{2} \\
& \leq-2+8 \sqrt{2}=9.133 \ldots
\end{aligned}
$$

Hence, from (3.10) and (3.11) it follows that the inequality (3.7) is true. Equality in (3.7) holds for the function f given by (2.3), where p is given by (1.12) with $\zeta_{1}:=1 / 6$ and $\zeta_{2}=\zeta_{3}:=1$, i.e., for the function (3.8).

Theorem 3.4. If $f \in \mathcal{S T}$ (1) is of the form (1.1), then

$$
\left|a_{2} a_{3}-a_{4}\right| \leq 20
$$

The inequality is sharp with the extremal function

$$
\begin{equation*}
f(z)=\frac{z(1+z)}{(1-z)^{3}}, \quad z \in \mathbb{D} \tag{3.12}
\end{equation*}
$$

Proof. From (2.6), by using (1.7) and the inequality $\left|c_{1} c_{2}-c_{3}\right| \leq 2$ which was proved in (3.2), we obtain

$$
\begin{aligned}
\left|a_{2} a_{3}-a_{4}\right| & =\left|2+4 c_{1}+2 c_{1}^{2}+c_{1} c_{2}-c_{3}\right| \\
& \leq 2+4\left|c_{1}\right|+2\left|c_{1}\right|^{2}+\left|c_{1} c_{2}-c_{3}\right| \leq 20
\end{aligned}
$$

with sharpness for the function (3.12).
Theorem 3.5. If $f \in \mathcal{S T}$ (1) is of the form (1.1), then

$$
\begin{equation*}
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq 17 \tag{3.13}
\end{equation*}
$$

The inequality is sharp with the extremal function (3.12).

Proof. From (2.6) by using (1.7)-(1.9)we have

$$
\begin{align*}
a_{2} a_{4}-a_{3}^{2}= & -1-2 c_{1}-c_{1}^{2}-2 c_{1} c_{2}-2 c_{2}-c_{2}^{2}+c_{1} c_{3}+2 c_{3} \\
= & -1-4 \zeta_{1}-8 \zeta_{1}^{2}-4 \zeta_{1}^{3}-4\left(1-\left|\zeta_{1}\right|^{2}\right) \zeta_{2} \tag{3.14}\\
& -4\left(1+\zeta_{1}\right)\left(1-\left|\zeta_{1}\right|^{2}\right) \overline{\zeta_{1}} \zeta_{2}^{2} \\
& +4\left(1+\zeta_{1}\right)\left(1-\left|\zeta_{1}\right|^{2}\right)\left(1-\left|\zeta_{2}\right|^{2}\right) \zeta_{3},
\end{align*}
$$

where $\zeta_{i} \in \overline{\mathbb{D}}, i \in\{1,2,3\}$. Set $x:=\left|\zeta_{1}\right| \in[0,1]$ and $y=:\left|\zeta_{2}\right| \in[0,1]$. By (3.14) we have

$$
\begin{aligned}
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq & 5+8 x+4 x^{2}+4\left(1-x^{2}\right) y \\
& -4\left(1-x^{2}\right)^{2} y^{2}=: F(x, y), \quad x, y \in[0,1]
\end{aligned}
$$

Note first that

$$
\begin{equation*}
F(1, y)=17, \quad y \in[0,1] . \tag{3.15}
\end{equation*}
$$

Let now $x \in[0,1)$. Then for $y \in[0,1]$ we have

$$
\frac{\partial F}{\partial y}=4\left(1-x^{2}\right)\left[1-2\left(1-x^{2}\right) y\right]=0
$$

iff $y=1 / 2\left(1-x^{2}\right)=: y_{0}$. Since $y_{0} \geq 1$ for each $x \in[1 / \sqrt{2}, 1)$, so then the function $[0,1] \ni y \mapsto F(\cdot, y)$ is increasing and therefore

$$
\begin{equation*}
F(x, y) \leq F(x, 1)=5+8 x+8 x^{2}-4 x^{4} \leq 17, \quad y \in[0,1] \tag{3.16}
\end{equation*}
$$

For $x \in[0,1 / \sqrt{2})$ we have

$$
\begin{aligned}
F(x, y) & \leq F\left(x, y_{0}\right)=F\left(x, \frac{1}{2\left(1-x^{2}\right)}\right) \\
& =6+8 x+4 x^{2} \leq 8+4 \sqrt{2}=13.656 \ldots, \quad y \in[0,1]
\end{aligned}
$$

Hence by (3.15) and (3.16) it follows that the inequality (3.13) is true. Equality in (3.13) holds for the function f defined by (3.12).

4. Inverse Coefficients

Since $\mathcal{S T}$ (i) is a compact class and $f^{\prime}(0)=1$ for every $f \in \mathcal{S T}$ (i), there exists $r_{0} \in(0,1)$ such that every $f \in \mathcal{S T}$ (i) is invertible in the disk $\mathbb{D}_{r_{0}}$. Thus there exists $\delta>0$ such that the inverse function \hat{f} of $f_{\mid \mathbb{D}_{r_{0}}}$ has a series expansion in the disk \mathbb{D}_{δ} of the form

$$
\begin{equation*}
\hat{f}(w)=w+\sum_{n=2}^{\infty} \beta_{n} w^{n}, \quad w \in \mathbb{D}_{\delta} \tag{4.1}
\end{equation*}
$$

Thus for $f \in \mathcal{S T}$ (i) of the form (1.1) the following relations hold (see e.g., [12, Vol. I, p. 57])

$$
\begin{equation*}
\beta_{2}=-a_{2}, \quad \beta_{3}=2 a_{2}^{2}-a_{3}, \quad \beta_{4}=-5 a_{2}^{3}+5 a_{2} a_{3}-a_{4} \tag{4.2}
\end{equation*}
$$

Similar situation holds for the class $\mathcal{S T}(1)$.
Theorem 4.1. If \hat{f} is the inverse function of $f \in \mathcal{S T}$ (i) of the form (4.1), then
(i) $\left|\beta_{2}\right| \leq 2$;
(ii) $\left|\beta_{3}\right| \leq 7$;
(iii) $\left|\beta_{4}\right| \leq 30$.

All inequalities are sharp with the extremal function

$$
\begin{equation*}
f(z)=\frac{z(1+\mathrm{i} z)}{\left(1-z^{2}\right)(1-\mathrm{i} z)}, \quad z \in \mathbb{D} \tag{4.3}
\end{equation*}
$$

Proof. Substituting (2.4) into (4.2) we get

$$
\begin{equation*}
\beta_{2}=-c_{1}, \quad \beta_{3}=2 c_{1}^{2}-c_{2}-1 \tag{4.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta_{4}=-5 c_{1}^{3}+5 c_{1} c_{2}+4 c_{1}-c_{3} \tag{4.5}
\end{equation*}
$$

By (4.4) and (1.7) the inequality (i) follows immediately. From (4.4) with (1.7) and (1.8) we have

$$
\begin{aligned}
\left|\beta_{3}\right| & =\left|2 c_{1}^{2}-c_{2}-1\right|=\left|6 \zeta_{1}^{2}-2\left(1-\left|\zeta_{1}\right|^{2}\right) \zeta_{2}-1\right| \\
& \leq 6\left|\zeta_{1}\right|^{2}+\left.2\left(1-\left|\zeta_{1}\right|^{2}\right)| | \zeta_{2}|+1 \leq 4| \zeta_{1}\right|^{2}+3 \leq 7
\end{aligned}
$$

Now we prove (iii). By (4.5) and (1.7)-(1.9) we have

$$
\begin{aligned}
\left|\beta_{4}\right|= & \mid-22 \zeta_{1}^{3}+8 \zeta_{1}+16\left(1-\left|\zeta_{1}\right|^{2}\right) \zeta_{1} \zeta_{2} \\
& +2\left(1-\left|\zeta_{1}\right|^{2}\right) \bar{\zeta}_{1} \zeta_{2}^{2}-2\left(1-\left|\zeta_{1}\right|^{2}\right)\left(1-\left|\zeta_{2}\right|^{2}\right) \zeta_{3} \mid \\
& \leq 2+8 x-2 x^{2}+22 x^{3}+16 x\left(1-x^{2}\right) y-2(1-x)^{2}(1+x) y^{2} \\
= & F(x, y)
\end{aligned}
$$

where $\zeta_{i} \in \overline{\mathbb{D}}, i=1,2,3, x:=\left|\zeta_{1}\right| \in[0,1]$ and $y:=\left|\zeta_{2}\right| \in[0,1]$.
Note first that

$$
\begin{equation*}
F(1, y)=30, \quad y \in[0,1] . \tag{4.6}
\end{equation*}
$$

Let now $x \in[0,1)$. Then for $y \in[0,1]$ we have

$$
\frac{\partial F}{\partial y}=4\left(1-x^{2}\right)[4 x-(1-x) y]=0
$$

iff $y=4 x /(1-x)=: y_{0}$. Since $y_{0} \geq 1$ for each $x \in[1 / 5,1)$, so then the function $[0,1] \ni y \mapsto F(\cdot, y)$ is increasing and therefore

$$
\begin{equation*}
F(x, y) \leq F(x, 1)=26 x+4 x^{3} \leq 30, \quad y \in[0,1] \tag{4.7}
\end{equation*}
$$

For $x \in[0,1 / 5)$ we have

$$
\begin{align*}
F(x, y) & \leq F\left(x, y_{0}\right)=F\left(x, \frac{4 x}{1-x}\right) \tag{4.8}\\
& =2+72 x+30 x^{2}-10 x^{3} \leq \frac{438}{25}=15.52, \quad y \in[0,1]
\end{align*}
$$

Hence by (4.6)-(4.8) it follows that the inequality in (iii) is true.
All inequalities are sharp with the extremal function (4.3).
Theorem 4.2. If \hat{f} is the inverse function of $f \in \mathcal{S T}$ (1) of the form (4.1), then
(i) $\left|\beta_{2}\right| \leq 4$;
(ii) $\left|\beta_{3}\right| \leq 23$;
(iii) $\left|\beta_{4}\right| \leq 156$.

All inequalities are sharp with the extremal function

$$
\begin{equation*}
f(z)=\frac{z(1+z)}{(1-z)^{3}}, \quad z \in \mathbb{D} \tag{4.9}
\end{equation*}
$$

Proof. Substituting (2.6) into (4.2) we get

$$
\begin{equation*}
\beta_{2}=-c_{1}-2, \quad \beta_{3}=2 c_{1}^{2}+6 c_{1}-c_{2}+5 \tag{4.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta_{4}=-5 c_{1}^{3}-20 c_{1}^{2}+2 c_{1}+5 c_{1} c_{2}+8 c_{2}-c_{3}-14 \tag{4.11}
\end{equation*}
$$

By (4.10) and (1.7) the inequality (i) follows immediately. From (4.10) with (1.7) and (1.8) we have

$$
\begin{aligned}
\left|\beta_{3}\right| & =\left|2 c_{1}^{2}+6 c_{1}-c_{2}+5\right|=\left|6 \zeta_{1}^{2}+12 \zeta_{1}-2\left(1-\left|\zeta_{1}\right|^{2}\right) \zeta_{2}+5\right| \\
& \leq 6\left|\zeta_{1}\right|^{2}+12\left|\zeta_{1}\right|+2\left(1-\left|\zeta_{1}\right|^{2}\right)+5=4|\zeta|^{2}+12|\zeta|+7 \leq 23
\end{aligned}
$$

Now we prove (iii). By (4.11) and (1.7)-(1.9) we have

$$
\begin{aligned}
\left|\beta_{4}\right|= & \mid-22 \zeta_{1}^{3}-64 \zeta_{1}^{2}-56 \zeta_{1}-14+16\left(1-\left|\zeta_{1}\right|^{2}\right) \zeta_{2} \\
& +16\left(1-\left|\zeta_{1}\right|^{2}\right) \zeta_{1} \zeta_{2}+2\left(1-\left|\zeta_{1}\right|^{2}\right) \bar{\zeta}_{1} \zeta_{2}^{2} \\
& -2\left(1-\left|\zeta_{1}\right|^{2}\right)\left(1-\left|\zeta_{2}\right|^{2}\right) \zeta_{3} \mid \\
\leq & 22 x^{3}+62 x^{2}+56 x+16+16\left(1-x^{2}\right)(1+x) y \\
& -2\left(1-x^{2}\right)(1-x) y^{2}=: F(x, y),
\end{aligned}
$$

where $\zeta_{i} \in \overline{\mathbb{D}}, i=1,2,3, x:=\left|\zeta_{1}\right| \in[0,1]$ and $y:=\left|\zeta_{2}\right| \in[0,1]$.
Note first that

$$
\begin{equation*}
F(1, y)=156, \quad y \in[0,1] . \tag{4.12}
\end{equation*}
$$

Let now $x \in[0,1)$. Then for $y \in[0,1]$ we have

$$
\frac{\partial F}{\partial y}=4\left(1-x^{2}\right)[4(1+x)-(1-x) y=0
$$

iff $y=4(1+x) /(1-x)=: y_{0}$. Since $y_{0} \geq 1$ for each $x \in(0,1)$, so the function $[0,1] \ni y \mapsto F(\cdot, y)$ is increasing and therefore

$$
F(x, y) \leq F(x, 1)=4 x^{3}+48 x^{2}+74 x+30 \leq 156, \quad y \in[0,1]
$$

Hence and from (4.12) it follows that the inequality in (iii) is true.
All inequalities are sharp with the extremal function (4.9).

Acknowledgements

This work was partially supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea Government (MSIP; Ministry of Science, ICT and Future Planning) (No. NRF-2017R1C1B5076778).

Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/ by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

[1] Ali, M.F., Vasudevarao, A.: On logarithmic coefficients of some close-to-convex functions. Proc. Am. Math. Soc. 146, 1131-1142 (2018)
[2] Bshouty, D., Lyzzaik, A.: Univalent functions starlike with respect to a boundary point. Contemp. Math. 382, 83-87 (2005). Complex Analysis and Dynamical Systems II, A Conference in Honor of Professor Lawrence Zalcman's Sixtieth Birthday, June 9-12, 2003 Nahariya, Israel
[3] Carathéodory, C.: Über den Variabilitatsbereich der Koeffizienten von Potenzreihen, die gegebene werte nicht annehmen. Math. Ann. 64, 95-115 (1907)
[4] Causey, W.M., Merkes, E.P.: Radii of starlikeness of certain classes of analytic functions. J. Math. Anal. Appl. 31, 579-586 (1970)
[5] Cho, N.E., Kowalczyk, B., Kwon, O.S., Lecko, A., Sim, Y.J.: Some coefficient inequalities related to the Hankel determinant for strongly starlike functions of order alpha. J. Math. Ineq. 11(2), 429-439 (2017)
[6] Cho, N.E., Kowalczyk, B., Kwon, O.S., Lecko, A., Sim, Y.J.: The bounds of some determinants for starlike functions of order alpha. Bull. Malays. Math. Sci. Soc. 41(1), 523-535 (2018)
[7] Cho, N.E., Kowalczyk, B., Lecko, A.: The sharp bounds of some coefficient functionals over the class of functions convex in the direction of the imaginary axis. Bull. Aust. Math. Soc. https://doi.org/10.1017/S0004972718001429
[8] Ciozda, K.: O klasie funkcji wypukłych w ujemnym kierunku osi rzeczywistej, jej podklasach i podstawowych własnościach, Ph.D. Thesis, Lublin (1978) (in Polish)
[9] Ciozda, K.: Sur la classe des fonctions convexes vers l'axe réel négatif. Bull. Acad. Polon. Sci. 27(3-4), 255-261 (1979)
[10] Duren, P.T.: Univalent Functions. Springer, New York (1983)
[11] Elin, M., Shoikhet, D.: Linearization Models for Complex Dynamical Systems. Topics in Univalent Functions, Functional Equations and Semigroup Theory. Birkhäuser (2010)
[12] Goodman, A.W.: Univalent Functions. Mariner, Tampa (1983)
[13] Jakubowski, Z.J., Lecko, A.: On certain classes of quasi-typically-real functions. Demonstr. Math. 27(2), 521-536 (1994)
[14] Janteng, A., Halim, S.A., Darus, M.: Hankel determinant for starlike and convex functions. Int. J. Math. Anal. 1(13), 619-625 (2007)
[15] Kaplan, W.: Close to convex schlicht functions. Mich. Math. J. 1, 169-185 (1952)
[16] Kowalczyk, B., Kwon, O.S., Lecko, A., Sim, Y.J.: The bounds of some determinants for functions of bounded turning of order alpha. Bull. Soc. Sci. Lett. Łódź. Recherches sur les déformations $\mathbf{6 7}(1), 107-118$ (2017)
[17] Kowalczyk, B., Lecko, A., Sim, Y.J.: The sharp bound of the Hankel determinant of the third kind for convex functions. Bull. Aust. Math. Soc. 97, 435-445 (2018)
[18] Kumar, U.P., Vasudevarao, A.: Logarithmic coefficients for certain subclasses of close-to-convex functions. Monats. Math. 187(3), 543-563 (2018)
[19] Lee, S.K., Ravichandran, V., Supramanian, S.: Bound for the second Hankel determinant of certain univalent functions. J. Ineq. Appl. 2013(281), 1-17 (2013)
[20] Lecko, A.: On the class of functions convex in the negative direction of the imaginary axis. J. Aust. Math. Soc. 73, 1-10 (2002)
[21] Lecko, A.: Some Methods in the Theory of Univalent Functions. Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszów (2005)
[22] Libera, R.J., Zlotkiewicz, E.J.: Early coefficients of the inverse of a regular convex function. Proc. Am. Math. Soc. 85(2), 225-230 (1982)
[23] Libera, R.J., Zlotkiewicz, E.J.: Coefficient bounds for the inverse of a function with derivatives in \mathcal{P}. Proc. Am. Math. Soc. 87(2), 251-257 (1983)
[24] Ma, W.: Generalized Zalcman conjecture for starlike and typically real functions. J. Math. Anal. Appl. 234(1), 328-339 (1999)
[25] MacGregor, T.H.: The radius of univalence of certain analytic functions. Proc. Am. Math. Soc. 14, 514-520 (1963)
[26] Milin, I.M.: Univalent Functions and Orthonormal Systems. Izdat. "Nauka", Moscow (1971) (in Russian); English transl., American Mathematical Society, Providence (1977)
[27] Mishra, A.K., Gochhayat, P.: Second Hankel determinant for a class of analytic functions defined by fractional derivative. Int. J. Math. Math. Sci. 2008, Article ID 153280, 1-10 (2008)
[28] Pommerenke, C.: Univalent Functions. Vandenhoeck \& Ruprecht, Göttingen (1975)
[29] Ravichandran, V., Verma, S.: Generalized Zalcman conjecture for some classes of analytic functions. J. Math. Anal. Appl. 450(1), 592-605 (2017)
[30] Reade, M.: On close-to-convex univalent functions. Mich. Math. J. 3, 59-62 (1955)
[31] Robertson, M.S.: Analytic functions starlike in one direction. Am. J. Math. 58, 465-472 (1936)
[32] Sakaguchi, K.: The radius of convexity for certain class of regular functions. J. Nara Gakugei Univ. Nat. Sci. 12, 5-8 (1964)
[33] Thomas, D.K.: On logarithmic coefficients of close to convex functions. Proc. Am. Math. Soc. 144, 1681-1687 (2016)

Adam Lecko
Department of Complex Analysis, Faculty of Mathematics and Computer Science University of Warmia and Mazury in Olsztyn
ul. Słoneczna 54
10-710 Olsztyn
Poland
e-mail: alecko@matman.uwm.edu.pl
Young Jae Sim
Department of Mathematics
Kyungsung University
Busan 48434
Korea
e-mail: yjsim@ks.ac.kr

Received: November 14, 2018.
Accepted: April 24, 2019.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

