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with Resonance and Concave Terms
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Abstract. We consider parametric Dirichlet problems driven by the sum
of a p-Laplacian (p > 2) and a Laplacian ((p, 2)-equation) and with a re-
action term which exhibits competing nonlinearities. We prove two mul-
tiplicity theorems. In the first the competing terms are not decoupled,
the dependence on the parameter is not necessarily linear and the re-
action term has a general polynomial growth, possibly supercritical. We
produce three nontrivial solutions for small values of the parameter. We
provide sign information for all solutions (two of constant sign and the
third nodal). Then we decouple the competing nonlinearities and allow
for resonance to occur at 4+ oo. We produce six nontrivial smooth solu-
tions for small values of the parameter. We provide sign information for
five of these solutions.
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1. Introduction

In a recent paper Papageorgiou—Winkert [32] examined the following nonho-
mogeneous parametric Dirichlet problem:

{ —Apu(z) — Au(z) = f(z,u(2)) — Mu(2)[72u(z) inf,

I
u|39 =0. ( A)
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Problem (Iy) is defined on a bounded domain 2 C RY with smooth boundary
0Q and A, (with 2 < p < 400) is the p-Laplace differential operator defined
by

Apu = div (|DulP~2Du)  Yu € WyP(Q).

In the reaction term (right hand side) 1 < ¢ < 2, A > 0 is a parameter
and the perturbation f(z,() is a Carathéodory function (that is, for all ¢ €
R, ¢ — f(z,() is measurable and for almost all z € Q, ( — f(2,() is
continuous), which near oo is (p — 1)-linear and resonance can occur with
respect to the principal (first) eigenvalue of (—A,, WP (€2)) from the left. This
makes the energy (Euler) functional of the problem coercive. Hence problem
(I) is an equation with competing nonlinearities, namely a concave term
and a (p — 1)-linear perturbation. Note that in (I) the concave nonlinearity
¢ — A[¢|972¢ enters in the reaction with a negative sign. In [32] the authors
provide a multiplicity theorem for all small values of the parameter A > 0.

Our aim in the present paper, is to study the complementary situation.
Namely, again we deal with a problem with competing nonlinearities. How-
ever, now the concave term enters with a positive sign and asymptotically at
+ 00, the reaction function is (p — 1)-linear and resonant with respect to any
nonprincipal eigenvalue of (—A,, WO1 P(Q)). In fact in the first part of the pa-
per, the competing nonlinearities in the reaction are not decoupled and the
dependence on the parameter A > 0 need not be linear.

So, now the problem under consideration is the following:

{Apu(z) — Au(z) = fa(z,u(z)) inf,

P
ulao =0, (P)

with 2 < p < +oo0. Here © C RY is a bounded domain with a C3-boundary
00 and for every A > 0, fy is a Carathéodory function on Q x R, exhibiting a
concave nonlinearity near zero and is (p — 1)-linear near + oo. We prove two
multiplicity theorems for small values of the parameter A > 0. In the first
multiplicity theorem (Theorem 3.6), we assume that f) admits arbitrary poly-
nomial growth not necessarily subcritical. We prove the existence of at least
three nontrivial smooth solutions, all with sign information (one positive, one
negative and the third nodal (sign changing)). Then we decouple the compet-
ing terms and improve the regularity and growth at the reaction term fy(z,-)
(more precisely, we assume that fy(z,¢) = M| 72¢ + fo(z,¢) for almost all
2 €Q, fo(z,+) € CY(R) and it is (p—1)-linear near + oo interacting with a non-
principal variational eigenvalue of (—A,, W, ?(Q)) (resonant equation)). We
prove the existence of at least six nontrivial smooth solution. We provide sign
information for five of them (two positive, two negative and the fifth nodal).
Equations driven by the sum of a p-Laplacian and a Laplacian, known in
the literature as (p, 2)-equations, arise in problems of mathematical physics; see
Benci-D’Avenia—Fortunato—Pisani [4] (quantum physics) and Cherfils—I1'yasov
[6] (plasma physics). Recently there have been some existence and multiplicity
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results for such equations. We mention the works of Aizicovici-Papageorgiou—
Staicu [2], Cingolani-Degiovanni [7], Gasinski-Klimczak—Papageorgiou [11],
Gasinski-Papageorgiou [15,17-20], Mugnai-Papageorgiou [27], Papageorgiou—
Rédulescu [28-30], Papageorgiou—Smyrlis [31], Papageorgiou-Winkert [32],
Sun [34], Sun-Zhang-Su [35], Yang-Bai [37]. Only [32] deals with equations
exhibiting competing nonlinearities.

2. Mathematical Background

Let X be a Banach space and X* its topological dual. By (-,-) we denote the
duality brackets for the pair (X*, X). Suppose that ¢ € C1(X;R). We say
that ¢ satisfies the Cerami condition, if the following property holds:

“Every sequence {uy, },>1 C X such that {¢(u,)}n>1 C Ris bounded
and

1+ lunl)¢' (un) — 0 in X,
admits a strongly convergent subsequence.”

This is a compactness-type condition on the functional ¢ which compensates
for the fact that the ambient space X is not necessarily locally compact (X
is in general infinite dimensional). It leads to a deformation theorem from
which one can derive the minimax theory of the critical values of . A basic
result in this theory, is the so called mountain pass theorem due to Ambrosetti-
Rabinowitz [3]. Here we state the result in a slightly more general form (see
Gasiriski-Papageorgiou [12, p. 648]).

Theorem 2.1. If X is a Banach space, ¢ € CY(X;R) satisfies the Cerami
condition, ug,u1 € X, |Jug — up| > 0 >0,

max{p(uo), p(u1)} <inf{o(u) : [[u—uoll = o} =my,
and

— inf t
c ;grtrgl[gﬁ]w(v( ),

with
I'={vyeC([0,1; X) : v(0) = ug, v(1) =us},
then ¢ = my, and c is a critical value of ¢ (that is, there exists u € X such

that ©'(u) =0, p(u) =c).

In the study of problem (Py), we will make use of the Sobolev space
Wy P(€2) and of the Banach space

Cy(Q) = {ue C'(Q): ulopq = 0}.
On account of the Poincaré inequality, on WO1 P(Q) we can use the norm

lull = 1 Dull, Yu € Wo™(Q).
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The space C3(Q) is an ordered Banach space with positive cone
Cy={ueCy():u(z) >0 forallzeQ}.
This cone has a nonempty interior given by

ou

intCy ={ueCy:u(z) >0 for aHZEQ’ng‘BQ < 0}.

Here % denotes the normal derivative of u defined by (Du,n)ry with n(:)
being the outward unit normal on 9. Recall that C}(Q) is dense in Wy 7 (Q).

Let ¢ € R. We set (¥ = max{=£(,0}. Then for u € W, (), we define
u®(-) = u(-)*. We know that

ut e WPP(Q), u=ut—u" and |ul=u"+u".

By | - | ;v we denote the Lebesgue measure on RY and if g: @ x R — R is a
measurable function (for example, a Carathéodory function), then we set

Ny(u)() = g(u()) Vue Wy™(Q)

(the Nemytskii or superposition map corresponding to the function g(z, ()).
Let fo: 2 x R — R be a Carathéodory function such that

|fo(2, Q) < ap(2)(1+[¢]"7h) for a.a.z € Q,all¢ € R,
with ag € L®(Q)4, 2 <p <r < p* where
Np
p =4 if p< N,
+oo ifp > N.
We set

¢
Fol.) = [ ol ds
0
and consider the C'-functional o: Wy?(Q) — R defined by
1 1
eofw) = IDul + FIDull ~ [ Folzwds vaeWir@).  (21)
Q

The next proposition is a particular case of a more general result of Gasinski—
Papageorgiou [14].

Proposition 2.2. If @g is defined by (2.1) and ug € Wy'*(Q) is a local C}(2)-
minimizer of g, i.e., there exists oo > 0, such that

poluo) < woluo +h) Vh e CAA), Aoy < oo

then ug € Cy*(Q) for some a € (0,1) and ug is also a local Wy (Q)-minimizer
of o, i.e., there exists p1 > 0, such that

vo(uo) < wo(ug +h) Yh e Wy (Q),||h] < o1.
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Since we will be dealing with resonant equations, we need to know the
spectrum of (—A,, WyP(€2)). So, we consider the following nonlinear eigen-

value problem:
{ —Apu(z) = Mu(2)P"2u(z) inQ, (2.2)

’LL|3Q = Oa

with 1 < p < 400. We say that A € R is an eigenvalue of (—A,, WP (), if
problem (2.2) admits a nontrivial solution u € VVO1 P(Q) known as an eigen-
function corresponding to the eigenvalue . The nonlinear regularity the-
ory (see, for example, Gasiniski-Papageorgiou [12, pp. 737-738]), implies that
1 € C}(2). We know that (—A,, WP (€2)) admits a smallest eigenvalue Xl(p)
which has the following properties:

e \i(p) > 0 and it is isolated in the spectrum oo(p) of (A, WyP(Q))
(that is, there exists € > 0 such that (Xl(p), 1 (p) +¢)Naoo(p) =0).

o\ (p) is simple (that is, if @, 7 € VVO1 P(Q) are eigenfunctions correspond-
ing to A1 (p), then @ = &0 for some & € R\{0}).

e we have

[Dullp

lullp

Xl(p) :inf{ u € Wol’p(Q),u;éO}. (2.3)
From the second property (simplicity of b¥ (p) > 0), we infer that the eigen-
functions corresponding to Xl(p) do not change sign. By u1(p) we denote
the positive LP-normalized (that is, ||ui(p)||, = 1) eigenfunction correspond-
ing to Ay(p). We already mentioned that @y (p) € C,\{0}. In fact the non-
linear maximum principle (see Gasiriski—Papageorgiou [12, p. 738]) implies
that @1 (p) € int Cy. In (2.3) the infimum is realized on the one dimensional
eigenspace corresponding to Xl(p) > 0. Since og(p) C (0,+00) is closed and
i (p) > 0 is isolated, then the second eigenvalue is well defined by

~

A2(p) = min {X €oo(p): A> //\\1(1))}

To produce additional eigenvalues of (—A,, W, *(£2)), we employ the Ljusternik-
Schnirelmann minimax scheme, which generates a whole sequence {X;~C P) }r=1
of strictly increasing eigenvalues such that Ay (p) — 400 as k — +oo. These
eigenvalues are known as wvariational eigenvalues and we can have at least
three such sequences of variational eigenvalues depending on the index used in
the Ljusternik-Schnirelmann minimax scheme (see Cingolani-Degiovanni [7,
p. 1198]). The three sequences coincide in the first two elements. Here, we use
the sequence constructed using the Fadell-Rabinowitz [9] cohomological index.
So, we have

Xn(p) = { sup |Dullb : E C M, Eis symmetric, index (E) > n},
uel
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with M = WyP(Q) N B (here dBF = {u € LP(Q) : |ul, = 1} and
index (-) is the Fadell-Rabinowitz [9] cohomological index). We do not know
if these variational eigenvalues exhaust oq(p). This is the case if p = 2 (linear
eigenvalue problem) or if N = 1 (ordinary differential equations), see Gasiniski—
Papageorgiou [12] We know that every eigenfunction @ corresponding to an
eigenvalue h) #+ )\1( ) is nodal (sign changing).

Now suppose that X is a Banach space and ¢ € C*(X;R), ¢ € R. We
introduce the following sets:

K, ={u€X:¢'(u) =0},
{u € K, :p(u) = c}
. —{ueX-w( >\ ).

Let (Y7,Y3) be a topological pair such that Yo C Y] C X and k € Ny. By
Hy(Y1,Y5) we denote the k-th relative singular homology group with integer
coefficients for the pair (Y1, Y2). Recall that H(Y1,Y2) = 0 for all k € —N. If
K¢ is isolated, then the critical groups of ¢ at u are defined by

Cilp,u) = Hi(¢“NU, " NU\{u}) Vk € No,

with U being a neighbourhood of u such that K,N°NU = {u}. The excision
property of singular homology, implies that the above definition of critical
groups is independent of the choice of the neighbourhood of U.

Suppose that p € C1(X;R) satisfies the Cerami condition and inf ¢(K,)
> —o0. Let ¢ < inf ¢(K,). The critical groups of ¢ at infinity are defined by

Cr(p,00) = Hi(X,¢%)  Vk € No.

The second deformation theorem (see e.g., Gasiniski-Papageorgiou [12, p. 628]),
implies that this definition is independent of the choice of the level ¢ <
inf (K,).

Finally, for 1 < p < 400, we define the map A,: Wol’p(Q) — WP (Q)
= Wy P(Q)* (with % + pfl, = 1) by setting

(A (), h) = /Q \DulP~2(Du, Dh)gn d= Y, h € WiP(Q).  (2.4)

From Gasiriski-Papageorgiou [12, p. 746], we have the following result.

Proposition 2.3. The map Ap: WeP(Q) — WL2'(Q) defined by (2.4) is
continuous, monotone (hence mazimal monotone too) and of type (S);, that
is, if U — u in Wy P(Q) and

limsup(A,(u,), un —u) <0,

n—-+4oo
then w, — u in Wy (Q).
If p = 2, then we write A3 = A and we have A € L(HJ (), H1(2)).
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3. Three Nontrivial Smooth Solutions

In this section, we consider problem (Py) with a reaction f)(z, () of arbitrary

polynomial growth in { € R, not necessarily subcritical. We prove a multiplicity

theorem producing three nontrivial smooth solutions all with sign information.
The conditions on the reaction term fy are the following.

H;i: For every A > 0, fi: 2 x R — R is a Carathéodory function, such that

fa(z,0) =0 for almost all z € Q and

() |fa(2,0)| < ax(z) + ¢|¢]"~ for almost all z € Q, all ( € R, all X € (0, \]
with ay € L®(2), ¢ > 0,2 <1 < +00 and ||ax]lec — 0 as A\, 0;
(ii) for every A € (0, Ao, there exist gy € (1,2), 3 > 0 and 7, > 0 such that

MmIC?™ < fr(z,0¢ < o Fa(2,¢) for aa.z € Q, all|¢| < 6,
where F\(z,() = foc fia(z,s)ds.

Remark 3.1. Hypothesis H;(i) permits supercritical polynomial growth for
fa(z,-). Hypothesis Hy(ii) implies the presence of a concave term near zero.

Ezample 3.2. The following functions satisfy hypotheses H;. For the sake of
simplicity we drop the z-dependence.

FAQ) = AP T2+ ¢3¢ with 1< gy <2 <7 < +oo,

QO =M™ 72 ¢ = [¢"7%¢) with 1 < gy <2 <7 < 400,

FUC) = AP 2C+ P2 ¢In(1 4+ [¢]) withl < gy <2< p < +oo.
Functions f} and f3 correspond to “concave-convex” reactions but without the
subcritical growth. Also in ff the “convex” term fails to satisfy the Ambrosetti-

Rabinowitz condition (see Ambrosetti-Rabinowitz [3]). The function f3 corre-
sponds to the usual superdiffusive logistic reaction.

First we produce two nontrivial constant sign smooth solutions.

Proposition 3.3. If hypotheses Hy hold, then there exists \* € (0, \g] such that
for every X € (0, \*) problem (P\) admits at least two nontrivial constant sign
smooth solutions

uy €intCy  and vy € —intCh.

Proof. First we produce the positive solution. We consider the following aux-
iliary Dirichlet problem

(3.1)

—Ae(z) =1 inQ,
6‘89 =0.

This problem has a unique solution e € int C. In fact since we assumed that
00 is a C3-manifold, standard regularity theory (see Troianiello [36, Theorem
3.23, page 189]) implies that e € C?(2).
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Claim. There exists \* > 0 such that for every A € (0, \*), we can find & >0
for which we have
llaxlloo + C(§3||€||oc)r_1 < gé\ - (fé\)p_IHApeHoo

(recall that e € C?(Q), hence A,e € C(2)).
Suppose that the Claim is not true. Then we can find a sequence {A,, }5,>1
C (0,1) such that A, \, 0 and

lax, oo + c€llelloc) ™ > € =€ | Apelloe Vn>1,6> 0.
We let n — 4o00. Using hypothesis Hy (i) we obtain
c(€llelloo)™ ™" = E(1 — €72 Apelloc),
S0
"2 lellst = 1 - P72 Ape| o
But recall that 2 < p,r and £ > 0 is arbitrary. So, we let £ \, 0 and we reach
a contradiction. This proves the Claim.
Let uy, = &e € int O N C%(Q). For A € (0, \*), we have
= Aptia(2) = AT (2) = (§9)7 7 (—Ape(2)) + &
> fa(z,ur(z)) fora.a.zeQ (3.2)

(see hypothesis H;(i) and the Claim).
For A € (0,\*) we introduce the following truncation of the reaction

f,\(Z,-):
- 0 if ¢ <0,
I(z,0a(2)) if ua(2) < C.

This is a Carathéodory function. We set
<
Fra0 = [ Fzs)ds
0
and consider the C'-functional @} : W, ?(Q2) — R defined by

1 1 ~
Biw) = SIDulg+ 5IDuli - [ Bz Vae WiH(@).

Evidently @7 is coercive (see (3.3)) and by the Sobolev embedding theorem,
we see that it is also sequentially weakly lower semicontinuous. So, by the
Weierstrass theorem, we can find uy € W, ?(Q) such that

ol (uy) = inf o1 (u). (3.4)
ueW, P ()

We choose ¢ € (0,1) small such that
t01(2)(2) €[0,6] Vz €Q, ta,(2) < uy (3.5)
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(recall that u1(2),uy € int C; and use Lemma 3.6 of Filippakis-Papageorgiou
[10]). From (3.3) and (3.5) and hypothesis Hj(ii), we have

PP P 2~ tax R

Frm@) < TIDnE@ I+ 5he) - = [ nanend
P 2 N Ja

(recall that ||uy(2)||2 = 1). Since 1 < gx < 2 < p (see hypothesis H;(i7)), by
choosing t € (0, 1) even smaller if necessary, we have

x (tun (2)) <0,
S0
3 (u) <0=37(0)
(see (3.4)), hence uy # 0. From (3.4), we have
(@X) (ur) =0,
S0

Ap(un) + Aun) = Nipo (uy) inW=H(Q). (3.6)

On (3.6) first we act with —u; € W, ?(Q). Then
IDus || + | Dux |3 =0
(see (3.3)), so uy =0, uy # 0.
Also, on (3.6) we act with (uy —@x)T € W, ?(Q). Then
(Ap(ux), (ux = x) ") + (Aur), (ux =) ")
/f (z,\) (uy —ux) " dz

< (Ap(@n), (ux —@2) ") + (A(@r), (ux —72)")
(see (3.3) and (3.2)), thus
(Ap(un) = Ap(@r), (urn = @) ") + [|D(ur — @) *|3 <0

and hence uy < u
So, we have proved that

[0 A (3.7)
where [0,7,] = {u € Wol’p(Q) : u(z) < ux(z)for a.a. z € Q}. On account
of (3.7), equation (3.6) becomes

Ap(ux) + A(ux) = Ny, (un)
(see (3.3)), so
*Apu)\(z) - A’U,)\(Z) - f)\(Z,U)\(Z)) iDQ,
(3.8)
uxloq = 0.
From Ladyzhenskaya-Uraltseva [23, p. 286], we have
uy € L™ (Q)
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So, we can apply Theorem 1 of Lieberman [24] and infer that
uy € C\{0}.
Hypotheses Hy imply that we can find E » > 0 such that
Az 0O +6C > 0 foraa.zeQall0<¢ < |[Un] oo
Then from (3.7) and (3.8), it follows that
Apun(z) + Aux(z) < EAuA(z)p_l for a.a.z € Q. (3.9)
Let a(y) = |y[P~2y +y for all y € RY. Since 2 < p, we have
a € CHRY;RY),

and

X
Valy) = |y|“(1+ (b—2) y|y|2y) s
Thus

(va(y)faﬁ)RN = |§|2 vya€ € RN

Then from (3.9) and the tangency principle of Pucci-Serrin [33, p. 35], we
have

ux(z) >0 Vze.

Invoking the boundary point lemma of Pucci-Serrin [33, p. 120], we conclude
that

uy € int Cy.
In a similar fashion, using this time v, = —uy € (—int C;)NC?(Q), we produce
a negative solution vy € —int C.. O

Let Sy (respectively Sy ) be the set of positive (respectively negative)
solutions of problem (P,). From Proposition 3.3 and its proof, we have that

0#S5FCintCy and 0+#S; C—intCy VYA€ (0,A%).

Moreover, as in Filippakis—Papageorgiou [10, Lemmata 4.1 and 4.2], we show
that

° S)T is downward directed (that is, if uy,us € S;, then we can find u € S;\r
such that u < uy, u < ug).

e S, is upward directed (that is, if v1,vo € S}, then we can find v € S}
such that v1 < v, v2 < ).

Next we show that the set Sy admits a minimal element (that is, we can
find a smallest positive solution for problem (Py), A € (0, A*)) and the set S}
admits a maximal element (that is, we can find a biggest negative solution for
problem (Py), A € (0,\*)). These solutions are know as “extremal” constant
sign solutions.
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Proposition 3.4. If hypotheses Hy hold and X\ € (0,\*), then problem (Py)
has a smallest positive solution uy € int Cy and a biggest negative solution
vy € —int C.

Proof. Since Sj\r is downward directed, we can restrict ourselves to the set

SY=25n[0,u# 0 (3.10)
(see the proof of Proposition 3.3). Hypotheses H; imply that
a(z,0)¢ = mal¢|™ — e1[¢|” for a.a.z € Q,all¢ € R, (3.11)
with ¢; = ¢1(A\) > 0. We introduce the following Carathéodory function
0 if ( <0,
kS (z,0) = ¢ m¢» ™ —e ¢! if0<¢<a(2), (3.12)

M T (2) et (z) i (2) <¢
and consider the following auxiliary Dirichlet problem:

—Apu(z) — Au(z) = ki (z,u(z)) inQ,
{U|6Q = 0. ’ (Aun)

We solve problem (Auy). To this end, let 1) : Wy (Q) — R be the
C'-functional defined by
1 1
wi ) = SIDul}+ 31Dull - [ Kf(u)de vue Wy (o),
Q
where

¢
Kj(z,{):/o k‘j(z,s)ds.

From (3.12) it is clear that 1) is coercive. Also, it is sequentially weakly lower
semicontinuous. So, we can find @y € W,"*(2) such that

() = inf Py (u). (3.13)
ueW, P ()

As in the proof of Proposition 3.3, since 1 < gy < 2 < p,r for ¢t € (0, 1] small
(at least such that ti;(2)(2) € [0, 53] for all 2z € Q), we have

Vi (tun(2)) <0,
SO
Y () < 0=17(0)

(see (3.13)), hence uy # 0.
From (3.13), we have

() (@x) = 0,
Ap(@2) + Alix) = Nyt (). (3.14)
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On (3.14) we act with —u, € Wol’p(Q) and using (3.12), we obtain that @y > 0,
Ty # 0. Also, on (3.14) we act with () — @x)" € W, P(2). Then

(Ap(@r), (@x —x) ") + (A®@), (Ux —ar)")
= / (77)\u)\ 1o Cl'u)\ 1)(U)\ — u)\)"'dz

/ f(z, ) (s —uy) " dz
Ap(@n), (U —Tx)") + (A@), (@ —ax) ")
(see (3.12), (3.11) and (3.2) in the proof of Proposition 3.3), so
(Ap(Ur) = Ap(@r), (@x —n) ") + | D(ix —7x)F[3 <0
thus u) < ). So, we have proved that
uysolves (Auy) and uy € [0,w5]\{0}. (3.15)

As before (see the proof of Proposition 3.3), using the nonlinear regularity
theory (see Lieberman [24, Theorem 1]) and the nonlinear maximum principle
(see Pucci-Serrin [33, pp. 35, 120]), we have

ﬂ)\ € int C+

Next we show that this is the unique positive solgtion of (Auy). To this end,
we consider the integral functional j: L'(Q) — R = RU {400} defined by

1 1 . 1 1,
i) = SIDuz b+ 3| Duz |3 ifu > 0,u7 € WyP(Q),
+00 otherwise.

We set
1

1
Go(t)=—tP+ -t> Vt>0
o(?) » + 5
Then the map ¢ — Go(£2) is convex on Ry = [0, 400). If
G(y) = Go(lyl) ¥y eRY,

then for all u € domj = {y € L*(Q) : j(y) < +oo} (the effective domain of
), we have j(u) = G(Vuz). Using Lemma 1 of Diaz-Saa [8], we sce that j is
convex (see also Gasinski-Papageorgiou [18, proof of Proposition 7]).

Suppose that @y € Wy?(Q) is another positive solution of (Auy). Again
we have

Uy € [O,E,\] N int C+. (316)
Given h € C}(Q), for [t| < 1 small, we have

u3 +th € domj and ©3 +th € domj.
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It is easy to see that j is Gateaux differentiable at 43 and at 43 in the direction
of h and using the chain rule, we have

ﬂﬁxm:l/iﬁﬂiéﬁhw Vh e CL(Q),
2 Q U
1 [ —Adiy — AT _
J@2)(h) = f/ TE0I T 2L 1 Whe CHQ).
2 Ja U

The convexity of j implies the monotonicity of j'. Hence

1 —Ajuy—Auy 1 =AUy — AUN o5
< - D = _=pTPA T =A 2 ~2
0\/Q<2/Qﬂ>\ 2/9 N (uy —uy)dz

1 1 SRS JOSR
= / (77)\ <~2rn - quk) — ey (@57~ 2)) (U3 —u}) dz
Q Uy uy

(see (3.14), (3.12) and (3.16)), so uy = uy (recall that 1 < g\ <2 < 7).
Therefore uy € [0,uy] Nint Cy is the unique solution of (Auy).

Claim. uy < u for all u € S\j (see (3.10)).

Let u € S’\f and consider the Carathéodory function g;\r: OxR — R
defined by

0 if¢ <0,
g5 (2,¢) =< ki (2,0) if 0 < ¢ <ulz), (3.17)
kY (z,u(z)  ifu(z) < ¢

We set
¢
Gi0) = [ ats)ds
0
and consider the C''-functional i : Wy P (Q) — R defined by
1 1
py (u) = 5||Du||§ + §HDUH§ - /Q Gi(zu)dz YueWyP(Q).
The functional ui‘ is coercive (see (3.17)) and sequentially weakly lower semi-

continuous. So, we can find u} € WP () such that

pi (@) = inf pi(u) <0=puf(0) (3.18)
ueW, " (Q)

(see the proof of Proposition 3.3), so
uy # 0.
From (3.18), we have
(1)) (@3) =0,
so

A, (@) + A@) = N, (i). (3.19)
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On (3.19) we act with —(a@})~ € W, "*(Q2) and obtain @} > 0, @} # 0. Then
we act with (@5 —u)* € Wy*(€) and have

(Ap(@}) + A(@3), (@3 —uw) ™)
_ /Qk;(z,u)(ai —wWtde

- / (! — ™) (@ — w)t dz

/ In(z,u) (@ —u)T dz
Ap(u) + Au), (@ —u) ")
(see (3.17), (3.11) and use u € S;f), S0
(Ap(T3) = Ap(u), (@} — uw)) + D@5 —w) 7|3 <0
thus

Therefore, we have proved that
uy € [0,u] and u} #O0,

S0

u is a positive solution of (Auy)
(see (3.12) and (3.17)), thus

uy = Uy
(problem (Awuy) has a unique positive solution), hence
uy <u Yue §;\*‘

This proves the Claim.
Invoking Lemma 3.10 of Hu-Papageorgiou [22, p. 178], we can find a
decreasing sequence {uy n>1 C S;\' such that

. o+ _
inf S7 = inf w,.
n=1

Evidently the sequence {u,}n>1 C Wol’p(Q) is bounded. So, by passing to a
subsequence if necessary, we may assume that

Uy — i inWyP(Q) and  w, — u}in LP(Q). (3.20)
We have
Ap(upn) + A(un) = Ny, (un) Vn > 1. (3.21)
On (3.21) we act with u,, —u% € W, ?(Q).
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Note that the sequence {Ny, (tn)}n>1 C LP () is bounded (see hypoth-
esis Hi(7) and recall that u,, <@y for all n > 1). So, we have

lim ((Ap(un),un —ul) + (A(up), uy — uj‘\}) =0,

n—-+4oo

SO

lim sup ((Ap(un), Up, — uy) + (Au}), un — uj}) <0

n—-+o0o

(from the monotonicity of A), thus

lim sup(A,(un), un — uy) <0

n—-+oo

(see (3.20)) and hence
U, — u} in WyP(Q) (3.22)

(see Proposition 2.3).
So, if in (3.21) we pass to the limit as n — 400 and use (3.22), then

Ap(uy) + A(uy) = Ny, (u})- (3.23)

From the Claim we know that
o)

(see (3.22)), thus
uy € :S'\;L and wu} = inf §;\r

(see (3.23)). Similarly, working on the negative semiaxis with 7, = —uy €
—int Cy and recalling that S} is upward directed (this allows us to focus on
Sy =8, N[v,,0]), we produce

vy €5, withoy =supS; .
U

Using these extremal constant sign solutions, we can produce a nodal
(that is, sign changing) solution. Indeed, we consider the order interval

Wi ui] = {y € WyP() : vi(z) <ylz) <uj foraa.ze Q)

and look for a nontrivial solution u € [v}, u}], u # v}, v # u}. The extremality
of u} and v} implies that w must be nodal.

To implement this strategy, we introduce the Carathéodory function
dy: 2 x R — R defined by

Ia(z,03(2) ¢ <wi(2),
dx(z,¢) =< fn(z,0) if vi(z) < ¢ < ui(z), (3.24)
iz ui(z)  iful <.
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We set

<
DA=0) = [ dalzs)ds
0
and consider the functional vy : Wy (Q) — R defined by
1 1
= SIDul+ 5IDul - [ Dawds vue Wir(@),

Q

Evidently 5 € C'(W,(Q)). We also consider the positive and negative trun-
cations of dy(z,-), that is the Carathéodory functions

dy (2,€) = da(2,£¢F) V(2,0) €A xR
We set
¢
Di(2,¢) = / d3 (2, ) ds
0
and consider the C'-functionals ~; : WyP(€2) — R defined by
1 1
5 = SIDull+ 51Dul} - | Dz vue Wir(@).

Proposition 3.5. If hypotheses Hy hold and A € (0,\*), then problem (Py)
admits a nodal solution yy € [v},u}] N CL().
Proof. As before (see the proof of Proposition 3.4), using (3.24), we show that

Koy € [vh,u3] 0 CA@),

K’Yj\— - [0,%;] N C+,

Ky; - [U;,O] N (_C+)'

The extremality of u} € int C} and v§ € —int C'4 (see Proposition 3.4), imply
that

Ko C Rl NCAQ), Ko = {003}, K, ={0,0}. (3:25)
Claim. u} € int Cy and v} € —int C; are local minimizers of vy.

From (3.24) we see that %T is coercive. Also, it is sequentially weakly
lower semicontinuous. So, we can find @} € W, *(§2) such that

@)= inf ~yf(u)<0= ~7{(0),
uEW, ()
=)
uy#0 and u) € Ko+,
thus

a5 = uj
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see (3.25)). We know that u} € int Cy (see Proposition 3.4) and =
A .
N o, - It follows that

u} is a local Cf (€)-minimizer of vy,
thus
u is a local Wy (Q)-minimizer of vy

(see Proposition 2.2).

Similarly for v} € —int Cy, using this time the functional «y; . This proves
the Claim.

We may assume that v (vy) < ya(u}). The reasoning is similar if the
opposite inequality holds. Also, we assume that K, is finite. Otherwise, by
(3.25), we see that already we have an infinity of distinct nodal solutions and
by the nonlinear regularity theory (see Lieberman [24, Theorem 1]) they belong
in C$ (). So, we are done. Then on account of the Claim, we can find ¢ € (0,1)
small such that

{120 € 00 < O il == o
[ox —uill > e '

(see Gasiriski-Papageorgiou [13, proof of Theorem 2.12]). Also, 7, is coercive
(see (3.24)). It follows that
v satisfies the Cerami condition (3.27)

(see Papageorgiou—Winkert [32]). Then (3.26) and (3.27) permit the use of the
mountain pass theorem (see Theorem 2.1). So, we can find y, € W(}’p(Q) such
that

yr € Ky, and m§ <va(yr). (3.28)
From Motreanu—Motreanu—Papageorgiou [26, p. 168], we have
C1(7,yn) # 0, (3.29)
while from (3.26) and (3.28) we infer that
y & {03, 03} (3.30)

Hypothesis H;(i7) and Proposition 4.1 of Gasiriski-Papageorgiou [18], imply
that

Ck(7x,0) =0 VEk > 0. (3.31)

From (3.29) and (3.31) it follows that y) # 0. This fact together with (3.25)
and (3.30) lead to the conclusion that

Y € [v5,u}] N CF () is a nodal solution of (Py).
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Now we can state our first multiplicity theorem. We stress that in this re-
sult the reaction term fy(z,-) can have arbitrary polynomial growth, in partic-
ular it can be supercritical. Our multiplicity theorem provides sign information
for all solutions produced.

Theorem 3.6. If hypotheses H1 hold, then there exists \* > 0 such that for all
A € (0, \*) problem (Py) admits at least three nontrivial smooth solutions

uy €intCy, vy € —intC, and yx € [vx,ur]NCo(Q)nodal.

4. Six Nontrivial Smooth Solutions

In this section we study problem (P)) when the reaction term fy(z,-) is (p—1)-
linear at £+ oo and resonant with respect to a nonprincipal variational eigen-
value of (—A,, VVO1 P(Q)). This is another distinguishing feature from the work
of Papageorgiou—Winkert [32]. There asymptotically at & oo we have resonance
with respect to A (p) > 0 from the left and so the corresponding energy (Euler)
functional is coercive. In contrast here the energy functional is indefinite and
this is the source of additional difficulties, which lead to different techniques.
Now the reaction f) has the form

f)\(z7<) :)“C|%_2C+f0(za<) V(Z7C) €N XR7 (41)
with 1 < g\ < 2.
On the perturbation fy we impose the following conditions.
Hy: fo: xR — R is a measurable function, such that for almost all z € €2,
fo(2,0) =0 and fo(z,-) € C*(R), fo(z,-) is nondecreasing on R and
1) [(fo)e(z, Ol < alz)(1 + |¢|"=2) for almost all z € €, all ( € R, with
a€L>®(Q)y, 2<r<p*
(ii) there exists integer m > 2 such that
fo(Z, C) _
im =
(= oo [([PT2C

(iii) if Fy(z,¢) = fOC fo(z, s)ds, then there exists 7y > ¢ such that
lim fO(Za C)C - pFO(Za <)

(—+ |<|TX

A (p) uniformly for a.a.z € Q;

= +oo uniformly for a.a.z € Q;

(iv) we have
G
=0 [¢[P2¢
Remark 4.1. From (4.1) and hypothesis Hs (i), we have that
Ifa(z, O < ax(z) +E¢"t for a.a.z € Qall¢ € R,all\ € (0, ),

with @y € L*(Q), ¢ > 0 and |[ax|lcc — 0 as A \, 0. So, we preserve the
framework of Sect. 3. However, we have added two new conditions concerning

0 uniformly for a.a.z € Q.
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the behaviour of f(z, ) near 4 co (hypotheses Ha(i7), (#ii)). Hypothesis Ho (i)
makes the problem resonant. The resonance is with respect to any nonprincipal
variational eigenvalue A, (p) > 0 (recall m > 2).

Ezample 4.2. The following functions are of the form (4.1) and satisfy hy-
potheses Hs. For the sake of simplicity we drop the z-dependence.

FHO) = NCIP 72+ X ()P — e [¢> 2,

B i ¢ < 1
2 N +{/C\2C 1 S
O = AP S ie2¢ —mig2¢ il > 1
with1 < gy <2<7\<p, c < ,\(q§0—1)7 n= ’\’"'(T’i)g_m, ¢ = Am(p) — 1.

First we produce two additional constant sign smooth solutions.
According to Theorem 3.6, for all A € (0,\*), we already have three
nontrivial smooth solutions

uy €intCy, vy € —intCy and yx € [vx,ur] N Co(Q)nodal.

On account of Proposition 3.4, without any loss of generality we may assume
that uy and vy are extremal (that is, ux = u} € intCy and vy = v§ €
—int C+>
Proposition 4.3. If hypotheses Hy hold and A € (0, \*), then problem (Py) has
two more constant sign smooth solutions
Uy € int Cy with uy — uy € int Oy,
Uy € —int Cy with vy — Uy € int Cp

Proof. Using the solution uy € int Cy, we introduce the following truncation

of fi(z,")

u
a(z,0) if ux(z) <¢.
This is a Carathéodory function. We set

¢
Gj(z,()z/ g;f'(z,s)ds

0
and consider the C''-functional x : WP () — R defined by

gj\”(z,C) _ {f)\(Z,UA(Z)) lfC < )\(Z 5 (42)

1 1
X3 (u) = S 1Dully + 3 1Dull3 /Q GY(zu)dz Yue Wy™(Q).
Claim 1. K+ C [uy) N C3(Q), where

[uy) = {u € Wol’p(Q): ux(z) <u(z) for a.a.z € Q}.
Let u € KXI' Then

) (w) =0,
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Ay(u)+ Alu) = N+ (u). (4.3)
On (4.3) we act with (uy —u)* € Wy?(Q). Then
(Ap(w), (ux —u)") + (A(w), (ux —u)")

= /Q Iz un)(uy —u)tdz

= (Ap(ur), (ux —u) ™) + (A(unr), (ur —u)")
(see (4.2) and since uy € Sy, so

(Ap(u) = Ap(un), (ux — uw)*) + [[D(ur —u)*|3 =0,
thus
uy < U.

Also, the nonlinear regularity theory implies that u € C}(Q). This proves
Claim 1.

Recall that uy < w)y (see the proof of Proposition 3.3). We may assume
that

Kxir N[0, a\] = {ur}. (4.4)

Otherwise, on account of Claim 1, we already have a second positive solution
Uy € C(Q) with uy < Uy. Moreover, as we will show below we have ) —uy €
int C'.. Therefore we are done.

Claim 2. uy € int Cy is a local minimizer of x .
We consider the following truncation of gy (z,-):

ENENS if ¢ < (),
X (z0) = {g/;\\r(z,u)\(z)) it (2) < C. (4.5)

This is a Carathéodory function. We set

Cv”L (2,¢) = / g, (2,8)
and consider the C'-functional 7 : WO’ () — R defined by
T = SIDulp+ 5100~ [ Efewdz vue Wi (@),
This functional is coercive (see (4.5)) and sequentially weakly lower semicon-

tinuous. So, there is wy € W, ?(Q) such that

S = il £, (46)
weWy?(Q)

thus
wy € KQI (4.7)
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As above (see the proof of Claim 1), we can show that
K)?;r\ - [’U,)\,ﬂ)\] N Oé(ﬁ) (4.8)
From (4.5) it follows that
KXI N [U)\,EA] = K)Zi (49)
Then (4.4), (4.7), (4.8), (4.9) imply that
Wy = U). (4.10)
Let
Lo 1o N
Bly) = —lyl" + 5lyI” Yy e RT.
D 2
Then B € C*(RY;R) and
a(y) =VB(y) =yl 2y +y VyeRY,

S0
®
Va(y) = |y|"~2 (1 +(p— 2)y|y;”> +1 WyeRV,
Evidently
diva(Du) = Apju+ Au Yu € WP ()
and

(Va()é, Orv > €* Vy,6 €RY.
Since uy # Wy, the tangency principle of Pucci-Serrin [33, p. 35] implies that
(y —ur)(z) >0 Vze. (4.11)
We have
—ApU — ATy > XTP T+ folz,)
> Au?fﬁ1 + fo(z,uxn) = —=Apuy — Auy  for aa.z € Q

(see (3.2), (4.1) and use the facts that uy > uy, fo(z,-) is nondecreasing and
+
uy € Sy ).
Let ey = uy—uy € C1\{0}. From Guedda—Véron [21] (see also Gasinski—
Papageorgiou [16, Lemma 2.9]), we know that € satisfies
Lex(z) 20 foraa.zeQ, e€yl,, =0, (4.12)

with L(y) = —div (H(z)Dy) for all y € Wol’p(Q), where the coefficient matrix
H(z) = (hij (Z))iv,]:l is defined by

hij(z) = | DU (2)[P =2 (6i5|Dux(2)[P~% + (p — 2) Ditir(2) Dyur(2)) + 1.
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Recalling that @y € int C'y, we see that the linear differential operator L is
strictly elliptic. So, from (4.11), (4.12) and the strong maximum principle (see,
for example Gasiriski-Papageorgiou [12, p. 738]), we have

ey
87 Ele) ’
SO
e\ = Uy —uy € int C+ (413)

(see (4.11)). From (4.13), (4.6), (4.10) and since Xﬂ[oml = 2;“0@1 (see (4.5)
and (4.6)), it follows that

uy is a local Cj (Q)-minimizers of x7,
S0

uy is a local Wy ?(Q)-minimizers of Xy

(see Proposition 2.2). This proves Claim 2.
Due to Claim 1, we may assume that K xt is finite. Then Claim 2 implies

that we can find ¢ € (0,1) small such that
() < inf (@) Jlu— uall = o} = m}. (4.14)
Hypothesis Hs(ii) and the fact that m > 2, imply that
X1 (tir (p)) — —ocast — +oc. (4.15)

Claim 3. The functional X;\r satisfies the Cerami condition.
Consider a sequence {uy },>1 € Wy*(Q) such that {x{ (us)}ns1 C R is
bounded and
(1 + unl () (n) — 0 WHP(Q). (4.16)
From (4.16) we have

|<Ap(un),h> + (A(up),h) — /Qg;\"(z,un)h dz|

enllhll

<2 Vhe WEP(Q), 4.17
T el o o

with &, \, 0.
In (4.17) we choose h = —u;, € Wy"*(€2). We obtain
|Dug; |5+ | Dugy |3 < My Vn > 1,
for some M7 > 0, so
the sequence {u;; }n>1 C Wy P () is bounded. (4.18)
From (4.17) and (4.18), we have

(A (i), h) + (Aut), by — / 6 (2, Yhdz]
Q

<My YheWyP(Q),n>1, (4.19)
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for some My > 0. We show that the sequence {u;f},>1 € W, P(Q) is bounded.
We argue by contradiction. So, suppose that at least for a subsequence, we

have |lu}| — +o00. We set y, = uﬁ for all n > 1. Then ||y,|| = 1 and

[l I
Yy, = 0 for all n > 1. Passing to a subsequence is necessary, we may assume

that
Yn — yin Wol’p(Q) and gy, — yin LP(Q), (4.20)
with y > 0. From (4.19), we obtain

1 N+ (u))
Ay (yn), b + ———— (A nJL—/:lL——hd
|(Ap(yn), ) Huﬁnp_2< (Yn), h) o Tur 7 2
Mo,

< — =
= ud

Vh e Wy (Q),n > 1, (4.21)

1p . Ngf (ul)
In (4.21) we choose h =y, —y € W;'P(£2). Since the sequence {W}n>l
is bounded (see (4.1), (4.2) and hypothesis H;(4)) and recalling that p > 2, by
passing to the limit as n — 400 in (4.21), we obtain

n—-+oo

SO
Yn — yin Wy (Q)

(see (4.20) and Proposition 2.3) hence ||y|| =1 and y > 1.
Also, hypothesis Ha(i7) implies that
N +(u+) ~
Do h\ ( p—1: 71p
m(P)yP~ in LP (Q) (4.22)
[P
(see Aizicovici-Papageorgiou—Staicu [1, Proposition 14]). Then, if in (4.21) we
pass to the limit as n — 400 and use (4.22) and the facts that |ly|]| = 1 and
p > 2 (recall that ||u}|| — 400), we get

(Ap(1), h) = o (p) / W hdz Yhe WEP(Q),

S0
{ —Apy(z) = Am(P)y(2)P~L for a.a.z € Q,
yloa =0,
thus y = 0 or y is nodal (since m > 2), a contradiction to the fact that y > 0.
This proves that the sequence {u; },>1 € Wy?(Q) is bounded, thus the
sequence {u, }n>1 € Wy P(Q) is bounded too (see (4.18)).

Hence, passing to a subsequence if necessary, we may assume that

Uy — uwin Wy P(Q) and  u, — win LP(9). (4.23)
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In (4.17) we choose h = u, —u € Wol’p(ﬂ), pass to the limit as n — 400 and
use (4.23). Then

lim  ((Ap(un), un — u) + (A(up), un — u)) =0,

n—-+oo

limsup ((Ap(un), un — u) + (A(u), u, —u)) <0

n—-+oo
(since A is monotone), hence

lim sup(A4, (uy), uy, —u) <0

n—-+oo
and thus
Uy, — u in W, P(Q)
(see (4.18) and Proposition 2.3). This proves Claim 3.
Combining (4.14), (4.15) and Claim 3, we see that we can use the moun-

tain pass theorem (see Theorem 2.1) and produce 1y € W, ?(Q) such that

Uy € K.+ and my < xi (W) (4.24)
From (4.24), (4.14) and Claim 1, we have

ﬁ,\ S Cé(ﬁ) and ﬂ,\ —uy € C+\{0}
As we did earlier (see the proof of Claim 2) for the pair {uy, %y}, exploiting
the monotonicity of fi(z,-), we obtain
Uy — u) € int Cy.

Similarly, working on the negative semiaxis with vy € —int C; and vy = —uy €
—int C, we produce a second nontrivial solution Uy € —int Cy of (Py) which
satisfies

UV —i)\)\ S iIltC+.
O
So far, we have produced five nontrivial smooth solutions for (Py) (A €
(0, A%)), all with sign information. We have
uy, uy € int Cy with@y — uy € int C (two positive solutions),
v, Uy € —int C'y withwy — Uy € int C'y (two negative solutions),
Ya € inte (o) [ua, uy] nodal.
Next using critical groups (Morse theory), we will produce a sixth nontrivial
smooth solution. However, we cannot provide any sign information for this
sixth solution.

So, let A € (0, A*) and let @y : Wy*(2) — R be the energy (Euler) func-
tional for problem (Py) when the reaction term has the form (4.1). Therefore

1 1 A
oa(u) = =||Dullb + = ||Dul3 — —|lull& — / Fo(z,u)dz Yu € WyP(Q).
D 2 ax Q
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Evidently @) € CH(W,P(Q)) N C2(Wy P (2)\{0}).

Proposition 4.4. If hypotheses Hs (i), (i) and (iii) hold, then for every \ €
(0, Xg) the functional vy satisfies the Cerami condition.

Proof. Let {un}ns1 € WyP(92) be a sequence, such that
loa(un)| < Mz Vn > 1, (4.25)
with M3 > 0 and
(1 + [lunl@h (un) — 0in W=7 (Q). (4.26)
From (4.26), we have

(A () )+ (ACw). 1) = A [ funl™ Pz = [ oz, unhz]

enl|h]l
1+ [Jun||
with €, \, 0. Choosing h = u,, € W, *(2) in (4.27), we obtain

Yh € WyP(Q), (4.27)

Dun 2 — [ Duun 3+ Al |22 +/Qf0(z,un)un dz<ep Vn>1. (4.28)
On the other hand from (4.25), we have
P Ap
1Dunlly + 51Dl = L e~ /QpFo(z,un)dz <pMy Vo> 1. (4.29)
We add (4.28) and (4.29). Then

(g —1)||Dun||3 —&—/Q (fo(2s un)un — pFo(2,up)) dz
< M+ A(q£ a2 ¥n>1,
A
for some My > 0, so

/ (fo(z,un)un — pFo(z,uy)) dz < My + )\(q£ — Dunll Vn=>1
Q A

(since 2 < p), thus

1
W‘/Q (fo(z,un)un — pFo(z,uy)) dz
1 1
< Mt (g A ) Y21 (430

for some Ms > 0 (recall that ¢\ < p).

Claim. The sequence {u, }n>1 € Wy (Q) is bounded.
We argue indirectly. So, suppose that the Claim is not true. Hence at
least for a subsequence, we have

[[tn || — +o0. (4.31)
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Let yn = quzg for all n > 1. Then llyn]l = 1 for all n > 1 and so passing to a
subsequence if necessary, we may assume that

Yn — yin Wy P(Q) and v, — yin LP(Q). (4.32)
From (4.27), we have

Ay 9). )+ g (A ). )
Ny, (un
/|yn| yndz— [ Noltn)y o |
[un [P~ Jo a llualP~
En
< Yn > 1. (4.33)
(L JlunDlJun [P~
Hypotheses Hs(i), (ii) imply that the sequence {Huf‘)”:”z boop © LP(Q) s
bounded and so for at least a subsequence, we have
N Unp N — . /
T 2 Rl Py in 12 (@) (434

(see hypothesis Hs(ii) and Gasinski-Papageorgiou [13]). In (4.33) we choose
h =1y, —y € WyP(Q) and pass to the limit as n — +oc. Using (4.31), the
fact that p > 2 and (4.34), we obtain

lim <A;D(yn)ayn - y> = Oa

n—-+oo
o
Y — yin Wy P(Q) (4.35)
(see (4.32) and Proposition 2.3), hence ||y|| = 1. Let
C={zeQ:y(z) #0}.
Then from (4.35) we see that |C|ny > 0 and

|tn(2)] — 400 for a.a.z € C,

thus
fo(n(2))un(2) = pFo (2, n(2)
[un (2)|
From (4.36) and Fatou’s lemma, we have

/ fO z un Up — pFo(Z,un)

|2 [T

— +oo for a.a.z € . (4.36)

lirf dz = +o0. (4.37)

Hypothesis Hs(iii) implies that we can find Mg > 0 such that

folz, C)ﬁC_Tf)FO(Z’ <) >0 foraa.zeQall|¢|> Ms. (4.38)
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Then assuming without any loss of generality that |Ju,| > 1 for all n > 1 (see
(4.31)), we have

||u1||n/(f0(z Un )Un — PFo(2,uy)) dz
/ fo(z, un)un — pFo(z, uy)

|t | ™

:/ fo(z, un)un _pFO(Z’u")Iynl” &
{lun|>Ms}

|| ™

lyn|™ dz

1
||U||“/{ o }(fO(zvun>un — pFo(z,un)) dz
n Un |[<Me

>/ fO(Zaun)un_pFO(Zvun)|y ‘7')\ dZ—M
g |un\>M6}ﬁC |un ™ " ’

/ Jo(2, un)un — pFo(z, up)

|t |™

lyn|™ dz— Mg Vn>1
for some M7, Mg > 0 (see hypothesis Hz(7)), so

lim # / (fO(Zau’rL)un —pFo(Z,Un)) dz = 400 (439)
Q

n—oo ||ty ||

(see (4.37)). Comparing (4.39) and (4.30) and recalling that 7) > ¢, and that
l|tn || — +oo (see (4.31)), we have a contradiction. This proves the Claim.
On account of the Claim, we may assume that

Uy — uwin Wy P(Q)  and  u, — win LP(S). (4.40)

In (4.27) we choose h = u, —u € W&’p(Q), pass to the limit as n — +oo and
use (4.40). Then

lirf (Ap(up), up —u) =0,
0
Uy, — uin Wy P()

(see (4.40) and Proposition 2.3), hence ¢, satisfies the Cerami condition. [

Proposition 4.5. If hypotheses Ha (i), (i) and (iii) hold, then for every \ €
(0, Xo), we have

Cm(ox, 0) # 0.
Proof. Let

9 € (n(p), A1 (p))\ oo (p)
and consider the C'-functional : W, *(€2) — R defined by

1 0
V(u) = §||DU||§ - 5\|U||£ Yu € Wy (Q).
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We consider the homotopy h (¢, u) defined by
ha(t,u) = (1 —t)pa(u) +ty(u)  V(t,u) € [0,1] x Wy P(9Q).
Claim. There exist £, € R and SA > 0 such that
ifhy(t,u) < &, then (1 + [|ul))|[(hy):, (Ew) s = 5y Vte [0,1].

We argue by contradiction. So, suppose that the Claim is not true. Note that
hx maps bounded sets into bounded sets. Hence, we can find two sequences
{tn}tn>1 C[0,1] and {uy}n>1 C Wol’p(Q) such that

{tn — t; ||un|| B +OO, h)\(tn;un) — —O0 (4 41)
(L funl)(ha)y (tn, un) — 0 '
From the last convergence in (4.37), we have
’(Ap(un), h)y + (1 —tn){(A(uy,), by — (1 — tn)/ |un|q*_2unh dz
Q
—(1 —tn)/ fo(z,upn)hdz —tnﬁ/ |un|p_2unhdz‘
Q Q
Eth” 1

< 2 wh e whe(Q), 4.42

with €, \, 0.

Let yn = 2y for all n > 1. Then llyn]| =1 for all n > 1 and so passing
to a subsequence if necessary, we may assume that

Yn — yin W, P(Q) and vy, — yin LP(Q). (4.43)
From (4.42), we have

1—t, (1 —t,)A _
|<Ap(yn)7h> + Huan_Q <A(yn)7h> - ”un”p_q)\ ‘/Q‘yn|q/\ 2ynhdz
Ny, (un) -2
_(1— Vfo\tn) _ P
( tn) 0 ||un||1’*1hdz tnﬂ/ﬂ |yn‘ ynhdz‘
nllA Vn > 1. (4.44)

= (1 [ D [P

As before, choosing h = y, —y € Wol’p(Q), passing to the limit as n — +oo
and recalling that ¢, < 2 < p (see also (4.41)), via Proposition 2.3 (see also
(4.43)), we obtain

Y — yin W, P(Q), (4.45)

hence ||y|| = 1. Passing the limit as n — +o0 in (4.44) and using (4.41) and
(4.45), we obtain

(Ay(y).h) = 0, / WP 2yhdz Yhe WEP(Q),
Q
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~

with ¢, = (1 — t) A\ (p) + t9, so

{ —Ay(2) = O¢ly(2)[P2y(z) for a.a.z € Q,

4.46
ylaa = 0. (4.46)

If ¥y & oo(p), then (4.46) implies that y = 0, which contradicts (4.45).
If 94 € op(p) and C = {z € Q: y(z) # 0}, then |C|y > 0 and as in the
proof of Proposition 4.4, we have

1
lim —— / (fo(z,un)un — pFo(2,up) dz = +00. (4.47)
n=+oo flun ™ Jo

From the third convergence in (4.41), we see that we can find ng > 1 such
that

(1 B tn)p (1 B tn)p
1Dunllg + =2 D = = 2

qx
—(1—tn)/pFo(z,un)dz—tnﬁHunug< 1 Vnsne  (448)
Q

In (4.42) we choose h = u,, € Wy (). Then
~[Dunllf = (1 = tu) [ Dunl3 + (1 = to)l|unll$
+(1—t,) /Q fo(z,un)un dz + tpdllun|p <en Vn =1,  (4.49)
We add (4.48), (4.49) and use the fact that p > 2, to obtain
(1= ta) [ (ol = pFo (2.0 d
<=M = Dlunll V> m > no,

S0
1-1,

[ [

(1 —t,) My

([t [ =

N

[ ot tn)un = pFo e 0a) Vo>,
Q
for some Mg > 0. We can always assume that ¢,, # 1 for all n > 1 or otherwise
t = 1 and since ¥ ¢ o¢(p), we infer that y = 0, a contradiction to (4.45).
Hence

1

[[an [

/(fo(z,un)un — pFo(z,u9)) dz < _ M Vn > 1. (4.50)
Q

T lunf|r o
Comparing (4.50) and (4.47), we have a contradiction (recall that gx < 7).
This prove the Claim.

This above argument with minor changes also shows that for all ¢ € [0, 1],
hy satisfies the Cerami condition (see the proof of Proposition 4.4). So, from
Chang [5, p. 334] (see also Liang—Su [25, Proposition 3.2]), we have

Cr(hx(0,:),00) = Ci(hr(1,-),00) Vk =0,
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0
Ci(ipr,00) = Ci(y,00) Vk > 0. (4.51)
Since ¥ & o¢(p), we have K., = {0}. Therefore
Ci(y,0) = Ck(v,0) Vk >0,

SO
Crn(v,00) #0

(see Cingolani-Degiovanni [7]), thus
Cin(px;00) # 0

(see (4.51)). O

Now we are ready for the second multiplicity theorem concerning problem
(Pr)-

Theorem 4.6. If (4.1) and hypotheses Hs hold, then there exists \* > 0 such
that for all X € (0,A*) problem (Py) admits at least sixz nontrivial smooth
solutions
un, ux € int Cy,  with ty — uy € int Oy,

vx, 0x € —int Cy,  with vy — 0y € int Cy,

Y € inteygylva, ua] nodal and yy € C5(Q)\{0}.
Proof. From Theorem 3.6 and Proposition 4.3, we know that we can find
A* > 0 such that for all A € (0, A\*) problem (Py) has at least five smooth
solutions all with sign information

u,\,ﬁ,\ GintC+7 with a)\—’LL)\ GintC+,
vy, Ox € —int Cy, with vy — 0y € int Cp

and

Yr € inter (g [vx, ux] nodal.

We can always assume that uy and vy are extremal (that is uy = u} € int Cy
and vy = v} € —int C; see Proposition 3.4). From the proof of Proposition
3.3 we know that

uy € int Cy is a minimizer of @ and uy —uy € int C4,  (4.52)
vy € —int Cy is a minimizer of @, and vy — vy € int C.. (4.53)
We have
/\+ A~—
= and = .
S0’\|[0,w 2 |[om1 ¢A|mm 2 |m,oJ

So, from (4.52) and (4.53) it follows that
Ck(gm\,u,\) = Ck(go)”v,\) = (5;€70Z VkE >0 (4.54)
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(see Proposition 2.2). From the proof of Proposition 4.3, we know that

Uy is a critical point of mountain pass type for X;\”‘, (4.55)
Uy is a critical point of mountain pass type for x, . (4.56)
Note that
_ + + d _ - -
ex = x4 +tpy and  px = Xa + 1y

[ux) [ux) (vy] (vy]

with uy, uy € R (see (4.2)), where
(va] = {v € WyP(Q) : v(z) < wr(2) for a.a. 2z € Q).

Since

uy —uy €intCy  and vy — Uy € int Oy,
from (4.55) and (4.56) it follows that

Ci(ea,wx) # 0, Ci(pa,x) # 0,

o

Crlpa,un) = Crlor,Ux) =0k1Z Yk =0 (4.57)

(see Papageorgiou—Réadulescu [28] and Papageorgiou—Smyrlis [31]). Also recall
that

Y € intcg @ [a, wa]

and y, is a critical point of mountain pass type for the functional v, (see the
proof of Proposition 3.5). Hence

Cl (’7)\7 y)\) 7é 0
(see Motreanu—Motreanu—Papageorgiou [26, p. 177]). Also note that

B2
(see (3.24)). So, it follows that
Cl(@)\a y/\) 7é Oa

= SD)\
[vx,uxl [vx,uxl

thus
Cr(prsyr) = k1 Z Yk =0 (4.58)

(as before see [28] and [31]). The presence of the concave term \|¢|9*~2( (see
(4.1)) and hypothesis Hs(iv) imply that

Ck(QDA,O) =0 Vk>0 (4.59)

(see Gasinski-Papageorgiou [18, Proposition 4.1]). From Proposition 4.5, we
know that

Cm(@)n OO) 7é 0.
Therefore there exists y\ € K, such that

Cm(ox,Ux) #0 (4.60)
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with m > 2. Comparing (4.60) with (4.54), (4.57), (4.58), (4.59) we infer that

@\)\ ¢ {U;,\,U)\, a)ui}\kvy)\a O}a

so x € CH(2)\{0} (nonlinear regularity) is the sixth nontrivial solution.  [J

Open Access. This article is distributed under the terms of the Creative Com-
mons Attribution 4.0 International License (http://creativecommons.org/licenses/
by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes
were made.
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