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Multiple Solutions for (p, 2)-Equations
with Resonance and Concave Terms

Leszek Gasiński and Nikolaos S. Papageorgiou

Abstract. We consider parametric Dirichlet problems driven by the sum
of a p-Laplacian (p > 2) and a Laplacian ((p, 2)-equation) and with a re-
action term which exhibits competing nonlinearities. We prove two mul-
tiplicity theorems. In the first the competing terms are not decoupled,
the dependence on the parameter is not necessarily linear and the re-
action term has a general polynomial growth, possibly supercritical. We
produce three nontrivial solutions for small values of the parameter. We
provide sign information for all solutions (two of constant sign and the
third nodal). Then we decouple the competing nonlinearities and allow
for resonance to occur at ± ∞. We produce six nontrivial smooth solu-
tions for small values of the parameter. We provide sign information for
five of these solutions.
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1. Introduction

In a recent paper Papageorgiou–Winkert [32] examined the following nonho-
mogeneous parametric Dirichlet problem:{−Δpu(z) − Δu(z) = f(z, u(z)) − λ|u(z)|q−2u(z) in Ω,

u|∂Ω = 0.
(Iλ)
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Problem (Iλ) is defined on a bounded domain Ω ⊆ R
N with smooth boundary

∂Ω and Δp (with 2 < p < +∞) is the p-Laplace differential operator defined
by

Δpu = div (|Du|p−2Du) ∀u ∈ W 1,p
0 (Ω).

In the reaction term (right hand side) 1 < q < 2, λ > 0 is a parameter
and the perturbation f(z, ζ) is a Carathéodory function (that is, for all ζ ∈
R, ζ �−→ f(z, ζ) is measurable and for almost all z ∈ Ω, ζ �−→ f(z, ζ) is
continuous), which near ±∞ is (p − 1)-linear and resonance can occur with
respect to the principal (first) eigenvalue of (−Δp,W

1,p
0 (Ω)) from the left. This

makes the energy (Euler) functional of the problem coercive. Hence problem
(Iλ) is an equation with competing nonlinearities, namely a concave term
and a (p − 1)-linear perturbation. Note that in (Iλ) the concave nonlinearity
ζ �−→ λ|ζ|q−2ζ enters in the reaction with a negative sign. In [32] the authors
provide a multiplicity theorem for all small values of the parameter λ > 0.

Our aim in the present paper, is to study the complementary situation.
Namely, again we deal with a problem with competing nonlinearities. How-
ever, now the concave term enters with a positive sign and asymptotically at
±∞, the reaction function is (p − 1)-linear and resonant with respect to any
nonprincipal eigenvalue of (−Δp,W

1,p
0 (Ω)). In fact in the first part of the pa-

per, the competing nonlinearities in the reaction are not decoupled and the
dependence on the parameter λ > 0 need not be linear.

So, now the problem under consideration is the following:{−Δpu(z) − Δu(z) = fλ(z, u(z)) in Ω,
u|∂Ω = 0,

(Pλ)

with 2 < p < +∞. Here Ω ⊆ R
N is a bounded domain with a C3-boundary

∂Ω and for every λ > 0, fλ is a Carathéodory function on Ω ×R, exhibiting a
concave nonlinearity near zero and is (p − 1)-linear near ±∞. We prove two
multiplicity theorems for small values of the parameter λ > 0. In the first
multiplicity theorem (Theorem 3.6), we assume that fλ admits arbitrary poly-
nomial growth not necessarily subcritical. We prove the existence of at least
three nontrivial smooth solutions, all with sign information (one positive, one
negative and the third nodal (sign changing)). Then we decouple the compet-
ing terms and improve the regularity and growth at the reaction term fλ(z, ·)
(more precisely, we assume that fλ(z, ζ) = λ|ζ|qλ−2ζ + f0(z, ζ) for almost all
z ∈ Ω, f0(z, ·) ∈ C1(R) and it is (p−1)-linear near ±∞ interacting with a non-
principal variational eigenvalue of (−Δp,W

1,p
0 (Ω)) (resonant equation)). We

prove the existence of at least six nontrivial smooth solution. We provide sign
information for five of them (two positive, two negative and the fifth nodal).

Equations driven by the sum of a p-Laplacian and a Laplacian, known in
the literature as (p, 2)-equations, arise in problems of mathematical physics; see
Benci–D’Avenia–Fortunato–Pisani [4] (quantum physics) and Cherfils–Il′yasov
[6] (plasma physics). Recently there have been some existence and multiplicity
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results for such equations. We mention the works of Aizicovici–Papageorgiou–
Staicu [2], Cingolani–Degiovanni [7], Gasiński–Klimczak–Papageorgiou [11],
Gasiński–Papageorgiou [15,17–20], Mugnai–Papageorgiou [27], Papageorgiou–
Rădulescu [28–30], Papageorgiou–Smyrlis [31], Papageorgiou–Winkert [32],
Sun [34], Sun–Zhang–Su [35], Yang–Bai [37]. Only [32] deals with equations
exhibiting competing nonlinearities.

2. Mathematical Background

Let X be a Banach space and X∗ its topological dual. By 〈·, ·〉 we denote the
duality brackets for the pair (X∗,X). Suppose that ϕ ∈ C1(X;R). We say
that ϕ satisfies the Cerami condition, if the following property holds:

“Every sequence {un}n�1 ⊆ X such that {ϕ(un)}n�1 ⊆ R is bounded
and

(1 + ‖un‖)ϕ′(un) −→ 0 in X∗,

admits a strongly convergent subsequence.”
This is a compactness-type condition on the functional ϕ which compensates
for the fact that the ambient space X is not necessarily locally compact (X
is in general infinite dimensional). It leads to a deformation theorem from
which one can derive the minimax theory of the critical values of ϕ. A basic
result in this theory, is the so called mountain pass theorem due to Ambrosetti-
Rabinowitz [3]. Here we state the result in a slightly more general form (see
Gasiński–Papageorgiou [12, p. 648]).

Theorem 2.1. If X is a Banach space, ϕ ∈ C1(X;R) satisfies the Cerami
condition, u0, u1 ∈ X, ‖u1 − u0‖ > � > 0,

max{ϕ(u0), ϕ(u1)} < inf{ϕ(u) : ‖u − u0‖ = �} = m�,

and

c = inf
γ∈Γ

max
t∈[0,1]

ϕ(γ(t)),

with

Γ =
{
γ ∈ C

(
[0, 1];X

)
: γ(0) = u0, γ(1) = u1

}
,

then c � m� and c is a critical value of ϕ (that is, there exists u ∈ X such
that ϕ′(u) = 0, ϕ(u) = c).

In the study of problem (Pλ), we will make use of the Sobolev space
W 1.p

0 (Ω) and of the Banach space

C1
0 (Ω) =

{
u ∈ C1(Ω) : u|∂Ω = 0

}
.

On account of the Poincaré inequality, on W 1,p
0 (Ω) we can use the norm

‖u‖ = ‖Du‖p ∀u ∈ W 1,p
0 (Ω).
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The space C1
0 (Ω) is an ordered Banach space with positive cone

C+ =
{
u ∈ C1

0 (Ω) : u(z) � 0 for all z ∈ Ω
}
.

This cone has a nonempty interior given by

int C+ =
{
u ∈ C+ : u(z) > 0 for all z ∈ Ω,

∂u

∂n

∣∣
∂Ω

< 0}.

Here ∂u
∂n denotes the normal derivative of u defined by (Du, n)RN with n(·)

being the outward unit normal on ∂Ω. Recall that C1
0 (Ω) is dense in W 1,p

0 (Ω).
Let ζ ∈ R. We set ζ± = max{±ζ, 0}. Then for u ∈ W 1,p

0 (Ω), we define
u±(·) = u(·)±. We know that

u± ∈ W 1,p
0 (Ω), u = u+ − u− and |u| = u+ + u−.

By | · |N we denote the Lebesgue measure on R
N and if g : Ω × R −→ R is a

measurable function (for example, a Carathéodory function), then we set

Ng(u)(·) = g(·, u(·)) ∀u ∈ W 1,p
0 (Ω)

(the Nemytskii or superposition map corresponding to the function g(z, ζ)).
Let f0 : Ω × R −→ R be a Carathéodory function such that

|f0(z, ζ)| � a0(z)(1 + |ζ|r−1) for a.a. z ∈ Ω, all ζ ∈ R,

with a0 ∈ L∞(Ω)+, 2 < p < r < p∗ where

p∗ =
{ Np

N−p if p < N,

+∞ if p � N.

We set

F0(z, ζ) =
∫ ζ

0

f0(z, s) ds

and consider the C1-functional ϕ0 : W 1,p
0 (Ω) −→ R defined by

ϕ0(u) =
1
p
‖Du‖p

p +
1
2
‖Du‖2

2 −
∫

Ω

F0(z, u) dz ∀u ∈ W 1,p
0 (Ω). (2.1)

The next proposition is a particular case of a more general result of Gasiński–
Papageorgiou [14].

Proposition 2.2. If ϕ0 is defined by (2.1) and u0 ∈ W 1,p
0 (Ω) is a local C1

0 (Ω)-
minimizer of ϕ0, i.e., there exists �0 > 0, such that

ϕ0(u0) � ϕ0(u0 + h) ∀h ∈ C1
0 (Ω), ‖h‖C1

0 (Ω) � �0,

then u0 ∈ C1,α
0 (Ω) for some α ∈ (0, 1) and u0 is also a local W 1,p

0 (Ω)-minimizer
of ϕ0, i.e., there exists �1 > 0, such that

ϕ0(u0) � ϕ0(u0 + h) ∀h ∈ W 1,p
0 (Ω), ‖h‖ � �1.
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Since we will be dealing with resonant equations, we need to know the
spectrum of (−Δp,W

1,p
0 (Ω)). So, we consider the following nonlinear eigen-

value problem: {
−Δpu(z) = λ̂|u(z)|p−2u(z) in Ω,
u|∂Ω = 0,

(2.2)

with 1 < p < +∞. We say that λ̂ ∈ R is an eigenvalue of (−Δp,W
1,p
0 (Ω)), if

problem (2.2) admits a nontrivial solution û ∈ W 1,p
0 (Ω) known as an eigen-

function corresponding to the eigenvalue λ̂. The nonlinear regularity the-
ory (see, for example, Gasiński–Papageorgiou [12, pp. 737–738]), implies that
û ∈ C1

0 (Ω). We know that (−Δp,W
1,p
0 (Ω)) admits a smallest eigenvalue λ̂1(p)

which has the following properties:

• λ̂1(p) > 0 and it is isolated in the spectrum σ0(p) of (−Δp,W
1,p
0 (Ω))

(that is, there exists ε > 0 such that (λ̂1(p), λ̂1(p) + ε) ∩ σ0(p) = ∅).
• λ̂1(p) is simple (that is, if û, v̂ ∈ W 1,p

0 (Ω) are eigenfunctions correspond-
ing to λ̂1(p), then û = ξv̂ for some ξ ∈ R\{0}).

• we have

λ̂1(p) = inf
{‖Du‖p

p

‖u‖p
p

: u ∈ W 1,p
0 (Ω), u 
= 0

}
. (2.3)

From the second property (simplicity of λ̂1(p) > 0), we infer that the eigen-
functions corresponding to λ̂1(p) do not change sign. By û1(p) we denote
the positive Lp-normalized (that is, ‖û1(p)‖p = 1) eigenfunction correspond-
ing to λ̂1(p). We already mentioned that û1(p) ∈ C+\{0}. In fact the non-
linear maximum principle (see Gasiński–Papageorgiou [12, p. 738]) implies
that û1(p) ∈ intC+. In (2.3) the infimum is realized on the one dimensional
eigenspace corresponding to λ̂1(p) > 0. Since σ0(p) ⊆ (0,+∞) is closed and
λ̂1(p) > 0 is isolated, then the second eigenvalue is well defined by

λ̂2(p) = min
{
λ̂ ∈ σ0(p) : λ̂ > λ̂1(p)

}
.

To produce additional eigenvalues of (−Δp,W
1,p
0 (Ω)), we employ the Ljusternik-

Schnirelmann minimax scheme, which generates a whole sequence {λ̂k(p)}k�1

of strictly increasing eigenvalues such that λ̂k(p) −→ +∞ as k → +∞. These
eigenvalues are known as variational eigenvalues and we can have at least
three such sequences of variational eigenvalues depending on the index used in
the Ljusternik-Schnirelmann minimax scheme (see Cingolani–Degiovanni [7,
p. 1198]). The three sequences coincide in the first two elements. Here, we use
the sequence constructed using the Fadell–Rabinowitz [9] cohomological index.
So, we have

λ̂n(p) =
{

sup
u∈E

‖Du‖p
p : E ⊆ M, E is symmetric, index (E) � n

}
,
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with M = W 1,p
0 (Ω) ∩ ∂BLp

1 (here ∂BLp

1 = {u ∈ Lp(Ω) : ‖u‖p = 1} and
index (·) is the Fadell–Rabinowitz [9] cohomological index). We do not know
if these variational eigenvalues exhaust σ0(p). This is the case if p = 2 (linear
eigenvalue problem) or if N = 1 (ordinary differential equations), see Gasiński–
Papageorgiou [12]. We know that every eigenfunction û corresponding to an
eigenvalue λ̂ 
= λ̂1(p) is nodal (sign changing).

Now suppose that X is a Banach space and ϕ ∈ C1(X;R), c ∈ R. We
introduce the following sets:

Kϕ =
{
u ∈ X : ϕ′(u) = 0

}
,

Kc
ϕ =

{
u ∈ Kϕ : ϕ(u) = c

}
,

ϕc =
{
u ∈ X : ϕ(u) � c

}
.

Let (Y1, Y2) be a topological pair such that Y2 ⊆ Y1 ⊆ X and k ∈ N0. By
Hk(Y1, Y2) we denote the k-th relative singular homology group with integer
coefficients for the pair (Y1, Y2). Recall that Hk(Y1, Y2) = 0 for all k ∈ −N. If
Kc

ϕ is isolated, then the critical groups of ϕ at u are defined by

Ck(ϕ, u) = Hk(ϕc ∩ U,ϕc ∩ U\{u}) ∀k ∈ N0,

with U being a neighbourhood of u such that Kϕ ∩ϕc ∩U = {u}. The excision
property of singular homology, implies that the above definition of critical
groups is independent of the choice of the neighbourhood of U .

Suppose that ϕ ∈ C1(X;R) satisfies the Cerami condition and inf ϕ(Kϕ)
> −∞. Let c < inf ϕ(Kϕ). The critical groups of ϕ at infinity are defined by

Ck(ϕ,∞) = Hk(X,ϕc) ∀k ∈ N0.

The second deformation theorem (see e.g., Gasiński–Papageorgiou [12, p. 628]),
implies that this definition is independent of the choice of the level c <
inf ϕ(Kϕ).

Finally, for 1 < p < +∞, we define the map Ap : W 1,p
0 (Ω) −→ W−1,p′

(Ω)
= W 1,p

0 (Ω)∗ (with 1
p + 1

p′ = 1) by setting

〈Ap(u), h〉 =
∫

Ω

|Du|p−2(Du,Dh)RN dz ∀u, h ∈ W 1,p
0 (Ω). (2.4)

From Gasiński–Papageorgiou [12, p. 746], we have the following result.

Proposition 2.3. The map Ap : W 1,p
0 (Ω) −→ W−1,p′

(Ω) defined by (2.4) is
continuous, monotone (hence maximal monotone too) and of type (S)+, that
is, if un

w−→ u in W 1,p
0 (Ω) and

lim sup
n→+∞

〈Ap(un), un − u〉 � 0,

then un −→ u in W 1,p
0 (Ω).

If p = 2, then we write A2 = A and we have A ∈ L(H1
0 (Ω),H−1(Ω)).
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3. Three Nontrivial Smooth Solutions

In this section, we consider problem (Pλ) with a reaction fλ(z, ζ) of arbitrary
polynomial growth in ζ ∈ R, not necessarily subcritical. We prove a multiplicity
theorem producing three nontrivial smooth solutions all with sign information.

The conditions on the reaction term fλ are the following.
H1: For every λ > 0, fλ : Ω × R −→ R is a Carathéodory function, such that
fλ(z, 0) = 0 for almost all z ∈ Ω and

(i) |fλ(z, ζ)| � aλ(z) + c|ζ|r−1 for almost all z ∈ Ω, all ζ ∈ R, all λ ∈ (0, λ0]
with aλ ∈ L∞(Ω), c > 0, 2 < r < +∞ and ‖aλ‖∞ −→ 0 as λ ↘ 0;

(ii) for every λ ∈ (0, λ0], there exist qλ ∈ (1, 2), δλ
0 > 0 and ηλ > 0 such that

ηλ|ζ|qλ � fλ(z, ζ)ζ � qλFλ(z, ζ) for a.a. z ∈ Ω, all |ζ| � δλ
0 ,

where Fλ(z, ζ) =
∫ ζ

0
fλ(z, s) ds.

Remark 3.1. Hypothesis H1(i) permits supercritical polynomial growth for
fλ(z, ·). Hypothesis H1(ii) implies the presence of a concave term near zero.

Example 3.2. The following functions satisfy hypotheses H1. For the sake of
simplicity we drop the z-dependence.

f1
λ(ζ) = λ|ζ|qλ−2ζ + |ζ|r−2ζ with 1 < qλ < 2 < r < +∞,

f2
λ(ζ) = λ(|ζ|qλ−2ζ − |ζ|r−2ζ) with 1 < qλ < 2 < r < +∞,

f3
λ(ζ) = λ|ζ|qλ−2ζ + |ζ|p−2ζ ln(1 + |ζ|) with 1 < qλ < 2 < p < +∞.

Functions f1
λ and f3

λ correspond to “concave-convex” reactions but without the
subcritical growth. Also in f2

λ the “convex” term fails to satisfy the Ambrosetti-
Rabinowitz condition (see Ambrosetti-Rabinowitz [3]). The function f2

λ corre-
sponds to the usual superdiffusive logistic reaction.

First we produce two nontrivial constant sign smooth solutions.

Proposition 3.3. If hypotheses H1 hold, then there exists λ∗ ∈ (0, λ0] such that
for every λ ∈ (0, λ∗) problem (Pλ) admits at least two nontrivial constant sign
smooth solutions

uλ ∈ int C+ and vλ ∈ −int C+.

Proof. First we produce the positive solution. We consider the following aux-
iliary Dirichlet problem {−Δe(z) = 1 in Ω,

e|∂Ω = 0.
(3.1)

This problem has a unique solution e ∈ int C+. In fact since we assumed that
∂Ω is a C3-manifold, standard regularity theory (see Troianiello [36, Theorem
3.23, page 189]) implies that e ∈ C2(Ω).
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Claim. There exists λ∗ > 0 such that for every λ ∈ (0, λ∗), we can find ξλ
0 > 0

for which we have

‖aλ‖∞ + c(ξλ
0 ‖e‖∞)r−1 < ξλ

0 − (ξλ
0 )p−1‖Δpe‖∞

(recall that e ∈ C2(Ω), hence Δpe ∈ C(Ω)).
Suppose that the Claim is not true. Then we can find a sequence {λn}n�1

⊆ (0, 1) such that λn ↘ 0 and

‖aλn
‖∞ + c(ξ‖e‖∞)r−1 � ξ − ξp−1‖Δpe‖∞ ∀n � 1, ξ > 0.

We let n → +∞. Using hypothesis H1(i) we obtain

c(ξ‖e‖∞)r−1 � ξ(1 − ξp−2‖Δpe‖∞),

so

cξr−2‖e‖r−1
∞ � 1 − ξp−2‖Δpe‖∞.

But recall that 2 < p, r and ξ > 0 is arbitrary. So, we let ξ ↘ 0 and we reach
a contradiction. This proves the Claim.

Let uλ = ξλ
0 e ∈ int C+ ∩ C2(Ω). For λ ∈ (0, λ∗), we have

− Δpuλ(z) − Δuλ(z) = (ξλ
0 )p−1(−Δpe(z)) + ξλ

0

� fλ(z, uλ(z)) for a.a. z ∈ Ω (3.2)

(see hypothesis H1(i) and the Claim).
For λ ∈ (0, λ∗) we introduce the following truncation of the reaction

fλ(z, ·):

f̂+
λ (z, ζ) =

⎧⎨
⎩

0 if ζ < 0,
fλ(z, ζ) if 0 � ζ � uλ(z),
fλ(z, uλ(z)) if uλ(z) < ζ.

(3.3)

This is a Carathéodory function. We set

F̂+
λ (z, ζ) =

∫ ζ

0

f̂+
λ (z, s) ds

and consider the C1-functional ϕ̂+
λ : W 1,p

0 (Ω) −→ R defined by

ϕ̂+
λ (u) =

1
p
‖Du‖p

p +
1
2
‖Du‖2

2 −
∫

Ω

F̂+
λ (z, u) dz ∀u ∈ W 1,p

0 (Ω).

Evidently ϕ̂+
λ is coercive (see (3.3)) and by the Sobolev embedding theorem,

we see that it is also sequentially weakly lower semicontinuous. So, by the
Weierstrass theorem, we can find uλ ∈ W 1,p

0 (Ω) such that

ϕ̂+
λ (uλ) = inf

u∈W 1,p
0 (Ω)

ϕ̂+
λ (u). (3.4)

We choose t ∈ (0, 1) small such that

tû1(2)(z) ∈ [0, δλ
0 ] ∀z ∈ Ω, tû1(2) � uλ (3.5)
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(recall that û1(2), uλ ∈ int C+ and use Lemma 3.6 of Filippakis-Papageorgiou
[10]). From (3.3) and (3.5) and hypothesis H1(ii), we have

ϕ̂+
λ (tû1(2)) � tp

p
‖Dû1(2)‖p

p +
t2

2
λ̂1(2) − tqλ

qλ

∫
Ω

ηλû1(2)qλ dz

(recall that ‖û1(2)‖2 = 1). Since 1 < qλ < 2 < p (see hypothesis H1(ii)), by
choosing t ∈ (0, 1) even smaller if necessary, we have

ϕ̂+
λ (tû1(2)) < 0,

so

ϕ̂+
λ (uλ) < 0 = ϕ̂+

λ (0)

(see (3.4)), hence uλ 
= 0. From (3.4), we have

(ϕ̂+
λ )′(uλ) = 0,

so

Ap(uλ) + A(uλ) = Nf̂+
λ

(uλ) in W−1,p′
(Ω). (3.6)

On (3.6) first we act with −u−
λ ∈ W 1,p

0 (Ω). Then

‖Du−
λ ‖p

p + ‖Du−
λ ‖2

2 = 0

(see (3.3)), so uλ � 0, uλ 
= 0.
Also, on (3.6) we act with (uλ − uλ)+ ∈ W 1,p

0 (Ω). Then

〈Ap(uλ), (uλ − uλ)+〉 + 〈A(uλ), (uλ − uλ)+〉
=

∫
Ω

f(z, uλ)(uλ − uλ)+ dz

� 〈Ap(uλ), (uλ − uλ)+〉 + 〈A(uλ), (uλ − uλ)+〉
(see (3.3) and (3.2)), thus

〈Ap(uλ) − Ap(uλ), (uλ − uλ)+〉 + ‖D(uλ − uλ)+‖2
2 � 0

and hence uλ � uλ.
So, we have proved that

uλ ∈ [0, uλ], (3.7)

where [0, uλ] = {u ∈ W 1,p
0 (Ω) : 0 � u(z) � uλ(z) for a.a. z ∈ Ω}. On account

of (3.7), equation (3.6) becomes

Ap(uλ) + A(uλ) = Nfλ
(uλ)

(see (3.3)), so {−Δpuλ(z) − Δuλ(z) = fλ(z, uλ(z)) in Ω,
uλ|∂Ω = 0.

(3.8)

From Ladyzhenskaya-Uraltseva [23, p. 286], we have

uλ ∈ L∞(Ω).
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So, we can apply Theorem 1 of Lieberman [24] and infer that

uλ ∈ C+\{0}.

Hypotheses H1 imply that we can find ξ̂λ > 0 such that

fλ(z, ζ) + ξ̂λζp−1 � 0 for a.a. z ∈ Ω, all 0 � ζ � ‖uλ‖∞.

Then from (3.7) and (3.8), it follows that

Δpuλ(z) + Δuλ(z) � ξ̂λuλ(z)p−1 for a.a. z ∈ Ω. (3.9)

Let a(y) = |y|p−2y + y for all y ∈ R
N . Since 2 < p, we have

a ∈ C1(RN ;RN ),

and

∇a(y) = |y|p−2

(
I + (p − 2)

y ⊗ y

|y|2
)

+ I.

Thus

(∇a(y)ξ, ξ)RN � |ξ|2 ∀y, ξ ∈ R
N .

Then from (3.9) and the tangency principle of Pucci–Serrin [33, p. 35], we
have

uλ(z) > 0 ∀z ∈ Ω.

Invoking the boundary point lemma of Pucci–Serrin [33, p. 120], we conclude
that

uλ ∈ int C+.

In a similar fashion, using this time vλ = −uλ ∈ (−int C+)∩C2(Ω), we produce
a negative solution vλ ∈ −intC+. �

Let S+
λ (respectively S−

λ ) be the set of positive (respectively negative)
solutions of problem (Pλ). From Proposition 3.3 and its proof, we have that

∅ 
= S+
λ ⊆ int C+ and ∅ 
= S−

λ ⊆ −intC+ ∀λ ∈ (0, λ∗).

Moreover, as in Filippakis–Papageorgiou [10, Lemmata 4.1 and 4.2], we show
that

• S+
λ is downward directed (that is, if u1, u2 ∈ S+

λ , then we can find u ∈ S+
λ

such that u � u1, u � u2).
• S−

λ is upward directed (that is, if v1, v2 ∈ S−
λ , then we can find v ∈ S−

λ

such that v1 � v, v2 � v).
Next we show that the set S+

λ admits a minimal element (that is, we can
find a smallest positive solution for problem (Pλ), λ ∈ (0, λ∗)) and the set S−

λ

admits a maximal element (that is, we can find a biggest negative solution for
problem (Pλ), λ ∈ (0, λ∗)). These solutions are know as “extremal” constant
sign solutions.
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Proposition 3.4. If hypotheses H1 hold and λ ∈ (0, λ∗), then problem (Pλ)
has a smallest positive solution u∗

λ ∈ int C+ and a biggest negative solution
v∗

λ ∈ −int C+.

Proof. Since S+
λ is downward directed, we can restrict ourselves to the set

Ŝ+
λ = S+

λ ∩ [0, uλ] 
= ∅ (3.10)

(see the proof of Proposition 3.3). Hypotheses H1 imply that

fλ(z, ζ)ζ � ηλ|ζ|qλ − c1|ζ|r for a.a. z ∈ Ω, all ζ ∈ R, (3.11)

with c1 = c1(λ) > 0. We introduce the following Carathéodory function

k+
λ (z, ζ) =

⎧⎨
⎩

0 if ζ < 0,
ηλζqλ−1 − c1ζ

r−1 if 0 � ζ � uλ(z),
ηλuqλ−1

λ (z) − c1uλ(z)r−1 if uλ(z) < ζ
(3.12)

and consider the following auxiliary Dirichlet problem:{−Δpu(z) − Δu(z) = k+
λ (z, u(z)) in Ω,

u|∂Ω = 0.
(Auλ)

We solve problem (Auλ). To this end, let ψ+
λ : W 1,p

0 (Ω) −→ R be the
C1-functional defined by

ψ+
λ (u) =

1
p
‖Du‖p

p +
1
2
‖Du‖2

2 −
∫

Ω

K+
λ (z, u) dz ∀u ∈ W 1,p

0 (Ω),

where

K+
λ (z, ζ) =

∫ ζ

0

k+
λ (z, s) ds.

From (3.12) it is clear that ψ+
λ is coercive. Also, it is sequentially weakly lower

semicontinuous. So, we can find ũλ ∈ W 1,p
0 (Ω) such that

ψ+
λ (ũλ) = inf

u∈W 1,p
0 (Ω)

ψ+
λ (u). (3.13)

As in the proof of Proposition 3.3, since 1 < qλ < 2 < p, r for t ∈ (0, 1] small
(at least such that tû1(2)(z) ∈ [0, δλ

0 ] for all z ∈ Ω), we have

ψ+
λ (tû1(2)) < 0,

so

ψ+
λ (ũλ) < 0 = ψ+

λ (0)

(see (3.13)), hence ũλ 
= 0.
From (3.13), we have

(ψ+
λ )′(ũλ) = 0,

so

Ap(ũλ) + A(ũλ) = Nk+
λ
(ũλ). (3.14)
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On (3.14) we act with −ũ−
λ ∈ W 1,p

0 (Ω) and using (3.12), we obtain that ũλ � 0,
ũλ 
= 0. Also, on (3.14) we act with (ũλ − uλ)+ ∈ W 1,p

0 (Ω). Then

〈Ap(ũλ), (ũλ − uλ)+〉 + 〈A(ũλ), (ũλ − uλ)+〉
=

∫
Ω

(ηλuqλ−1
λ − c1u

r−1
λ )(ũλ − uλ)+ dz

�
∫

Ω

f(z, uλ)(ũλ − uλ)+ dz

� 〈Ap(uλ), (ũλ − uλ)+〉 + 〈A(uλ), (ũλ − uλ)+〉
(see (3.12), (3.11) and (3.2) in the proof of Proposition 3.3), so

〈Ap(ũλ) − Ap(uλ), (ũλ − uλ)+〉 + ‖D(ũλ − uλ)+‖2
2 � 0,

thus ũλ � uλ. So, we have proved that

ũλ solves (Auλ) and ũλ ∈ [0, uλ]\{0}. (3.15)

As before (see the proof of Proposition 3.3), using the nonlinear regularity
theory (see Lieberman [24, Theorem 1]) and the nonlinear maximum principle
(see Pucci–Serrin [33, pp. 35, 120]), we have

ũλ ∈ int C+.

Next we show that this is the unique positive solution of (Auλ). To this end,
we consider the integral functional j : L1(Ω) −→ R = R ∪ {+∞} defined by

j(u) =
{

1
p‖Du

1
2 ‖p

p + 1
2‖Du

1
2 ‖2

2 if u � 0, u
1
2 ∈ W 1,p

0 (Ω),
+∞ otherwise.

We set

G0(t) =
1
p
tp +

1
2
t2 ∀t � 0.

Then the map t �−→ G0(t
1
2 ) is convex on R+ = [0,+∞). If

G(y) = G0(|y|) ∀y ∈ R
N ,

then for all u ∈ domj = {y ∈ L1(Ω) : j(y) < +∞} (the effective domain of
j), we have j(u) = G(∇u

1
2 ). Using Lemma 1 of Diaz–Saa [8], we see that j is

convex (see also Gasiński–Papageorgiou [18, proof of Proposition 7]).
Suppose that ûλ ∈ W 1,p

0 (Ω) is another positive solution of (Auλ). Again
we have

ûλ ∈ [0, uλ] ∩ intC+. (3.16)

Given h ∈ C1
0 (Ω), for |t| < 1 small, we have

ũ2
λ + th ∈ domj and û2

λ + th ∈ domj.
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It is easy to see that j is Gâteaux differentiable at ũ2
λ and at û2

λ in the direction
of h and using the chain rule, we have

j′(ũ2
λ)(h) =

1
2

∫
Ω

−Δpũλ − Δũλ

ũλ
h dz ∀h ∈ C1

0 (Ω),

j′(û2
λ)(h) =

1
2

∫
Ω

−Δpûλ − Δûλ

ûλ
h dz ∀h ∈ C1

0 (Ω).

The convexity of j implies the monotonicity of j′. Hence

0 �
∫

Ω

(
1
2

∫
Ω

−Δpũλ − Δũλ

ũλ
− 1

2

∫
Ω

−Δpûλ − Δûλ

ûλ

)
(ũ2

λ − û2
λ) dz

=
∫

Ω

(
ηλ

(
1

ũ2−qλ

λ

− 1
û2−qλ

λ

)
− c1(ũr−2

λ − ûr−2
λ )

)
(ũ2

λ − û2
λ) dz

(see (3.14), (3.12) and (3.16)), so ũλ = ûλ (recall that 1 < qλ < 2 < r).
Therefore ũλ ∈ [0, uλ] ∩ int C+ is the unique solution of (Auλ).

Claim. ũλ � u for all u ∈ Ŝ+
λ (see (3.10)).

Let u ∈ Ŝ+
λ and consider the Carathéodory function g+

λ : Ω × R −→ R

defined by

g+
λ (z, ζ) =

⎧⎨
⎩

0 if ζ < 0,
k+

λ (z, ζ) if 0 � ζ � u(z),
k+

λ (z, u(z)) if u(z) < ζ.
(3.17)

We set

G+
λ (z, ζ) =

∫ ζ

0

g+
λ (z, s) ds

and consider the C1-functional μ+
λ : W 1,p

0 (Ω) −→ R defined by

μ+
λ (u) =

1
p
‖Du‖p

p +
1
2
‖Du‖2

2 −
∫

Ω

G+
λ (z, u) dz ∀u ∈ W 1,p

0 (Ω).

The functional μ+
λ is coercive (see (3.17)) and sequentially weakly lower semi-

continuous. So, we can find ũ∗
λ ∈ W 1,p

0 (Ω) such that

μ+
λ (ũ∗

λ) = inf
u∈W 1,p

0 (Ω)
μ+

λ (u) < 0 = μ+
λ (0) (3.18)

(see the proof of Proposition 3.3), so

ũ∗
λ 
= 0.

From (3.18), we have

(μ+
λ )′(ũ∗

λ) = 0,

so

Ap(ũ∗
λ) + A(ũ∗

λ) = Ng+
λ
(ũ∗

λ). (3.19)
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On (3.19) we act with −(ũ∗
λ)− ∈ W 1,p

0 (Ω) and obtain ũ∗
λ � 0, ũ∗

λ 
= 0. Then
we act with (ũ∗

λ − u)+ ∈ W 1,p
0 (Ω) and have

〈Ap(ũ∗
λ) + A(ũ∗

λ), (ũ∗
λ − u)+〉

=
∫

Ω

k+
λ (z, u)(ũ∗

λ − u)+ dz

=
∫

Ω

(ηλuqλ−1 − c1u
r−1)(ũ∗

λ − u)+ dz

�
∫

Ω

fλ(z, u)(ũ∗
λ − u)+ dz

= 〈Ap(u) + A(u), (ũ∗
λ − u)+〉

(see (3.17), (3.11) and use u ∈ Ŝ+
λ ), so

〈Ap(ũ∗
λ) − Ap(u), (ũ∗

λ − u)+〉 + ‖D(ũ∗
λ − u)+‖2

2 � 0,

thus

ũ∗
λ � u.

Therefore, we have proved that

ũ∗
λ ∈ [0, u] and ũ∗

λ 
= 0,

so

ũ∗
λ is a positive solution of (Auλ)

(see (3.12) and (3.17)), thus

ũ∗
λ = ũλ

(problem (Auλ) has a unique positive solution), hence

ũλ � u ∀u ∈ Ŝ+
λ .

This proves the Claim.
Invoking Lemma 3.10 of Hu–Papageorgiou [22, p. 178], we can find a

decreasing sequence {un}n�1 ⊆ Ŝ+
λ such that

inf Ŝ+
λ = inf

n�1
un.

Evidently the sequence {un}n�1 ⊆ W 1,p
0 (Ω) is bounded. So, by passing to a

subsequence if necessary, we may assume that

un
w−→ u∗

λ in W 1,p
0 (Ω) and un −→ u∗

λ in Lp(Ω). (3.20)

We have

Ap(un) + A(un) = Nfλ
(un) ∀n � 1. (3.21)

On (3.21) we act with un − u∗
λ ∈ W 1,p

0 (Ω).
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Note that the sequence {Nfλ
(un)}n�1 ⊆ Lp′

(Ω) is bounded (see hypoth-
esis H1(i) and recall that un � uλ for all n � 1). So, we have

lim
n→+∞

(〈Ap(un), un − u∗
λ〉 + 〈A(un), un − u∗

λ〉) = 0,

so

lim sup
n→+∞

(〈Ap(un), un − u∗
λ〉 + 〈A(u∗

λ), un − u∗
λ〉) � 0

(from the monotonicity of A), thus

lim sup
n→+∞

〈Ap(un), un − u∗
λ〉 � 0

(see (3.20)) and hence

un −→ u∗
λ in W 1,p

0 (Ω) (3.22)

(see Proposition 2.3).
So, if in (3.21) we pass to the limit as n → +∞ and use (3.22), then

Ap(u∗
λ) + A(u∗

λ) = Nfλ
(u∗

λ). (3.23)

From the Claim we know that

ũλ � un ∀n � 1,

so

ũλ � u∗
λ

(see (3.22)), thus

u∗
λ ∈ Ŝ+

λ and u∗
λ = inf Ŝ+

λ

(see (3.23)). Similarly, working on the negative semiaxis with ṽλ = −ũλ ∈
−int C+ and recalling that S−

λ is upward directed (this allows us to focus on
Ŝ−

λ = S−
λ ∩ [vλ, 0]), we produce

v∗
λ ∈ S−

λ with v∗
λ = supS−

λ .

�

Using these extremal constant sign solutions, we can produce a nodal
(that is, sign changing) solution. Indeed, we consider the order interval

[v∗
λ, u∗

λ] = {y ∈ W 1,p
0 (Ω) : v∗

λ(z) � y(z) � u∗
λ for a.a. z ∈ Ω}

and look for a nontrivial solution u ∈ [v∗
λ, u∗

λ], u 
= v∗
λ, u 
= u∗

λ. The extremality
of u∗

λ and v∗
λ implies that u must be nodal.

To implement this strategy, we introduce the Carathéodory function
dλ : Ω × R −→ R defined by

dλ(z, ζ) =

⎧⎨
⎩

fλ(z, v∗
λ(z)) if ζ < v∗

λ(z),
fλ(z, ζ) if v∗

λ(z) � ζ � u∗
λ(z),

fλ(z, u∗
λ(z)) if u∗

λ < ζ.
(3.24)
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We set

Dλ(z, ζ) =
∫ ζ

0

dλ(z, s) ds

and consider the functional γλ : W 1,p
0 (Ω) −→ R defined by

γλ(u) =
1
p
‖Du‖p

p +
1
2
‖Du‖2

2 −
∫

Ω

Dλ(z, u) dz ∀u ∈ W 1,p
0 (Ω).

Evidently γλ ∈ C1(W 1,p
0 (Ω)). We also consider the positive and negative trun-

cations of dλ(z, ·), that is the Carathéodory functions

d±
λ (z, ζ) = dλ(z,±ζ±) ∀(z, ζ) ∈ Ω × R.

We set

D±
λ (z, ζ) =

∫ ζ

0

d±
λ (z, s) ds

and consider the C1-functionals γ±
λ : W 1,p

0 (Ω) −→ R defined by

γ±
λ (u) =

1
p
‖Du‖p

p +
1
2
‖Du‖2

2 −
∫

Ω

D±
λ (z, u) dz ∀u ∈ W 1,p

0 (Ω).

Proposition 3.5. If hypotheses H1 hold and λ ∈ (0, λ∗), then problem (Pλ)
admits a nodal solution yλ ∈ [v∗

λ, u∗
λ] ∩ C1

0 (Ω).

Proof. As before (see the proof of Proposition 3.4), using (3.24), we show that

Kγλ
⊆ [v∗

λ, u∗
λ] ∩ C1

0 (Ω),
Kγ+

λ
⊆ [0, u∗

λ] ∩ C+,

Kγ−
λ

⊆ [v∗
λ, 0] ∩ (−C+).

The extremality of u∗
λ ∈ int C+ and v∗

λ ∈ −int C+ (see Proposition 3.4), imply
that

Kγλ
⊆ [v∗

λ, u∗
λ] ∩ C1

0 (Ω), Kγ+
λ

= {0, u∗
λ}, Kγ−

λ
= {0, v∗

λ}. (3.25)

Claim. u∗
λ ∈ int C+ and v∗

λ ∈ −int C+ are local minimizers of γλ.
From (3.24) we see that γ+

λ is coercive. Also, it is sequentially weakly
lower semicontinuous. So, we can find û∗

λ ∈ W 1,p
0 (Ω) such that

γ+
λ (û∗

λ) = inf
u∈W 1,p

0 (Ω)
γ+

λ (u) < 0 = γ+
λ (0),

so

û∗
λ 
= 0 and û∗

λ ∈ Kγ+
λ
,

thus

û∗
λ = u∗

λ
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(see (3.25)). We know that u∗
λ ∈ intC+ (see Proposition 3.4) and γλ|

C+
=

γ+
λ |

C+
. It follows that

u∗
λ is a local C1

0 (Ω)-minimizer of γλ,

thus

u∗
λ is a local W 1,p

0 (Ω)-minimizer of γλ

(see Proposition 2.2).
Similarly for v∗

λ ∈ −int C+, using this time the functional γ−
λ . This proves

the Claim.
We may assume that γλ(v∗

λ) � γλ(u∗
λ). The reasoning is similar if the

opposite inequality holds. Also, we assume that Kγλ
is finite. Otherwise, by

(3.25), we see that already we have an infinity of distinct nodal solutions and
by the nonlinear regularity theory (see Lieberman [24, Theorem 1]) they belong
in C1

0 (Ω). So, we are done. Then on account of the Claim, we can find � ∈ (0, 1)
small such that{

γλ(v∗
λ) � γλ(u∗

λ) < inf{γλ(u) : ‖u − u∗
λ‖ = �} = m�

λ,
‖v∗

λ − u∗
λ‖ > �

(3.26)

(see Gasiński–Papageorgiou [13, proof of Theorem 2.12]). Also, γλ is coercive
(see (3.24)). It follows that

γλ satisfies the Cerami condition (3.27)

(see Papageorgiou–Winkert [32]). Then (3.26) and (3.27) permit the use of the
mountain pass theorem (see Theorem 2.1). So, we can find yλ ∈ W 1,p

0 (Ω) such
that

yλ ∈ Kγλ
and m�

λ � γλ(yλ). (3.28)

From Motreanu–Motreanu–Papageorgiou [26, p. 168], we have

C1(γλ, yλ) 
= 0, (3.29)

while from (3.26) and (3.28) we infer that

yλ 
∈ {v∗
λ, u∗

λ}. (3.30)

Hypothesis H1(ii) and Proposition 4.1 of Gasiński–Papageorgiou [18], imply
that

Ck(γλ, 0) = 0 ∀k � 0. (3.31)

From (3.29) and (3.31) it follows that yλ 
= 0. This fact together with (3.25)
and (3.30) lead to the conclusion that

yλ ∈ [v∗
λ, u∗

λ] ∩ C1
0 (Ω) is a nodal solution of (Pλ).

�
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Now we can state our first multiplicity theorem. We stress that in this re-
sult the reaction term fλ(z, ·) can have arbitrary polynomial growth, in partic-
ular it can be supercritical. Our multiplicity theorem provides sign information
for all solutions produced.

Theorem 3.6. If hypotheses H1 hold, then there exists λ∗ > 0 such that for all
λ ∈ (0, λ∗) problem (Pλ) admits at least three nontrivial smooth solutions

uλ ∈ intC+, vλ ∈ −int C+ and yλ ∈ [vλ, uλ] ∩ C1
0 (Ω)nodal.

4. Six Nontrivial Smooth Solutions

In this section we study problem (Pλ) when the reaction term fλ(z, ·) is (p−1)-
linear at ±∞ and resonant with respect to a nonprincipal variational eigen-
value of (−Δp,W

1,p
0 (Ω)). This is another distinguishing feature from the work

of Papageorgiou–Winkert [32]. There asymptotically at ±∞ we have resonance
with respect to λ̂1(p) > 0 from the left and so the corresponding energy (Euler)
functional is coercive. In contrast here the energy functional is indefinite and
this is the source of additional difficulties, which lead to different techniques.

Now the reaction fλ has the form

fλ(z, ζ) = λ|ζ|qλ−2ζ + f0(z, ζ) ∀(z, ζ) ∈ Ω × R, (4.1)

with 1 < qλ < 2.
On the perturbation f0 we impose the following conditions.

H2: f0 : Ω ×R −→ R is a measurable function, such that for almost all z ∈ Ω,
f0(z, 0) = 0 and f0(z, ·) ∈ C1(R), f0(z, ·) is nondecreasing on R and

(i) |(f0)′
ζ(z, ζ)| � a(z)(1 + |ζ|r−2) for almost all z ∈ Ω, all ζ ∈ R, with

a ∈ L∞(Ω)+, 2 < r < p∗;
(ii) there exists integer m � 2 such that

lim
ζ→± ∞

f0(z, ζ)
|ζ|p−2ζ

= λ̂m(p) uniformly for a.a. z ∈ Ω;

(iii) if F0(z, ζ) =
∫ ζ

0
f0(z, s) ds, then there exists τλ > qλ such that

lim
ζ→± ∞

f0(z, ζ)ζ − pF0(z, ζ)
|ζ|τλ

= +∞ uniformly for a.a. z ∈ Ω;

(iv) we have

lim
ζ→0

f0(z, ζ)
|ζ|p−2ζ

= 0uniformly for a.a. z ∈ Ω.

Remark 4.1. From (4.1) and hypothesis H2(i), we have that

|fλ(z, ζ)| � âλ(z) + ĉ|ζ|r−1 for a.a. z ∈ Ω, all ζ ∈ R, all λ ∈ (0, λ0),

with âλ ∈ L∞(Ω), ĉ > 0 and ‖âλ‖∞ −→ 0 as λ ↘ 0. So, we preserve the
framework of Sect. 3. However, we have added two new conditions concerning
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the behaviour of fλ(z, ·) near ±∞ (hypotheses H2(ii), (iii)). Hypothesis H2(ii)
makes the problem resonant. The resonance is with respect to any nonprincipal
variational eigenvalue λ̂m(p) > 0 (recall m � 2).

Example 4.2. The following functions are of the form (4.1) and satisfy hy-
potheses H2. For the sake of simplicity we drop the z-dependence.

f1
λ(ζ) = λ|ζ|qλ−2ζ + λ̂m(p)|ζ|p−2ζ − c1|ζ|τλ−2ζ,

f2
λ(ζ) = λ|ζ|qλ−2ζ +

{
c2ζ if |ζ| � 1,

λ̂m(p)|ζ|p−2ζ − η|ζ|τλ−2ζ if |ζ| > 1,

with 1 < qλ < 2 < τλ < p, c1 < λ(qλ−1)
λ0

, η = λ̂m(p)(p−2)
τλ−2 , c2 = λ̂m(p) − η.

First we produce two additional constant sign smooth solutions.
According to Theorem 3.6, for all λ ∈ (0, λ∗), we already have three

nontrivial smooth solutions

uλ ∈ int C+, vλ ∈ −intC+ and yλ ∈ [vλ, uλ] ∩ C1
0 (Ω) nodal.

On account of Proposition 3.4, without any loss of generality we may assume
that uλ and vλ are extremal (that is, uλ = u∗

λ ∈ int C+ and vλ = v∗
λ ∈

−int C+).

Proposition 4.3. If hypotheses H2 hold and λ ∈ (0, λ∗), then problem (Pλ) has
two more constant sign smooth solutions

ûλ ∈ int C+ with ûλ − uλ ∈ int C+,

v̂λ ∈ −intC+ with vλ − v̂λ ∈ intC+

Proof. Using the solution uλ ∈ intC+, we introduce the following truncation
of fλ(z, ·)

g+
λ (z, ζ) =

{
fλ(z, uλ(z)) if ζ � uλ(z),
fλ(z, ζ) if uλ(z) < ζ.

(4.2)

This is a Carathéodory function. We set

G+
λ (z, ζ) =

∫ ζ

0

g+
λ (z, s) ds

and consider the C1-functional χ+
λ : W 1,p

0 (Ω) −→ R defined by

χ+
λ (u) =

1
p
‖Du‖p

p +
1
2
‖Du‖2

2 −
∫

Ω

G+
λ (z, u) dz ∀u ∈ W 1,p

0 (Ω).

Claim 1. Kχ+
λ

⊆ [uλ) ∩ C1
0 (Ω), where

[uλ) = {u ∈ W 1,p
0 (Ω): uλ(z) � u(z) for a.a. z ∈ Ω}.

Let u ∈ Kχ+
λ
. Then

(χ+
λ )′(u) = 0,
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so
Ap(u) + A(u) = Ng+

λ
(u). (4.3)

On (4.3) we act with (uλ − u)+ ∈ W 1,p
0 (Ω). Then

〈Ap(u), (uλ − u)+〉 + 〈A(u), (uλ − u)+〉
=

∫
Ω

fλ(z, uλ)(uλ − u)+ dz

= 〈Ap(uλ), (uλ − u)+〉 + 〈A(uλ), (uλ − u)+〉
(see (4.2) and since uλ ∈ S+

λ , so

〈Ap(u) − Ap(uλ), (uλ − u)+〉 + ‖D(uλ − u)+‖2
2 = 0,

thus

uλ � u.

Also, the nonlinear regularity theory implies that u ∈ C1
0 (Ω). This proves

Claim 1.
Recall that uλ � uλ (see the proof of Proposition 3.3). We may assume

that
Kχ+

λ
∩ [0, uλ] = {uλ}. (4.4)

Otherwise, on account of Claim 1, we already have a second positive solution
ûλ ∈ C1

0 (Ω) with uλ � ûλ. Moreover, as we will show below we have ûλ −uλ ∈
int C+. Therefore we are done.

Claim 2. uλ ∈ intC+ is a local minimizer of χ+
λ .

We consider the following truncation of g+
λ (z, ·):

ĝ+
λ (z, ζ) =

{
g+

λ (z, ζ) if ζ � uλ(z),
g+

λ (z, uλ(z)) if uλ(z) < ζ.
(4.5)

This is a Carathéodory function. We set

Ĝ+
λ (z, ζ) =

∫ ζ

0

ĝ+
λ (z, s) ds

and consider the C1-functional χ̂+
λ : W 1,p

0 (Ω) −→ R defined by

χ̂+
λ (u) =

1
p
‖Du‖p

p +
1
2
‖Du‖2

2 −
∫

Ω

Ĝ+
λ (z, u) dz ∀u ∈ W 1,p

0 (Ω).

This functional is coercive (see (4.5)) and sequentially weakly lower semicon-
tinuous. So, there is wλ ∈ W 1,p

0 (Ω) such that

χ̂+
λ (wλ) = inf

u∈W 1,p
0 (Ω)

χ̂+
λ (u), (4.6)

thus
wλ ∈ Kχ̂+

λ
. (4.7)
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As above (see the proof of Claim 1), we can show that

Kχ̂+
λ

⊆ [uλ, uλ] ∩ C1
0 (Ω). (4.8)

From (4.5) it follows that

Kχ+
λ

∩ [uλ, uλ] = Kχ̂+
λ
. (4.9)

Then (4.4), (4.7), (4.8), (4.9) imply that

wλ = uλ. (4.10)

Let

B(y) =
1
p
|y|p +

1
2
|y|2 ∀y ∈ R

N .

Then B ∈ C2(RN ;R) and

a(y) = ∇B(y) = |y|p−2y + y ∀y ∈ R
N ,

so

∇a(y) = |y|p−2

(
I + (p − 2)

y ⊗ y

|y|2
)

+ I ∀y ∈ R
N .

Evidently

div a(Du) = Δpu + Δu ∀u ∈ W 1,p
0 (Ω)

and

(∇a(y)ξ, ξ)RN � |ξ|2 ∀y, ξ ∈ R
N .

Since uλ 
= uλ, the tangency principle of Pucci–Serrin [33, p. 35] implies that

(uλ − uλ)(z) > 0 ∀z ∈ Ω. (4.11)

We have

−Δpuλ − Δuλ � λuqλ−1
λ + f0(z, uλ)

� λuqλ−1
λ + f0(z, uλ) = −Δpuλ − Δuλ for a.a. z ∈ Ω

(see (3.2), (4.1) and use the facts that uλ � uλ, f0(z, ·) is nondecreasing and
uλ ∈ S+

λ ).
Let êλ = uλ−uλ ∈ C+\{0}. From Guedda–Véron [21] (see also Gasiński–

Papageorgiou [16, Lemma 2.9]), we know that êλ satisfies

Lêλ(z) � 0 for a.a. z ∈ Ω, êλ|
∂Ω = 0, (4.12)

with L(y) = −div (H(z)Dy) for all y ∈ W 1,p
0 (Ω), where the coefficient matrix

H(z) = (hij(z))N
i,j=1 is defined by

hij(z) = |Duλ(z)|p−2
(
δij |Duλ(z)|p−2 + (p − 2)Diuλ(z)Djuλ(z)

)
+ 1.
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Recalling that uλ ∈ intC+, we see that the linear differential operator L is
strictly elliptic. So, from (4.11), (4.12) and the strong maximum principle (see,
for example Gasiński–Papageorgiou [12, p. 738]), we have

∂êλ

∂n

∣∣
∂Ω

< 0,

so
êλ = uλ − uλ ∈ int C+ (4.13)

(see (4.11)). From (4.13), (4.6), (4.10) and since χ+
λ |[0,uλ] = χ̂+

λ |[0,uλ] (see (4.5)
and (4.6)), it follows that

uλ is a local C1
0 (Ω)-minimizers of χ+

λ ,

so

uλ is a local W 1,p
0 (Ω)-minimizers of χ+

λ

(see Proposition 2.2). This proves Claim 2.
Due to Claim 1, we may assume that Kχ+

λ
is finite. Then Claim 2 implies

that we can find � ∈ (0, 1) small such that

χ+
λ (uλ) < inf

{
χ+

λ (u) : ‖u − uλ‖ = �
}

= m+
λ . (4.14)

Hypothesis H2(ii) and the fact that m � 2, imply that

χ+
λ (tû1(p)) −→ −∞ as t → +∞. (4.15)

Claim 3. The functional χ+
λ satisfies the Cerami condition.

Consider a sequence {un}n�1 ⊆ W 1,p
0 (Ω) such that {χ+

λ (un)}n�1 ⊆ R is
bounded and

(1 + ‖un‖)(χ+
λ )′(un) −→ 0 in W−1,p′

(Ω). (4.16)
From (4.16) we have

∣∣〈Ap(un), h〉 + 〈A(un), h〉 −
∫

Ω

g+
λ (z, un)h dz

∣∣
� εn‖h‖

1 + ‖un‖ ∀h ∈ W 1,p
0 (Ω), (4.17)

with εn ↘ 0.
In (4.17) we choose h = −u−

n ∈ W 1,p
0 (Ω). We obtain

‖Du−
n ‖p

p + ‖Du−
n ‖2

2 � M1 ∀n � 1,

for some M1 > 0, so

the sequence {u−
n }n�1 ⊆ W 1,p

0 (Ω) is bounded. (4.18)

From (4.17) and (4.18), we have
∣∣〈Ap(u+

n ), h〉 + 〈A(u+
n ), h〉 −

∫
Ω

g+
λ (z, u+

n )h dz
∣∣

� M2 ∀h ∈ W 1,p
0 (Ω), n � 1, (4.19)
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for some M2 > 0. We show that the sequence {u+
n }n�1 ⊆ W 1,p

0 (Ω) is bounded.
We argue by contradiction. So, suppose that at least for a subsequence, we
have ‖u+

n ‖ −→ +∞. We set yn = u+
n

‖u+
n ‖ for all n � 1. Then ‖yn‖ = 1 and

yn � 0 for all n � 1. Passing to a subsequence is necessary, we may assume
that

yn
w−→ y in W 1,p

0 (Ω) and yn −→ y in Lp(Ω), (4.20)

with y � 0. From (4.19), we obtain

∣∣〈Ap(yn), h〉 +
1

‖u+
n ‖p−2

〈A(yn), h〉 −
∫

Ω

Ng+
λ
(u+

n )

‖u+
n ‖p−1

h dz
∣∣

� M2

‖u+
n ‖p−1

∀h ∈ W 1,p
0 (Ω), n � 1, (4.21)

In (4.21) we choose h = yn − y ∈ W 1,p
0 (Ω). Since the sequence

{N
g
+
λ

(u+
n )

‖u+
n ‖p−1

}
n�1

is bounded (see (4.1), (4.2) and hypothesis H1(i)) and recalling that p > 2, by
passing to the limit as n → +∞ in (4.21), we obtain

lim
n→+∞〈Ap(yn), yn − y〉 = 0,

so

yn −→ y in W 1,p
0 (Ω)

(see (4.20) and Proposition 2.3) hence ‖y‖ = 1 and y � 1.
Also, hypothesis H2(ii) implies that

Ng+
λ
(u+

n )

‖u+
n ‖p−1

−→ λ̂m(p)yp−1 in Lp′
(Ω) (4.22)

(see Aizicovici–Papageorgiou–Staicu [1, Proposition 14]). Then, if in (4.21) we
pass to the limit as n → +∞ and use (4.22) and the facts that ‖y‖ = 1 and
p > 2 (recall that ‖u+

n ‖ −→ +∞), we get

〈Ap(y), h〉 = λ̂m(p)
∫

Ω

yp−1h dz ∀h ∈ W 1,p
0 (Ω),

so {
−Δpy(z) = λ̂m(p)y(z)p−1 for a.a. z ∈ Ω,
y|∂Ω = 0,

thus y ≡ 0 or y is nodal (since m � 2), a contradiction to the fact that y � 0.
This proves that the sequence {u+

n }n�1 ⊆ W 1,p
0 (Ω) is bounded, thus the

sequence {un}n�1 ⊆ W 1,p
0 (Ω) is bounded too (see (4.18)).

Hence, passing to a subsequence if necessary, we may assume that

un
w−→ u in W 1,p

0 (Ω) and un −→ u in Lp(Ω). (4.23)
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In (4.17) we choose h = un − u ∈ W 1,p
0 (Ω), pass to the limit as n → +∞ and

use (4.23). Then

lim
n→+∞

(〈Ap(un), un − u〉 + 〈A(un), un − u〉) = 0,

so

lim sup
n→+∞

(〈Ap(un), un − u〉 + 〈A(u), un − u〉) � 0

(since A is monotone), hence

lim sup
n→+∞

〈Ap(un), un − u〉 � 0

and thus

un −→ u in W 1,p
0 (Ω)

(see (4.18) and Proposition 2.3). This proves Claim 3.
Combining (4.14), (4.15) and Claim 3, we see that we can use the moun-

tain pass theorem (see Theorem 2.1) and produce ûλ ∈ W 1,p
0 (Ω) such that

ûλ ∈ Kχ+
λ

and m+
λ � χ+

λ (ûλ). (4.24)

From (4.24), (4.14) and Claim 1, we have

ûλ ∈ C1
0 (Ω) and ûλ − uλ ∈ C+\{0}.

As we did earlier (see the proof of Claim 2) for the pair {uλ, uλ}, exploiting
the monotonicity of fλ(z, ·), we obtain

ûλ − uλ ∈ int C+.

Similarly, working on the negative semiaxis with vλ ∈ −int C+ and vλ = −uλ ∈
−int C+, we produce a second nontrivial solution v̂λ ∈ −intC+ of (Pλ) which
satisfies

vλ − v̂λ ∈ int C+.

�
So far, we have produced five nontrivial smooth solutions for (Pλ) (λ ∈

(0, λ∗)), all with sign information. We have

uλ, ûλ ∈ int C+ with ûλ − uλ ∈ int C+ (two positive solutions),
vλ, v̂λ ∈ −int C+ with vλ − v̂λ ∈ intC+ (two negative solutions),
yλ ∈ intC1

0 (Ω)[vλ, uλ] nodal.

Next using critical groups (Morse theory), we will produce a sixth nontrivial
smooth solution. However, we cannot provide any sign information for this
sixth solution.

So, let λ ∈ (0, λ∗) and let ϕλ : W 1,p
0 (Ω) −→ R be the energy (Euler) func-

tional for problem (Pλ) when the reaction term has the form (4.1). Therefore

ϕλ(u) =
1
p
‖Du‖p

p +
1
2
‖Du‖2

2 − λ

qλ
‖u‖qλ

qλ
−

∫
Ω

F0(z, u) dz ∀u ∈ W 1,p
0 (Ω).
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Evidently ϕλ ∈ C1(W 1,p
0 (Ω)) ∩ C2(W 1,p

0 (Ω)\{0}).

Proposition 4.4. If hypotheses H2(i), (ii) and (iii) hold, then for every λ ∈
(0, λ0) the functional ϕλ satisfies the Cerami condition.

Proof. Let {un}n�1 ⊆ W 1,p
0 (Ω) be a sequence, such that

|ϕλ(un)| � M3 ∀n � 1, (4.25)

with M3 > 0 and

(1 + ‖un‖)ϕ′
λ(un) −→ 0 in W−1,p′

(Ω). (4.26)

From (4.26), we have
∣∣〈Ap(un), h〉 + 〈A(un), h〉 − λ

∫
Ω

|un|qλ−2unh dz −
∫

Ω

f0(z, un)h dz
∣∣

� εn‖h‖
1 + ‖un‖ ∀h ∈ W 1,p

0 (Ω), (4.27)

with εn ↘ 0. Choosing h = un ∈ W 1,p
0 (Ω) in (4.27), we obtain

− ‖Dun‖p
p − ‖Dun‖2

2 + λ‖un‖qλ
qλ

+
∫

Ω

f0(z, un)un dz � εn ∀n � 1. (4.28)

On the other hand from (4.25), we have

‖Dun‖p
p +

p

2
‖Dun‖2

2 − λp

qλ
‖un‖qλ

qλ
−

∫
Ω

pF0(z, un) dz � pM3 ∀n � 1. (4.29)

We add (4.28) and (4.29). Then
(p

2
− 1

)‖Dun‖2
2 +

∫
Ω

(
f0(z, un)un − pF0(z, un)

)
dz

� M4 + λ
( p

qλ
− 1

)‖un‖qλ
qλ

∀n � 1,

for some M4 > 0, so∫
Ω

(
f0(z, un)un − pF0(z, un)

)
dz � M4 + λ

( p

qλ
− 1

)‖un‖qλ
qλ

∀n � 1

(since 2 < p), thus
1

‖un‖τλ

∫
Ω

(
f0(z, un)un − pF0(z, un)

)
dz

� M5 +
( 1
‖un‖τλ

+ λ
1

‖un‖τλ−qλ

) ∀n � 1 (4.30)

for some M5 > 0 (recall that qλ < p).

Claim. The sequence {un}n�1 ⊆ W 1,p
0 (Ω) is bounded.

We argue indirectly. So, suppose that the Claim is not true. Hence at
least for a subsequence, we have

‖un‖ −→ +∞. (4.31)
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Let yn = un

‖un‖ for all n � 1. Then ‖yn‖ = 1 for all n � 1 and so passing to a
subsequence if necessary, we may assume that

yn −→ y in W 1,p
0 (Ω) and yn −→ y in Lp(Ω). (4.32)

From (4.27), we have
∣∣〈Ap(yn), h〉 +

1
‖un‖p−2

〈A(yn), h〉

− λ

‖un‖p−qλ

∫
Ω

|yn|qλ−2yn dz −
∫

Ω

Nf0(un)
‖un‖p−1

h dz
∣∣

� εn

(1 + ‖un‖)‖un‖p−1
∀n � 1. (4.33)

Hypotheses H2(i), (ii) imply that the sequence
{ Nf0 (un)

‖un‖p−1

}
n�1

⊆ Lp′
(Ω) is

bounded and so for at least a subsequence, we have

Nf0(un)
‖un‖p−1

w−→ λ̂m(p)|y|p−2y in Lp′
(Ω) (4.34)

(see hypothesis H2(ii) and Gasiński–Papageorgiou [13]). In (4.33) we choose
h = yn − y ∈ W 1,p

0 (Ω) and pass to the limit as n → +∞. Using (4.31), the
fact that p > 2 and (4.34), we obtain

lim
n→+∞〈Ap(yn), yn − y〉 = 0,

so
yn −→ y in W 1,p

0 (Ω) (4.35)

(see (4.32) and Proposition 2.3), hence ‖y‖ = 1. Let

C = {z ∈ Ω : y(z) 
= 0}.

Then from (4.35) we see that |C|N > 0 and

|un(z)| −→ +∞ for a.a. z ∈ C,

thus

f0(z, un(z))un(z) − pF0(z, un(z))
|un(z)|τλ

−→ +∞ for a.a. z ∈ Ω. (4.36)

From (4.36) and Fatou’s lemma, we have

lim
n→+∞

∫
C

f0(z, un)un − pF0(z, un)
|un|τλ

dz = +∞. (4.37)

Hypothesis H2(iii) implies that we can find M6 > 0 such that

f0(z, ζ)ζ − pF0(z, ζ)
|ζ|τλ

� 0 for a.a. z ∈ Ω, all |ζ| � M6. (4.38)
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Then assuming without any loss of generality that ‖un‖ � 1 for all n � 1 (see
(4.31)), we have

1
‖un‖τλ

∫
Ω

(f0(z, un)un − pF0(z, un)) dz

=
∫

Ω

f0(z, un)un − pF0(z, un)
|un|τλ

|yn|τλ dz

=
∫

{|un|�M6}

f0(z, un)un − pF0(z, un)
|un|τλ

|yn|τλ dz

+
1

‖un‖τλ

∫
{|un|<M6}

(f0(z, un)un − pF0(z, un)) dz

�
∫

{|un|�M6}∩C

f0(z, un)un − pF0(z, un)
|un|τλ

|yn|τλ dz − M7

�
∫

C

f0(z, un)un − pF0(z, un)
|un|τλ

|yn|τλ dz − M8 ∀n � 1,

for some M7,M8 > 0 (see hypothesis H2(i)), so

lim
n→+∞

1
‖un‖τλ

∫
Ω

(f0(z, un)un − pF0(z, un)) dz = +∞ (4.39)

(see (4.37)). Comparing (4.39) and (4.30) and recalling that τλ > qλ and that
‖un‖ −→ +∞ (see (4.31)), we have a contradiction. This proves the Claim.

On account of the Claim, we may assume that

un
w−→ u in W 1,p

0 (Ω) and un −→ u in Lp(Ω). (4.40)

In (4.27) we choose h = un − u ∈ W 1,p
0 (Ω), pass to the limit as n → +∞ and

use (4.40). Then

lim
n→+∞〈Ap(un), un − u〉 = 0,

so

un −→ u in W 1,p
0 (Ω)

(see (4.40) and Proposition 2.3), hence ϕλ satisfies the Cerami condition. �

Proposition 4.5. If hypotheses H2(i), (ii) and (iii) hold, then for every λ ∈
(0, λ0), we have

Cm(ϕλ,∞) 
= 0.

Proof. Let

ϑ ∈ (λ̂m(p), λ̂m+1(p))\σ0(p)

and consider the C1-functional γ : W 1,p
0 (Ω) −→ R defined by

γ(u) =
1
p
‖Du‖p

p − ϑ

p
‖u‖p

p ∀u ∈ W 1,p
0 (Ω).
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We consider the homotopy hλ(t, u) defined by

hλ(t, u) = (1 − t)ϕλ(u) + tγ(u) ∀(t, u) ∈ [0, 1] × W 1,p
0 (Ω).

Claim. There exist ξλ ∈ R and δ̂λ > 0 such that

if hλ(t, u) � ξλ, then (1 + ‖u‖)‖(hλ)′
u(t, u)‖∗ � δ̂λ ∀t ∈ [0, 1].

We argue by contradiction. So, suppose that the Claim is not true. Note that
hλ maps bounded sets into bounded sets. Hence, we can find two sequences
{tn}n�1 ⊆ [0, 1] and {un}n�1 ⊆ W 1,p

0 (Ω) such that{
tn −→ t, ‖un‖ −→ +∞, hλ(tn, un) −→ −∞
(1 + ‖un‖)(hλ)′

u(tn, un) −→ 0 (4.41)

From the last convergence in (4.37), we have
∣∣〈Ap(un), h〉 + (1 − tn)〈A(un), h〉 − (1 − tn)

∫
Ω

|un|qλ−2unh dz

−(1 − tn)
∫

Ω

f0(z, un)h dz − tnϑ

∫
Ω

|un|p−2unh dz
∣∣

� εn‖h‖
1 + ‖un‖ ∀h ∈ W 1,p

0 (Ω), (4.42)

with εn ↘ 0.
Let yn = un

‖un‖ for all n � 1. Then ‖yn‖ = 1 for all n � 1 and so passing
to a subsequence if necessary, we may assume that

yn
w−→ y in W 1,p

0 (Ω) and yn −→ y in Lp(Ω). (4.43)

From (4.42), we have

∣∣〈Ap(yn), h〉 +
1 − tn

‖un‖p−2
〈A(yn), h〉 − (1 − tn)λ

‖un‖p−qλ

∫
Ω

|yn|qλ−2ynh dz

−(1 − tn)
∫

Ω

Nf0(un)
‖un‖p−1

h dz − tnϑ

∫
Ω

|yn|p−2ynh dz
∣∣

� εn‖h‖
(1 + ‖un‖)‖un‖p−1

∀n � 1. (4.44)

As before, choosing h = yn − y ∈ W 1,p
0 (Ω), passing to the limit as n → +∞

and recalling that qλ < 2 < p (see also (4.41)), via Proposition 2.3 (see also
(4.43)), we obtain

yn −→ y inW 1,p
0 (Ω), (4.45)

hence ‖y‖ = 1. Passing the limit as n → +∞ in (4.44) and using (4.41) and
(4.45), we obtain

〈Ap(y), h〉 = ϑt

∫
Ω

|y|p−2yh dz ∀h ∈ W 1,p
0 (Ω),
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with ϑt = (1 − t)λ̂m(p) + tϑ, so{−Δpy(z) = ϑt|y(z)|p−2y(z) for a.a. z ∈ Ω,
y|∂Ω = 0.

(4.46)

If ϑt 
∈ σ0(p), then (4.46) implies that y = 0, which contradicts (4.45).
If ϑt ∈ σ0(p) and C = {z ∈ Ω : y(z) 
= 0}, then |C|N > 0 and as in the

proof of Proposition 4.4, we have

lim
n→+∞

1
‖un‖τλ

∫
Ω

(f0(z, un)un − pF0(z, un) dz = +∞. (4.47)

From the third convergence in (4.41), we see that we can find n0 � 1 such
that

‖Dun‖p
p +

(1 − tn)p
2

‖Dun‖2
2 − (1 − tn)p

qλ
‖un‖qλ

qλ

−(1 − tn)
∫

Ω

pF0(z, un) dz − tnϑ‖un‖p
p � −1 ∀n � n0. (4.48)

In (4.42) we choose h = un ∈ W 1,p
0 (Ω). Then

−‖Dun‖p
p − (1 − tn)‖Dun‖2

2 + (1 − tn)‖un‖qλ
qλ

+(1 − tn)
∫

Ω

f0(z, un)un dz + tnϑ‖un‖p
p � εn ∀n � 1. (4.49)

We add (4.48), (4.49) and use the fact that p > 2, to obtain

(1 − tn)
∫

Ω

(f0(z, un)un − pF0(z, un)) dz

� (1 − tn)λ(
p

qλ
− 1)‖un‖qλ

qλ
∀n � n1 � n0,

so
1 − tn
‖un‖τλ

∫
Ω

(f0(z, un)un − pF0(z, un)) dz � (1 − tn)M9

‖un‖τλ−qλ
∀n � n1,

for some M9 > 0. We can always assume that tn 
= 1 for all n � 1 or otherwise
t = 1 and since ϑ 
∈ σ0(p), we infer that y = 0, a contradiction to (4.45).
Hence

1
‖un‖τλ

∫
Ω

(f0(z, un)un − pF0(z, u0)) dz � M9

‖un‖τλ−qλ
∀n � 1. (4.50)

Comparing (4.50) and (4.47), we have a contradiction (recall that qλ < τλ).
This prove the Claim.

This above argument with minor changes also shows that for all t ∈ [0, 1],
hλ satisfies the Cerami condition (see the proof of Proposition 4.4). So, from
Chang [5, p. 334] (see also Liang–Su [25, Proposition 3.2]), we have

Ck(hλ(0, ·),∞) = Ck(hλ(1, ·),∞) ∀k � 0,
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so

Ck(ϕλ,∞) = Ck(γ,∞) ∀k � 0. (4.51)

Since ϑ 
∈ σ0(p), we have Kγ = {0}. Therefore

Ck(γ,∞) = Ck(γ, 0) ∀k � 0,

so

Cm(γ,∞) 
= 0

(see Cingolani–Degiovanni [7]), thus

Cm(ϕλ,∞) 
= 0

(see (4.51)). �

Now we are ready for the second multiplicity theorem concerning problem
(Pλ).

Theorem 4.6. If (4.1) and hypotheses H2 hold, then there exists λ∗ > 0 such
that for all λ ∈ (0, λ∗) problem (Pλ) admits at least six nontrivial smooth
solutions

uλ, ûλ ∈ int C+, with ûλ − uλ ∈ int C+,

vλ, v̂λ ∈ −int C+, with vλ − v̂λ ∈ int C+,

yλ ∈ intC1
0 (Ω)[vλ, uλ]nodal and ŷλ ∈ C1

0 (Ω)\{0}.

Proof. From Theorem 3.6 and Proposition 4.3, we know that we can find
λ∗ > 0 such that for all λ ∈ (0, λ∗) problem (Pλ) has at least five smooth
solutions all with sign information

uλ, ûλ ∈ int C+, with ûλ − uλ ∈ int C+,

vλ, v̂λ ∈ −int C+, with vλ − v̂λ ∈ intC+

and

yλ ∈ intC1
0 (Ω)[vλ, uλ] nodal.

We can always assume that uλ and vλ are extremal (that is uλ = u∗
λ ∈ intC+

and vλ = v∗
λ ∈ −int C+; see Proposition 3.4). From the proof of Proposition

3.3 we know that

uλ ∈ intC+ is a minimizer of ϕ̂+
λ and uλ − uλ ∈ int C+, (4.52)

vλ ∈ −intC+ is a minimizer of ϕ̂−
λ and vλ − vλ ∈ intC+. (4.53)

We have

ϕλ

∣∣
[0,uλ]

= ϕ̂+
λ

∣∣
[0,uλ]

and ϕλ

∣∣
[vλ,0]

= ϕ̂−
λ

∣∣
[vλ,0]

.

So, from (4.52) and (4.53) it follows that

Ck(ϕλ, uλ) = Ck(ϕλ, vλ) = δk,0Z ∀k � 0 (4.54)
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(see Proposition 2.2). From the proof of Proposition 4.3, we know that

ûλ is a critical point of mountain pass type forχ+
λ , (4.55)

v̂λ is a critical point of mountain pass type forχ−
λ . (4.56)

Note that

ϕλ

∣∣
[uλ)

= χ+
λ

∣∣
[uλ)

+ μ+
λ and ϕλ

∣∣
(vλ]

= χ−
λ

∣∣
(vλ]

+ μ−
λ

with μ+
λ , μ−

λ ∈ R (see (4.2)), where

(vλ] = {v ∈ W 1,p
0 (Ω) : v(z) � vλ(z) for a.a. z ∈ Ω}.

Since

ûλ − uλ ∈ int C+ and vλ − v̂λ ∈ int C+,

from (4.55) and (4.56) it follows that

C1(ϕλ, ûλ) 
= 0, C1(ϕλ, v̂λ) 
= 0,

so

Ck(ϕλ, ûλ) = Ck(ϕλ, v̂λ) = δk,1Z ∀k � 0 (4.57)

(see Papageorgiou–Rădulescu [28] and Papageorgiou–Smyrlis [31]). Also recall
that

yλ ∈ intC1
0 (Ω)[vλ, uλ]

and yλ is a critical point of mountain pass type for the functional γλ (see the
proof of Proposition 3.5). Hence

C1(γλ, yλ) 
= 0

(see Motreanu–Motreanu–Papageorgiou [26, p. 177]). Also note that

γλ

∣∣
[vλ,uλ]

= ϕλ

∣∣
[vλ,uλ]

(see (3.24)). So, it follows that

C1(ϕλ, yλ) 
= 0,

thus

Ck(ϕλ, yλ) = δk,1Z ∀k � 0 (4.58)

(as before see [28] and [31]). The presence of the concave term λ|ζ|qλ−2ζ (see
(4.1)) and hypothesis H2(iv) imply that

Ck(ϕλ, 0) = 0 ∀k � 0 (4.59)

(see Gasiński–Papageorgiou [18, Proposition 4.1]). From Proposition 4.5, we
know that

Cm(ϕλ,∞) 
= 0.

Therefore there exists ŷλ ∈ Kϕλ
such that

Cm(ϕλ, ŷλ) 
= 0 (4.60)
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with m � 2. Comparing (4.60) with (4.54), (4.57), (4.58), (4.59) we infer that

ŷλ 
∈ {uλ, vλ, ûλ, v̂λ, yλ, 0},

so ŷλ ∈ C1
0 (Ω)\{0} (nonlinear regularity) is the sixth nontrivial solution. �

Open Access. This article is distributed under the terms of the Creative Com-
mons Attribution 4.0 International License (http://creativecommons.org/licenses/
by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes
were made.
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[12] Gasiński, L., Papageorgiou, N.S.: Nonlinear Analysis. Mathematical Analysis
and Applications, 9. Chapman & Hall, Boca Raton, FL (2006)
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[14] Gasiński, L., Papageorgiou, N.S.: Multiple solutions for nonlinear coercive prob-
lems with a nonhomogeneous differential operator and a nonsmooth potential.
Set-Valued Var. Anal. 20, 417–443 (2012)
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