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Abstract. In this paper, we discuss asymptotic relations for the approx-
imation of |x|α , α > 0 in L∞ [− 1, 1] by Lagrange interpolation polyno-
mials based on the zeros of the Chebyshev polynomials of first kind. The
limiting process reveals an entire function of exponential type for which
we can present an explicit formula.

Mathematics Subject Classification. 41A05, 41A10, 41A60, 65D05.

Keywords. Lagrange interpolation, Bernstein constant, Chebyshev nodes,
entire functions of exponential type, best uniform approximation.

1. Polynomial Interpolation and the Bernstein Constant

Let α > 0 be not an even integer. Starting in year 1913 for the case α = 1,
and later in 1938 for the general case α > 0, S.N. Bernstein [1,3] established
the existence of the limit

Δ∞,α = lim
n→∞ nαEn (|x|α , L∞ [− 1, 1]) ,

where

En (f, Lp [a, b]) = inf
{

‖f − p‖Lp[a,b] : deg (p) ≤ n
}

denotes the error in best Lp approximation of a function f on the interval
[a, b] by polynomials of degree less or equal n. The proofs in [1,3] are highly
difficult and long, missing many non-trivial technical details. In his 1938 paper,
Bernstein made essential use of the homogeneity property of |x|α, namely that
for c > 0 one has |cx|α = cα |x|α. Using this property, one gets for a, b > 0 and
all 1 ≤ p ≤ ∞ the relation (see [9], Lemma 8.2)

En (|x|α , Lp [−b, b]) =
(

b

a

)α+ 1
p

En (|x|α , Lp [− a, a]) . (1.1)
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This enabled Bernstein to relate the uniform best approximating error on
[− 1, 1] to that on [−n, n]. A routine argument shows that identity (1.1) sends
the best approximating polynomials P ∗

n of order n with respect to [− 1, 1] into a
sequence

{
nαP ∗

n

( ·
n

)
: n = 1, 2, . . .

}
of scaled polynomials in [−n, n]. Bernstein

also established a formulation of the limit as the error in approximation on
the real line by entire functions of exponential type, namely,

Δ∞,α = lim
n→∞ nαEn (|x|α , L∞ [− 1, 1])

= lim
n→∞ En (|x|α , L∞ [−n, n])

= lim
n→∞

∥∥∥|x|α − nαP ∗
n

( ·
n

)∥∥∥
L∞[− n,n]

= inf
{

‖|x|α − H‖L∞(R) : H is entire of exponential type ≤ 1
}

.

Recall that an entire function f is of exponential type A ≥ 0 means that for
each ε > 0 there is z0 = z0 (ε), such that

|f (z)| ≤ exp (|z| (A + ε)) , ∀z ∈ C : |z| ≥ |z0| . (1.2)

Moreover, A is taken to be the infimum over all possible numbers for which
(1.2) holds. The elegant formulation which introduces now functions of expo-
nential type extends to spaces other than L∞. Ganzburg [5] and Lubinsky [9]
have shown that for all 1 ≤ p ≤ ∞ positive constants Δp,α exists, where Δp,α

is defined by

Δp,α = lim
n→∞ nα+ 1

p En (|x|α , Lp [− 1, 1])

= inf
{

‖|x|α − H‖Lp(R)
: H is entire of exponential type ≤ 1

}
. (1.3)

From now on Δp,α are called the Bernstein constants.

Only for p = 1, 2 are the values Δp,α known. In 1947, Nikolskii [11] proved
that

Δ1,α =

∣∣sin απ
2

∣∣
π

8Γ (α + 1)
∞∑

n=0

(− 1)n

(1 + 2n)α+2 , α > − 1,

and in 1969, Raitsin [13] established

Δ2,α =

∣∣sin απ
2

∣∣
π

2Γ (α + 1)
√

π

2α + 1
, α > −1

2
.

In contrast to the case of the L∞ norm, no single value of Δ∞,α is known.
Bernstein speculated that

Δ∞,1 = lim
n→∞ nEn (|x| , L∞ [− 1, 1]) =

1
2
√

π
= 0.28209 47917 . . .

Over the years the speculation became known as the Bernstein conjecture in
approximation theory. Some 70 years later Varga and Carpenter [17], using
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sophisticated high precision scientific computational methods, calculated the
quantity numerically to

Δ∞,1 = 0.28016 94990 23869 . . .

Further extensive numerical explorations for the computation of Δ∞,α have
been provided later by Varga and Carpenter [18]. Their numerical work gave an
enormous impact into the analytical investigation of approximation problems,
not only restricted to the Bernstein constants. We would also like to mention
the numerical work of Pachón and Trefethen ([12], Figure 4.4) from 2008, when
they recomputed

{
nEn (|x| , L∞ [− 1, 1]) : n = 1, . . . , 104

}
again and provided

an graphical illustration indicating a monotonic growth behavior. As the story
continued, the approximation of entire functions of exponential type became a
much studied topic in function approximation, see [4,16], but also in connection
to problems in number theory, see for instance [19]. As an further application
in number theory, we would like to mention a recent paper of Ganzburg [7],
where he discusses new asymptotic relations between Zeta-, Dirichlet- and
Catalan functions in connection with the asymptotics of Lagrange–Hermite
interpolation for |x|α.

Turning back to the Bernstein constants Δp,α, intensive emphasis has
been placed on the structure of those entire functions of exponential type
which minimize (1.3). For p = 1, the (unique) minimizing entire function of
exponential type 1 may be expressed as an interpolation series at the nodes{(

j − 1
2

)
π : j = 1, 2, . . .

}
, see ([5], p. 197) or ([10], Formula 1.8). For p = ∞ an

analogous interpolation series at unknown interpolation nodes was derived by
Lubinsky in ([10], Theorem 1.1). In ([9], Theorem 1.1) he proved the following
result.

Denote by P ∗
n the best approximating polynomial of order n to |x|α in

the Lp norm. Then, for all 1 ≤ p ≤ ∞, α > − 1
p not an even integer, one has

Δp,α = lim
n→∞ nα+ 1

p ‖|x|α − P ∗
n‖Lp[− 1,1]

= lim
n→∞ nα+ 1

p En (|x|α , Lp [− 1, 1])

= lim
n→∞ En (|x|α , Lp [−n, n])

= lim
n→∞

∥∥∥|x|α − nαP ∗
n

( ·
n

)∥∥∥
Lp[− n,n]

= ‖|x|α − H∗
α‖Lp(R)

= inf
{

‖|x|α − H‖Lp(R)
: H is entire of exponential type ≤ 1

}
. (1.4)

Moreover, uniformly on compact subsets of C,

lim
n→∞ nαP ∗

n

( z

n

)
= H∗

α (z) ,

and there is exactly one entire function H of exponential type ≤ 1 which
minimizes (1.4). While various versions of this equality and relations (1.4)
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have been discussed by Bernstein, Raitsin and Ganzburg, the uniqueness of
H∗

α proved in [9] is a highly nontrivial result.
From the Chebyshev alternation theorem it follows that for each integer

n the best approximating polynomial P ∗
n of order n to |x|α in the in L∞ norm

can be represented as an interpolating polynomial with unknown consecutive
nodes in [− 1, 1]. Thus, if one can find something about the nature of those
best approximating interpolation nodes in [− 1, 1], then we would successfully
find an approach for a constructive analytical approximation towards some
representations for the Bernstein constants Δ∞,α. One may not expect that
a specific choice for such a node system would lead us into an instant range
close to the Bernstein constants. But we can find out what type of formulas
will be generated by the interpolation process itself for these node systems. It
appears not to be out of range that these formulas may turn out to be part of
a closed form expression for the Bernstein constants.

Since |x|α is an even function a standard argument allows us to restrict
ourselves to interpolation polynomials of even order n = 2m. It is not surpris-
ing that Bernstein [2] himself, in 1937, studied the interpolation process to
|x|α by using the modified Chebyshev system

x
(2n)
0 = 0,

x
(2n)
j = cos

(j − 1/2) π

2n
, j = 1, 2, . . . 2n,

where the x
(2n)
j are the zeros of the Chebyshev polynomial T2n of first kind,

defined by Tn (x) = cos (n arccos x). However, x
(2n)
0 is an additional choice, but

not a zero of T2n, in order to obtain the corresponding interpolation polynomial
P

(1)
2n of order 2n for |x|α. The final answer for its limit relation was given not

before 2002 by Ganzburg ([5], Formula 2.7). For α > 0 one has

lim
n→∞ (2n)α

∥∥∥|x|α − P
(1)
2n

∥∥∥
L∞[− 1,1]

=
2
π

∣∣∣sin πα

2

∣∣∣
∫ ∞

0

tα−1

cosh (t)
dt. (1.5)

Let us give some remarks on equation (1.5). Firstly, we mention that in [2]
Bernstein himself established a slightly weaker solution compared to formula
(1.5). Secondly, an extension of limit relation (1.5) to complex values for α was
obtained recently in [6].

It is remarkable that, since the beginning with Bernstein, no one has
studied in detail the interpolation process by using the node system consisting
of the 2n + 1 zeros of T2n+1, since this node system automatically includes
x = 0 as a node and apparently it seems to be the more natural choice. To go
into detail, let

x
(2n+1)
j = cos

(j − 1/2) π

2n + 1
, j = 1, 2, . . . 2n + 1,
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to be the zeros of T2n+1 and let us denote by P
(2)
2n the corresponding inter-

polation polynomial of order 2n for |x|α. There is one paper [20], dealing
with this node system and presenting the result that the approximation order
‖|x|α − P

(2)
2n ‖L∞[− 1,1] = O(1)/nα when α ∈ (0, 1). In other words, the inter-

polation process attains the Jackson order. We also would like to mention
a recent monograph by Ganzburg ([8], Theorem 4.2.3, Corollary 4.3.2 and
Remark 4.3.3) for a more general approach to pointwise asymptotic relations
within this topic.

In 2013, the author [14] established a strong asymptotic formula, valid
for all α > 0, from which he established an upper estimate for the error term,
see ([14], Corollary 2), by showing that

lim
n→∞ (2n)α

∥∥∥|x|α − P
(2)
2n

∥∥∥
L∞[− 1,1]

≤ 2
π

∣∣∣sin πα

2

∣∣∣
∫ ∞

0

tα

sinh (t)
dt, (1.6)

introducing an integral of similar nature to that in formula (1.5). In this
paper we continue the investigation into the precise limiting quantity of (2n)α

‖|x|α − P
(2)
2n ‖L∞[− 1,1] for all α > 0.

The paper is organized as follows.
In Sect. 2 we collect some definitions for several constants and functions

together with some standard results for later use.
In Sect. 3 we establish the precise limit relation (Theorem 3.1) and we

show that the scaled polynomials nαP
(2)
n

( ·
n

)
uniformly converge on compact

subsets of the real line to an entire function Hα of exponential type 1 (The-
orems 3.2 and 3.3). We may also present an explicit expansion for Hα as an
interpolating series for |x|α (Theorem 3.3). As it can be seen later from the
representation for the explicit limiting error term, i.e. from

lim
n→∞ (2n)α

∥∥∥|x|α − P
(2)
2n

∥∥∥
L∞[− 1,1]

= ‖H (α, ·)‖L∞[0,∞) , (1.7)

the exact determination of the quantity on the right-hand side in (1.7) for
individual values for α appears to be a rather difficult challenge.

2. Notation

In this section we record the following constants and functions, together with
properties which are used later in the paper. The Chebyshev polynomials of
first kind are denoted by Tn, where Tn (x) = cos (n arccos x). For x ∈ R, let [x]
to be the floor function, namely [x] = max {m ∈ Z : m ≤ x}. Obviously, then
x − 1 < [x] ≤ x. We define the following constant, see also ([14], Remark 4).

C (α) =
∫ ∞

0

tα

sinh (t)
dt, α > 0.
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Next, we define the following functions.

H (α, x) =
∫ ∞

0

tα

sinh (t)
x sin (x)
x2 + t2

dt, α > 0, x > 0,

H1 (α, x) =
∫ ∞

0

tα

sinh (t)
x

x2 + t2
dt, α > 0, x > 0,

H2 (α, x) =
∫ ∞

0

tα

sinh (t)
x2

x2 + t2
dt, α > 0, x > 0.

Note that H (α, ·) should not be mixed up with the subsequent following def-
inition of Hα. We collect the following easy to establish properties.

(a) 0 ≤ H2 (α, x) ≤ C (α) , α > 0, x > 0,
(b) |H (α, x)| ≤ H2 (α, x) , α > 0, x > 0.

(2.1)

For α > 0 the functions H (α, ·) and H2 (α, ·) can be extended for x = 0 by
interpreting the original definitions to be their limits limx→0+ . The same can
be done for H1 (α, ·) for values α ≥ 1. Some standard arguments then reveal

H1 (α, 0) =
{

π
2 , α = 1,
0, α > 1,

H (α, 0) = H2 (α, 0) = 0, α > 0. (2.2)

Then, using (2.2), we define

Hα (x) = |x|α − 2
π

sin
πα

2
H (α, x) , α > 0, x ≥ 0. (2.3)

Finally, we apologize for the repulsive notation ‖f (x)‖ instead of ‖f‖ that we
occasionally use in this paper.

3. The Limiting Error Term

Let α > 0 and n ∈ N. We recall the definition of the nodes x
(2n+1)
j =

cos (j−1/2)π
2n+1 for j = 1, 2, . . . 2n+1 to be the zeros of the Chebyshev polynomial

T2n+1. Further denote by P
(2)
2n the unique Lagrange interpolation polynomial

for |x|α in the interval [− 1, 1].

Then, for 2n > α > 0 and all x ∈ [− 1, 1], we simply derive from ([14], Theorem
1) the asymptotic formula

(2n)α
(
|x|α − P

(2)
2n (x)

)
= (− 1)n 2

π
sin

πα

2

(
1 − 1

2n + 1

)

·T2n+1 (x)
∫ ∞

0

tα

sinh (t)
2nx

(2nx)2 + t2
dt + o (1) , n → ∞, (3.1)

where o(1) is independent of x.

The objective now is to find its limiting error term in the L∞ norm. Since the
error term is symmetric in [− 1, 1] we prove the following
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Figure 1. Interpolating entire function Hα of exponential
type 1 from (3.3)

Theorem 3.1. Let α > 0. Then we have

lim
n→∞ (2n)α

∥∥∥|x|α − P
(2)
2n

∥∥∥
L∞[0,1]

=
2
π

∣∣∣sin πα

2

∣∣∣ ‖H (α, ·)‖L∞[0,∞)

=
2
π

∣∣∣sin πα

2

∣∣∣ sup
x∈[0,∞)

∫ ∞

0

tα

sinh (t)
x |sin x|
x2 + t2

dt.

Theorem 3.2. Let α > 0. Then, uniformly on compact subsets in [0,∞),

lim
n→∞ (2n)α

P
(2)
2n

( x

2n

)
= Hα (x) .

Theorem 3.3. Let α > 0 be not an even integer. Then Hα (interpreted as
its extension into the complex domain) is an entire function of exponential
type 1, interpolating |x|α at the interpolation points {kπ : k = 0, 1, 2, . . .} and
Hα admits a representation as an interpolating series of the following form.
Denote by N = [α/2] . Then, for all x ∈ R, we have

Hα (x) = sinx

(
2
π

N−1∑
n=0

sin
(

π (α − 2n − 2)
2

)
C (α − 2n − 2) x2n+1

+ 2x2N+1
∞∑

k=1

(− 1)k (kπ)α−2N

x2 − (kπ)2

)
. (3.2)

For the special case 0 < α < 2 the expansion (see Fig. 1) is then represented
by

Hα (x) = 2x sin x

∞∑
k=1

(− 1)k (kπ)α

x2 − (kπ)2
. (3.3)

We start with the proof for Theorem 3.1 by splitting it in several Lemmas.
First, we present without a proof the following three Lemmas.
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Lemma 3.1. Let x ∈ [
0, 1

2

]
. Then 0 ≤ arcsin x − x ≤ x2.

Lemma 3.2. For n ∈ N and x ∈ [− 1, 1] we have

T2n+1 (x) = (− 1)n sin ((2n + 1) arcsin x) .

Lemma 3.3. Let n ∈ N and x ∈ [−2n, 2n] . Then we have∣∣∣∣∣
T2n+1

(
x
2n

)
x

∣∣∣∣∣ ≤ 1 +
1
2n

.

To carry the discussion further we proceed with

Lemma 3.4. Let C > 0 be fixed, ε > 0 and n > max
(
C, C

ε

)
. Then

∥∥∥∥∥
T2n+1

(
x
2n

)
x

− (− 1)n sin
(
(2n + 1) x

2n

)
x

∥∥∥∥∥
L∞[0,C]

< ε.

Proof. For x ∈ [0, C] we get 0 ≤ x
2n ≤ C

2n < C
2C = 1

2 . Then, using Lemmas 3.1
and 3.2, we estimate∣∣∣∣∣

T2n+1

(
x
2n

)
x

− (− 1)n sin
(
(2n + 1) x

2n

)
x

∣∣∣∣∣

=
1
x

∣∣∣sin
(
(2n + 1) arcsin

x

2n

)
− sin

(
(2n + 1)

x

2n

)∣∣∣

≤ 2n + 1
x

∣∣∣arcsin
x

2n
− x

2n

∣∣∣ ≤ 2n + 1
x

( x

2n

)2

≤ C

n
< ε.

�

Lemma 3.5. Let C > 0 be fixed, ε > 0 and n > 1
2ε . Then∥∥∥∥∥

sin
(
(2n + 1) x

2n

)
x

− sinx

x

∥∥∥∥∥
L∞[0,C]

< ε.

Proof. Let x ∈ [0, C]. Then by a standard argument we arrive at∣∣∣∣∣
sin

(
(2n + 1) x

2n

)
x

− sin x

x

∣∣∣∣∣ ≤ 1
x

∣∣∣(2n + 1)
x

2n
− x

∣∣∣ =
1
2n

< ε.

�

Lemma 3.6. Let C > 0 be fixed, ε > 0 and n > max
(
C, C

ε , 1
2ε

)
. Then

∥∥∥∥∥
T2n+1

(
x
2n

)
x

− (− 1)n sinx

x

∥∥∥∥∥
L∞[0,C]

< 2ε.

Proof. This follows directly by applying the triangle inequality combined
together with Lemmas 3.4 and 3.5. �
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Lemma 3.7. Let C > 0 be fixed, ε > 0 and n > max
(
C, C

ε , 1
2ε

)
. Then, for

α > 0, we have∥∥∥T2n+1

( x

2n

)
H1 (α, x)

∥∥∥
L∞[0,C]

≤ ‖H (α, x)‖L∞[0,∞) + 2ε · C (α) .

Proof. First, we remark that for α > 0 the left-hand side in Lemma 3.7 is well
defined by applying (2.2) together with Lemma 3.3. Using again the triangle
inequality together with Lemma 3.6 and formula (2.1a), we arrive at

∥∥∥T2n+1

( x

2n

)
H1 (α, x)

∥∥∥
L∞[0,C]

=

∥∥∥∥∥
T2n+1

(
x
2n

)
x

H2 (α, x)

∥∥∥∥∥
L∞[0,C]

≤
∥∥∥∥∥

T2n+1

(
x
2n

)
x

− (− 1)n sinx

x

∥∥∥∥∥
L∞[0,C]

‖H2 (α, x)‖L∞[0,C]

+ ‖sin x · H1 (α, x)‖L∞[0,C] ≤ 2εC (α) + ‖H (α, x)‖L∞[0,∞) .

�

Our first substantial result is now the following

Lemma 3.8. Let α > 0. Then

limn→∞
∥∥∥T2n+1

( x

2n

)
H1 (α, x)

∥∥∥
L∞[0,2n]

≤ ‖H (α, x)‖L∞[0,∞) .

Proof. Let ε > 0, C > C(α)
ε and n > max

(
C, C

ε , 1
2ε

)
. Then

∥∥∥T2n+1

( x

2n

)
H1 (α, x)

∥∥∥
L∞[0,2n]

≤
∥∥∥T2n+1

( x

2n

)
H1 (α, x)

∥∥∥
L∞[0,C]

+
∥∥∥T2n+1

( x

2n

)
H1 (α, x)

∥∥∥
L∞[C,2n]

.

Using (2.1a), the latter part can be estimated to
∥∥∥T2n+1

( x

2n

)
H1 (α, x)

∥∥∥
L∞[C,2n]

=

∥∥∥∥∥
T2n+1

(
x
2n

)
x

H2 (α, x)

∥∥∥∥∥
L∞[C,2n]

≤ 1
C

· C (α) < ε.

Combined together with the previous estimate and Lemma 3.7, we finally get∥∥∥T2n+1

( x

2n

)
H1 (α, x)

∥∥∥
L∞[0,2n]

≤ ‖H (α, x)‖L∞[0,∞) + 2ε · C (α) + ε.

By taking the lim the result follows. �

Now, we are turning to the lim case.

Lemma 3.9. Let α > 0 and C > 0 be fixed. Then

limn→∞
∥∥∥T2n+1

( x

2n

)
H1 (α, x)

∥∥∥
L∞[0,2n]

≥ ‖H (α, x)‖L∞[0,C] .
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Proof. Let C > 0, ε > 0 and n > max
(
C, C

ε , 1
2ε

)
. Then, by applying again

the triangle inequality and combining together with Lemma 3.6 and (2.1a), we
estimate∥∥∥T2n+1

( x

2n

)
H1 (α, x)

∥∥∥
L∞[0,2n]

≥
∥∥∥T2n+1

( x

2n

)
H1 (α, x)

∥∥∥
L∞[0,C]

≥ ‖H (α, x)‖L∞[0,C] −
∥∥∥∥∥

(
T2n+1

(
x
2n

)
x

− (− 1)n sin x

x

)
H2 (α, x)

∥∥∥∥∥
L∞[0,C]

≥ ‖H (α, x)‖L∞[0,C] − 2ε ‖H2 (α, x)‖L∞[0,C]

≥ ‖H (α, x)‖L∞[0,C] − 2ε · C (α) .

Now, by taking lim we establish the result. �
Our second substantial result is the following

Lemma 3.10. Let α > 0. Then

limn→∞
∥∥∥T2n+1

( x

2n

)
H1 (α, x)

∥∥∥
L∞[0,2n]

≥ ‖H (α, x)‖L∞[0,∞) .

Proof. Let ε > 0 and C > C(α)
ε . Then, starting with the right-hand side in

Lemma 3.10, we estimate

‖H (α, x)‖L∞[0,∞) ≤ ‖H (α, x)‖L∞[0,C] + ‖H (α, x)‖L∞[C,∞) .

Using again (2.1a), the latter part can be estimated to

‖H (α, x)‖L∞[C,∞) =
∥∥∥∥

sin x

x
H2 (α, x)

∥∥∥∥
L∞[C,∞)

≤ 1
C

· C (α) < ε.

Combined together with Lemma 3.9 and the previous estimate, we arrive at

‖H (α, x)‖L∞[0,∞) − ε ≤ ‖H (α, x)‖L∞[0,C]

≤ limn→∞
∥∥∥T2n+1

( x

2n

)
H1 (α, x)

∥∥∥
L∞[0,2n]

.

Since the last expression holds for every ε > 0 we establish the result. �
Proof of Theorem 3.1. Let α > 0. Then∥∥∥∥∥T2n+1 (x)

∫ ∞

0

tα

sinh (t)
2nx

(2nx)2 + t2
dt

∥∥∥∥∥
L∞[0,1]

=
∥∥∥∥T2n+1

( x

2n

) ∫ ∞

0

tα

sinh (t)
x

x2 + t2
dt

∥∥∥∥
L∞[0,2n]

=
∥∥∥T2n+1

( x

2n

)
H1 (α, x)

∥∥∥
L∞[0,2n]

.
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Combining now Lemmas 3.8 and 3.10 together with (3.1), gives the result and
we are finished. �

Proof of Theorem 3.2. Let α > 0. From (3.1) it follows that for every ε > 0
we can find some n0 = n0 (ε), such that for all n > n0∥∥∥∥(2n)α

(
|x|α − P

(2)
2n (x)

)
− (− 1)n 2

π
sin

πα

2

(
1 − 1

2n + 1

)

· T2n+1 (x)
∫ ∞

0

tα

sinh t

2nx

(2nx)2 + t2
dt

∥∥∥∥∥
L∞[0,1]

< ε.

Let C > 0 be fixed, ε > 0 and n > max
(
C, C

ε , 1
2ε , α

2 , n0

)
. Then

∥∥∥(2n)α
P

(2)
2n

( x

2n

)
− Hα (x)

∥∥∥
L∞[0,C]

=
∥∥∥∥

2
π

sin
πα

2
H (α, 2nx) − (2n)α

(
|x|α − P

(2)
2n (x)

)∥∥∥∥
L∞[0, C

2n ]

≤ 2
π

∣∣∣sin πα

2

∣∣∣
∥∥∥∥H (α, x) − (− 1)n 2n

2n + 1
T2n+1

( x

2n

)
H1 (α, x)

∥∥∥∥
L∞[0,C]

+ ε.

(3.4)

We proceed further by use of (2.1a), Lemmas 3.3 and 3.6.∥∥∥∥H (α, x) − (− 1)n
2n

2n + 1
T2n+1

( x

2n

)
H1 (α, x)

∥∥∥∥
L∞[0,C]

=

∥∥∥∥H1 (α, x)

(
sinx − (− 1)n

2n

2n + 1
T2n+1

( x

2n

))∥∥∥∥
L∞[0,C]

≤ C (α)

⎛
⎝

∥∥∥∥∥
T2n+1

(
x
2n

)
x

− (− 1)n
sinx

x

∥∥∥∥∥
L∞[0,C]

+
1

2n + 1

∥∥∥∥∥
T2n+1

(
x
2n

)
x

∥∥∥∥∥
L∞[0,C]

⎞
⎠

≤ C (α)

(
2ε +

1

2n

)

≤ C (α) 3ε.

Combining together with (3.4), we obtain for every ε > 0 and n sufficiently
large,

∥∥∥(2n)α
P

(2)
2n

( ·
2n

)
− Hα

∥∥∥
L∞[0,C]

≤ 2
π

∣∣∣sin πα

2

∣∣∣ C (α) 3ε + ε.

Since any compact set K in [0,∞) can be included in some interval [0, C] the
result is established. �

Proof of Theorem 3.3. The expansion of Hα into the interpolating series (3.2)
follows after some routine arguments from ([5], Formula 4.14). The special
case (3.3) can be directly seen from ([5], Formula 4.16). The fact that Hα is an



109 Page 12 of 13 M. Revers Results Math

entire function of exponential type 1 can now be deduced from ([15], p. 183,
Formula 15). The interpolation property is an easy consequence of (2.3). �
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