
Results Math (2018) 73:71
c© 2018 The Author(s)
1422-6383/18/020001-31
published online May 3, 2018

https://doi.org/10.1007/s00025-018-0830-9 Results in Mathematics

Uhlenbeck’s Decomposition in Sobolev
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Abstract. We present a self-contained proof of Rivière’s theorem on the
existence of Uhlenbeck’s decomposition for Ω ∈ Lp(Bn, so(m) ⊗ Λ1

R
n)

for p ∈ (1, n), with Sobolev type estimates in the case p ∈ [n/2, n) and
Morrey–Sobolev type estimates in the case p ∈ (1, n/2). We also prove
an analogous theorem in the case when Ω ∈ Lp(Bn, TCO+(m) ⊗ Λ1

R
n),

which corresponds to Uhlenbeck’s decomposition with conformal gauge
group.
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1. Introduction

Throughout the paper, n ≥ 2.
Rivière [15] published a solution to the so-called Heinz-Hildebrandt con-

jecture on regularity of solutions to conformally invariant nonlinear systems
of partial differential equations in dimension 2. The key tool he used was a
theorem due to Karen Uhlenbeck, on the existence of the so-called Coulomb
gauges, in which the connection of a line bundle takes particularly simple form;
we quote the theorem below in somewhat imprecise terms, to avoid unneces-
sary technicalities.

Theorem 1.1 (Uhlenbeck [21]). Let η be a vector bundle over the unit ball
B

n, n ≥ 2, with connection form Ω ∈ W 1,p, p ∈ [n/2, n). If the curvature
field, F (Ω) = Ω ∧ Ω + dΩ, has sufficiently small Ln/2 norm, then Ω is gauge-
equivalent to a connection Ω̃ which is co-closed (i.e. d ∗ Ω̃ = 0), with estimates
of the gauge and of Ω̃ given in terms of ‖F (Ω)‖Lp .
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This theorem was later generalized, to allow applications in higher di-
mensions (n > 4), to connections with smallness condition on the curvature
given in Morrey norms [12,20].

We should mention that Coulomb gauges appeared in the theory of ge-
ometrically motivated systems of PDE in important papers of Hélein [7,8] on
regularity of harmonic mappings between manifolds.

The power of Rivière’s idea was in the fact that he used Uhlenbeck’s theo-
rem to antisymmetric differential forms, which a priori were not interpreted as
connection forms, even if the problem had clear geometric motivation. More-
over, he reformulated the theorem in a language more suited for PDE appli-
cations. Simplifying, Rivière’s theorem (see [15, Lemma A.3]) says that any
antisymmetric matrix Ω of 1-forms on a ball

Ω : Bn → so(m) ⊗ Λ1
R

n

with sufficiently small norm can be transformed by an orthogonal change of
coordinates (gauge transformation)

P : Bn → SO(m)

to an antisymmetric matrix of co-closed forms (up to a rather regular term)

P−1dP + P−1ΩP = ∗dξ,

i.e. Ω = P (∗dξ)P−1 − dP P−1.

Here ξ is an antisymmetric matrix of (n − 2)-forms:

ξ : Bn → so(m) ⊗ Λn−2
R

n.

Such a decomposition of Ω is often referred to as Uhlenbeck’s decomposition.
One should note that, in contrast to Uhlenbeck’s theorem, the smallness

condition is imposed on Ω, and not on F (Ω). This has the advantage of being
a simpler and more natural expression in the scope of general PDE’s, but, at
the same time, it is less natural in the scope of gauge theory, since the norm
of the curvature is gauge independent.

Starting with Rivière’s result, Uhlenbeck’s decomposition appeared in
numerous papers on nonlinear PDE’s and variational problems, each time
adapted to a specific system, function spaces and dimensions, and with differ-
ent smallness conditions:

• Rivière [15]: Ω ∈ L2, n = 2;
• Rivière and Struwe [16]: Ω ∈ L2,n−2, n > 2;
• Lamm and Rivière [11]: Ω ∈ W 1,2, n = 4;
• Meyer and Rivière [12] and Tao and Tian [20]:

Ω ∈ W 1,2 ∩ L4,n−4, dΩ ∈ L2,n−4 for n ≥ 4;

• Müller and Schikorra [14]: Ω ∈ W 1,2, n = 2;
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All the proofs of the above results are, up to details, adaptations of the
original approach of Uhlenbeck and most of them refer the reader for certain
parts of the reasoning to the original paper [21]. The latter, however, is writ-
ten in the language of differential geometry (the result was used there in the
context of the existence theory for Yang–Mills fields). Translating the results
to Rivière’s setting and filling all the sketched details was not trivial, which is
probably why this extremely useful result went overlooked by the PDE com-
munity for over two decades.

All the proofs naturally split into two parts:
• Proving the existence of the decomposition for any sufficiently small per-

turbation of a co-closed form ∗dζ, provided certain norm of dζ is small;
• Proving that once we have Ω, P and ξ which satisfy the equation

P−1dP + P−1ΩP = ∗dξ

and additionally certain norms of Ω, dP and dξ are sufficiently small, the
presumed estimates hold (the norms of P and ξ are bounded in terms of
the norm of Ω).
In the results mentioned above, two strategies of proving the existence of

decomposition of Ω were used. The original strategy used by Karen Uhlenbeck
was to solve the equation for P

∗d ∗ (P−1dP + P−1(∗dζ + λ)P ) = 0

for a given perturbation λ of some fixed co-closed form. To do this, we look for
P of the form P = eu, add some boundary condition on u (Neumann in the
original result of Uhlenbeck, Cauchy in our proof) and define the nonlinear
operator

T (u, λ) = ∗d ∗ (e−udeu + e−u(∗dζ + λ)eu)

acting on appropriate Banach spaces; in our case

T (u, λ) : B × W 1,p → Lp

where B = W 2,p ∩W 1,p
o . One can apply then the Implicit Function Theorem to

show that T (u, λ) = 0 has a solution uλ continuously depending on λ. To do
this, one has to show that the linearization of T at (u, λ) = (0, 0) with respect
to the first argument,

H(u) = Δu + ∗[dζ, du],

is an isomorphism B → Lp. This strategy works in Sobolev spaces for
p ∈ (n/2;n), but it fails when 1 < p < n/2.

Another strategy is used by Tao and Tian [20]. Again, one looks for
P = eu and assumes u has zero boundary data. The equation

∗d ∗ (P−1dP + P−1(∗dζ + λ)P ) = 0

is transformed into the form

Δu = ∗d ∗ (
du − e−udeu − e−u(∗dζ + λ)eu

)
= ∗d ∗ F (u, ζ, λ).
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Then, an iteration scheme is set to provide a solution:
{

u0 = 0

Δuk+1 = ∗d ∗ F (uk, ζ, λ).

We use this strategy when 1 < p < n/2.
Schikorra [17] gave an alternative, variational proof of the existence of

Uhlenbeck’s decomposition. His approach was inspired by a similar variational
construction of a moving frame by Hélein [8]. Schikorra’s methods, however,
provided the gauge transformation P only in W 1,2, even for Ω ∈ Lp with p > 2
(while Uhlenbeck’s and Rivière’s approach gave P ∈ W 1,p). On the other hand,
his method was much simpler and allowed him to give alternative regularity
proofs for systems studied by Rivière [15] and Rivière and Struwe [16].

Finally, one should mention the book of Wehrheim [23], who undertook
the effort of clarifying and presenting in all detail the original result of K. Uh-
lenbeck.

The main result of the paper is a self-contained, complete proof of Rivière’s
theorem in the following settings.

First, with Sobolev type estimates,

Theorem 1.2. Let n
2 ≤ p < n. There exists ε > 0 such that for any antisym-

metric matrix Ω ∈ W 1,p(Bn, so(m)⊗Λ1
R

n) of 1-differential forms on B
n such

that

‖Ω‖Ln < ε

there exist P ∈ W 2,p(Bn, SO(m)) and ξ ∈ W 2,p ∩ W 1,p
0 (Bn, so(m) ⊗ Λn−2

R
n)

satisfying the system
⎧
⎪⎪⎨

⎪⎪⎩

P−1dP + P−1ΩP = ∗dξ on B
n,

d ∗ ξ = 0 on B
n,

ξ = 0 on ∂Bn,
P = Id on ∂Bn;

and such that

‖dξ‖Ln + ‖dP‖Ln ≤ C(n,m)‖Ω‖Ln ,

‖dξ‖W 1,p + ‖dP‖W 1,p ≤ C(n,m, p)‖Ω‖W 1,p ,

and, if p > n/2, ‖dξ‖Lp + ‖dP‖Lp ≤ C(n,m, p)‖Ω‖Lp .

Next, with Morrey–Sobolev type estimates,

Theorem 1.3. Assume 1 < p < n/2. Let

Ω : Bn → so(m) ⊗ Λ1
R

n

be an antisymmetric matrix of 1-differential forms on B
n. Assume

Ω ∈ L2p,n−2p and dΩ ∈ Lp,n−2p.
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There exists ε > 0 such that if Ω satisfies the smallness condition

‖Ω‖L2p,n−2p < ε

then there exist P ∈ W 2,p(Bn, SO(m)) and ξ ∈ W 2,p(Bn, so(m) ⊗ Λn−2
R

n)
satisfying the system

⎧
⎪⎪⎨

⎪⎪⎩

P−1dP + P−1ΩP = ∗dξ on B
n,

d ∗ ξ = 0 on B
n,

ξ = 0 on ∂Bn,
P = Id on ∂Bn.

Moreover, P, ξ ∈ Lp,n−2p
2 with

‖dξ‖Lp,n−p + ‖dP‖Lp,n−p ≤ C(n,m)‖Ω‖L2p,n−2p , (1.1)

‖Δξ‖Lp,n−2p + ‖ΔP‖Lp,n−2p ≤ C(n,m)(‖Ω‖L2p,n−2p + ‖dΩ‖Lp,n−2p). (1.2)

And finally, a version of Uhlenbeck’s decomposition for a larger gauge
group CO+(n) (i.e. conformal transformations), which gives the decomposition
theorem for a larger class of matrix-valued differential forms.

Theorem 1.4. Let n
2 < p < n. There exists ε > 0 such that for any Ω ∈

W 1,p(Bn, TCO+(m)⊗Λ1
R

n) such that ‖Ω‖Ln < ε there exist S : Bn →CO+(m)
satisfying ln |S| ∈ W 2,p(Bn), S/|S| ∈ W 2,p(Bn, SO(m)) and
ζ ∈ W 2,p(Bn, TCO+(m) ⊗ Λn−2

R
n) such that

⎧
⎨

⎩

S−1dS + S−1ΩS = ∗dζ on B
n,

d ∗ ζ = 0 on B
n,

ζ = 0 on ∂Bn;
(1.3)

and such that

‖dζ‖W 1,p + ‖d(S/|S|)‖W 1,p + ‖d ln |S|‖W 1,p ≤ C(n,m)‖Ω‖W 1,p

‖dζ‖Lp + ‖d(S/|S|)‖Lp + ‖d ln |S|‖Lp ≤ C(n,m)‖Ω‖Lp ,

‖dζ‖Ln + ‖d(S/|S|)‖Ln + ‖d ln |S|‖Ln ≤ C(n,m)‖Ω‖Ln .

In view of Theorem 1.4, we may ask a natural question:

Question. What is the largest Lie subgroup G of GL(n) that can be used in an
analogue of Rivière’s theorem: for any matrix of 1-differential forms Ω ∈ TIdG
there exists a gauge transformation P ∈ G such that ΩP = P−1dP + P−1ΩP
is co-closed and certain integrability estimates on P , ΩP and their derivatives,
in terms of Ω, hold?

The paper is structured as follows. In Sect. 2, we recall Gaffney’s inequal-
ity and discuss, how the boundary conditions on the decomposition compo-
nents P and ξ allow us to estimate their Sobolev norms with only some of
their derivatives.

Next, in Sect. 3 we recall the definitions and basic properties of Morrey
and Morrey–Sobolev spaces we use.
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In Sect. 4, we prove Theorem 1.2. Next, in Sect. 5, we prove Theorem 1.3,
and finally, in Sect. 6, we prove Theorem 1.4.

Throughout the paper, wherever applicable, we use the operator norm
|T | = sup|x|=1 |Tx| of a linear operator T (thus, in particular, |P | = 1 almost
everywhere)—this simplifies the estimates of compositions. A constant C may
vary from line to line in calculations.

2. Sobolev Spaces and Differential Forms

Throughout the paper, we use differential forms with coefficients in Sobolev
spaces, i.e. Sobolev differential forms. With this in mind, we write e.g.

Ω ∈ W 1,p(Bn, so(m) ⊗ Λ1
R

n),

which means that Ω is a W 1,p function with values in the vector space so(m)⊗
Λ1

R
n. This allows us to define the full Sobolev norm ‖Ω‖W 1,p , which disregards

the differential form aspect of it.
It is tempting to consider Sobolev spaces of differential forms using only

the two derivatives that are natural in this setting: the differential d and the
co-differential ∗d∗, instead of the full derivative D. This is possible if we restrict
to forms that satisfy certain boundary conditions, see e.g. [10]. It is important
to realize, however, that for a general differential form ω, the differential dω
and the co-differential ∗d ∗ ω capture only some derivatives of the coefficients,
and in general one should not expect to control the W 1,p-norm of ω by the
Lp-norms of ω, dω and/or ∗d ∗ ω (we may skip the first star and use d ∗ ω,
since the Hodge star ∗ is an isomorphism and ‖ ∗ d ∗ ω‖Lp = ‖d ∗ ω‖Lp).

However, if the domain in which we consider our forms is smooth (as is in
our case, where the only domains considered are n-dimensional balls) and the
form ω satisfies certain boundary conditions (namely, ω has vanishing tangent
or normal component on the domain’s boundary), then Gaffney’s inequality
([5], see also [10, Theorem 4.8], [9, Theorem 10.4.1]) holds:

‖ω‖W 1,p ≤ C(‖ω‖Lp + ‖dω‖Lp + ‖ ∗ d ∗ ω‖Lp), (2.1)

where the constant C depends on the domain and the exponent p only.
We refer the reader to the paper [10] and the book [9] for more details

on Sobolev differential forms.
Let us now see how this applies to the components of Uhlenbeck’s de-

composition.
The orthogonal mapping P is a function (a 0-form), and thus its differen-

tial dP captures all the derivatives of its coefficients, i.e. ‖∇P‖Lp = ‖dP‖Lp .
Also, we assume that P restricted to the boundary of the ball Bn equals (in
the sense of traces) to the identity matrix Id, therefore dP = d(P − Id) has
vanishing tangent component and Gaffney’s inequality (2.1) or, since P is a
function, standard elliptic estimates give us a comparison between ‖dP‖W 1,p

and ‖dP‖Lp + ‖ΔP‖Lp .
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As for the (n − 2)-form ξ, we have strong assumptions given in (4.1):
ξ vanishes on the boundary and it is co-closed. Thus both ξ and dξ have
vanishing tangent components and again Gaffney’s inequality (2.1) allows us
to compare ‖dξ‖W 1,p and ‖dξ‖Lp + ‖Δξ‖Lp , with Δξ = ∗d ∗dξ.

3. Morrey Spaces

In this section we recall the properties of Morrey spaces needed in our paper;
for more information and for proofs of elementary properties of Morrey spaces
we refer the reader e.g. to the monograph [1].

Throughout the paper we customarily use barred integral to denote the
integral average and we write fE for the integral average of f over the set E:

fE =
∫

E

f =
1

|E|
∫

E

f.

Let U ⊂ R
n be an open and bounded set. Recall that the Morrey space

Lp,s(U) is a collection of all functions f ∈ Lp(U) such that

||f ||pLp,s = sup
x0∈U,r>0

(
1
rs

∫

Br(x0)∩U

|f(y)|pdy

)

< ∞.

When s = 0, the Morrey space Lp,0(U) is the same as the usual Lebesgue
Lp(U) space. When s = n, the dimension of the ambient space, it easily follows
from the Lebesgue Differentiation Theorem that the Morrey space Lp,n(U) is
equivalent to L∞(U). Morrey spaces are Banach spaces.

For 1 ≤ p ≤ q < ∞ and s, σ ≥ 0 such that s−n
p ≤ σ−n

q we have

Lq,σ(U) ↪→ Lp,s(U),

in particular

Lq,n−q(U) ↪→ Lp,n−p(U).

Definition 3.1. We define the Morrey–Sobolev space Lp,n−kp
k (U) as

Lp,n−kp
k (U) =

{
f ∈ W k,p(U) : ∇jf ∈ Lp,n−jp(U) for j = 1, . . . , k

}

with the norm

||f ||Lp,n−kp
k (U) = ||f ||Lp(U) +

k∑

j=1

‖∇jf‖Lp,n−jp(U).

Note that with this definition, f ∈ Lp,n−kp
k (U) does not imply Morrey

estimates for f itself.

Definition 3.2. The space BMO(U) consists of these f ∈ L1
loc(U) for which

the expression
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[f ]BMO(U) = sup
B⊂U

(∫

B

|f(y) − fB |
)

is finite.

Poincaré–Wirtinger’s inequality on a ball B of radius r
∫

B

|f − fB |p ≤ C(n, p)rp

∫

B

|∇f |p

and Hölder’s inequality immediately yield

[f ]BMO(U) ≤ C‖∇f‖Lp.n−p(U). (3.1)

Thus Lp,n−kp
k (U) ⊂ BMO(U).

We say that a domain U is of type (A) if there exists a constant C > 0
such that for any x0 ∈ U and 0 < r < diam(U)

|Br(x0) ∩ U | ≥ Crn.

This excludes domains with outward cusps. For domains of type (A) we have
the following generalization of Sobolev‘s embedding theorem (see [13]).

Proposition 3.3 (Morrey–Sobolev embedding). Let U ⊂ R
n be of type (A);

assume that 1 ≤ p < ∞ and α ∈ (0, p). If f ∈ W 1,p(U) is such that ∇f ∈
Lp,n−p+α(U), then f ∈ C0,α/p(U).

Let us recall the BMO-Gagliardo–Nirenberg type result due to Adams
and Frasier [2] (see also [19]):

Proposition 3.4. For any s > 1 and f ∈ W 2,s ∩ BMO(Rn) there holds

‖df‖2L2s(Rn) ≤ C[f ]BMO(Rn)‖D2f‖Ls(Rn) (3.2)

This result can be easily localized to functions in W 2,s ∩ BMO(B), for
an arbitrary ball B ⊂ R

n (see [22, Proposition 4.3]).

Proposition 3.5. For any ball B ⊂ R
n of radius r, if f ∈ W 2,p ∩ BMO(B),

then

‖df‖2L2p(B) ≤ C[f ]BMO(B)

(‖D2f‖Lp(B) + r−1‖df‖Lp(B)

)
(3.3)

The proof goes exactly as in [22] (where p equals 2): we extend f to a
function f̃ ∈ W 2,p ∩ BMO(Rn) and apply the estimate (3.2) to f̃ .

As the consequence of the above estimates we obtain the following prod-
uct estimate.

Lemma 3.6. Assume B ⊂ R
n is a ball, α ∈ [0, p], u ∈ Lp,n−2p+α

2 (B) and
v ∈ Lp,n−2p

2 (B). Then

‖ |du| · |dv| ‖Lp,n−2p+α(B) ≤ C(n, p)‖u‖Lp,n−2p+α
2 (B)‖dv‖L2p,n−2p(B).
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Proof. First, let us observe that

sup
Br⊂B

r−α/p[u]BMO(Br) ≤ C‖du‖Lp,n−p+α(B), (3.4)

where the supremum is taken over all balls Br ⊂ B and the constant depends
only on n and p. Indeed, for any such ball Br ⊂ B we have

r−α[u]pBMO(Br)
= r−α

(

sup
Bρ⊂Br

∫

Bρ

|u − uBρ
|
)p

≤ Cr−α sup
Bρ⊂Br

ρp−n

∫

Bρ

|du|p

≤ C sup
Bρ⊂Br

ρp−n−α

∫

Bρ

|du|p ≤ C sup
Bρ⊂B

ρp−n−α

∫

Bρ

|du|p

= C‖du‖p
Lp,n−p+α(B),

and the constant C comes from the Poincaré inequality [c.f. (3.1)]. Taking
supremum over all balls Br ⊂ B yields (3.4). Now,

‖ |du| · |dv| ‖2p
Lp,n−2p+α(B) = sup

Br⊂B

(
1

rn−2p+α

∫

Br

|du|p · |dv|p
)2

≤ sup
Br⊂B

(
1

r2n−4p+2α

∫

Br

|du|2p

∫

Br

|dv|2p

)

(3.3)

≤ C(n, p) sup
Br⊂B

(
1

r2n−4p+2α
[u]pBMO(Br)

×
(∫

Br

|D2u|p +
1
rp

∫

Br

|du|p
)

×
∫

Br

|dv|2p

)
≤ C(n, p)

(
sup

Br⊂B

1
rα/p

[u]BMO(Br)

)p

× sup
Br⊂B

(
1

rn−2p+α

∫

Br

|D2u|p +
1

rn−p+α

∫

Br

|du|p
)

× sup
Br⊂B

1
rn−2p

∫

Br

|dv|2p

)

(3.1),(3.4)

≤ C(n, p)‖u‖2p

Lp,n−2p+α
2 (B)

‖dv‖2p
L2p,n−2p(B).

�

In particular, for α ∈ [0, p] we obtain (see also [18, Proposition 3.2])

‖du‖2L2p,n−2p+α(B) ≤ C‖du‖L2p,n−2p(B)‖u‖Lp,n−2p+α
2 (B)

≤ C‖u‖2
Lp,n−2p+α

2 (B)
. (3.5)
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4. Uhlenbeck’s Decomposition, the Case n/2 ≤ p < n

In this section we prove Theorem 1.2. We first state it (as Lemma 4.1) and
prove it in the case p ∈ (n/2, n); the case p = n/2 follows by approximation
(see Corollary 4.7 at the end of this section).

Lemma 4.1. Let n
2 < p < n. There exists ε > 0 such that for any antisymmetric

matrix Ω ∈ W 1,p(Bn, so(m) ⊗ Λ1
R

n) of 1-differential forms on B
n such that

‖Ω‖Ln < ε

there exist P ∈ W 2,p(Bn, SO(m)), and ξ ∈ W 2,p ∩ W 1,p
0 (Bn, so(m) ⊗ Λn−2

R
n)

satisfying the system
⎧
⎪⎪⎨

⎪⎪⎩

P−1dP + P−1ΩP = ∗dξ on B
n,

d ∗ ξ = 0 on B
n,

ξ = 0 on ∂Bn,
P = Id on ∂Bn;

(4.1)

and such that

‖dξ‖Lp + ‖dP‖Lp ≤ C(n,m, p)‖Ω‖Lp , (4.2a)

‖dξ‖Ln + ‖dP‖Ln ≤ C(n,m)‖Ω‖Ln , (4.2b)

‖dξ‖W 1,p + ‖dP‖W 1,p ≤ C(n,m, p)‖Ω‖W 1,p . (4.2c)

Remark 4.2. In what follows, we write, to keep the notation simple, Ω ∈ W 1,p

(P, ξ ∈ W 2,p etc.), instead of Ω ∈ W 1,p(Bn, so(m) ⊗ Λ1
R

n).

We shall break the proof of Lemma 4.1 into several lemmata. Following
Rivière, we introduce sets

Vε = {Ω ∈ W 1,p : ‖Ω‖Ln < ε},

Uε = {Ω ∈ W 1,p : ‖Ω‖Ln < ε and there exist P and ξ

satisfying the system (4.1) and the estimate (4.2)}.

We show that for ε > 0 and sufficiently small the set Uε is closed and
open in Vε, and since the latter is path connected (it is star-shaped in W 1,p),
it follows that Uε = Vε, which proves Lemma 4.1.

Lemma 4.3. The set Uε is closed in Vε.

Proof. Suppose (Ωk) is a sequence in Uε, convergent in W 1,p to some Ω. With
every Ωk we associate Pk and ξk that satisfy (4.1):

⎧
⎪⎪⎨

⎪⎪⎩

P−1
k dPk + P−1

k ΩkPk = ∗dξk on B
n,

d ∗ ξk = 0 on B
n,

ξk = 0 on ∂Bn,
Pk = Id on ∂Bn;

(4.3)

and the estimates (4.2) hold for Pk, ξk and Ωk, in particular

‖dξk‖W 1,p + ‖dPk‖W 1,p ≤ C(n,m)‖Ωk‖W 1,p . (4.4)
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The boundary condition on ξk and boundedness of Pk (recall that |Pk| = 1)
allow us to interpret (4.4) as boundedness of Pk and ξk in W 2,p, since the
sequence (Ωk), being convergent, is necessarily bounded in W 1,p. We can thus
assume (after passing to subsequences) that Pk and ξk are weakly convergent
in W 2,p to some P and ξ.

Both the boundary condition ξ|∂B = 0 and the condition d ∗ ξ = 0 are
preserved when passing to the weak limit. Moreover, possibly after passing to
a subsequence, we have

Ωk → Ω in W 1,p ⇒ Ωk → Ω in L
np

n−p ,

Pk ⇀ P in W 2,p ⇒ dPk ⇀ dP in L
np

n−p ,

ξk ⇀ ξ in W 2,p ⇒ dξk ⇀ dξ in L
np

n−p ,

and for any small δ > 0, Ωk, dPk and dξk converge strongly (to Ω, P and
ξ, respectively) in Ls, with s = np

n−p − δ, in particular in Ln, since np/(n −
p) > n. Also, Pk are uniformly bounded in L∞ and strongly convergent, by
Sobolev embedding theorem, in Lq for any q. This is enough to show the strong
convergence of ΩkPk to ΩP in Ls; altogether, we may pass to the strong limit
in Ls in the system (4.3), showing that the equation

dP + ΩP = P ∗ dξ in B
n

is satisfied in the sense of distributions.
The estimates (4.2) for P and ξ are obvious. �

Remark. For any P and ξ in W 1,p that satisfy (4.3) we have that dξ ∈ W 1,p

implies P ∈ W 2,p. Indeed, we have dP = P ∗ dξ − ΩP , and for p > n/2 the
right hand side is in W 1,p.

Now we proceed to prove the openness of Uε. In contrast with the previous
lemma this is more delicate; we split the reasoning again into several lemmata.

Lemma 4.4. There exists a constant κ = κ(n) > 0 such that for any ζ ∈
W 2,p(Bn, so(m) ⊗ Λn−2

R
n) with ‖dζ‖Ln ≤ κ there exists η > 0 such that for

any λ ∈ W 1,p(Bn, so(m) ⊗ Λ1
R

n) with ‖λ‖ ≤ η the equation

∗ d ∗ (
Q−1dQ + Q−1(∗dζ + λ)Q

)
= 0 (4.5)

has a solution Q = Q(λ) ∈ W 2,p(Bn, SO(m)) such that Q = Id on ∂Bn.
Moreover, Q(λ) depends continuously on λ.

Note that (4.5) implies, through Poincaré’s lemma, that the term in
parentheses is of the form ∗dζ̃, for some antisymmetric (n − 2)-form ζ̃. The
above Lemma should be understood as follows: Uhlenbeck’s decomposition (i.e.
Q and ζ̃) exists if our matrix is a small (in W 1,p) perturbation of a co-closed
form ∗dζ, provided ‖dζ‖Ln is sufficiently small.
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Proof. Since we are interested in finding any Q ∈ W 2,p(Bn, SO(m)) satisfying
(4.5) and the boundary condition, we shall look for one of the form eu, where
u ∈ B = W 2,p(Bn, so(m)) ∩ W 1,p

o (Bn, so(m)). We define the operator

T : B × W 1,p(Bn, so(m) ⊗ Λ1
R

n) → Lp(Bn)

by

T (u, λ) = ∗d ∗ (e−udeu + e−u(∗dζ + λ)eu).

This is a well defined, smooth operator. Using Implicit Function Theorem, we
prove that for any sufficiently small λ the equation T (u, λ) = 0 has a solution
uλ, continuously depending on λ. To this end we linearize T at (u, λ) = (0, 0)
with respect to the first argument:

H(ψ) = ∗d ∗ (dψ + [∗dζ, ψ]) = Δψ + ∗[dζ, dψ], H : B → Lp(Bn),

where the commutator [·, ·] denotes a commutator of two so(m) matrices.
We have, by Hölder’s inequality

‖Δψ‖Lp ≤ ‖H(ψ)‖Lp + ‖[dζ, dψ]‖Lp

≤ ‖H(ψ)‖Lp + 2‖dζ‖Ln‖‖dψ‖Lnp/(n−p) ,

thus
‖H(ψ)‖Lp ≥ ‖Δψ‖Lp − 2‖dζ‖Ln‖‖dψ‖Lnp/(n−p)

≥ ‖Δψ‖Lp − 2CS‖dζ‖Ln‖‖dψ‖W 1,p

≥ C(‖dψ‖W 1,p − 2κ‖dψ‖W 1,p)

= C(1 − 2κ)‖dψ‖W 1,p ,

where the constant CS comes from the Sobolev embedding (recall that ψ ∈ B is
a matrix-valued function, i.e. a 0-form, vanishing at the boundary). Therefore,
for κ small, H is injective.

Showing surjectivity of H amounts to showing that the system

H(ψ) = Δψ + ∗[dζ, dψ] = f (4.6)

has a solution in B for arbitrary f ∈ Lp.
Let us consider an operator K : B → B, with K(ψ) defined as a solution

to the system
{

ΔK(ψ) = − ∗ [dζ, dψ] in B
n,

K(ψ) = 0 on ∂Bn.
(4.7)

Using Hölder’s and Sobolev’s inequalities and the fact that the Newtonian
potential Δ−1 : Lp → B is continuous, we get

‖K(ψ)‖B ≤ ∣
∣
∣
∣
∣
∣Δ−1

∣
∣
∣
∣
∣
∣
Lp→B ‖ ∗ [dζ, dψ]‖Lp

≤ 2
∣
∣
∣
∣
∣
∣Δ−1

∣
∣
∣
∣
∣
∣
Lp→B ‖dζ‖Ln‖dψ‖Lnp/(n−p)

≤ 2
∣
∣
∣
∣
∣
∣Δ−1

∣
∣
∣
∣
∣
∣κ‖ψ‖B.
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For κ sufficiently small we can have |||K|||B→B small and Id − K : B → B
invertible.

Let now φ = (Id − K)ψ. If ψ is a solution to (4.6), then

Δφ = Δψ − ΔK(ψ) = Δψ + ∗[dζ, dψ] = f,

and we can solve (4.6) for any f ∈ Lp by solving the above Poisson equation
and applying to its solution the inverse mapping to Id − K.

Altogether, H : B → Lp is an isomorphism, and we can apply the Implicit
Function Theorem to get uλ as a continuous function of λ.

To end the proof of the lemma, we take Q(λ) = euλ . �

Lemma 4.5. Suppose n/2 < p < n. There exists κ = κ(p, n) such that for
any Ω ∈ Vε and P , ξ in W 2,p satisfying the system (4.1) and additionally the
estimate

‖dP‖Ln + ‖dξ‖Ln < κ (4.8)

the estimates (4.2) hold.

Proof. The lemma follows from rather standard elliptic estimates, but we in-
clude them here for the sake of completeness.

We have

Δξ = (∗d ∗ d + d ∗ d∗)ξ = ∗d(∗dξ)
= ∗d(P−1dP + P−1ΩP )
= ∗(dP−1 ∧ dP ) + ∗d(P−1ΩP ). (4.9)

Note that for q = p/(p − 1), ‖dξ‖Lp is equivalent to

sup
‖dφ‖Lq ≤1

∫

Bn

dξ · dφ,

where φ is a smooth, compactly supported (in particular with null boundary
values) (n − 2)-form on B

n. The inequality

‖dξ‖Lp = sup
‖η‖Lq ≤1

∫

Bn

dξ · η ≥ sup
‖dφ‖Lq ≤1

∫

Bn

dξ · dφ

is obvious. Applying the Hodge decomposition to the (n−1)-form η, η = dφ+ψ
with δψ = 0, ‖dφ‖Lq ≤ Cq‖η‖Lq , we get

‖dξ‖Lp = sup
‖η‖Lq ≤1

∫

Bn

dξ · η ≤ sup
‖η‖Lq ≤1

(∫

Bn

dξ · dφ +
∫

Bn

dξ · ψ

)

= Cq sup
‖η‖Lq ≤1

(∫

Bn

dξ · d
φ

Cq
−

∫

Bn

ξ ∧ δψ

)
≤ Cq sup

‖dφ̃‖Lq ≤1

∫

Bn

dξ · dφ̃ ,

where φ̃ = φ/Cq.
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Denote by P̄ the mean value of P over B
n: P̄ =

∫
Bn P . For any φ as

above, with ‖dφ‖Lq ≤ 1,
∫

Bn

dξ · dφ = −
∫

Δξ · φ

= −
∫

Bn

[ ∗ (
dP−1 ∧ d(P − P̄ )

)
+ ∗d

(
P−1ΩP

) ] · φ

= −
∫

Bn

[
dP−1(P − P̄ ) + P−1ΩP

] ∧ dφ

≤ C‖dP−1‖Lp‖P − P̄‖BMO‖dφ‖Lq + ‖P−1ΩP‖Lp‖dφ‖Lq

≤ C‖dP‖Lp‖dP‖Ln + ‖Ω‖Lp

≤ κC‖dP‖Lp + ‖Ω‖Lp ,

thus

‖dξ‖Lp ≤ Cq(κC‖dP‖Lp + ‖Ω‖Lp), (4.10)

with the constants C (possibly different in every line) dependent only on n and
p. Note that, since P is an orthogonal matrix, |P | = |P−1| = 1 and |dP−1| =
|dP |. In the estimate above we use, for the first summand, the Coifman–Lions–
Meyer–Semmes div-curl inequality [3] and later the standard inclusion W 1,n ↪→
BMO; the second summand is estimated by Hölder’s inequality.

On the other hand, taking Lp norms of both sides of the equation

dP = P ∗ dξ + ΩP (4.11)

[c.f. (4.1)] gives

‖dP‖Lp ≤ ‖dξ‖Lp + ‖Ω‖Lp . (4.12)

Putting (4.10) and (4.12) together we get

‖dξ‖Lp + ‖dP‖Lp ≤ 2‖dξ‖Lp + ‖Ω‖Lp

≤ C1(n, p)κ‖dP‖Lp + C2(n, p)‖Ω‖Lp ,

and for κ < 1
C1

this implies that the estimate (4.2a) holds.
The above calculation is valid also for p = n, which yields the estimate

(4.2b).
To show the estimate (4.2c), by taking ∗d∗ of both sides of (4.11), we see

that
ΔP = ∗d ∗ dP = ∗d ∗ (P ∗ dξ + ΩP )

= ∗(dP ∧ dξ) + ∗d ∗ (ΩP ),

thus

‖dP‖W1,p ≤ C
(‖dP‖Lp + ‖ΔP‖Lp

)

≤ C
(‖dP‖Lp + ‖dP ∧ dξ‖Lp + ‖dΩP‖Lp + ‖Ω ∧ dP‖Lp

)

≤ C
(‖dP‖Lp + ‖dP‖Ln‖dξ‖Lnp/(n−p) + ‖dΩ‖Lp + ‖Ω‖Lnp/(n−p)‖dP‖Ln

)

≤ C
(‖dP‖Lp + κ‖dξ‖W1,p + (1 + κ)‖Ω‖W1,p

)
. (4.13)
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The constant C comes from Gaffney’s inequality (2.1), standard elliptic esti-
mates and the Sobolev embedding W 1,p ↪→ Lnp/(n−p), thus it depends only on
p and n.

Similarly, using (4.9),

‖dξ‖W 1,p ≤ C
(‖dξ‖Lp + ‖Δξ‖Lp

)

= C
(‖dξ‖Lp + ‖ ∗ (dP−1 ∧ dP ) + ∗d(P−1ΩP )‖Lp

)

≤ C
(‖dξ‖Lp + ‖dP‖Ln‖dP‖Lnp/(n−p) + ‖dP‖Ln‖ΩP‖Lnp/(n−p)

+‖P−1dΩP‖Lp + ‖P−1Ω‖Lnp/(n−p)‖dP‖Ln

)

≤ C
(‖dξ‖Lp + κ‖dP‖W 1,p + (κ + 1)‖Ω‖W 1,p

)
. (4.14)

Note that, as pointed out in Sect. 2, the full Sobolev norms of dP and dξ can
be estimated with the norms of Laplacians of P and ξ, thanks to the boundary
conditions they satisfy.

Composing (4.13) and (4.14) with the already proved estimate (4.2a) we
get

‖dP‖W 1,p + ‖dξ‖W 1,p ≤ C
(
κ‖dP‖W 1,p + κ‖dξ‖W 1,p + (κ + 1)‖Ω‖W 1,p

)
,

which, for κ sufficiently small, yields the estimate (4.2c). �

Lemma 4.6. The set Uε is, for ε sufficiently small, open in Vε.

Proof. Choose Ωo ∈ Uε and let Po and ξo be the orthogonal transformation
and antisymmetric (n−2)-form associated with Ωo, so that Theorem 1.2 holds
for Ωo, Po and ξo.

Take now Ω ∈ Vε close to Ωo in W 1,p: we ask that for λ = P−1
o (Ω−Ωo)Po

we have ‖λ‖W 1,p < η (the conjugation with Po ∈ W 2,p is continuous in W 1,p).
Applying Lemma 4.4 with ζ = ξo, we find Q ∈ W 2,p(Bn, SO(m)) such that

∗ d ∗
(
Q−1dQ + Q−1(∗dξo + P−1

o (Ω − Ωo)Po)Q
)

= 0. (4.15)

Setting P = PoQ we see that (4.15) reduces to

∗d ∗ (P−1dP + P−1ΩP ) = 0.

By Poincaré’s Lemma, this implies that P−1dP + P−1ΩP is a coexact form,
i.e. there exists an antisymmetric (n − 2)-form ξ such that

∗ dξ = P−1dP + P−1ΩP, (4.16)

thus P and ξ give Uhlenbeck’s decomposition of Ω.
Note that Q and Po ∈ W 2,p ∩ L∞ imply that P ∈ W 2,p. By the Hodge

decomposition theorem we can choose ξ to be coclosed (d ∗ ξ = 0 on B
n) and

to have zero boundary values (ξ|∂Bn = 0). Finally, the right hand side of (4.16)
is in W 1,p, which gives ξ ∈ W 2,p.

What remains to prove is that P , ξ and Ω satisfy the estimates (4.2). Ob-
serve that if ‖Ω−Ωo‖W 1,p is small enough, then by continuity of the mapping
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λ �→ uλ so is ‖P − Po‖W 1,p and ‖ξ − ξo‖W 1,p ; choosing η (which measures the
distance ‖Ω − Ωo‖W 1,p) sufficiently small we may have

‖P − Po‖W 1,p + ‖ξ − ξo‖W 1,p < ε.

We also know that

‖dξo‖Ln + ‖dPo‖Ln ≤ C‖Ωo‖Ln ≤ Cε

(this follows from Ωo ∈ Uε).
Taking ε sufficiently small, we may ensure that

‖dξ‖Ln + ‖dP‖Ln ≤ ‖dξ − dξo‖Ln + ‖P − Po‖Ln + ‖dξo‖Ln + ‖dPo‖Ln

< (C + 1)ε < κ,

with κ as in Lemma 4.5. Applying this lemma we show that the estimates (4.2)
hold.

Altogether, Ω ∈ Uε, which proves the openness of Uε. �

Proof of Lemma 4.1. Since, by Lemmata 4.3 and 4.6, for ε sufficiently small
the set Uε is closed and open in Vε, and since the latter is path connected (it
is star-shaped in W 1,p), it follows that Uε = Vε, which proves Lemma 4.1. �

It is worth noting that for Ω ∈ W 1,n/2, the proof of existence of the
decomposition, i.e. Lemma 4.4, fails. However, we can proceed by a standard
density argument: approximate Ω in W 1,n/2 with Ωk in W 1,p for p > n/2 and
argue as in Lemma 4.3 (see also the proof of Theorem 1.3), obtaining

Corollary 4.7. Let Ω ∈ W 1,n/2. There exists ε > 0 such that if Ω is an anti-
symmetric matrix of 1-differential forms on B

n such that

‖Ω‖Ln < ε

then there exist P ∈ W 2,n/2(Bn, SO(m)) and ξ ∈ W 2,n/2(Bn, so(m)⊗Λn−2
R

n)
satisfying the system

⎧
⎪⎪⎨

⎪⎪⎩

P−1dP + P−1ΩP = ∗dξ on B
n,

d ∗ ξ = 0 on B
n,

ξ = 0 on ∂Bn,
P = Id on ∂Bn;

and such that

‖dξ‖W 1,n/2 + ‖dP‖W 1,n/2 ≤ C(n,m)‖Ω‖W 1,n/2 ,

‖dξ‖Ln + ‖dP‖Ln ≤ C(n,m)‖Ω‖Ln < Cε.

Lemma 4.1 and Corollary 4.7 together yield Theorem 1.2.
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5. Uhlenbeck’s Decomposition, the Case 1 < p < n/2

In this section we prove Theorem 1.3.

Theorem. Assume 1 < p < n/2. Let

Ω : Bn → so(m) ⊗ Λ1
R

n

be an antisymmetric matrix of 1-differential forms on B
n. Assume

Ω ∈ L2p,n−2p and dΩ ∈ Lp,n−2p.

There exists ε > 0 such that if Ω satisfies the smallness condition

‖Ω‖L2p,n−2p < ε,

then there exist P ∈ W 2,p(Bn, SO(m)) and ξ ∈ W 2,p(Bn, so(m) ⊗ Λn−2
R

n)
satisfying the system

⎧
⎪⎪⎨

⎪⎪⎩

P−1dP + P−1ΩP = ∗dξ on B
n,

d ∗ ξ = 0 on B
n,

ξ = 0 on ∂Bn,
P = Id on ∂Bn.

(5.1)

Moreover, P, ξ ∈ Lp,n−2p
2 with

‖dξ‖Lp,n−p + ‖dP‖Lp,n−p ≤ C(n,m)‖Ω‖L2p,n−2p (5.2a)

‖Δξ‖Lp,n−2p + ‖ΔP‖Lp,n−2p ≤ C(n,m)(‖Ω‖L2p,n−2p + ‖dΩ‖Lp,n−2p). (5.2b)

Remark. Observe that for p = n/2, by the Sobolev Embedding Theorem, we
have automatically Ω ∈ Ln. The Morrey space L2p,n−2p equals Ln in this
case and the smallness condition for the norm of Ω agrees with the one in
Theorem 1.2.

As in Sect. 4, we shall break the proof of Theorem 1.3 into several lem-
mata. The proof of the existence of P and ξ (Lemma 4.4) cannot be adapted
to the present situation. To avoid this difficulty, we first prove the theorem
under more stringent regularity assumptions (see Lemma 5.1 below). To prove
the existence of the elements of decomposition we follow the strategy of Tao
and Tian [20]. At a certain moment of the proof (Lemma 5.3) we use the fact
that due to the Morrey–Sobolev embedding (Proposition 3.3), for α > 0,

Lp,n−p+α
1 ↪→ C0.

This is not true for Lp,n−p
1 . Also, as pointed out in [24], continuous functions

are not dense in Lp,s.

Lemma 5.1. Let 1 < p < n/2. There exists ε > 0 such that for every α > 0
and for every

Ω ∈ L2p,n−2p+α such that dΩ ∈ Lp,n−2p,
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if Ω satisfies the smallness condition

‖Ω‖L2p,n−2p < ε,

then there exist P, ξ ∈ Lp,n−2p+α
2 satisfying the system (5.1) and the estimates

‖dξ‖Lp,n−p + ‖dP‖Lp,n−p ≤ C(n,m)‖Ω‖L2p,n−2p < Cε, (5.3a)

‖dξ‖Lp,n−p+α + ‖dP‖Lp,n−p+α ≤ C(n,m)‖Ω‖L2p,n−2p+α , (5.3b)

‖Δξ‖Lp,n−2p + ‖ΔP‖Lp,n−2p ≤ C(n,m) (‖Ω‖L2p,n−2p + ‖dΩ‖Lp,n−2p) . (5.3c)

Proof of the Lemma 5.1. As in the Sobolev case, for α, ε > 0 we introduce
sets

V α
ε = {Ω ∈ L2p,n−2p+α : dΩ ∈ Lp,n−2p and ‖Ω‖L2p,n−2p < ε}
Uα

ε = {Ω ∈ L2p,n−2p+α : dΩ ∈ Lp,n−2p and ‖Ω‖L2p,n−2p < ε

and there exist P and ξ satisfying the system (5.1) and estimates (5.3)}
In Lemmata 5.2 and 5.6 below we show that for ε sufficiently small the set

Uα
ε is closed and open in V α

ε , and since the latter is path connected (it is star-
shaped), it follows that Uα

ε = V α
ε . This (up to the proofs of these lemmata)

completes the proof of the lemma. �

Lemma 5.2. The set Uα
ε is closed in V α

ε .

Proof. Suppose (Ωk) is a sequence in Uα
ε convergent in Lp,n−2p

1 to some Ω.
Observe that Lp,n−2p

1 embeds continuously in W 1,p. Therefore the sequence
(Ωk) is convergent in W 1,p.

With every Ωk we have associated Pk, ξk that satisfy (5.1):
⎧
⎨

⎩

P−1
k dPk + P−1

k ΩkPk = ∗dξk on B
n,

d ∗ ξk = 0 on B
n,

ξk = 0 on ∂Bn.

We also have the estimates (5.3), in particular

‖dξk‖Lp,n−p+α + ‖dPk‖Lp,n−p+α ≤ C(n,m)‖Ωk‖L2p,n−2p+α

‖Δξk‖Lp,n−2p + ‖ΔPk‖Lp,n−2p ≤ C(n,m)(‖Ωk‖L2p,n−2p + ‖dΩk‖Lp,n−p).

The inclusion of Lp,n−p+α
1 in W 1,p, the boundary condition on ξk and bound-

edness of Pk (|Pk| = 1) allow us to interpret the above as boundedness of Pk

and ξk in W 2,p. We can thus assume (after passing to subsequences) that Pk

and ξk are weakly convergent in W 2,p to some P and ξ.
Then, we argue as in Lemma 4.3: Both the boundary condition ξ|∂B = 0

and the condition d ∗ ξ = 0 are preserved when passing to the weak limit.
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Moreover, since n > 2p > p, after passing to a subsequence,

Ωk → Ω in W 1,p ⇒ Ωk → Ω in L
np

n−p ,

Pk ⇀ P in W 2,p ⇒ dPk → dP in Ln,

ξk ⇀ ξ in W 2,p ⇒ dξk ⇀ dξ in L
np

n−p ,

and for any small δ > 0, Ωk, dPk and dξk converge strongly (to Ω,P and ξ,
respectively) in Ls, for any s < np

n−p . We also know that Pk are uniformly
bounded in L∞ and strongly convergent, by the Sobolev embedding theorem,
in Lq for any q. This is enough to show the strong convergence of ΩkPk to ΩP
in Ls; altogether, we may pass to the strong limit in Ls in the system (4.3),
showing that the equation

dP + ΩP = P ∗ dξ in B
n

is satisfied in the sense of distributions.
The estimates (5.3) for P and ξ are then obvious. �

Lemma 5.3. Let

ζ : Bn → so(m) ⊗ Λn−2
R

n

λ : Bn → so(m) ⊗ Λ1
R

n

Q : Bn → SO(m).

Assume ζ belongs to the Morrey–Sobolev space Lp,n−2p+α
2 and

λ ∈ L2p,n−2p+α, dλ ∈ Lp,n−2p+α

There exist constants κ = κ(p, n) > 0 and η = η(p, n) > 0 such that if the
following smallness conditions are satisfied

‖dζ‖L2p,n−2p ≤ κ,

‖λ‖L2p,n−2p+α + ‖dλ‖Lp,n−2p+α ≤ η,
(5.4)

then there exists a solution Q ∈ Lp,n−2p+α
2 of the equation

∗ d ∗ (
Q−1dQ + Q−1(∗dζ + λ)Q

)
= 0 (5.5)

with Q = Id on ∂Bn.

Note that (5.5) implies, through Poincaré’s lemma, that the term in
parentheses is of the form ∗dζ̃, for some antisymmetric (n − 2)-form ζ̃.

Proof. Since we are interested in finding any Q satisfying (5.5), we shall look
for one of the form eu, where

u : Bn → so(m), u ∈ Lp,n−2p+α
2

Also, we need the boundary condition on Q to hold, so we ask that u has
zero boundary values.
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The equation (5.5), together with the boundary condition, can be rewrit-
ten as

Δu = ∗d ∗ (
du − e−udeu − e−u(∗dζ + λ)eu

)
,

u = 0 on ∂Bn.
(5.6)

We follow the proof of Tao and Tian [20], setting up the iteration scheme

Δuk+1 = ∗d ∗ F (uk, ζ, λ),

uk+1 = 0 on ∂Bn, (5.7)

u0 = 0,

where

F (u, ζ, λ) = du − e−udeu − e−u(∗dζ + λ)eu. (5.8)

Some calculations need more subtle justification though, since we work
in noncommutative setting. We will show that there exists δ > 0 such that in
each step of the recurrence

if ‖uk‖Lp,n−2p+α
2

≤ δ then ‖uk+1‖Lp,n−2p+α
2

≤ δ.

We start with an easy observation. Since

Lp,n−2p+α
2 ↪→ Lp,n−p+α

1 ↪→ C0,γ for some γ

and Hölder-continuous functions on the bounded domain B are bounded, it
follows that if f ∈ Lp,n−p+α

1 (B) with f = 0 on ∂Ω, then

‖f‖∞ ≤ [f ]C0,γ ≤ CM‖f‖Lp,n−p+α
1 (B) ≤ CM‖f‖Lp,n−2p+α

2 (B),

where CM is the constant from the Morrey–Sobolev Embedding Lemma (see
Proposition 3.3).

Therefore, for every β, whenever δ < β
CM

it holds

if ‖f‖Lp,n−2p+α
2 (B) < δ, then ‖f‖∞ ≤ β. (5.9)

Now we can start the induction, assuming

‖uk‖Lp,n−2p+α
2 (B) < δ < an absolute constant (to be specified later).

(5.10)

Although the value of β will be fixed later, we may assume already that β < 1
2 .

We will show first that the following pointwise estimates hold

| ∗ d ∗ F (uk, ζ, λ)| ≤ C(n)
(
|uk||D2uk| + |duk|2 + |dζ||duk| + |λ||duk| + |dλ|

)
.

(5.11)

Indeed, let E(u) = e−uD exp(u). Since E is smooth, both E and DE are
bounded and Lipschitz continuous on {|u| < β}; the same holds, obviously, for
exp and D exp. Then

F (uk, ζ, λ) =
(
E(0) − E(uk)

)
duk + e−uk

(∗dζ + λ) euk

,
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and

| ∗ d ∗ F (uk, ζ, λ)| ≤ |DE(uk)||duk|2 + |E(0) − E(uk)||D2uk|
+ C(n)

(|duk|(|dζ| + |λ|) + |dλ|)

≤ C(n)
(
|uk||D2uk| + |duk|2 + |dζ||duk| + |λ||duk| + |dλ|

)
.

Passing from pointwise to Lp,n−2p+α estimates, using Lemma 3.6 we ob-
tain

‖ ∗ d ∗ F (uk, ζ, λ)‖Lp,n−2p+α

≤ C1(n, p)
(
‖uk‖L∞‖uk‖Lp,n−2p+α

2
+ ‖duk‖2L2p,n−2p+α

+(‖dζ‖L2p,n−2p + ‖λ‖L2p,n−2p+α)‖uk‖Lp,n−2p+α
2

+ ‖dλ‖Lp,n−2p+α

)
.

The smallness conditions (5.4), (5.9) and (5.10) then imply

‖ ∗ d ∗ F (uk, ζ, λ)‖Lp,n−2p+α ≤ C2(n, p, CM )
(
βδ + δ2 + (κ + η)δ + η

)
,

Regularity estimates for linear elliptic systems (see [6]) yield

‖uk+1‖Lp,n−2p+α
2

≤ C3(n, p, CM )
(
βδ + δ2 + (κ + η)δ + η

)
.

W.l.o.g. we may assume C3 > 1. Let us choose β, η and κ such that

β <
1

4C3
,

η < min
{

β

4C3CM
,

1
16C2

3

}
,

and

κ <
3

16C3
.

Now we set

δ = 4C3η < min
{

β

CM
,

1
4C3

}
.

Then, if

‖uk‖Lp,n−2p+α
2

≤ δ,

we have

‖uk+1‖Lp,n−2p+α
2

≤ δ.

Now, let us apply the same scheme to the differences of uk. We assume
that u, v ∈ Lp,n−2p+α

2 , ‖u‖Lp,n−2p+α
2

< δ, ‖v‖Lp,n−2p+α
2

< δ and u, v = 0 on
∂Bn. This, in particular, implies [by (5.9)], that ‖u‖L∞ and ‖v‖L∞ are at
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most β and although β is to be specified later, we assume as before that it is
less than 1

2 . We have

F (u, ζ, λ) − F (v, ζ, λ)

=
(
d(u − v) − e−udeu + e−vdev

)
+

( − e−u(∗dζ + λ)eu + e−v(∗dζ + λ)ev
)

=
(

(E(u) − E(0)) d(v − u) + (E(v) − E(u)) dv
)

+
(
(e−v − e−u)(∗dζ + λ)eu + e−v(∗dζ + λ)(ev − eu)

)

= S1 + S2.

Next, to estimate | ∗ d ∗ F (u, ζ, λ) − F (v, ζ, λ)|, we shall estimate separately
| ∗ d ∗ S1| and | ∗ d ∗ S2|, to avoid multi-line calculations.

Using as before boundedness and Lipschitz continuity of E, DE, exp and
D exp on {|u| ≤ β} and keeping in mind that ∗d ∗ (∗dζ) = 0 we get

| ∗ d ∗ S1| ≤ |DE(u)||du||d(u − v)| + |E(u) − E(0)||D2(u − v)|
+|E(u) − E(v)||D2v| + |DE(v)dv − DE(u)du||dv|

≤ C
(|du||d(u − v)| + |u||D2(u − v)| + |u − v||D2v|)

+|(DE(v) − DE(u))dv + DE(u)(dv − du)||dv|
≤ C

(|u − v|(|D2v| + |dv|2) + |d(u − v)|(|du| + |dv|) + |D2(u − v)||u|)

(5.12)

and

| ∗ d ∗ S2| ≤ |D exp(−u)du − D exp(−v)dv|(|dζ| + |λ|)|eu|
+|e−u − e−v||dλ||eu| + |e−u − e−v|(|dζ| + |λ|)|D exp(u)||du|
+|D exp(−v)||dv|(|dζ| + |λ|)|eu − ev| + |e−v||dλ||eu − ev|
+|e−v|(|dζ| + |λ|)|D exp(u)du − D exp(v)dv|

≤ C
(|u − v|(|dλ| + (|du| + |dv|)(|dζ| + |λ|))

+|d(u − v)|(|dζ| + |λ|)). (5.13)

Altogether, adding up the estimates (5.12) and (5.13), we obtain the
following pointwise estimate

| ∗ d ∗ (F (u, ζ, λ) − F (v, ζ, λ))|
≤ C

(
|u − v|(|D2v| + |dv|2 + |dλ| + (|du| + |dv|)(|dζ| + |λ|))

+|d(u − v)|(|du| + |dv| + |dζ| + |λ|) + |D2(u − v)||u|
)
. (5.14)

with C a universal constant.
Passing from the pointwise to Lp,n−2p+α estimates, using repeatedly

(5.9), Hölder’s inequality, Lemma 3.6 and keeping in mind all smallness con-
ditions, i.e.
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‖dζ‖L2p,n−2p ≤ κ,

‖λ‖L2p,n−2p+α + ‖dλ‖Lp,n−2p+α ≤ η,

‖u‖Lp,n−2p+α
2

≤ δ, ‖v‖Lp,n−2p+α
2

≤ δ,

‖u‖L∞ < β, ‖v‖L∞ < β,

we obtain
‖ ∗ d ∗ (F (u, ζ, λ) − F (v, ζ, λ))‖Lp,n−2p+α

≤ C(n, p)(δ2 + δ(3 + 2κ + 2η) + κ + 2η + β)‖u − v‖Lp,n−2p+α
2

.

If we denote H(uk) = uk+1, where uk+1 is a solution to (5.7), then

‖H(u) − H(v)‖Lp,n−2p+α
2

≤ CEC(n, p)‖u − v‖Lp,n−2p+α
2

(
δ2 + δ + δ(κ + η) + β + κ + η

)
,

where CE is an absolute constant from elliptic estimates. Now, in order to
show that H is a contraction, we choose β and κ and η sufficiently small. The
choice of β and η results in the choice of δ. Therefore, by the Banach fixed
point theorem, the iteration scheme (5.7) converges and we obtain the desired
solution of the system (5.6). �

The rest of the proof mimics the proof in the Sobolev case, and the
Lemmata 5.4 and 5.6 are direct counterparts of Lemmata 4.5 and 4.6 from
Sect. 4.

Lemma 5.4. Suppose p < n/2. There exists κ = κ(p, n) with the following prop-
erty: suppose that for Ω ∈ V α

ε there exist P and ξ in Lp,n−2p+α
2 (Bn) satisfying

the system (5.1) and additionally the estimate

‖dP‖L2p,n−2p(Bn) + ‖dξ‖L2p,n−2p(Bn) < κ. (5.15)

Then the estimates (5.3) hold.

Remark 5.5. Note that the fact that dP , dξ ∈ L2p,n−2p follows from (3.5).

Proof of Lemma 5.4. We have in the ball Bn

Δξ = (∗d ∗ d + d ∗ d∗)ξ = ∗d(∗dξ)
= ∗d(P−1dP + P−1ΩP )
= ∗(dP−1 ∧ dP ) + ∗d(P−1ΩP ). (5.16)

Let B = Br(x0) be a fixed ball. On the set B ∩ B
n we split ξ into a sum

of two functions ξ = u + v, satisfying

Δu = ∗(dP−1 ∧ dP ) on B ∩ B
n,

u = 0 on ∂(B ∩ B
n)
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(we may assume supp u ⊂ B ∩ B
n) and

Δv = ∗d(P−1ΩP ) on B
n,

v = 0 on ∂Bn.

Thus ξ = u + v on B ∩ B
n.

For q = p/(p − 1) we have

‖du‖Lp(B∩Bn) ≤ Cq sup
‖dφ‖Lq ≤1

∫

B∩Bn

du · dφ,

where φ is a smooth, compactly supported (in particular with null boundary
values) (n−2)-form on B ∩B

n (c.f. the proof of Lemma 4.5). Denote by P̄ the
mean value of P over B

n: P̄ =
∫
Bn P . For any φ as above,

∫

B∩Bn

du · dφ = −
∫

B∩Bn

Δu · φ

= −
∫

Bn

∗ (
dP−1 ∧ d(P − P̄ )

) · φ

= −
∫

Bn

dP−1(P − P̄ ) ∧ dφ

≤ C‖dP−1 ∧ dφ‖H1(Bn)‖P − P̄‖BMO(Bn)

= C‖dP−1 ∧ dφ‖H1(B∩Bn)‖P − P̄‖BMO(Bn)

≤ C‖dP‖Lp(B∩Bn)‖dφ‖Lq(B∩Bn)‖dP‖Lp,n−p(Bn)

with the constants C (possibly different in every line) dependent only on n
and p. Note that since P is an orthogonal matrix, |P | = |P−1| = 1, |dP−1| =
|dP |. In the estimate above we use the Coifman–Lions–Meyer–Semmes div-curl
inequality [3] and later the inclusion

Lp,n−p
1 (Bn) ↪→ BMO(Bn).

We have then

‖du‖Lp(B∩Bn) ≤ C‖dP‖Lp(B∩Bn)‖dP‖Lp,n−p(Bn)

≤ C‖dP‖Lp(B∩Bn)‖dP‖L2p,n−2p(Bn)

≤ Cκ‖dP‖Lp(B∩Bn)

due to the smallness assumption (5.15). Therefore

‖du‖Lp,n−p+α(Bn) ≤ Cκ‖dP‖Lp,n−p+α(Bn) (5.17)

for α ≥ 0.
To estimate v, where

Δv = ∗d(P−1ΩP ) on B ∩ B
n,

v = 0 on (∂Bn) ∩ B,
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we use standard elliptic estimates, obtaining

‖dv‖Lp,n−p+α(Bn) ≤ C‖Ω‖Lp,n−p+α(Bn). (5.18)

Combining (5.17) and (5.18) we conclude with

‖dξ‖Lp,n−p+α(Bn) ≤ Cκ‖dP‖Lp,n−p+α(Bn) + C‖Ω‖Lp,n−p+α(Bn). (5.19)

On the other hand, taking Lp norms of both sides of the equation

dP = P ∗ dξ + ΩP in B
n (5.20)

(c.f (5.1)) gives

‖dP‖Lp(B∩Bn) ≤ ‖dξ‖Lp(B∩Bn) + ‖Ω‖Lp(B∩Bn)

and thus

‖dP‖Lp,n−p+α(Bn) ≤ ‖dξ‖Lp,n−p+α(Bn) + ‖Ω‖Lp,n−p+α(Bn). (5.21)

Putting (5.19) and (5.21) together we get, for α ≥ 0,

‖dξ‖Lp,n−p+α(Bn) + ‖dP‖Lp,n−p+α(Bn) ≤ Cκ‖dP‖Lp,n−p+α(Bn)

+C‖Ω‖Lp,n−p+α(Bn).

Taking κ small enough we conclude the estimates (5.3a), (5.3b) hold, i.e.

‖dξ‖Lp,n−p+α(Bn) + ‖dP‖Lp,n−p+α(Bn) ≤ C‖Ω‖L2p,n−2p+α(Bn)

for α ≥ 0.
To show the estimate (5.3c), taking ∗d∗ of both sides of (5.20), we see

that
ΔP = ∗d ∗ dP = ∗d ∗ (P ∗ dξ + ΩP )

= ∗(dP ∧ dξ) + ∗d ∗ (ΩP ),

and from (5.16) we obtain

Δξ = ∗(dP−1 ∧ dP ) + ∗d(P−1ΩP ).

Therefore, proceeding as in the proof of the estimates (4.13) and (4.14), we
obtain

‖ΔP‖Lp,n−2p ≤ ‖dP‖L2p,n−2p‖dξ‖L2p,n−2p + ‖dΩ‖Lp,n−2p

+‖Ω‖L2p,n−2p‖dP‖L2p,n−2p

and

‖Δξ‖Lp,n−2p ≤ ‖dP‖2L2p,n−2p + 2‖dP‖L2p,n−2p‖Ω‖L2p,n−2p + ‖dΩ‖Lp,n−2p .

Applying (5.15), we obtain

‖ΔP‖Lp,n−2p + ‖Δξ‖Lp,n−2p ≤ 2‖dΩ‖Lp,n−2p + 3κ‖Ω‖L2p,n−2p ,

which proves the estimate (5.3c).
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Note that the above inequality is a consequence of the equation (5.20)
and the Hölder inequality only, so the estimate holds in any Morrey space Lp,γ

with γ > n − 2p, in which both sides of the inequality are finite. �

Lemma 5.6. The set Uα
ε is, for ε sufficiently small, open in V α

ε .

Proof. Choose Ωo ∈ Uα
ε and let Po and ξo be the orthogonal transformation

and antisymmetric (n − 2)-form associated with Ωo, so that Lemma 5.1 holds
for Ωo, Po and ξo.

Take now Ω ∈ V α
ε close to Ωo in L2p,n−2p+α ∩Lp,n−2p+α

1 : we ask that for
λ = P−1

o (Ω − Ωo)Po we have

‖λ‖L2p,n−2p+α + ‖λ‖Lp,n−2p+α
1

< η

(the conjugation with Po ∈ Lp,n−2p+α
2 is continuous in Lp,n−2p+α

1 ). Applying
Lemma 5.3 with ζ = ξo we find Q ∈ Lp,n−2p+α

2 (Bn, SO(m)) such that

∗ d ∗ (
Q−1dQ + Q−1(∗dξo + P−1

o (Ω − Ωo)Po)Q
)

= 0. (5.22)

Setting P = PoQ we see that (5.22) reduces to

∗d ∗ (P−1dP + P−1ΩP ) = 0.

By Poincaré’s lemma this implies that P−1dP +P−1ΩP is a coexact form, i.e.
there exists an antisymmetric (n − 2)-form ξ such that

∗ dξ = P−1dP + P−1ΩP, (5.23)

thus P and ξ give Uhlenbeck’s decomposition of Ω.
Note that Q and Po ∈ Lp,n−2p+α

2 ∩ L∞ imply that P ∈ Lp,n−2p+α
2 . By

the Hodge decomposition theorem we can choose ξ to be coclosed (d ∗ ξ = 0
on B

n) and to have zero boundary values (ξ|∂Bn = 0). Finally, the right hand
side of (5.23) is in Lp,n−2p+α

1 , which gives ξ ∈ Lp,n−2p+α
2 .

What remains to prove is that P , ξ and Ω satisfy the estimates (5.3).
Observe that if ‖Ω − Ωo‖Lp,n−2p+α

1
is small enough, then by continuity of the

mapping λ �→ uλ so are ‖P − Po‖Lp,n−2p+α
1

and ‖ξ − ξo‖Lp,n−2p+α
1

; choosing η

(which measures the distance ‖Ω − Ωo‖Lp,n−2p+α
1

) sufficiently small we get

‖P − Po‖Lp,n−2p+α
1

+ ‖ξ − ξo‖Lp,n−2p+α
1

< ε.

We also know that

‖dξo‖L2p,n−2p + ‖dPo‖L2p,n−2p ≤ C‖Ωo‖L2p,n−2p ≤ Cε

(this follows from Ωo ∈ Uε).
Taking ε sufficiently small we may ensure that

‖dξ‖L2p,n−2p + ‖dP‖L2p,n−2p

≤ ‖dξ − dξo‖L2p,n−2p + ‖P − Po‖L2p,n−2p + ‖dξo‖L2p,n−2p + ‖dPo‖L2p,n−2p

< (C + 1)ε < κ,
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with κ as in Lemma 5.4. Applying this lemma we show that the estimates (5.3)
hold.

Altogether, Ω ∈ Uα
ε , which proves the openness of Uα

ε . �
Proof of Theorem 1.3. The proof mimics, in a way, the passage from Theo-
rem 1.2 to Corollary 4.7, i.e. from the Uhlenbeck decomposition in W 1,p for
p > n/2 to the decomposition for p = n/2. There, we could simply argue by ap-
proximation. In the Morrey space setting, however, neither Lp,n−p+α

1 embeds
densely in Lp,n−p

1 , nor L2p,n−2p+α does into L2p,n−2p.
However (cf. [16], proof of Lemma 3.1), one can easily prove that if (φr)

is a standard mollifier and f ∈ Lq,n−q(B), q ≥ 1, then on any ball B = B(x, ρ)
such that 2B = B(x, 2ρ) ⊂ B

n we have, for r < ρ, that ‖f ∗ φr‖Lq,n−q(B) ≤
‖f‖Lq,n−q(2B). Reasoning like in the proof of Meyers-Serrin’s theorem and using
a suitable decomposition of unity we can show then that there exists a sequence
fk ∈ C∞(B) convergent to f in Lq (and in any other appropriate Lebesgue
and Sobolev norm) such that ‖fk‖Lq,n−q(B) ≤ C(n)‖f‖Lq,n−q(B).

We thus proceed as follows: we approximate Ω in W 1,p by a sequence of
smooth Ωk such that for all k

‖Ωk‖L2p,n−2p(B) ≤ C(n)‖Ω‖L2p,n−2p(B). (5.24)

Assuming that ε in the condition ‖Ω‖L2p,n−2p < ε is taken small enough
we can ensure, through (5.24), that all Ωk satisfy the analogous smallness
condition in Lemma 5.1. This provides us with sequences of Pk and ξk that
give the Uhlenbeck decomposition for Ωk, together with the uniform estimate

‖dξk‖Lp,n−p + ‖dPk‖Lp,n−p ≤ C(n,m)‖Ω‖L2p,n−2p < Cε.

Then we proceed as in the proof of closedness of Uα
ε in Lemma 5.2, obtaining

convergent subsequences of Pk and ξk. As Ωk are smooth, they satisfy the
assumptions of Lemma 5.1, which gives us the estimates (5.3)

‖dξk‖Lp,n−p + ‖dPk‖Lp,n−p ≤ C(n,m)‖Ωk‖L2p,n−2p ,

‖Δξk‖Lp,n−2p + ‖ΔPk‖Lp,n−2p ≤ C(n,m) (‖Ωk‖L2p,n−2p + ‖∇Ωk‖Lp,n−2p) .

The sequences Pk and ξk converge in Lp,n−2p
2 to appropriate elements of a

decomposition of Ω (this follows from the equation they satisfy). Thus, the
above estimates, together with (5.24), yield the desired estimates (5.3) for Ω.
This completes the proof of Theorem 1.3. �

6. Uhlenbeck’s Decomposition and Conformal Matrices

A natural extension of the orthogonal gauge group SO(m) is the conformal
group CO+(m). The interest in this group has deep roots in complex analysis,
in particular in the studies related to Liouville’s Theorem (see [9] for a detailed
exposition). This is a non-compact group, defined as

CO+(m) = {λP : λ ∈ R+, P ∈ SO(m)}.



71 Page 28 of 31 P. Goldstein and A. Zatorska-Goldstein Results Math

Clearly, S ∈ CO+(m) iff SST = λ2Id, where by Id we denote the m × m
identity matrix.

The tangent space at Id to CO+(m), which we denote by TCO+(m), is
given as

TCO+ = {K ∈ Mm×m : K + KT =
2Tr(K)

m
⊗ Id},

or, equivalently,

TCO+ = {A + μId : A ∈ so(m), μ ∈ R},

see e.g. [4].
Our objective is to prove an analogue of Theorem 1.2 for the conformal

gauge group, i.e. Theorem 1.4.

Theorem. Let n
2 < p < n. There exists ε > 0 such that for any Ω ∈ W 1,p

(Bn, TCO+(m) ⊗ Λ1
R

n) such that ‖Ω‖Ln < ε there exist S : Bn → CO+(m)
satisfying ln |S| ∈ W 2,p(Bn), S/|S| ∈ W 2,p(Bn, SO(m)) and
ζ ∈ W 2,p(Bn, TCO+(m) ⊗ Λn−2

R
n) such that

⎧
⎨

⎩

S−1dS + S−1ΩS = ∗dζ on B
n,

d ∗ ζ = 0 on B
n,

ζ = 0 on ∂Bn;
(6.1)

and such that

‖dζ‖W 1,p + ‖d(S/|S|)‖W 1,p + ‖d ln |S|‖W 1,p ≤ C(n,m)‖Ω‖W 1,p (6.2a)

‖dζ‖Lp + ‖d(S/|S|)‖Lp + ‖d ln |S|‖Lp ≤ C(n,m)‖Ω‖Lp , (6.2b)

‖dζ‖Ln + ‖d(S/|S|)‖Ln + ‖d ln |S|‖Ln ≤ C(n,m)‖Ω‖Ln . (6.2c)

The integrability conditions on ln |S| should be understood as (rather
weak) integrability conditions both on S and S−1. We should also note that if
S satisfies the above theorem, so does tS for any non-zero constant t.

Proof. We shall construct S : Bn → CO+(m) satisfying the above conditions.
Let us first fix some notation:

We shall write S = λP , where λ = |S| ∈ R+ and P = S/|S| ∈ SO(m),
we also decompose Ω into its antisymmetric and diagonal part:

Ω = A +
Tr(Ω)

m
⊗ Id

with A ∈ W 1,p(Bn, so(m) ⊗ Λ1
R

n).
Let ΩS = S−1dS + S−1ΩS; likewise ΩP = P−1dP + P−1ΩP and AP =

P−1dP + P−1AP .
We have

ΩS = λ−1P−1(dλ ⊗ P + λdP + P−1ΩP )

= d ln λ ⊗ Id + ΩP .
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Decomposing Ω we have

ΩP = P−1dP + P−1

(
A +

Tr(Ω)
m

⊗ Id
)

P

= AP +
Tr(Ω)

m
⊗ Id,

thus

ΩS = AP +
(

d ln λ +
Tr(Ω)

m

)
⊗ Id.

Clearly, A satisfies all the assumptions on Ω in Theorem 1.2, we can thus find
P ∈ W 2,p(Bn, SO(m)) and ξ ∈ W 2,p(Bn, so(m) ⊗ Λn−2

R
n) such that

⎧
⎨

⎩

AP = P−1dP + P−1AP = ∗dξ on B
n,

d ∗ ξ = 0 on B
n,

ξ = 0 on ∂Bn;
(6.3)

and such that

‖dξ‖W 1,p + ‖dP‖W 1,p ≤ C(n,m)‖A‖W 1,p ≤ C(n,m)‖Ω‖W 1,p (6.4a)

‖dξ‖Lp + ‖dP‖Lp ≤ C(n,m)‖A‖Lp ≤ C(n,m)‖Ω‖Lp , (6.4b)

‖dξ‖Ln + ‖dP‖Ln ≤ C(n,m)‖A‖Ln ≤ C(n,m)‖Ω‖Ln . (6.4c)

By the Hodge decomposition we can find α ∈ W 2,p(Bn) and β ∈ W 2,p(Bn,
Λn−2

R
n) such that

1
m

Tr(Ω) = dα + ∗dβ

with β|∂Bn = 0 and ‖dα‖1,p
W + ‖dβ‖W 1,p ≤ ‖Ω‖W 1,p .

This shows that if λ is such that d ln λ = −dα, then S = λP and ζ = ξ +
β ⊗ Id satisfy (6.1). The estimates (6.2) follow immediately from the estimates
on Hodge decomposition and from (6.4). �

The above theorem is rather simple, but it provides a new interpretation
to gradient-like terms df ⊗ Id in nonlinear systems—we can incorporate them
in antisymmetric expressions and perform Uhlenbeck’s decomposition on the
resulting TCO+ matrix of differential forms instead of dealing with both kinds
of terms separately.
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[8] Hélein, F.: Harmonic Maps, Conservation Laws and Moving Frames, Cambridge
Tracts in Mathematics, vol. 150, 2nd edn. Cambridge University Press, Cam-
bridge (2002). (translated from the 1996 French original, with a foreword by
James Eells)

[9] Iwaniec, T., Martin, G.: Geometric Function Theory and Non-linear Analysis.
Oxford Mathematical Monographs. Oxford University Press, New York (2001)

[10] Iwaniec, T., Scott, C., Stroffolini, B.: Nonlinear Hodge theory on manifolds with
boundary. Ann. Mat. Pura Appl. 4(177), 37–115 (1999)

[11] Lamm, T., Rivière, T.: Conservation laws for fourth order systems in four di-
mensions. Commun. Partial Differ. Equ. 33(1–3), 245–262 (2008)

[12] Meyer, Y., Rivière, T.: A partial regularity result for a class of stationary Yang–
Mills fields in high dimension. Rev. Mat. Iberoam. 19(1), 195–219 (2003)

[13] Morrey Jr., C.B.: Multiple Integrals in the Calculus of Variations. Classics in
Mathematics. Springer, Berlin (2008). (reprint of the 1966 edition)

[14] Müller, F., Schikorra, A.: Boundary regularity via Uhlenbeck–Rivière decompo-
sition. Analysis (Munich) 29(2), 199–220 (2009)

[15] Rivière, T.: Conservation laws for conformally invariant variational problems.
Invent. Math. 168(1), 1–22 (2007)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Vol. 73 (2018) Uhlenbeck’s Decomposition Page 31 of 31 71

[16] Rivière, T., Struwe, M.: Partial regularity for harmonic maps and related prob-
lems. Commun. Pure Appl. Math. 61(4), 451–463 (2008)

[17] Schikorra, A.: A remark on gauge transformations and the moving frame method.
Ann. Inst. H. Poincaré Anal. Non Linéaire 27(2), 503–515 (2010)

[18] Struwe, M.: Partial regularity for biharmonic maps, revisited. Calc. Var. Partial
Differ. Equ. 33(2), 249–262 (2008)

[19] Strzelecki, P.: Gagliardo–Nirenberg inequalities with a BMO term. Bull. Lond.
Math. Soc. 38(2), 294–300 (2006)

[20] Tao, T., Tian, G.: A singularity removal theorem for Yang–Mills fields in higher
dimensions. J. Am. Math. Soc. 17(3), 557–593 (2004)

[21] Uhlenbeck, K.K.: Connections with Lp bounds on curvature. Commun. Math.
Phys. 83(1), 31–42 (1982)

[22] Wang, C.: Stationary biharmonic maps from R
m into a Riemannian manifold.

Commun. Pure Appl. Math. 57(4), 419–444 (2004)

[23] Wehrheim, K.: Uhlenbeck Compactness. EMS Series of Lectures in Mathematics.
European Mathematical Society (EMS), Zürich (2004)
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