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Inequalities for Integrals of the Modified
Struve Function of the First Kind

Robert E. Gaunt

Abstract. Simple inequalities for some integrals involving the modified
Struve function of the first kind Lν(x) are established. In most cases,
these inequalities have best possible constant. We also deduce a tight
double inequality, involving the modified Struve function Lν(x), for a
generalized hypergeometric function.

Mathematics Subject Classification. Primary 33C10, 26D15.

Keywords. Modified Struve function, inequality, integral.

1. Introduction

In the recent papers [9,11], simple lower and upper bounds, involving the
modified Bessel function of the first kind Iν(x), were obtained for the integrals∫ x

0

e−γttνIν(t) dt,

∫ x

0

e−γttν+1Iν(t) dt, (1.1)

where x > 0, 0 ≤ γ < 1 and ν > − 1
2 . For γ �= 0 there does not exist simple

closed form expressions for the integrals in (1.1) The inequalities of [9,11] were
needed in the development of Stein’s method [6,17,18] for variance-gamma
approximation [7,8,10], although as they are simple and surprisingly accurate
the inequalities may also prove useful in other problems involving modified
Bessel functions; see for example, [5] in which inequalities for modified Bessel
functions of the first kind were used to obtain lower and upper bounds for
integrals involving modified Bessel functions of the first kind.

In this note, we consider the natural problem of obtaining inequalities,
involving the modified Struve function of the first kind, for the integrals∫ x

0

e−γttνLν(t) dt,

∫ x

0

e−γttν+1Lν(t) dt, (1.2)
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where x > 0, 0 ≤ γ < 1 and ν > − 3
2 , and Lν(x) is the modified Struve function

of the first kind defined, for x ∈ R and ν ∈ R, by

Lν(x) =
∞∑

k=0

(
1
2x

)ν+2k+1

Γ(k + 3
2 )Γ(k + ν + 3

2 )
.

The modified Struve function Lν(x) is closely related to the modified Bessel
function Iν(x), and either shares or has a close analogue to the properties of
Iν(x) that were exploited in derivations of the inqualities for the integrals in
(1.1) by [9,11]. The function Lν(x) is itself a widely used special function; see
a standard reference, such as [16], for its basic properties. It arises in many-
fold applications, including leakage inductance in transformer windings [12],
perturbation approximations of lee waves in a stratified flow [15], scattering of
plane waves by soft obstacles [19]; see [1] for a list of further application areas.

When γ = 0 both integrals in (1.2) can be evaluated exactly. Indeed, the
second integral is equal to xν+1Lν+1(x) (see [16], formula 11.4.29). The first
integral can be evaluated because the modified Struve function Lν(x) can be
represented as a generalized hypergeometric function. To see this, recall that
the generalized hypergeometric function (see [16] for this definition and further
properties) is defined by

pFq

(
a1, . . . , ap; b1, . . . , bq;x

)
=

∞∑
k=0

(a1)k · · · (ap)k

(b1)k · · · (bq)k

xk

k!
,

and the Pochhammer symbol is given by (a)0 = 1 and (a)k = a(a + 1)(a +
2) · · · (a + k − 1), k ≥ 1. Then, for −ν − 3

2 /∈ N, we have the representation

Lν(x) =
xν+1

√
π2νΓ(ν + 3

2 ) 1
F2

(
1;

3
2
, ν +

3
2
;
x2

4

)

(see also [1] for other representations in terms of the generalized hypergeomet-
ric function). A straightforward calculation then yields∫ x

0

tνLν(t) dt =
x2ν+2

√
π2ν+1(ν + 1)Γ(ν + 3

2 ) 2
F3

(
1, ν + 1;

3
2
, ν +

3
2
, ν + 2;

x2

4

)
.

(1.3)
When γ �= 0, there does, however, not exist a closed form formula for the
integrals in (1.2). Moreover, even when γ = 0 the first integral is given in terms
of the generalized hypergeometric function. This provides the motivation for
establishing simple bounds, involving the modified Struve function Lν(x), for
these integrals.

The approach taken in this note to bound the integrals in (1.2) is similar
to that used by [9,11] to bound the related integrals involving the modfied
Bessel function Iν(x), and the inequalities obtained in this note are of a similar
form to those obtained for the integrals involving Iν(x). As already noted, the
reason for this similarity is because many of the properties of the modified
Bessel function Iν(x) that were exploited in the proofs of [9,11] are shared
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by the modified Struve function Lν(x), which we now list. All these formulas
can be found in [16], except for the inequality which is given in [2]. Further
inequalities for Lν(x) can be found in [2] and [4], some of which improve results
of [14].

For positive values of x the function Lν(x) is positive for ν > − 3
2 . The

function Lν(x) satisfies the recurrence relation and differentiation formula

Lν−1(x) − Lν+1(x) =
2ν

x
Lν(x) +

(
1
2x

)ν

√
πΓ(ν + 3

2 )
, (1.4)

d
dx

(
xνLν(x)

)
= xνLν−1(x). (1.5)

The function Lν(x) has the following asymptotic properties:

Lν(x) ∼ 2√
πΓ(ν + 3

2 )

(
x

2

)ν+1

, x ↓ 0, ν > − 3
2 , (1.6)

Lν(x) ∼ ex

√
2πx

, x → ∞, ν ∈ R. (1.7)

Let x > 0. Then
Lν(x) < Lν−1(x), ν ≥ 1

2 . (1.8)

We end this introduction by noting that [9,11] also derived lower and up-
per bounds for the integrals

∫ ∞
x

eβttνKν(t) dt and
∫ ∞

x
eβttν+1Kν(t) dt, where

x > 0, ν > − 1
2 , 0 ≤ β < 1 and Kν(x) is a modified Bessel function of the

second kind. Analogously to the problem studied in this note it is natural to
ask for bounds for the integrals

∫ ∞
x

eβttνMν(t) dt and
∫ ∞

x
eβttν+1Mν(t) dt,

where Mν(x) = Lν(x) − Iν(x) is the modified Struve function of the second
kind. However, the inequalities of [9,11] for integrals involving Kν(x) do not
have a natural analogue for Mν(x).

Unlike the function Lν(x), for general values of ν, some of the crucial
properties of Kν(x) that were exploited in the proofs of [9,11] do not have an
analogue for Mν(x). Indeed, the function Mν(x) does not have the exponential
decay as x → ∞ that Kν(x) has, and is in fact unbounded when ν > 1 (see
formula 11.6.2 of [16]). Moreover, despite possessing some interesting mono-
tonicity properties (see [3]), Mν(x) does not have an analogue of the inequality
Kν(x) > Kν−1(x), ν > 1

2 , (see [13]) which was heavily used in the proofs of
[9,11].

2. Inequalities for Integrals of the Modified Struve Function of
the First Kind

In the following theorem, we establish inequalities for the integrals in (1.2),
which are natural analogues of the inequalities for the integrals in (1.1) that
are given in Theorem 2.1 of [9] and Theorem 2.3 of [11].
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Theorem 2.1. Let n > −1 and 0 ≤ γ < 1. Then, for all x > 0,
∫ x

0

e−γttνLν+n(t) dt > e−γxxνLν+n+1(x), ν > − 1
2 (n + 2), (2.9)

∫ x

0

tνLν(t) dt < xνLν(x), ν ≥ 1
2 , (2.10)

∫ x

0

tνLν+n(t) dt <
xν

2ν + n + 1

(
2(ν + n + 1)Lν+n+1(x) − (n + 1)Lν+n+3(x)

− (n + 1)xν+n+2

√
π2ν+n+1(2ν + n + 2)Γ(ν + n + 5

2 )

)
, ν > − 1

2 (n + 1),

(2.11)∫ x

0

e−γttνLν(t) dt ≤ e−γx

1 − γ

∫ x

0

tνLν(t) dt, ν ≥ 1
2 , (2.12)

∫ x

0

e−γttνLν(t) dt <
e−γxxν

(2ν + 1)(1 − γ)

(
2(ν + 1)Lν+1(x) − Lν+3(x)

− xν+2

√
π2ν+2(ν + 1)Γ(ν + 5

2 )

)
, ν ≥ 1

2 , (2.13)
∫ x

0

e−γttν+1Lν(t) dt ≥ e−γxxν+1Lν+1(x), ν > − 3
2 , (2.14)

∫ x

0

e−γttν+1Lν(t) dt <
1

1 − γ
e−γxxν+1Lν+1(x), ν > − 1

2 . (2.15)

We have equality in (2.12) and (2.14) if and only if γ = 0. The constants in
the bounds (2.10)–(2.15) cannot be improved, and the constant in (2.9) is also
best possible if γ = 0. Inequalities (2.9) and (2.14) hold for all γ > 0.

Proof. We first establish inequalities (2.9)–(2.15) and then prove that the con-
stants in inequalities (2.10)–(2.15), and (2.9) when γ = 0, cannot be improved.

(i) Let us first prove inequality (2.9). The condition ν > − 1
2 (n + 2) ensures

that the integral exists. As γ > 0 and n > −1, on using the differentiation
formula (1.5) we have

∫ x

0

e−γttνLν+n(t) dt =
∫ x

0

e−γt 1
tn+1

tν+n+1Lν+n(t) dt

>
e−γx

xn+1

∫ x

0

tν+n+1Lν+n(t) dt = e−γxxνLν+n+1(x),

since by (1.6) we have limx↓0 xν+n+1Lν+n+1(x) = 0 if n > −1 and
ν > − 1

2 (n + 2).
(ii) Using inequality (1.8) and then applying (1.5) we obtain

∫ x

0

tνLν(t) dt <

∫ x

0

tνLν−1(t) dt = xνLν(x).
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(iii) From the differentiation formula (1.5) and the relation (1.4) we get that

d

dt

(
tνLν+n+1(t)

)
=

d

dt
(t−(n+1) · tν+n+1Lν+n+1(t))

= tνLν+n(t) − (n + 1)tν−1Lν+n+1(t)

= tνLν+n(t) − n + 1

2(ν + n + 1)
tνLν+n(t) +

n + 1

2(ν + n + 1)
tνLν+n+2(t)

+ (n + 1)tν−1 · t

2(ν + n + 1)

(
1
2
t
)ν+n+1

√
πΓ(ν + n + 5

2
)

=
2ν + n + 1

2(ν + n + 1)
tνLν+n(t) +

n + 1

2(ν + n + 1)
tνLν+n+2(t)

+
n + 1

ν + n + 1

t2ν+n+1

√
π2ν+n+2Γ(ν + n + 5

2
)
.

Integrating both sides over (0, x), applying the fundamental theorem of
calculus and rearranging gives∫ x

0

tνLν+n(t) dt =
2(ν + n + 1)

2ν + n + 1
xνLν+n+1(x) − n + 1

2ν + n + 1

∫ x

0

tνLν+n+2(t) dt

− 2(n + 1)

2ν + n + 1

∫ x

0

t2ν+n+1

√
π2ν+n+2Γ(ν + n + 5

2 )
dt

=
2(ν + n + 1)

2ν + n + 1
xνLν+n+1(x) − n + 1

2ν + n + 1

∫ x

0

tνLν+n+2(t) dt

− n + 1

2ν + n + 1

x2ν+n+2

√
π2ν+n+1(2ν + n + 2)Γ(ν + n + 5

2 )
.

Applying inequality (2.9) with γ = 0 to the integral on the right hand-
side of the above expression then yields (2.11), as required.

(iv) Let ν ≥ 1
2 . Then integration by parts and inequality (2.10) gives

∫ x

0

e−γttνLν(t) dt = e−γx

∫ x

0

tνLν(t) dt + γ

∫ x

0

e−γt

( ∫ t

0

uνLν(u) du

)
dt

< e−γx

∫ x

0

tνLν(t) dt + γ

∫ x

0

e−γttνLν(t) dt,

whence on rearranging we obtain (2.12).
(v) Combine parts (iii) and (iv).
(vi) Let ν > − 3

2 so that the integral exists. Since γ > 0,
∫ x

0

e−γttν+1Lν(t) dt > e−γx

∫ x

0

tν+1Lν(t) dt = e−γxxν+1Lν+1(x).

(vii) Consider the function

u(x) =
1

1 − γ
e−γxxν+1Lν+1(x) −

∫ x

0

e−γttν+1Lν(t) dt.
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In order to prove the result, we argue that that u(x) > 0 for all x > 0.
Using the differentiation formula (1.5) we have that

u′(x) =
1

1 − γ
e−γxxν+1

(
Lν(x) − γLν+1(x)

) − e−γxxν+1Lν(x)

=
1

1 − γ
e−γxxν+1

(
Lν(x) − Lν+1(x)

)
> 0,

where we used (1.8) to obtain the inequality. Also, from (1.6), as x ↓ 0,

u(x) ∼ 1
1 − γ

x2ν+3

√
π2ν+1Γ(ν + 5

2 )
−

∫ x

0

t2ν+2

√
π2νΓ(ν + 3

2 )
dt

=
1

1 − γ

x2ν+3

√
π2ν+1Γ(ν + 5

2 )
− x2ν+3

√
π2ν(2ν + 3)Γ(ν + 3

2 )

=
1

1 − γ

x2ν+3

√
π2ν+1Γ(ν + 5

2 )
− x2ν+3

√
π2ν+1Γ(ν + 5

2 )

=
γ

1 − γ

x2ν+3

√
π2ν+1Γ(ν + 5

2 )
> 0.

Thus, we conclude that u(x) > 0 for all x > 0, as required.
(viii) We now prove that the constants in inequalities (2.10)–(2.15) cannot be

improved, and that the constant in (2.9) is best possible if γ = 0. We
begin by noting that a straightforward asymptotic analysis using the
asymptotic formula (1.7) gives that, for 0 ≤ γ < 1 and ν > − 1

2 (n + 2),
∫ x

0

e−γttνLν+n(t) dt ∼ 1√
2π(1 − γ)

xν+n− 1
2 e(1−γ)x, x → ∞. (2.16)

Let us now prove that the constant in (2.10) is best possible. From (2.16) and
(1.7), we have on the one hand, as x → ∞,

∫ x

0

tνLν(t) dt ∼ 1√
2π

xν− 1
2 ex, (2.17)

and on the other,

xνLν(x) ∼ 1√
2π

xν− 1
2 ex. (2.18)

The equivalence between (2.17) and (2.18) proves the claim that the constant
is best possible. One can also use this approach to prove that the constants in
inequalities (2.11), (2.12), (2.13) and (2.15), and (2.9) when γ = 0, cannot be
improved.

It now remains to prove that the constant in (2.14) cannot be improved.
Before doing so, we note that an alternative argument can be used to prove
that constant in (2.11) is best possible. From (1.6), we have on the one hand,
as x ↓ 0,
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∫ x

0

tνLν+n(t) dt ∼
∫ x

0

t2ν+n+1

√
π2ν+nΓ(ν + n + 3

2 )
dt

=
x2ν+n+2

2ν+n(2ν + n + 2)Γ(ν + n + 3
2 )

, (2.19)

and on the other,
xν

2ν + n + 1

(
2(ν + n + 1)Lν+n+1(x) − (n + 1)Lν+n+3(x)

− (n + 1)xν+n+2

√
π2ν+n+1(2ν + n + 2)Γ(ν + n + 5

2
)

)

∼ xν

2ν + n + 1

(
2(ν + n + 1)xν+n+2

√
π2ν+n+1Γ(ν + n + 5

2
)

− (n + 1)xν+n+2

√
π2ν+n+1(2ν + n + 2)Γ(ν + n + 5

2
)

)

=
(ν + n + 3

2
)x2ν+n+2

√
π2ν+n(2ν + n + 2)Γ(ν + n + 5

2
)

=
x2ν+n+2

2ν+n(2ν + n + 2)Γ(ν + n + 3
2
)
, (2.20)

which proves the claim.
Finally, we prove that the constant in the bound (2.14) cannot be im-

proved. Let M > 0 and define

uM (x) = Me−γxxν+1Lν+1(x) −
∫ x

0

e−γttν+1Lν(t) dt.

From a similar argument to the one used in part (v), we have that, as x ↓ 0,

uM (x) ∼ (M − 1)
x2ν+3

√
π2ν+1Γ(ν + 5

2 )
.

Thus, if M > 1 then uM (x) > 0 in a small positive neighbourhood of the
origin, from which we conclude that the constant (M = 1) in (2.14) is best
possible. �

We end by noting that we can combine the inequalities of Theorem 2.1
and the integral formula (1.3) to obtain lower and upper bounds for a gener-
alized hypergeometric function.

Corollary 2.2. Let ν > − 1
2 . Then, for all x > 0,

Lν+1(x) <
xν+2

√
π2ν+1(ν + 1)Γ(ν + 3

2 ) 2
F3

(
1, ν + 1;

3
2
, ν +

3
2
, ν + 2;

x2

4

)

< Lν+1(x)
{

1 +
1

2ν + 1

(
1 − Lν+3(x)

Lν+1(x)

)}

− xν+2

√
π2ν+2(2ν + 1)(ν + 1)Γ(ν + 5

2 )
.

Proof. Combine the integral formula (1.3) and inequalities (2.9) and (2.11)
(with γ = n = 0) of Theorem 2.1. �
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Table 1. Relative error in approximating Fν(x) by Lν(x)

ν x

0.5 5 10 15 25 50 100

−0.25 0.3975 0.2347 0.1114 0.0709 0.0414 0.0203 0.0101
0 0.3315 0.2099 0.1071 0.0695 0.0409 0.0202 0.0101
2.5 0.1251 0.1073 0.0773 0.0570 0.0366 0.0192 0.0098
5 0.0769 0.0715 0.0591 0.0475 0.0329 0.0182 0.0095
7.5 0.0555 0.0533 0.0472 0.0402 0.0296 0.0173 0.0093
10 0.0435 0.0423 0.0390 0.0346 0.0268 0.0164 0.0091

Table 2. Relative error in approximating Fν(x) by Uν(x)

ν x

0.5 5 10 15 25 50 100

−0.25 0.0087 0.4204 0.4288 0.3267 0.2137 0.1134 0.0584
0 0.0046 0.1781 0.1956 0.1543 0.1034 0.0558 0.0289
2.5 0.0001 0.0074 0.0142 0.0148 0.0125 0.0080 0.0045
5 0.0000 0.0015 0.0038 0.0049 0.0050 0.0037 0.0023
7.5 0.0000 0.0005 0.0014 0.0021 0.0026 0.0022 0.0014
10 0.0000 0.0002 0.0006 0.0011 0.0015 0.0014 0.0010

Remark 2.3. We know from Theorem 2.1 that the constants in the double
inequality in Corollary 2.2 are best possible. Also, the double inequality is
clearly tight in the limit ν → ∞ and part (viii) of the proof of Theorem 2.1
tells us that the inequality is tight as x → ∞.

To gain further insight into the approximation, we used Mathematica to
carry out some numerical results. Denote by Lν(x) and Uν(x) the lower and
upper bounds in the double inequality and denote by Fν(x) the expression
involving the generalized hypergeometric function that is bounded by these
quantities. The relative error in approximating Fν(x) by Lν(x) and Uν(x)
are given in Tables 1 and 2. For a given x, we observe the relative error in
approximating Fν(x) by either Lν(x) or Uν(x) decreases as ν increases. We also
notice that, for a given ν, the relative error in approximating Fν(x) by Lν(x)
decreases as x increases. However, from Table 2 we see that, for a given ν, as x
increases the relative error in approximating Fν(x) by Uν(x) initially increases
before decreasing. This is because, for ν > − 1

2 , limx↓0
Uν(x)
Fν(x)

= 1, and so the
relative error in approximating Fν(x) by Uν(x) is 0 in the limit x ↓ 0. The limit
limx↓0

Uν(x)
Fν(x)

= 1 follows from combining the formula Fν(x) = x−ν
∫ x

0
tνLν(t) dt

and the limiting forms (2.19) and (2.20) (with n = 0).
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