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question of how best to order a given collection of subspaces so as to
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would imply that P = NP, before presenting a simple example which
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and Weinert in Math Control Signals Syst 1(1):43–59, 1988), the result
of the Greedy Algorithm is not in general optimal. We go on to establish
sharp estimates on the degree to which the result of the Greedy Algo-
rithm can differ from the optimal result. Underlying all of these results
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matrix.
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1. Introduction

Let X be a real or complex Hilbert space, N ≥ 2 an integer, and suppose
that M1, . . . ,MN are closed subspaces of X. Furthermore let Pk denote the
orthogonal projection onto Mk, 1 ≤ k ≤ N , and let PM denote the orthogonal
projection onto the intersection M = M1 ∩ . . . ∩ MN . If we let T = PN · · · P1

then it follows from a classical theorem due to Halperin [8] that

‖Tnx − PMx‖ → 0, n → ∞, (1.1)

for all x ∈ X. It follows easily that, for any x ∈ X, the sequence in X ob-
tained by starting at X and then projecting cyclically onto the N subspaces
M1, . . . ,MN must converge to the point PMx, which is the point in M closest
to the starting vector x. This procedure is known as the method of alternating
projections and has many applications, for instance to the iterative solution of
large linear systems but also in the theory of partial differential equations and
in image restoration; see [3] for a survey.

In view of these applications it is important to understand the rate at
which the convergence in (1.1) takes place; see for instance [1,2,6,7] for in-
depth investigations. Recall that the Friedrichs number c(L1, L2) between the
two subspaces L1, L2 of X is defined as

c(L1, L2) = sup
{|(x1, x2)| : xk ∈ Lk ∩ L⊥ and ‖xk‖ ≤ 1 for k = 1, 2

}
,

where L = L1 ∩ L2. The Friedrichs number lies in the interval [0, 1] and may
be thought of as the cosine of the ‘angle’ between the subspaces L1 and L2.
It is shown in [9, Theorem 2] that for N = 2 in the method of alternating
projections we have

‖Tn − PM‖ = c(M1,M2)2n−1, n ≥ 1. (1.2)

When N ≥ 3 no sharp upper bound of this form is known, but it is shown in
[5, Corollary 2.10] that

‖Tn − PM‖ ≤ c(MN ,MN−1)n · · · c(M2,M1)nc(M1,MN )n−1, n ≥ 1, (1.3)

provided the subspaces are pairwise quasi-disjoint in the sense that Mk ∩
M� ∩ M⊥ = {0} for 1 ≤ k, � ≤ N with k 	= �. Moreover, the assumption
on the subspaces cannot be omitted. The same bound was obtained earlier
in [9] in the special case where the subspaces M1 ∩ M⊥, . . . ,MN ∩ M⊥ are
independent, which is to say that if vectors xk ∈ Mk ∩ M⊥, 1 ≤ k ≤ N , satisfy
x1 + · · · + xN = 0 then x1 = · · · = xN = 0.

Examples in [5, Section 3] show both that the bound in (1.4) fails to be
sharp in some special cases, thus disproving a conjecture made in [9], and more
generally that it is not possible for N ≥ 3 to obtain a sharp upper bound for
‖Tn −PM‖, n ≥ 1, which depends only on the pairwise Friedrichs numbers be-
tween the subspaces M1, . . . ,MN . Nevertheless, the estimate in (1.3) recovers
the sharp bound in (1.2) when N = 2 and holds with equality in a number of
other cases, for instance if all of the spaces M1, . . . ,MN are one-dimensional.
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We also see from (1.3) that if the Friedrichs number between a pair of consec-
utive subspaces is zero then we have convergence in the method of alternating
projections after at most two steps. Since our interest here is primarily in the
asymptotic rate of convergence as n → ∞, there is no significant loss of gen-
erality in assuming that c(Mk,M�) > 0 for 1 ≤ k, � ≤ N with k 	= �. In this
case (1.3) may be recast as

‖Tn − PM‖ ≤ Crn, n ≥ 1, (1.4)

where C = c(M1,MN )−1 and r =
∏N

k=1 c(Mk,Mk+1), indices henceforth being
considered modulo N . Since the asymptotic rate of convergence is determined
by the value of r ∈ (0, 1], it is natural to seek the reordering of the subspaces
M1, . . . ,MN which leads to the smallest possible value of r. More formally,
given N ≥ 2 we let SN denote the symmetric group on N letters and for each
σ ∈ SN we let rσ =

∏N
k=1 c(Mσ(k),Mσ(k+1)), so that for the reordered product

Tσ = Pσ(N) · · · Pσ(1) we obtain

‖Tn
σ − PM‖ ≤ Cσrn

σ , n ≥ 1,

where Cσ = c(Mσ(1),Mσ(N))−1. The objective therefore is to find a permuta-
tion σ ∈ SN such that rσ = r∗, where r∗ = min{rσ : σ ∈ SN}, and to find
such a permutation a version of the following ‘greedy’ algorithm was proposed
in [9, Section 9].

Greedy Algorithm: Given N ≥ 2 independent closed subspaces
M1, . . . ,MN of a Hilbert space X whose mutual Friedrichs num-
bers are known we obtain permutations σk ∈ SN , 1 ≤ k ≤ N ,
as follows. Let σk(1) = k and for j = 2, . . . , N consider as possi-
ble values for σk(j) any previously unused index � which minimises
c(Mσk(j−1),M�). If at any stage there is more than one choice of
such an index � then proceed by considering all possible choices of
this index and take σk to be that permutation which among those
leading to the least value of rσk

comes first in the lexicographical
ordering. Return the permutation σG = σ� where � ∈ {1, . . . , N} is
the smallest index such that rσ�

= min{rσk
: 1 ≤ k ≤ N}.

If we let rG = rσG
, N ≥ 2, then the Greedy Algorithm is correct if and

only if rG = r∗ for all constellations of subspaces. By definition of r∗ it is clear
that r∗ ≤ rG, N ≥ 2. In Sect. 3 we show that if the Greedy Algorithm were
correct then it would follow that P = NP. We then exhibit a simple example
with N = 4 in which r∗ < rG. Both results are obtained as a consequence of
a construction, presented in Sect. 2, which shows that any suitable collection
of numbers in [0, 1] arises as the set of pairwise Friedrichs numbers between
subspaces of some Hilbert space. This result is of independent interest and in
particular implies that the problem of finding an optimal ordering is at least
as hard as solving a multiplicative form of the Travelling Salesman Problem
(TSP). In Sect. 4 we give sharp estimates for the maximal discrepancies be-
tween r∗ and rG. In particular, we show that generically rG < r

1/2
∗ , and that
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the estimate is optimal in the sense that for every ε ∈ (0, 1) there exists some
N ≥ 2 and a suitable collection of N subspaces of some Hilbert space such
that rG > (1 − ε)r1/2

∗ . The last step once again requires the construction from
Sect. 2.

2. Friedrichs Matrices

Given N ≥ 2 closed subspaces M1, . . . ,MN of a Hilbert space, we may consider
the N×N -matrix (c(Mk,M�))1≤k,�≤N whose entries are the pairwise Friedrichs
numbers between the various subspaces. We call the matrix arising in this
way the Friedrichs matrix corresponding to the collection of subspaces. It is
clear that any Friedrichs matrix must be symmetric, have zeros along its main
diagonal and elsewhere must have entries lying in the interval [0, 1]. Is every
square matrix which has these three properties a Friedrichs matrix for some
collection of closed subspaces? The following result answers this question in the
affirmative. Here and in what follows we use the same notation as in Sect. 1.

Theorem 2.1. Let F ∈ {R,C} and N ≥ 2, and suppose that C is an N × N -
matrix which is symmetric, has zeros along its main diagonal and elsewhere has
entries lying in the interval [0, 1]. Then there exists a Hilbert space X over the
field F and closed subspaces M1, . . . ,MN of X such that C is the corresponding
Friedrichs matrix. Furthermore, the subspaces can be constructed in such a way
that Mk ∩ M� = {0} for 1 ≤ k, � ≤ N with k 	= � and, if N ≥ 3, PkP�Pm = 0
for 1 ≤ k, �,m ≤ N mutually distinct.

Proof. Let C = (ck,�) and suppose first that 0 ≤ ck,� < 1 for 1 ≤ k, � ≤ N . Let
{ek,� : 1 ≤ k, � ≤ N, k 	= �} be an orthonormal basis for the space X = F

N(N−1)

endowed with the Euclidean norm, and set

xk,� =

{
ek,�, 1 ≤ k < � ≤ N,

c�,ke�,k + (1 − c2�,k)1/2ek,�, 1 ≤ � < k ≤ N.

For 1 ≤ k ≤ N let Bk = {xk,� : 1 ≤ � ≤ N, � 	= k}, noting that these sets are
orthonormal, and consider the closed subspaces of X given by Mk = span Bk.
By our assumption that the entries of C be strictly smaller than 1 we see that
Mk ∩ M� = {0} for 1 ≤ k, � ≤ N with k 	= �, and in particular M = {0}.
Furthermore, for 1 ≤ k, k′, �, �′ ≤ N with k 	= � and k′ 	= �′ we have

(xk,�, xk′�′) =

⎧
⎪⎨

⎪⎩

1, k = k′, � = �′,
ck,�, k′ = �, �′ = k,

0, otherwise,

from which it follows that c(Mk,M�) = ck,� for 1 ≤ k, � ≤ N with k 	= � and,
if N ≥ 3, that PkP�Pm = 0 for 1 ≤ k, �,m ≤ N mutually distinct.
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Now consider the general case where 0 ≤ ck,� ≤ 1 for 1 ≤ k, � ≤ N and
consider the matrix B = (bk,�) with entries

bk,� =

{
ck,�, ck,� < 1,

0, ck,� = 1,

for 1 ≤ k, � ≤ N . By the first part we may find closed subspaces L1, . . . , LN

of FN(N−1) whose Friedrichs matrix is B. Let X = F
N(N−1) ⊕ Y , where Y =⊕

1≤�<m≤N �2, and endow X with its natural Hilbert space norm. Moreover,
let U, V be two closed subspaces of �2 such that U + V is not closed. For
1 ≤ k, �,m ≤ N with � < m define the subspaces Y �,m

k of �2 by

Y �,m
k =

⎧
⎪⎨

⎪⎩

U, c�,m = 1 and k = �,

V, c�,m = 1 and k = m,

{0}, otherwise,

and for 1 ≤ k ≤ N define the closed subspace Mk of X by Mk = Lk ⊕ Yk,
where Yk =

⊕
1≤�<m≤N Y �,m

k . If 1 ≤ k < � ≤ N are such that ck,� < 1, then
for 1 ≤ m < n ≤ N we have either Y m,n

k = {0} or Y m,n
� = {0} and therefore

c(Mk,M�) = c(Lk, L�) = bk,� = ck,�. Suppose that 1 ≤ k < � ≤ N and that
ck,� = 1. Then for 1 ≤ m < n ≤ N we see that Y m,n

k + Y m,n
� = U + V if and

only if k = m and � = n, and that otherwise Y m,n
k + Y m,n

� equals either U, V
or {0}. It follows that Yk + Y� is not closed, and hence Mk + M� is not closed.
By [4, Theorem 9.35] this implies that c(Mk,M�) = 1 = ck,�, and hence we
have the required subspaces. Moreover, it is clear from the construction that
Mk ∩ M� = {0} for 1 ≤ k, � ≤ N with k 	= � and, if N ≥ 3, that PkP�Pm = 0
for 1 ≤ k, �,m ≤ N mutually distinct. �

Remark 2.2. Note that the result in particular provides a new proof of the
fact that in general the optimal value of r in (1.4) cannot be expressed as a
function of pairwise Friedrichs numbers between the subspaces M1, . . . ,MN

when N ≥ 3, as was first observed in a particular case in [5, Example 3.7].
Indeed, for any collection of closed subspaces M ′

1, . . . ,M
′
N , N ≥ 3, of some

Hilbert space such that in the method of alternating projections we do not have
convergence in one step, by Theorem 2.1 we may find an alternative collection
of closed subspaces M1, . . . ,MN of some Hilbert space with the same pairwise
Friedrichs numbers but for which T = PM = 0.

3. Incorrectness of the Greedy Algorithm

In this section we turn to the Greedy Algorithm presented in Sect. 1, and
in particular we ask whether the algorithm is correct in the sense that the
ordering it produces leads to the optimal value of r ∈ [0, 1] in (1.4). We first
consider the connection between our problem of finding an optimal ordering
and the classical TSP, and we show in Corollary 3.3 below that correctness of
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the Greedy Algorithm for a sufficiently large class of cases would imply that
P = NP. We then exhibit a simple example in which the Greedy Algorithm
gives a suboptimal ordering.

Recall that in the graph-theoretical formulation of the TSP we are given,
for some N ≥ 2, a complete graph KN with vertices VN = {1, 2, . . . , N} and a
weight function

w :
{
(k, �) ∈ V 2

N : k 	= �
} → R

such that w(k, �) = w(�, k) for 1 ≤ k, � ≤ N with k 	= �, and the objective is
to find a permutation σ∗ ∈ SN such that Σσ∗ = min{Σσ : σ ∈ SN}, where for
a permutation σ ∈ SN we let

Σσ =
N∑

k=1

w
(
σ(k), σ(k + 1)

)

with indices, as usual, considered modulo N . We will be interested primarily in
the multiplicative form of the TSP, denoted by MTSP, in which the objective
is to minimise not the additive cost but instead to find σ∗ ∈ SN such that
Πσ∗ = min{Πσ : σ ∈ SN}, where for a permutation σ ∈ SN we let

Πσ =
N∏

k=1

w
(
σ(k), σ(k + 1)

)
.

It is clear that TSP and MTSP have the same solution, and indeed one may
pass from one form of the problem to the other simply by replacing the weight
function by its logarithm or its exponential, as appropriate. Furthermore, the
solution of TSP is unaffected by shifting the values of the weight function by a
constant amount, which implies in particular that there is no loss of generality
in considering the MTSP only for weight functions taking values in the range
[0, 1].

It is well known that the TSP, and hence also MTSP, is NP-complete. This
means that it lies in the complexity class NP and is NP-hard, which is to say
that any other problem in NP can be transformed into an instance of the TSP
in polynomial time. Furthermore, by considering the corresponding decision
problems it can be seen that TSP and hence MTSP remain NP-complete if
the weight function is assumed to take distinct values on distinct pairs. Our
first result is an application of Theorem 2.1 showing that the subspace ordering
problem is NP-hard.

Proposition 3.1. The problem of finding an optimal ordering for collections
of independent closed subspaces with pairwise distinct Friedrichs numbers is
NP-hard.

Proof. It suffices to show that every instance of TSP with distinct costs can
be transformed in polynomial time into a subspace ordering problem with
pairwise distinct Friedrichs numbers. However, this follows straightforwardly
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from Theorem 2.1. Indeed, given a TSP problem on N ≥ 2 vertices we may
transform it to an instance of MTSP with weight function taking values in the
range [0, 1] in O(N2) steps. Let C = (ck,�)1≤k,�≤N be the symmetric matrix
with zeros along its main diagonal and entries ck,� = w(k, �) for 1 ≤ k, � ≤ N
with k 	= �. By Theorem 2.1 there exists a Hilbert space X and independent
closed subspaces M1, . . . ,MN of X such that C is the associated Friedrichs
matrix. Moreover, it is clear from the proof of Theorem 2.1 that it is possible
to obtain these subspaces in polynomial time. If we find a permutation σ∗ ∈ SN

such that rσ∗ = r∗, then since rσ = Πσ for all σ ∈ SN the permutation σ∗ also
solves our instance of MTSP, and hence the original TSP problem. Since TSP
is known to be NP-hard, our problem is too. �

Remark 3.2. Note that the subspaces M1, . . . ,MN are not merely independent
but satisfy the much stronger conditions described in Theorem 2.1. In partic-
ular, the result remains true if the subspaces which we are trying to order are
merely pairwise quasi-disjoint in the sense of Sect. 1.

The result shows that the existence of any polynomial-time algorithm
which solves the subspace ordering problem in a sufficiently large number of
cases implies that P = NP. In particular, we obtain the following consequence
for the Greedy Algorithm.

Corollary 3.3. Correctness of the Greedy Algorithm for independent subspaces
with pairwise distinct Friedrichs numbers implies that P = NP.

Proof. It is straightforward to see that if all the pairwise Friedrichs numbers
are distinct then the Greedy Algorithm terminates after O(N3) steps, where
N ≥ 2 is the number of subspaces we a required to order optimally. �

Remark 3.4. The version of the Greedy Algorithm formulated in [9, Section 9]
differs from ours in that it does not consider all possible greedy paths and
hence runs in polynomial time even if the pairwise Friedrichs numbers are
not assumed to be distinct. Note also that, as in the case of Proposition 3.1,
the assumption of independence on the subspaces can be relaxed to pairwise
quasi-disjointness.

Given that the question whether P = NP is a long-standing open prob-
lem, one may view Proposition 3.1 as evidence suggesting that the Greedy
Algorithm does not in general lead to an optimal ordering of the subspaces in
question. This is indeed the case, as the following example illustrates.

Example 3.5. Let F ∈ {R,C} and let X = F
4 with the Euclidean norm.

Consider the one-dimensional subspaces Mk = span{xk}, 1 ≤ k ≤ 4, where
x1, . . . , x4 ∈ X are the unit vectors
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x1 = (1, 0, 0, 0),

x2 =
(

1
2
,

√
3

2
, 0, 0

)
,

x3 =
(

1
5
,

1
10

√
2
,

√
191

10
√

2
, 0

)
,

x4 =
(

1
10

,
1
8
,

1
15

,

√
13967
120

)
.

The Friedrichs numbers satisfy c(Mk,M�) = |(xk, x�)| for 1 ≤ k, � ≤ 4 with
k 	= �, so the associated Friedrichs matrix is given (approximately) by

C =

⎛

⎜
⎜
⎝

0.0000 0.5000 0.2000 0.1000
0.5000 0.0000 0.1612 0.1583
0.2000 0.1612 0.0000 0.0940
0.1000 0.1583 0.0940 0.0000

⎞

⎟
⎟
⎠ .

The permutation σG ∈ S4 produced by the Greedy Algorithm is
(
σG(k)

)4
k=1

= (1, 4, 3, 2),

which leads to rG ≈ 7.5772 × 10−4. The permutation σ ∈ S4 given by
(
σ(k)

)4
k=1

= (1, 4, 2, 3)

leads to the optimal value r∗ = rσ ≈ 5.1033× 10−4, and in particular rG > r∗.
It follows that the Greedy Algorithm is not correct.

Remark 3.6. Example 3.5 disproves a claim made in [9, Section 9], namely
that the Greedy Algorithm always leads to an optimal ordering in the case of
independent subspaces. The examples considered in [9, Section 9] involve only
N = 3 subspaces, a special case in which the Greedy Algorithm performs an
exhaustive search of all possible orderings (up to the direction in which they
are traversed) and in particular is correct. Thus Example 3.5 is minimal in
terms of the number of subspaces involved.

4. Sharp Estimates for the Degree of Suboptimality

Having shown in Sect. 3 that the Greedy Algorithm does not in general lead to
an optimal ordering of the subspaces in the method of alternating projections,
we seek now to quantify how much the result reached by the Greedy Algorithm
can disagree with the optimal result. Given a collection of closed subspaces of a
Hilbert space such that at least one of the pairwise Friedrichs numbers is zero,
we see that for suitable orderings of the subspaces we obtain convergence after
at most two steps in the method of alternating projections. Another essentially
uninteresting case for asymptotic analysis is when all of the pairwise Friedrichs
numbers equal 1, so that no ordering leads to a useful estimate in (1.3). If either
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of these two cases holds we shall say that the collection of subspaces involved
is non-generic, and otherwise we call it generic.

Theorem 4.1. Let N ≥ 2 and suppose that M1, . . . ,MN are closed subspaces
of a Hilbert space X. Then

r∗ ≤ rG ≤ r
1/2
∗ . (4.1)

Moreover, the second inequality is strict unless the collection M1, . . . ,MN of
subspaces is non-generic

Proof. For 1 ≤ k ≤ N let σk ∈ SN be the permutation produced by running
the Greedy Algorithm with the starting vertex σk(1) = k and let rk = rσk

.
Then certainly r∗ ≤ rk for 1 ≤ k ≤ N , and hence also r∗ ≤ rG. For 1 ≤ k, � ≤
N let

sk(�) = σk

(
σ−1

k (�) + 1
)

denote the index of the successor to M� in the ordering of the subspaces de-
termined by σk, noting that sk(�) = 1 if σk(�) = N . Let σ ∈ SN and for
1 ≤ k, � ≤ N with k 	= � let w(k, �) = c(Mk,M�). Let 1 ≤ k, � ≤ N . If
σ−1

k (σ(�)) < σ−1
k (σ(�+1)), which is to say that in the ordering determined by

σk the subspace Mσ(�) comes before Mσ(�+1), then by definition of the Greedy
Algorithm we must have

w
(
σ(�), sk(σ(�)

) ≤ w
(
σ(�), σ(� + 1)

)
,

while if σ−1
k (σ(�)) > σ−1

k (σ(� + 1)) then

w
(
σ(� + 1), sk(σ(� + 1)

) ≤ w
(
σ(�), σ(� + 1)

)
.

Since w takes values in [0, 1] it follows that

w
(
σ(�), sk(σ(�)

)
w

(
σ(� + 1), sk(σ(� + 1)

) ≤ w
(
σ(�), σ(� + 1)

)
(4.2)

for 1 ≤ k, � ≤ N . Thus for 1 ≤ k ≤ N we have

r2k =
N∏

�=1

c(Mσk(�),Mσk(�+1))2 =
N∏

�=1

w
(
σk(�), σk(� + 1)

)2

=
N∏

�=1

(
w

(
σ(�), sk(σ(�)

)
w

(
σ(� + 1), sk(σ(� + 1)

))

≤
N∏

�=1

w
(
σ(�), σ(� + 1)

)
=

N∏

�=1

c(Mσ(�),Mσ(�+1)) = rσ. (4.3)

Since σ ∈ SN was arbitrary we deduce that r2k ≤ r∗ for 1 ≤ k ≤ N , and in
particular r2G ≤ r∗, as required.
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Now suppose that r2G = r∗, and let σ∗ ∈ SN be a permutation such that
rσ∗ = r∗. Since r2G ≤ r2k ≤ r∗ for 1 ≤ k ≤ N , we see that in fact r2k = r∗ for
1 ≤ k ≤ N . Now either one of the pairwise Friedrichs numbers is zero or all
of the pairwise Friedrichs numbers are non-zero. In the latter case it is clear
from (4.3) that we must have equality in (4.2) for 1 ≤ k, � ≤ N when σ = σ∗.
Taking k = σ∗(�) in (4.2) for 1 ≤ � ≤ N , it follows that

w
(
σ∗(�), σ∗(� + 1)

)
= min

{
w(σ∗(�), k) : 1 ≤ k ≤ N, k 	= σ∗(�)

}

for 1 ≤ � ≤ N . It follows that σ∗ is itself a permutation considered by the
Greedy Algorithm, and therefore r∗ = rG. Hence r2∗ = r∗, and since r∗ 	= 0
we have r∗ = 1, which implies that c(Mk,M�) = 1 for 1 ≤ k, � ≤ N with
k 	= �. It follows that r2G < r∗ unless the collection M1, . . . ,MN of subspaces
is non-generic. �

It remains to be investigated to what extent the second bound in (4.1) is
sharp for generic constellations of subspaces. Our final example shows that it
cannot be improved in the sense that given any ε ∈ (0, 1) there exists a generic
constellation of subspaces of some Hilbert space such that

rG > (1 − ε)r1/2
∗ .

In fact, there exists a constellation of N such subspaces for every even N ≥ 4.

Example 4.2. Given a positive a positive integer n ≥ 2, let N = 2n and
suppose that 0 < δ < c < 1. By Theorem 2.1 there exists a Hilbert space X
and a generic constellation M1, . . . ,MN of closed subspaces of X such that for
1 ≤ k, � ≤ N with k 	= � we have

c(Mk,M�) =

⎧
⎪⎨

⎪⎩

c if k = � ± 1 (mod N)
cδ if k = � ± 2 (mod N) and k is even,
1 otherwise.

Let σ0 ∈ SN denote the identity permutation. Then rσ0 = cN . If we think of
the subspaces as the vertices of a complete graph of order N , and we let the
edges have weights given by the pairwise Friedrichs numbers, then rσ ≥ rσ0 for
all permutations σ ∈ SN involving no cδ-edges. Moreover, any cycle σ ∈ SN

which uses at least one of the cδ-edges cannot use more than n − 1 of them,
and must involve at least two 1-edges, so for any such cycle

rσ ≥ cn−1(cδ)n−1 = cN−2δn−1.

In particular, if c2 ≤ δn−1 then r∗ = rσ0 . It is easy to that

rG ≥ c2(cδ)n−1 = cδn−1r
1/2
∗ .

Given ε ∈ (0, 1) we deduce that rG > (1 − ε)r1/2
∗ provided c, δ ∈ (0, 1) are

such that c2 ≤ δn−1 and cδn−1 > 1 − ε. These conditions are satisfied for
instance when (1 − ε)1/3 < c < 1 and δ = c2/(n−1). Furthermore, it is the case
that for any r, ε ∈ (0, 1) there exist generic constellations of N subspaces of
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a Hilbert space for all sufficiently large even N ≥ 4 with the properties that
rG > (1 − ε)r1/2

∗ and r∗ = r.
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