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Abstract. We present a non-standard proof of the fact that the existence
of a local (i.e. restricted to a point) characteristic-zero, semi-parametric
lifting for a variety defined by the zero locus of polynomial equations over
the integers is equivalent to the existence of a collection of local semi-
parametric (positive-characteristic) reductions of such variety for almost
all primes (i.e. outside a finite set), and such that there exists a global
complexity bounding all the corresponding structures involved. Results of
this kind are a fundamental tool for transferring theorems in commutative
algebra from a characteristic-zero setting to a positive-characteristic one.
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1. Introduction

In this article we present a characterization of the fact that a finite system
of polynomial equations over the integers has a local solution (i.e. a punctual
one) over a characteristic zero k-algebra, where k is a field, such that the first
n-components of it represent a system of quasi-parameters (i.e. they generate
a maximal ideal which induces a natural ‘residual’ isomorphism with k). This
equivalence is given in terms of the existence of positive-characteristic solutions
with analogous properties and whose complexity can be uniformly bounded.
This result can be seen as a kind of local-global criterion for the existence of
punctual solutions of elementary ‘Diophantine’ varieties, which satisfies a sort
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of ‘semi-parametric’ condition. A similar result was obtained by Hochster [3,
Pag. 22] with the restrictions that the algebras involved should be integral
domains and the first m-components should generate a maximal ideal. In ad-
dition, Hochster’s original proof uses quite intricate algebraic and homological
(standard) methods. As we will see in the last section, the former constraints
can be essentially avoided due to the powerful non-standard methods that we
use in our proof, which are essentially based in the remarkable introduction of
ultraproducts in commutative algebra due to the work of Schoutens [8, §1, 5],
[9, Ch. 4].

2. Preliminary Facts

We start by recalling the following definitions (see [8]). Throughout this dis-
cussion, we will fix a monomial order in the polynomial ring k [x1, . . . , xn],
where k denotes a field.

Definition 1. Let R be a finitely generated k-algebra.

1. Let I be an ideal of k [x1, . . . , xn] . We will say that I has complexity at
most d, if n ≤ d, and it is possible to choose generators for I, f1, . . . , fs,
with deg fi ≤ d, for i = 1, . . . , s.

2. We say R has complexity at most d if there is a presentation of R as a
quotient k [x1, . . . , xn] /I, with I an ideal of complexity at most d.

3. If J ⊆ R is an ideal, we will say that J has complexity at most d, if R
has complexity less than or equal to d, and there exists a lifting of J in
k [x1, . . . , xn], let us say J ′, with complexity at most d.

Remark 1. In (1), the number of generators of I may always be bounded
in terms of d . In fact, without loss of generality we can assume that all
the fi are monic, and also that the leading terms of fi and fj are differ-
ent from each other, when i �= j (if they have same leading term, we can
change fj by fj − fi and get a new set of generators for I satisfying this
last property). So, s ≤ D, where D is the number of monomials of degree d,
D = |{xr1

1 · · · xrn
n | Σn

i=1ri ≤ d}| . It is then easy to see that D =
(
n+d

n

) ≤ (
2d
d

)
,

since d ≥ n.

Let A = k [x1, . . . , xn] be the polynomial ring with a fixed monomial
order. For any polynomial f ∈ A we will denote by af the tuple of all the
coefficients of f . When the complexity of I is at most d, and I = (f1, . . . , fs),
by adding zeroes if necessary, we may always assume that s = D, where D is
the number defined above. Then, the ideal I can be encoded by a tuple of the
form

aI =

⎛

⎝n,
D coefficients

of f1

, . . . ,
D coefficients

of fs

⎞

⎠ ∈ N × kD2
,
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where the monomials are listed according to the fixed monomial order. Con-
versely, given one of those tuples, a, we can always reconstruct the ideal it
comes from. This ideal we shall denote by I (a). Similarly, if R is a k-algebra
with complexity at most d, then R can be written as k [x1, . . . , xn] /I (a) . We
will express this fact as R = R (a).

For the sake of clarity for the reader and for introducing some impor-
tant terminology used later, we will state explicitly some seminal results de-
scribed in [8]. Let us recall that if Φ(x1, · · · , xn) is a first-order formula,
where x1, · · · , xn are the free variables, then the support of Φ with respect
to a fixed interpretation A, denoted by |Φ|A, consists of all the n−tuples
(a1, · · · , an) ∈ An such that Φ(a1, · · · , an) is true in A.

Theorem 1 ([8], Proposition 5.1.). For each d, h > 0, there exists a formula
Heightd = h such that for any field k, any finitely generated k-algebra R of
complexity at most d, and any ideal I ⊆ R of complexity at most d, the height
of I is equal to h if and only if (a, b) ∈ |Heightd = h|k, where a, b are codes for
R and I , respectively.

Example 1. Let k be an algebraic closed field of characteristic 0, let I ⊆
k[x1, . . . , xn] be an ideal of height h and complexity at most d. Let aI be
a code for I (so that, k |= ∃(ξ)(Heightd(ξ) = h), namely Heightd(aI) = h,
holds in k). So, by Lefschetz’s Principle Falg

p |= ∃(ξ)(Heightd(ξ) = h), for all
p > m, where m is some (fixed) integer. Let a′

I′ be a tuple in Falg
p for which,

after substitution, the sentence ∃(ξ)(Heightd(ξ) = h) holds true in Falg
p for

p > m. Then, by decoding a′
I′ , we may find an ideal I ′ ⊆ Falg

p [x1, . . . , xn] of
height h and with complexity at most d.

Corollary 1 ([9], Theorem 4.4.1.).Given d > 0, there exists a formula IdMemd

such that for any field k, any ideal I ⊆ k [x1, . . . , xn] and any k-algebra
R, both of complexity at most d over k, it holds that f ∈ IR if an only if
k |=IdMemd(af , aI). Here af and aI denote codes for f and I respectively.

Theorem 2 ([9] Theorem 4.4.6). For any pair of integers d, n > 0, there exists
a bound b = b(d, n) such that for any field k, and any ideal I ⊆ k[x1, . . . , xn]
of complexity at most d, its radical J = Rad(I) has complexity at most b.
Moreover, Jb ⊆ I, and I has at most b distinct minimal primes all of which
are generated by polynomials of degree at most b.

Example 2. Given d, n > 0, there exists a formula Radd such that for any field
k and any pair of ideals P, I ⊆ k[x1, . . . , xn] of complexity at most d, with P
a prime ideal containing I, it holds: the radical of I is P (i.e., Rad(I) = P ) if
and only if k |= Radd(aI , aP ). Here aI , aP are codes for I and P respectively.
In fact, by the last theorem, we know that there exists a bound b = b(d, n),
depending only on d and n such that P b ⊆ I. But this is equivalent to saying
that Rad(I) = P, since Rad(I) is the intersection of all prime ideals containing
I. It is then sufficient for the formula Radd to express that the product of any
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set of b elements between the bounded generators of P lies in I. Now, this can
be done by means of a first order formula, by using Corollary 1.

Remark 2. Using Corollary 1, it is easy to get for each d, formulas Incd and
Equald such that if R is a finitely generated k-algebra with complexity at
most d, and if J and I are ideals of R with complexity less than d, then
(aI,aJ ) ∈ |Incd|k (resp. (aI,aJ) ∈ |Equald|k) if and only if I ⊆ J (resp. I = J).

Theorem 3 ([9] Theorem 4.4.4). For any pair of integers d, n > 0, there exists
a bound b = b(d, n) such that for any field k and any ideal P ⊆ k[x1, . . . , xn] of
complexity at most d, P is a prime ideal if and only if for any two polynomials
f, g of complexity at most b which do not belong to P then neither does their
product.

Remark 3. Given d, n > 0 there exists a formula Primed such that for any field
k and any ideal P ⊆ k[x1, . . . , xn] of complexity at most d, P is a prime ideal
if and only if k |= Primed(aP ). Where aP is a code for P .

The existence of this formula follows from the last theorem, and from
Corollary 1.

Example 3. Let k be an algebraic closed field with char(k) = 0, let P be a
prime ideal in k[x1, . . . , xn] of complexity at most d, and let aP be a code for
P .

So, k |= ∃(ξ)Primed(ξ), since Primed(aP ) holds in k. By Lefschetz’s Prin-
ciple Falg

p |= ∃(ξ) Primed(ξ) for all p > m, for some m.
Furthermore, if a′

P ′ is a tuple in Falg
p for which the sentence ∃(ξ)Primed(ξ)

is true in Falg
p , for a fix prime number p > m, then, by decoding a′

P ′ , we may
find a prime ideal P ′ ⊆ Falg

p [x1, . . . , xn] with complexity at most d.

Example 4. Given d, n > 0 there exists a formula MaxIdeald,n such that for
any algebraic closed field k and any ideal m ⊆ k[x1, . . . , xn] of complexity at
most d we have:
m is a maximal ideal if and only if k |= MaxIdeald,n(am), where am is a
code for m. In fact, by the Nullstellensatz m is maximal if and only if there
exist b1, . . . , bn ∈ k such that m = (x1 − b1, . . . , xn − bn). Let us call Jb =
(x1 − b1, . . . , xn − bn). Then, the required formula is:

MaxIdeal(ξ) : (∃b1, . . . , bn)(Equald(ξ, aJb
)),

where ξ and aJ must be replaced by the codes am of m, and aJb
of Jb, respec-

tively.

Lemma 1. Let {Fα(X,Y )}α=1,...,l be a polynomial system of equations with
coefficients in Z. Then, the following two conditions are equivalent:
(a) There exists a k−algebra S = k[T1, . . . , Tν ]/I (resp. integral domain) over

an algebraic closed field k of characteristic 0, where I ⊆ k[T1, . . . , Tν ] is an
ideal (resp. prime ideal) of complexity at most d; and m ⊆ k[T1, . . . , Tν ] a
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prime ideal (resp. maximal) with complexity at most d and height n in S.
And, there exists a tuple (x, y) = (x1, . . . , xn, y1, . . . , yr) of elements in S
such that:

1. Rad(x) = m in S.
2. Fα(x, y) = 0, for all α = 1, . . . , l.

(b) There exists c, d ∈ N, such that for any prime number p ≥ c, we can always
construct a Falg

p -algebra (resp. Falg
p -domain) S′ = Falg

p [T1, . . . , Tν ]/I ′, with
I ′ ⊆ Falg

p [T1, . . . , Tν ] an ideal (resp. prime ideal) of complexity at most d,
such that:
There exists m′ ⊆ Falg

p [T1, . . . , Tν ], a prime ideal (resp. maximal) with
complexity at most d and height n in S′, and (x′, y′) = (x′

1, . . . , x
′
n, y′

1, . . . ,
y′

r), a tuple of elements in S′ such that:
1. Rad(x′) = m′ in S′.
2. Fα(x′, y′) = 0, for all α = 1, . . . , l.

Proof. (⇒) First, let us consider the cases where I is a prime ideal and m is a
prime ideal, i.e, I ⊆ m, and ht(m) = ω = n + ht(I) in k[T1, . . . , Tν ], where ω
is an integer ≤ ν (resp. ω = ν, if (and only if) m is maximal). The hypothesis
above may be expressed by means of a first order formula Φd such that when
we evaluate it on the codes of S,m, I, {Fα(X,Y )}, respectively; k |= Φd if and
only if m is a maximal ideal of height n in S, I is a prime ideal contained in
m, and (1), (2) are satisfied. This formula may be explicitly given as:

Φd : (∃am, aI , a(x,y))(Primed(aI) ∧ Primed(am)

Incd(aI , am) ∧ Heightd(am) = ω ∧ Heightd(aI) = ω − n ∧ Radd(a(x), am) ∧
IdMemd(Fα(x, y), aI)),

where the degrees of parameters (x, y) in Φd is bounded by the degrees
of fixed liftings in k[T1, · · · , Tν ] of the actual existing parameters (x, y) in S.

Now, by Lefschetz’s principle, k |= Φd, if and only if Falg
p |= Φd, for any

prime p large enough. As we discussed in Examples 2, 3, 1 and Remark 2;
there are Falg

p −tuples a′
m, a′

I and a′
(x,y) which codify a prime ideal m′ (resp.

Heightd(am) = ν codifies additionally the maximality of m), a prime ideal
I ′, and a system of elements x, y, satisfying all the required conditions in
Falg

p [T1, . . . Tν ]/I ′.
So, S′ = Falg

p [T1, . . . Tν ]/I ′ is the required Falg
p -algebra. Finally, it is clear

from above that S′ might be constructed of characteristic equal to p, for any
prime p big enough.

For the cases where I is not necessarily a prime ideal we just eliminate
the formula Primed(−) on Φ(d) from the former proof, accordingly.

(⇐) If there exists a global complexity d satisfying (b) for all prime
numbers p ≥ c, then we can construct in each of the former cases a suitable
formula Φd, such that Falg

p |= φd for all p ≥ r. Thus, by Lefschetz’s principle for
any algebraic closed field k of characteristic zero, we get k |= Φd. So, as we have
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seen before in the examples we can construct the corresponding k-structures
described in condition (a), which finishes the proof. �

Remark 4. Note that in the former lemma the condition (a) can be re-phrased
in a more general way requiring that for a fixed complexity d and any algebraic
closed field k characteristic zero, those k-structures mention there exists. In
this case, the proof would be essentially the same due to the usage of the
Lefschetz’s principle.

3. Main Result

The main theorem of this paper is the following:

Theorem 4. Let {Fα(X,Y )} , with α = 1, . . . , l, be a polynomial system of
equations with coefficients in Z. Then, the following two conditions are equiv-
alent:
(a) There exists a field of characteristic zero k, a finitely generated k-algebra

(resp. domain) S; a prime ideal m ⊆ S (resp. maximal) with height n
and (x, y) = (x1, . . . , xn, y1, . . . , yr) a tuple of elements in S such that:

1. Rad(x) = m.
2. Fα(x, y) = 0, for every α.

3. (If m is a maximal ideal) k ⊆ S
π→ S/m is an isomorphism.

(b) There exists a global complexity d such that for all prime numbers p not
belonging to a finite set, there exists a field L of prime characteristic,
a finitely generated L-algebra (resp. domain) S′, a prime ideal m′ of
S′ (resp. maximal) with height n, and elements (x′, y′) = (x′

1, . . . , x
′
n,

y′
1, . . . , y

′
r) in S′, all with complexity at most d such that:

1. Rad(x′) = m′.
2. Fα(x′, y′) = 0, for all α.

3. (If m′ is a maximal ideal) L
i

↪→ S′ π−→ S′/m′ , with π◦i an isomorphism.

Proof. First step: Reduction of the condition (a) to the case where k is al-
gebraically closed, when m is a maximal ideal. The remaining cases can be
proved in a basically the same way.

Let R be a finitely generated k-algebra, where k is any field of charac-
teristic zero. Let m ⊆ R a maximal ideal of height n, and let x1, . . . , xn be
elements in R such that Rad(x1, . . . , xn) = m, and such that conditions (1)-(3)
hold in R. Let k be an algebraic closure of k, and define R′ = k ⊗k R. We
notice that R −→ R′ is a faithfully flat extension, and therefore R injects into
R′. Moreover, mR′ ∩ R = m ([7] Theorem 7.5, (2), page 49). Consequently,
there is a prime ideal q ⊆ R′ such that q ∩ R = m. We notice that q has to
be maximal: Since R is a finitely generated k-algebra domain, all its maxi-
mal ideals have the same height, equal to the Krull dimension of R. Hence, by
Noether Normalization Theorem, there are algebraically independent elements
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a1, . . . , an in R such that A = k[a1, . . . , an] ⊆ R is a module-finite extension.
But this implies that k[a1, · · · , an] ⊆ k ⊗k R is also module-finite extension,
and consequently dim(k ⊗k R) = dimR. From this, we see that q has to be a
maximal ideal in R′, since R′/q is an integral domain of dimension zero, i.e.,
a field.

Now, in R′
q, the ideal mR′

q is qR′
q -primary. Thus, there is a power n > 0

such that qnR′
q ⊆ mR′

q. On the other hand, there is a power l > 0, such that
mlR ⊆ (x1, . . . , xn)R. Thus, qn+lR′

q ⊆ (x1, . . . , xn)R′
q. After inverting a finite

number of elements in R′ we may assume that by localizing at a single element
u ∈ R′ − q, the inclusion qn+lR′

u ⊆ (x1, . . . , xn)R′
u still holds. We let R′′ be

the localized ring R′
u.

This ring is a finitely generated k-algebra extension of R of the same
dimension. Moreover, the ideal m′′ = qR′′ is maximal, and

qn+lR′′ ⊆ (x1, . . . , xn)R′′.

Therefore, Rad(x1, . . . , xn)R′′ = m′′R′′. Let Q ⊆ R′′ be a minimal prime ideal
of R′′ included in m′′, and such that dim(R′′/Q) = dim R′′. Thus, if we let S
be the ring R′′/Q, and let η = m′′S, then, S is a f.g. k-algebra domain, with
ht(η) = n, and Rad(x1, . . . , xn)S = ηS. Thus, condition 1 holds in S.

Besides, since there is a ring homomorphism R −→ S, it is then clear that
condition 2 also holds in S. Finally, the Nullstellensatz implies that condition
3 is true in S. So, we may replace R by S.

Second step:
(⇒) Let us take a presentation for S, say S = k[T1, . . . , Tν ]/I. Since

S is an algebra (resp. integer domain), we have that I ⊆ k[T1, . . . , Tν ] is
a ideal (resp. prime ideal). By the hypothesis, there exists a prime ideal
m ⊆ k[T1, . . . , Tν ] with height n in S (resp. maximal, i.e., ht(m) = ν =
n + ht(I) in k[T1, . . . , Tν ]), and there exists a tuple of elements in S, (x, y) =
(x1(t), . . . , xn(t), y1, . . . , yr(t)) such that Rad(x) = m and Fα(x, y) = 0, for
all α = 1, . . . , l. Let us note that since we can suppose by the first step that
k is algebraically closed, the condition requiring that k ⊆ S

π→ S/m is an
isomorphism, turns out to be (trivially) satisfied.

Let d > 0 be an integer that bounds all the complexities of the objects
mentioned above. So, the proof follows from Lemma 1.

(⇐) Assume that there exists a uniform complexity d, and c ∈ N such
that for any characteristic p ≥ c the L-structures of condition (b) exist. Then,
by Lemma 1 there exists an (algebraically closed) field of characteristic zero
k, a finitely generated k-algebra (resp. domain) S; a prime ideal m ⊆ S (resp.
maximal) with height n, and (x, y) = (x1, . . . , xn, y1, . . . , yr) a tuple of ele-
ments in S such that Rad(x) = m, and Fα(x, y) = 0, for every α. Finally, if
the m′ are maximal ideals, then by the Nullstellensatz, k ⊆ S

π→ S/m is an
isomorphism. �
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Remark 5. As pointed out in the introduction, the importance of the former
Theorem lies in the fact that it generalizes Hochster’s theorem, as it first
appeared in [3, Pag. 22]. Now, Hochster’s remarkable result provides a nat-
ural bridge for proving statements about equicharacteristic rings in charac-
teristic zero, by first reducing to the case of prime characteristic. In addition,
Hochster’s theorem combined with M. Artin’s approximation theorem [1] turns
out to be especially powerful. The full existence of Big Cohen Macaulay mod-
ules, for instance, depends directly on Hochster’s reduction method. For a
survey of different applications of this technique the reader may consult [5,
Ch. 4, 5, 7-9].

On the other hand, Hochster’s theorem becomes especially relevant for
the construction of a theory of Tight Closure in characteristic zero [4, Ch. 3],
[5, Pag. 94] (for further readings see also [6] and [2]).
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