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Abstract. In this paper we introduce a notion of a para-complex affine
hypersphere. We give a complete local classification of such hypersur-
faces and give several examples. It turns out that every para-complex
affine hypersphere can be constructed from (real) affine hyperspheres. As
an application, we classify all 2-dimensional para-complex affine hyper-
spheres.
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1. Introduction

The main motivation for this paper are results obtained by Dillen et al. [1].
In that paper the authors introduce a notion of a complex affine hypersurface
and, in particular, a notion of a complex affine hypersphere. Now, it seems
to be natural to ask what happens in a para-complex case. Para-complex
structures are widely studied by many authors (see e.g. [2–4]). A concept of a
para-complex affine immersion as well as a para-complex affine hypersurface
was introduced by Schäfer and Lawn [5].

In this paper we introduce a notion of a para-complex affine hypersphere
and give a complete local classification of such hypersurfaces. More precisely,
we show that every para-complex affine hypersphere can be locally obtained
from two real affine hyperspheres. In particular, we can construct several ex-
amples of para-complex affine hyperspheres using well know examples of real
affine hyperspheres. As an application we provide examples of 1-dimensional
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(in a para-complex sense) para-complex affine spheres and show that they
are the only 1-dimensional para-complex affine spheres up to a para-complex
equiaffine transformation.

In Sect. 2 we briefly recall basic formulas of affine differential geometry
and recall the notion of an affine hypersphere. Since para-complex affine hy-
persufaces are hypersurfaces of a real codimension two, we recall also a concept
of an affine hypersurface of codimension two.

In the first part of Sect. 3 we recall some basic concepts related to para-
complex geometry (for details we refer to [5–7]). Later, using similar methods
like in [1] we introduce a notion of affine normal fields for para-complex affine
hypersurfaces and study several basic properties of hypersurfaces equipped
with such vector field.

The Sect. 4 contains main results of this paper. In this section we intro-
duce a notion of a para-complex affine hypersphere and prove classification the-
orems. Especially, we shall show that there is a strict correspondence between
real and para-complex affine hyperspheres. We also give several examples.

2. Preliminaries

We briefly recall the basic formulas for affine differential geometry. For more
details, we refer to [8]. Let f : M → R

n+1 be an orientable connected differ-
entiable n-dimensional hypersurface immersed in affine space R

n+1 equipped
with its usual flat connection D. Then for any transversal vector field C we
have

DX f∗Y = f∗(∇XY ) + h(X,Y )C

and

DX C = −f∗(SX) + τ(X)C,

where X,Y are tangent vector fields. For any transversal vector field ∇ is a
torsion-free connection, h is a symmetric bilinear form on M , called the second
fundamental form, S is a tensor of type (1, 1), called the shape operator and
τ is a 1-form.

In this paper we assume that h is nondegenerate so that h defines a
pseudo-Riemannian metric on M . If h is nondegenerate, then we say that the
hypersurface or the hypersurface immersion is nondegenerate. We have the
following

Theorem 2.1. ([8], Fundamental equations) For an arbitrary transversal vector
field C the induced connection ∇, the second fundamental form h, the shape
operator S, and the 1-form τ satisfy the following equations:

R(X,Y )Z = h(Y,Z)SX − h(X,Z)SY, (2.1)

(∇Xh)(Y,Z) + τ(X)h(Y,Z) = (∇Y h)(X,Z) + τ(Y )h(X,Z), (2.2)

(∇XS)(Y ) − τ(X)SY = (∇Y S)(X) − τ(Y )SX, (2.3)
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h(X,SY ) − h(SX, Y ) = 2dτ(X,Y ). (2.4)

The Eqs. (2.1), (2.2), (2.3), and (2.4) are called the equation of Gauss,
Codazzi for h, Codazzi for S and Ricci, respectively.

For an affine hypersurface the cubic form Q is defined by the formula

Q(X,Y,Z) = (∇Xh)(Y,Z) + τ(X)h(Y,Z). (2.5)

It follows from the equation of Codazzi (2.2) that Q is symmetric in all three
variables.

For a hypersurface immersion f : M → R
n+1 a transversal vector field

C is said to be equiaffine (resp. locally equiaffine) if τ = 0 (resp. dτ = 0).
For an affine hypersurface f : M → R

n+1 with a transversal vector field C we
consider the following volume element on M :

θ(X1, . . . , Xn) = det[f∗X1, . . . , f∗Xn, C]

for all X1, . . . , Xn ∈ X (M). We call θ the induced volume element on M .
When f is nondegenerate, there exists a canonical transversal vector

field C, called the affine normal (or the Blaschke field). The affine normal
is uniquely determined up to sign by the following conditions:

τ = 0 (i.e. C is equiaffine),
ωh = θ,

where ωh is defined by ωh(X1, . . . , Xn) = |det[h(Xi,Xj)]|1/2, where X1, . . . , Xn

is positively oriented basis relative to the induced volume form θ. The affine
immersion f with a Blaschke field C is called a Blaschke hypersurface.

A Blaschke hypersurface M is called an improper affine hypersphere if
S = 0. If S = λ id, where λ is a nonzero constant, then M is called a proper
affine hypersphere.

Remark 2.1. Sometimes it is convenient to weak the condition ωh = θ and
replace it with ωh = c · θ, where c ∈ R\{0}. When for some equiaffine vector
field ξ we have ωh = c · θ then ξ is proportional to the Blaschke field. Namely
we have that ξ′ := ±|c| 2

n+2 · ξ is the Blaschke field. Note also that if the shape
operator is proportional to identity then f (with ξ′) is an affine hypersphere.
We will often make use of this observation later in this paper.

Let (M,∇) and (˜M, ˜∇) be two differential manifolds of dimension n and
n + p with torsion-free affine connections ∇ and ˜∇ respectively.

An immersion f : M → ˜M is called an affine immersion if there exists
around each point of M , a field N of transversal subspaces of dimension p,
denoted by x �→ Nx ⊂ Tf(x)(˜M) and such that

Tf(x)(˜M) = f∗(TxM) + Nx (2.6)

holds and, for all vector fields X and Y on M , we have a decomposition
˜∇Xf∗Y = f∗∇XY + α(X,Y ), (2.7)
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where ∇XY ∈ TxM and α(X,Y ) ∈ Nx at each point x. We call Nx the
transversal space and α the affine fundamental form. If ξ is a vector field with
values in N , ξx ∈ Nx, then we write

˜∇Xξ = −f∗SξX + ∇⊥
Xξ, (2.8)

where SξX ∈ TxM and ∇⊥
Xξ ∈ Nx at each point x. We call Sξ the shape

operator for ξ, and ∇⊥ the normal connection.
Now, let ˜M = R

n+2 and ˜∇ = D be the ordinary flat connection on R
n+2.

Let f : M → R
n+2 be an immersion, and N : M � x �→ Nx be a transversal

bundle for the immersion f . Immersion f together with the transversal bundle
N we call an affine hypersurface of codimension two. For any local basis {ξ1, ξ2}
of N , we can write

DXf∗Y = f∗(∇XY ) + h1(X,Y )ξ1 + h2(X,Y )ξ2, (2.9)

DXξ1 = −f∗(S1X) + τ11(X)ξ1 + τ12(X)ξ2 (2.10)

DXξ2 = −f∗(S2X) + τ21(X)ξ1 + τ22(X)ξ2. (2.11)

Then ∇ is a torsion-free affine connection on M , which depends only on N and
not on the choice of local basis {ξ1, ξ2}. We call it the affine connection induced
by N . The other objects hi, Si, τij , i, j ∈ {1, 2}, are respectively the affine
fundamental forms, the shape operators and the normal connection forms.

3. Para-Complex Affine Hypersurfaces

Fist we recall some basic concepts related to para-complex geometry. For de-
tails see [6,7] and [5].

A para-complex structure on a real finite dimensional vector space V is
an endomorphism ˜J ∈ End(V ), such that ˜J2 = id and the two eigenspaces
V ± := ker(id ∓ ˜J) of ˜J have the same dimension. An almost para-complex
structure on a smooth manifold M is a (1,1)-tensor ˜J on M such that, for
all p ∈ M , ˜Jp is a para-complex structure on TpM . An almost para-complex
structure ˜J on M is called integrable if the distributions D± := ker(id ∓ ˜J) are
integrable. An integrable almost para-complex structure on M is called a para-
complex structure and a manifold M endowed with a para-complex structure
is called a para-complex manifold.

Lemma 3.1. [7] An almost para-complex structure ˜J is integrable if and only
if N

˜J = 0, where N
˜J is the Nijenhuis tensor for ˜J .

Let us denote by ˜C the real algebra of para-complex numbers, which is
generated by 1 and the para-complex unit e (e2 = 1). For every z = x+ey ∈ ˜C

we have the para-complex conjugation x + ey := x − ey and the real and
imaginary parts of z: 	(z) := x and 
(z) := y. The free ˜C-module ˜C

n is
a para-complex vector space, where the para-complex structure is just the
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multiplication by e. The para-complex conjugation extends componentwise to
˜C

n. The para-complex dimension of a para-complex manifold M is the integer
n = dim

˜C
M := dimM

2 .
Let (M, ˜JM ) and (N, ˜JN ) be para-complex manifolds. A smooth function

f : (M, ˜JM ) → (N, ˜JN ) is called para-holomorphic if df ◦ ˜JM = ˜JN ◦df . A para-
holomorphic map f : (M, ˜JM ) → ˜C is called a para-holomorphic function.

Let g : M2n → R
2n+2 be an immersion and let ˜J be the standard para-

complex structure on R
2n+2. That is

˜J(x1, . . . , xn+1, y1, . . . , yn+1) := (y1, . . . , yn+1, x1, . . . , xn+1).

We always identify (R2n+2, ˜J) with ˜C
n+1.

Assume now that g∗(TM) is ˜J-invariant and ˜J |g∗(TxM) is a para-complex
structure on g∗(TxM) for every x ∈ M . Then ˜J induces an almost para-
complex structure on M , which we will also denote by ˜J . Moreover, since
(R2n+2, ˜J) is para-complex then (M, ˜J) is para-complex as well. By assumption
we have that dg ◦ ˜J = ˜J ◦ dg that is g : M2n → R

2n+2 ∼= ˜C
n+1 is a para-

holomorphic immersion. Since para-complex dimension of M is n, immersion
g is called a para-holomorphic hypersurface.

Let g : M2n → R
2n+2 be an affine hypersurface of codimension 2 with a

transversal bundle N . If g is para-holomorphic then it is called affine para-
holomorphic hypersurface. If additionally the transversal bundle N is ˜J-invar-
iant then g is called a para-complex affine hypersurface.

Let g : M2n → R
2n+2 be a para-holomorphic hypersurface. We say that

g is para-complex centro-affine hypersurface if {g, ˜Jg} is a transversal bundle
for g.

Now, let g : M2n → R
2n+2 be a para-holomorphic hypersurface. Then for

every x ∈ M there exists a neighborhood U of x and a transversal vector field
ζ : U → R

2n+2 such that {ζ, ˜Jζ} is a transversal bundle for g|U . That is g|U
considered with {ζ, ˜Jζ} is a para-complex affine hypersurface. Indeed, let Nx

be any vector space transversal to g∗(TxM). If Nx is ˜J-invariant then it must
be a para-complex vector space, so we can find vector v ∈ Nx such that {v, ˜Jv}
is a basis for Nx. If Nx is not ˜J-invariant then Nx∩ ˜JNx must be 1-dimensional.
In this case we can choose v ∈ Nx such that v �∈ Nx ∩ ˜JNx. Now vector ˜Jv is
transversal to g∗(TxM) and linearly independent with v. That is {v, ˜Jv} is a
para-complex transversal vector space to g∗(TxM). Summarizing at x we can
always find a transversal vector v such that g∗(TxM) ⊕ span{v, ˜Jv} = R

2n+2.
Hence, in a neighborhood of x we can find a transversal vector field ζ such
that {ζ, ˜Jζ} is a transversal bundle for g in this neighborhood.

Let g : M2n → R
2n+2 be a para-holomorphic hypersurface and let ζ : U →

R
2n+2 be a local transversal vector field on U ⊂ M such that {ζ, ˜Jζ} is a

transversal bundle to g. So for all tangent vector fields X,Y ∈ X (U) we can
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decompose DXY and DXζ into tangent and transversal part. So we have

DX g∗Y = g∗(∇XY ) + h1(X,Y )ζ + h2(X,Y ) ˜Jζ (formula of Gauss)

DX ζ = −g∗(SX) + τ1(X)ζ + τ2(X) ˜Jζ (formula of Weingarten)

where ∇ is a torsion free affine connection on U , h1 and h2 are symmetric
bilinear forms on U , S is a (1, 1)-tensor field on U and τ1 and τ2 are 1-forms
on U .

Using the fact that D ˜J = 0 and the formula of Gauss by straightforward
computations we can prove the following

Lemma 3.2. [5]

∇ ˜J = 0, (3.1)

h1(X, ˜JY ) = h1( ˜JX, Y ) = h2(X,Y ), (3.2)

h2(X, ˜JY ) = h1(X,Y ). (3.3)

We say that a hypersurface is nondegenerate if h1 (and in consequence
h2) is nondegenerate.

Lemma 3.3. Let g : M → R
2n+2 be a para-complex affine hypersurface with

a transversal bundle {ζ, ˜Jζ}. Then the induced connection ∇, the affine fun-
damental forms h1, h2, the shape operator S and the transversal connection
forms τ1, τ2 satisfy the following equations:

R(X,Y )Z = h1(Y,Z)SX + h2(Y,Z) ˜J(SX)

− h1(X,Z)SY − h2(X,Z) ˜J(SY ), (3.4)

(∇Xh1)(Y,Z) − (∇Y h1)(X,Z) = τ1(Y )h1(X,Z) + τ2(Y )h2(X,Z)

− τ1(X)h1(Y,Z) − τ2(X)h2(Y,Z), (3.5)

(∇Xh2)(Y,Z) − (∇Y h2)(X,Z) = τ1(Y )h2(X,Z) + τ2(Y )h1(X,Z)

− τ1(X)h2(Y,Z) − τ2(X)h1(Y,Z), (3.6)

(∇XS)(Y ) − (∇Y S)(X) = τ1(X)SY + τ2(X) ˜J(SY )

− τ1(Y )SX − τ2(Y ) ˜J(SX), (3.7)

h1(X,SY ) − h1(SX, Y ) = 2dτ1(X,Y ), (3.8)

h2(X,SY ) − h2(SX, Y ) = 2dτ2(X,Y ). (3.9)

Assume now that {˜ζ, ˜J˜ζ} is any other transversal bundle on U . Then
there exist functions ϕ,ψ on U and Z ∈ X (U) such that

˜ζ = ϕζ + ψ ˜Jζ + g∗Z.

Since {˜ζ, ˜J˜ζ} is transversal the above formula implies that ϕ2−ψ2 �= 0. Indeed,
we have

ϕ˜ζ − ψ ˜J˜ζ = (ϕ2 − ψ2)ζ + ϕg∗Z − ψ ˜Jg∗Z.
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If ϕ2 −ψ2 = 0 then ϕ˜ζ −ψ ˜J˜ζ ∈ TU , but since {˜ζ, ˜J˜ζ} is transversal we obtain
ϕ = ψ = 0, what is impossible because ˜ζ is transversal.

By the formulas of Gauss and Weingarten with respect to ˜ζ we obtain
the objects ˜∇, ˜h1, ˜h2, ˜S, τ̃1, τ̃2 which satisfy the following relations

Lemma 3.4.

h1(X,Y ) = ϕ˜h1(X,Y ) + ψ˜h2(X,Y ), (3.10)

h2(X,Y ) = ψ˜h1(X,Y ) + ϕ˜h2(X,Y ), (3.11)

∇XY = ˜∇XY + ˜h1(X,Y )Z + ˜h2(X,Y ) ˜JZ, (3.12)

− ϕSX − ψSX + ∇XZ = −˜SX + τ̃1(X)Z + τ̃2(X) ˜JZ, (3.13)

X(ϕ) + ϕτ1(X) + ψτ2(X) + h1(X,Z) = ϕτ̃1(X) + ψτ̃2(X), (3.14)

ϕτ2(X) + X(ψ) + ψτ1(X) + h2(X,Z) = ψτ̃1(X) + ϕτ̃2(X), (3.15)

˜h1 =
h1ϕ − h2ψ

ϕ2 − ψ2
, (3.16)

τ̃1(X) =
1
2
X(ln |ϕ2 − ψ2|) + τ1(X) +

1
ϕ2 − ψ2

(ϕh1(X,Z) − ψh2(X,Z)).

(3.17)

Proof. Formulas (3.10)–(3.15) are straightforward. Formulas (3.16) and (3.17)
follow at once from (3.10), (3.11), (3.14) and (3.15). �

On U we define the volume form θζ by the formula

θζ(X1, . . . , X2n) := det(g∗X1, . . . , g∗X2n, ζ, ˜Jζ)

for tangent vectors Xi, i = 1, . . . , 2n. Then, consider the function Hζ on U
defined by

Hζ := det[h1(Xi,Xj)]i,j=1...2n

where X1, . . . , X2n is a local basis in TU such that θζ(X1, . . . , X2n) = 1. This
definition is independent of the choice of basis. It is easy to see that ∇, θζ and
τ1 are related by the following formula:

∇Xθζ = 2τ1(X)θζ . (3.18)

If {˜ζ, ˜J˜ζ} is other transversal bundle on U then we have the following
relations between θ

˜ζ , H
˜ζ and θζ , Hζ

Lemma 3.5.

θ
˜ζ = (ϕ2 − ψ2)θζ , (3.19)

H
˜ζ =

1
(ϕ2 − ψ2)n+2

· Hζ . (3.20)
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Proof. Since Formula (3.19) is straightforward it is enough to prove (3.20). Let
{X1, ˜JX1, . . . , Xn, ˜JXn} be a local basis on TM . Then

θζ(X1, ˜JX1, . . . , Xn, ˜JXn) = α

where α �= 0 ( either α < 0 or α > 0). Now let ˜X1 := X1√
|α| then

θζ(˜X1, ˜J ˜X1,X2, ˜JX2, . . . , Xn, ˜JXn) =
α

|α| .

It follows that we can choose the basis {X1, ˜JX1, . . . , Xn, ˜JXn} such that

θζ(X1, ˜JX1, . . . , Xn, ˜JXn) = ±1.

Let Yi = Xi

|ϕ2−ψ2| 1
2n

for i = 1, . . . , n. Then

θ
˜ζ(Y1, . . . , ˜JYn) = (ϕ2 − ψ2)θζ(Y1, . . . , ˜JYn)

= (ϕ2 − ψ2) · 1
|ϕ2 − ψ2|θζ(X1, . . . , ˜JXn)

= sgn(ϕ2 − ψ2)θζ(X1, . . . , ˜JXn) = ±1,

and in consequence

H
˜ζ = det

⎡

⎢

⎣

˜h1(Y1, Y1) ˜h1(Y1, ˜JY1) · · · ˜h1(Y1, ˜JYn)
...

...
. . .

...
˜h1( ˜JYn, Y1) ˜h1( ˜JYn, ˜JY1) · · · ˜h1( ˜JYn, ˜JYn)

⎤

⎥

⎦

=
1

(ϕ2 − ψ2)2
det

⎡

⎢

⎣

˜h1(X1,X1) ˜h1(X1, ˜JX1) · · · ˜h1(X1, ˜JXn)
...

...
. . .

...
˜h1( ˜JXn,X1) ˜h1( ˜JXn, ˜JX1) · · · ˜h1( ˜JXn, ˜JXn)

⎤

⎥

⎦
.

We also have

det

[

˜h1(Xk, Xl) ˜h1(Xk, ˜JXl)
˜h1(Xm, Xl) ˜h1(Xm, ˜JXl)

]

=
1

(ϕ2 − ψ2)2
det

[

ϕh1(Xk, Xl) − ψh2(Xk, Xl) ϕh1(Xk, ˜JXl) − ψh2(Xk, ˜JXl)

ϕh1(Xm, Xl) − ψh2(Xm, Xl) ϕh1(Xm, ˜JXl) − ψh2(Xm, ˜JXl)

]

=
1

(ϕ2 − ψ2)2
det

[

ϕh1(Xk, Xl) − ψh1(Xk, ˜JXl) ϕh1(Xk, ˜JXl) − ψh1(Xk, Xl)

ϕh1(Xm, Xl) − ψh1(Xm, ˜JXl) ϕh1(Xm, ˜JXl) − ψh1(Xm, Xl)

]

=
1

(ϕ2 − ψ2)2
det

[

ϕh1(Xk, Xl) ϕh1(Xk, ˜JXl)

ϕh1(Xm, Xl) ϕh1(Xm, ˜JXl)

]

+
1

(ϕ2 − ψ2)2
det

[

−ψh1(Xk, ˜JXl) −ψh1(Xk, Xl)

−ψh1(Xm, ˜JXl) −ψh1(Xm, Xl)

]

=
ϕ2 − ψ2

(ϕ2 − ψ2)2
det

[

h1(Xk, Xl) h1(Xk, ˜JXl)

h1(Xm, Xl) h1(Xm, ˜JXl)

]

.
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Now we obtain

det

[

˜h1(Xk, Xl) ˜h1(Xk, ˜JXl)
˜h1(Xm, Xl) ˜h1(Xm, ˜JXl)

]

=
1

ϕ2 − ψ2
det

[

h1(Xk, Xl) h1(Xk, ˜JXl)

h1(Xm, Xl) h1(Xm, ˜JXl)

]

.

The above implies that

H
˜ζ =

1
(ϕ2 − ψ2)2

· 1
(ϕ2 − ψ2)n

· Hζ

and eventually

H
˜ζ =

1
(ϕ2 − ψ2)n+2

· Hζ .

�

When g is nondegenerate there exist transversal vector fields ζ satisfying
the following two conditions:

|Hζ | = 1,

τ1 = 0.

Such vector fields are called affine normal vector fields. The first condition is
a kind of normalization and the second condition implies that ∇θζ = 0 [see
(3.18) formula].

Indeed, let {ζ, ˜Jζ} be an arbitrary transversal bundle for g. Since g is
nondegenerate we have Hζ �= 0, so we can find functions ϕ and ψ such that
ϕ2 − ψ2 �= 0 and

|(ϕ2 − ψ2)n+2| = |Hζ |. (3.21)

Let ˜ζ := ϕζ + ψζ + Z where Z is an arbitrary vector field on M . Lemma 3.5
(Formula (3.20)] and (3.21) imply that |H

˜ζ | = 1. We shall show that we can

choose Z in such a way that ˜ζ is an affine normal vector field.
By Lemma 3.4 [Formula (3.17)] we have

τ̃1(X) =
1
2
X(ln |ϕ2 − ψ2|) + τ1(X) +

1
ϕ2 − ψ2

(ϕh1(X,Z) − ψh2(X,Z))

Now using Lemma 3.2 we obtain

τ̃1(X) =
1
2
X(ln |ϕ2 − ψ2|) + τ1(X) +

1
ϕ2 − ψ2

· h1(X,ϕZ − ψ ˜JZ).

Since h1 is nondegenerate we can find Z such that τ̃1(X) = 0 for all
vector fields X defined on U . In this way we have shown that on every para-
holomorphic hypersurface one may find (at least locally) an affine normal
vector field.

Lemma 3.6. Let g : M2n → R
2n+2 be a nondegenerate para-holomorphic hyper-

surface and let ζ, ˜ζ : U → R
2n+2 be two affine normal vector fields on U ⊂ M .

Then ˜ζ = ϕζ + ψ ˜Jζ, where |ϕ2 − ψ2| = 1.
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Proof. Since ζ, ˜ζ are transversal there exist functions ϕ,ψ ∈ C∞(U) and a
tangent vector field Z ∈ X (U) such that ˜ζ = ϕζ + ψ ˜Jζ + Z. Since |Hζ | =
|H

˜ζ | = 1 the Formula (3.20) implies that |ϕ2 − ψ2| = 1. Now, due to the fact
that τ1 = τ̃1 = 0 and by Formula (3.17) and Lemma 3.2 we obtain

0 = ϕh1(X,Z) − ψh2(X,Z) = ϕh1(X,Z) − ψh1(X, ˜JZ) = h1(X,ϕZ − ψ ˜JZ)

for all X ∈ X (U). Since h1 is nondegenerate and ϕ2 − ψ2 �= 0 the last formula
implies that Z = 0. The proof is completed. �

Lemma 3.7. Let g : M → R
2n+2 be a para-complex affine hypersurface with

a transversal bundle {ζ, ˜Jζ}. Then for each point x ∈ M there exists a local
coordinate system x1, . . . , xn, y1, . . . , yn with origin at x such that ∂x1 , . . . , ∂xn

and ∂y1 , . . . , ∂yn
are local bases for D+ and D− respectively and

h1(∂xi
, ∂yj

) = 0, (3.22)

h2(∂xi
, ∂yj

) = 0, (3.23)

∇∂xi
∂yj

= ∇∂yj
∂xi

= 0, (3.24)

∇∂xi
∂xj

∈ D+, (3.25)

∇∂yi
∂yj

∈ D− (3.26)

for i, j = 1, . . . , n.

Proof. Since D+ and D− are involutive and D+ ⊕D− = TM using lemma
about direct product of involutive distributions (see Prop. 5.2, p. 182 in [9])
we have that for each x ∈ M there exists a neighbourhood U of x and a local
coordinate system x1, . . . , xn, y1, . . . , yn on U such that ∂xi

∈ D+, ∂yi
∈ D−

for i = 1, . . . , n. Lemma 3.2 implies that

h1(∂xi
, ˜J∂yj

) = h1( ˜J∂xi
, ∂yj

).

Since ˜J∂xi
= ∂xi

and ˜J∂yj
= −∂yj

we have h1( ˜J∂xi
, ∂yj

) = h1(∂xi
, ∂yj

) that is
h1(∂xi

, ∂yj
) = 0 for i, j = 1, . . . , n. As an immediate consequence we get that

h2(∂xi
, ∂yj

) = 0 for i, j = 1, . . . , n as well.
From (3.1) we obtain

−∇∂xi
∂yj

= ∇∂xi

˜J∂yj
= ˜J(∇∂xi

∂yj
)

and

∇∂yj
∂xi

= ∇∂yj

˜J∂xi
= ˜J(∇∂yj

∂xi
),

so ∇∂xi
∂yj

∈ D− and ∇∂yj
∂xi

∈ D+. Since ∇ is torsion free we also have
∇∂xi

∂yj
= ∇∂yj

∂xi
that is

∇∂xi
∂yj

= ∇∂yj
∂xi

= 0.

Using again Formula (3.1) we get

∇∂xi
∂xj

= ∇∂xi

˜J∂xj
= ˜J(∇∂xi

∂xj
)
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and

−∇∂yi
∂yj

= ∇∂yi

˜J∂yj
= ˜J(∇∂yi

∂yj
)

that is ∇∂xi
∂xj

∈ D+ and ∇∂yi
∂yj

∈ D− for i, j = 1, . . . , n. The proof is
completed. �

As an immediate consequence of the above lemma we obtain

Corollary 3.1. Let g : M → R
2n+2 be a para-complex affine hypersurface with

a transversal bundle {ζ, ˜Jζ}. Then for each X ∈ D+, Y ∈ D− we have
1. hi(X,Y ) = 0 for i = 1, 2;
2. Distributions D+ and D− are ∇ parallel. That is for every Z ∈ X (M)

we have ∇ZX ∈ D+ and ∇ZY ∈ D−.

Lemma 3.8. Let g : M → R
2n+2 be a para-complex affine hypersurface with

a transversal bundle {ζ, ˜Jζ}. Then for each point x ∈ M there exists a local
coordinate system x1, . . . , xn, y1, . . . , yn with origin at x such that g can be
locally expressed in the form

g(x1, . . . , xn, y1, . . . , yn) = A(x1, . . . , xn) + B(y1, . . . , yn),

where

A : U1 � (x1, . . . , xn) �→ A(x1, . . . , xn) ∈ R
2n+2

and

B : U2 � (y1, . . . , yn) �→ B(y1, . . . , yn) ∈ R
2n+2

are smooth immersions from open subsets U1, U2 ⊂ R
n. Moreover ˜JA = A and

˜JB = −B.

Proof. Let x ∈ M and let x1, . . . , xn, y1, . . . , yn be a local coordinate system
from Lemma 3.7. By formula of Gauss we have

gxiyj
= D∂xi

g∗∂yj
= g∗∇∂xi

∂yj
+ h1(∂xi

, ∂yj
)ζ + h2(∂xi

, ∂yj
) ˜Jζ.

Now (3.22)–(3.24) imply that gxiyj
= 0 for i, j = 1, . . . , n. Solving this system

of partial differential equations we immediately get that there exist open sub-
sets U1, U2 ⊂ R

n and smooth functions A : U1 → R
2n+2, B : U2 → R

2n+2 such
that

g(x1, . . . , xn, y1, . . . , yn) = A(x1, . . . , xn) + B(y1, . . . , yn)

for (x1, . . . , xn) ∈ U1 and (y1, . . . , yn) ∈ U2. Since g is an immersion it is
obvious that both A and B are immersions too. To prove the last part of
the lemma it is enough to note that since g is para-holomorphic we have
Axi

= g∗(∂xi
) = ˜Jg∗(∂xi

) = ˜JAxi
and −Byi

= −g∗(∂yi
) = ˜Jg∗(∂yi

) = ˜JByi

for i = 1, . . . , n. That is there exist constants C1, C2 ∈ R
2n+2 such that ˜JA =

A+C1 and ˜JB = −B+C2. Note that ˜JC1 = −C1 and ˜JC2 = C2. Let us define
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A := A+ 1
2C1+ 1

2C2 and B := B− 1
2C1− 1

2C2. Then we have A+B = A+B = g
and

˜JA = ˜JA − 1
2
C1 +

1
2
C2 = A + C1 − 1

2
C1 +

1
2
C2

= A +
1
2
C1 +

1
2
C2 = A

˜JB = ˜JB +
1
2
C1 − 1

2
C2 = −B + C2 +

1
2
C1 − 1

2
C2

= −B +
1
2
C1 +

1
2
C2 = −B.

�

4. Para-Complex Affine Hyperspheres

In this section we focus on a special type of para-complex hypersurfaces.
Namely, we study so called para-complex affine hyperspheres. The definition
of para-complex affine hypersphere is very similar to definition of a hyper-
sphere in a complex case. The aim of this section is to give a complete local
classification of such hypersurfaces. Especially, we shall show that there is a
strict correspondence between real and para-complex affine hyperspheres.

A nondegenerate para-complex hypersurface is said to be a proper para-
complex affine hypersphere if there exists an affine normal vector field ζ such
that S = αI, where α ∈ R\{0} and τ2 = 0. If there exists an affine normal
vector field ζ such that S = 0 and τ2 = 0 we say about an improper para-
complex affine hypersphere.

Remark 4.1. Let g : M → R
2n+2 be a proper para-complex affine hypersphere

with a transversal bundle {ζ, ˜Jζ} such that S = αI for ζ. Then g is a para-
complex affine hypersphere with a transversal bundle {˜ζ, ˜J˜ζ}, where ˜ζ = 1

2 (α+
1
α )ζ + 1

2 ( 1
α − α) ˜Jζ and ˜S = id.

Now we shall prove a classification theorem for para-complex affine hy-
perspheres.

Theorem 4.1. Let g : M → R
2n+2 be a para-complex affine hypersphere with a

transversal bundle {ζ, ˜Jζ}. Then there exist open subsets U1 ⊂ R
n, U2 ⊂ R

n

and (real) affine hyperspheres

f1 : U1 → R
n+1, f2 : U2 → R

n+1

such that g can be locally expressed in the form

g = f1 × f2 + ˜J ◦ (f1 × (−f2)). (4.1)

Moreover, if g is proper (respectively improper) then both f1 and f2 are proper
(respectively improper) as well. The converse is also true, in the sense, that
for every two proper (respectively improper) affine hyperspheres f1 and f2 the
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Formula (4.1) defines a proper (respectively improper) para-complex affine hy-
persphere.

Proof. Let g : M → R
2n+2 be a para-complex affine hypersphere and let x ∈

M . Since g is a para-complex affine hypersurface the Lemma 3.8 implies that
there exist open subsets U1, U2 ⊂ R

n and smooth immersions A : U1 → R
2n+2,

B : U2 → R
2n+2 such that ˜JA = A, ˜JB = −B and g can be expressed in some

neighborhood of x in the form:

g : U1 × U2 � (x1, . . . , xn, y1, . . . , yn) �→ A(x1, . . . , xn) + B(y1, . . . , yn) ∈ R
2n+2.

Let ∇, h1, S, τ1 and τ2 be induced affine objects for g. Since g is a hyper-
sphere we have τ1 = τ2 = 0 and S = α id for some α ∈ R.

Let π1 : R2n+2 → R
n+1 be a projection of first (n + 1) variables on R

n+1

and let π2 : R2n+2 → R
n+1 be a projection of last (n + 1) variables on R

n+1.
Let us define f1 : U1 � (x1, . . . , xn) �→ π1 ◦ A(x1, . . . , xn) ∈ R

n+1 and f2 : U2 �
(y1, . . . , yn) �→ π2 ◦ B(y1, . . . , yn) ∈ R

n+1. Since A and B are immersions and
˜JA = A and ˜JB = −B we easily verify that f1 and f2 are immersions too.
We also have

g = f1 × f2 + ˜J ◦ (f1 × (−f2)).

Now, it is enough to show that f1 and f2 are affine hyperspheres. For this
purpose we shall consider the following two cases.

Case I α �= 0. In this case we have ζ = −αg. Since ζ and ˜Jζ are linearly inde-
pendent and transversal to g then also 1

2 (ζ+ ˜Jζ) = −αA and 1
2 (ζ− ˜Jζ) = −αB

are transversal to g. In particular {Ax1 , . . . , Axn
, A} and {By1 , . . . , Byn

, B} are
linearly independent. Let α1, . . . , αn, β be functions on U1 such that

∑

i

αif1xi
+ βf1 = 0.

Then
∑

i

αiAxi
+ βA =

∑

i

αi(π1Axi
, π1Axi

) + β(π1A, π1A)

=

(

∑

i

αif1xi
+ βf1,

∑

i

αif1xi
+ βf1

)

= (0, 0).

Since {Ax1 , . . . , Axn
, A} are linearly independent the above implies that α1 =

· · · = αn = β = 0 that is f1 is linearly independent with {f1xi
}n

i=1. Now
ξ1 := −2αf1 is a transversal vector field to f1. In a similar way we show that
ξ2 := −2αf2 is a transversal vector field to f2.

The Gauss formula for g implies that

D∂xi
g∗∂xj

= g∗(∇∂xi
∂xj

) + h1(∂xi
, ∂xj

)ζ + h2(∂xi
, ∂xj

) ˜Jζ

= Γ k
ijgxk

+ h1(∂xi
, ∂xj

)(ζ + ˜Jζ)

= Γ k
ijAxk

+ h1(∂xi
, ∂xj

) · (−2αA), (4.2)
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where Γ k
ij are Christoffel’s symbols for ∇ and we used the fact that h1 = h2

on D+. On the other hand we have

D∂xi
g∗∂xj

= gxixj
= Axixj

= (f1xixj
, f1xixj

). (4.3)

Using (4.3) in (4.2) and applying π1 projection we get

f1xixj
= Γ k

ijf1xk
+ h1(∂xi

, ∂xj
) · (−2αf1)

= Γ k
ijf1xk

+ h1(∂xi
, ∂xj

)ξ1. (4.4)

For f1 we have the Gauss formula, that is

f1xixj
= D∂xi

f1∗∂xj
= f1∗

(

∇+
∂xi

∂xj

)

+ h+(∂xi
, ∂xj

)ξ1,

where ∇+ is the induced connection and h+ is the second fundamental form
for f1. Now (4.4) implies that ∇+ = ∇|TU1×TU1 and h+ = h1|TU1×TU1 . In
particular h+ is nondegenerate since h1 is nondegenerate on TU1 ×TU1. Note
also that for f1 we have the induced volume element θ+ given by the formula

θ+(∂x1 , . . . , ∂xn
) : = det[f1x1

, . . . , f1xn
, ξ1]

= −2α det[f1x1
, . . . , f1xn

, f1].

In a similar way like above (but now using the fact that h2 = −h1 on
D−) we obtain that ∇− = ∇|TU2×TU2 , h− = h1|TU2×TU2 and

θ−(∂y1 , . . . , ∂yn
) = −2α det[f2y1

, . . . , f2yn
, f2],

where ∇− is the induced connection, h− is the second fundamental form and
θ− is the induced volume element for f2.

Let θ be the induced volume element for g, that is

θ(∂x1 , . . . , ∂xn
, ∂y1 , . . . , ∂yn

) = det[Ax1 , . . . , Axn
, By1 , . . . , Byn

,

− α(A + B), −α(A − B)]

= α2 det[Ax1 , . . . , Axn
, By1 , . . . , Byn

, A, −B]

+ α2 det[Ax1 , . . . , Axn
, By1 , . . . , Byn

, B, A]

= −2α2 det[Ax1 , . . . , Axn
, By1 , . . . , Byn

, A, B]

= −2α2 · (−1)n det[Ax1 , . . . , Axn
, A, By1 , . . . , Byn

, B].

Let us denote

M := [Ax1 , . . . , Axn
, A,By1 , . . . , Byn

, B],

M+ := [π1Ax1 , . . . , π1Axn
, π1A],

M− := [π2By1 , . . . , π2Byn
, π2B].

Then M can be expressed in the following block form:

M =
[

M+ −M−

M+ M−

]

.
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Now replacing the row i with the sum of rows i and i+n+1 for i = 1, . . . , n+1,
we obtain a new matrix

M ′ =
[

2M+ 0
M+ M−

]

.

It is easy to see that

det M = det M ′ = det(2M+) · det(M−)

= 2n+1 det M+ · det M−

=
2n−1

α2
θ+(∂x1 , . . . , ∂xn

) · θ−(∂y1 , . . . , ∂yn
).

Finally we get the following relation between θ, θ+ and θ−:

θ(∂x1 , . . . , ∂xn
, ∂y1 , . . . , ∂yn

) = 2n · (−1)n+1θ+(∂x1 , . . . , ∂xn
)θ−(∂y1 , . . . , ∂yn

).
(4.5)

Let det h1 be the determinant of h1 in the basis {∂x1 , . . . , ∂xn
, ∂y1 , . . . , ∂yn

}.
Since h1(∂xi

, ∂yj
) = 0 for i, j = 1, . . . , n we have that

det h1 = det h+ · det h−, (4.6)

where det h+ is the determinant of h+ with respect to the basis {∂x1 , . . . , ∂xn
}

and deth− is the determinant of h− with respect to the basis {∂y1 , . . . , ∂yn
}.

Now using (4.5), (4.6) and the fact that |Hζ | = 1 we obtain

1 = |Hζ | =
∣

∣

∣

∣

det h1

θ2

∣

∣

∣

∣

=
∣

∣

∣

∣

det h+ · det h−

22n(θ+)2 · (θ−)2

∣

∣

∣

∣

=
1

22n

(

ωh+(∂x1 , . . . , ∂xn
)

θ+(∂x1 , . . . , ∂xn
)

)2

·
(

ωh−(∂y1 , . . . , ∂yn
)

θ−(∂y1 , . . . , ∂yn
)

)2

.

That is
∣

∣

∣

∣

ωh+(∂x1 , . . . , ∂xn
)

θ+(∂x1 , . . . , ∂xn
)

∣

∣

∣

∣

·
∣

∣

∣

∣

ωh−(∂y1 , . . . , ∂yn
)

θ−(∂y1 , . . . , ∂yn
)

∣

∣

∣

∣

= 2n.

Since ωh+ , θ+ depends only on x1, . . . , xn and ωh− , θ− depends only on
y1, . . . , yn the last equality implies that both ωh+/θ+ and ωh−/θ− are constant.
So there exist constants c+ and c− such that ωh+ = c+θ+ and ωh− = c−θ−.

Case II α = 0. Without loss of generality we may assume that ζ = (0, . . . , 0, 1)
∈ R

2n+2. Let us denote ξ1 = ξ2 = (0, . . . , 0, 1) ∈ R
n+1. Since {ζ, ˜Jζ} is

transversal to g we have that ζ + ˜Jζ = (ξ1, ξ1) is transversal to g as well. Let
α1, . . . , αn, β be functions on U1 such that

∑

i

αif1xi
+ βξ1 = 0.
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Then
∑

i

αiAxi
+ β(ζ + ˜Jζ)

=
∑

i

αi(π1Axi
, π1Axi

) + β(ξ1, ξ1)

=

(

∑

i

αif1xi
+ βξ1,

∑

i

αif1xi
+ βξ1

)

= (0, 0).

Now, since {gx1 , . . . , gxn
, ζ + ˜Jζ} are linearly independent it immediately fol-

lows that α1 = · · · = αn = β = 0 and in consequence ξ1 is transversal to f1.
In a similar way we show that ξ2 is transversal to f2. Like for α �= 0, using the
Gauss formulas for g, f1 and f2, we obtain that h+ = h1 on D+, h− = h1 on
D− and deth1 = det h+ · det h−. In particular we get that both f1 and f2 are
nondegenerate.

For the induced volume θ we have

θ(∂x1 , . . . , ∂xn
, ∂y1 , . . . , ∂yn

)

= det[Ax1 , . . . , Axn
, By1 , . . . , Byn

, ζ, ˜Jζ]

=
1
2

· (−1)n+1 det[Ax1 , . . . , Axn
, ζ + ˜Jζ,By1 , . . . , Byn

, ζ − ˜Jζ].

The above implies that

θ(∂x1 , . . . , ∂xn
, ∂y1 , . . . , ∂yn

) = 2n · (−1)n+1θ+(∂x1 , . . . , ∂xn
) · θ−(∂y1 , . . . , ∂yn

),

where θ+ and θ− are the induced volume forms for f1 and f2 respectively.
Now, since ζ is affine normal, we have

1 = |Hζ | =
∣

∣

∣

∣

det h1

(θ)2

∣

∣

∣

∣

=
∣

∣

∣

∣

det h+ · det h−

4n(θ+ · θ−)2

∣

∣

∣

∣

=
1
4n

∣

∣

∣

ωh+

θ+

∣

∣

∣

2

·
∣

∣

∣

ωh−

θ−

∣

∣

∣

2

.

Since ωh+ , θ+ depends only on x1, . . . , xn and ωh− , θ− depends only on
y1, . . . , yn the last equality implies that both ωh+/θ+ and ωh−/θ− are con-
stant and in consequence f1 and f2 are improper affine hyperspheres.

In order to prove the converse assume that f1 : U1 → R
n+1 and f2 : U2 →

R
n+1 are two affine hyperspheres with the Blaschke field ξ1 and ξ2 respectively.

Let us denote U = U1 × U2 and let g : U → R
2n+2 be defined by the Formula

(4.1) that is

g(x1, . . . , xn, y1, . . . , yn) = (f1(x1, . . . , xn), f1(x1, . . . , xn))

+ (−f2(y1, . . . , yn), f2(y1, . . . , yn)).

For the above and similar expressions we will often ommit arguments using
the following short notation:

g = (f1, f1) + (−f2, f2).
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Like in the proof of the first part of the theorem we shall consider two cases.

Case I f1 and f2 are proper affine hyperspheres. In this case we have ξ1 =
−λ1f1 and ξ2 = −λ2f2 for some λ1, λ2 ∈ R+. Let us define ζ := −αg, where

α :=
(

1
2

)
2n+2
n+2

·
√

λ1λ2. (4.7)

We shall show that g with ζ is a para-complex affine hypersphere. For this
purpose let α1, . . . , αn, β1, . . . , βn, γ, δ ∈ C∞(U) and

∑

αigxi
+

∑

βigyi
+ γζ + δ ˜Jζ = 0.

Since gxi
= (f1xi

, f1xi
) and gyi

= (−f2yi
, f2yi

) we obtain
∑

(αif1xi
− βif2yi

) − α(γ + δ)f1 − α(δ − γ)f2 = 0

and
∑

(αif1xi
+ βif2yi

) − α(γ + δ)f1 − α(γ − δ)f2 = 0.

The above implies that
∑

αif1xi
− α(γ + δ)f1 = 0

and
∑

βif2yi
− α(γ − δ)f2 = 0.

Since f1 and f2 are proper affine hyperspheres then {f1x1
, . . . , f1xn

, f1} as well
as {f2y1

, . . . , f2yn
, f2} are linearly independent, that is

α1 = · · · = αn = 0, γ + δ = 0

and

β1 = · · · = βn = 0, γ − δ = 0.

In particular γ = δ = 0. In this way we have shown that

{gx1 , . . . , gxn
, gy1 , . . . , gyn

, ζ, ˜Jζ}
are linearly independent. Since ˜Jgxi

= gxi
and ˜Jgyi

= −gyi
we see that g is a

para-complex hypersurface with a transversal bundle {ζ, ˜Jζ}. The Weingarten
formula for g immediately implies that S = α id and τ1 = τ2 = 0, so it is enough
to show that g is nondegenerate and |Hζ | = 1. For this purpose note that since
∂xi

∈ D+ and ∂yi
∈ D− we have h1(∂xi

∂xj
) = h2(∂xi

, ∂xj
), h1(∂yi

∂yj
) =

−h2(∂yi
, ∂yj

) and h1(∂xi
, ∂yj

) = h2(∂xi
, ∂yj

) = 0 for i, j = 1, . . . , n. Now using
the Gauss formula we get

gxixj
= g∗(∇∂xi

∂xj
) − 2αh1(∂xi

, ∂xj
)(f1, f1).

On the other hand

gxixj
= (f1xixj

, f1xixj
) =

(

f1∗
(

∇+
∂xi

∂xj

)

, f1∗
(

∇+
∂xi

∂xj

))
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− h+(∂xi
, ∂xj

)λ1(f1, f1)

where ∇+ and h+ are the induced affine connection and the second fundamen-
tal form for f1. Now it easily follows that

h1(∂xi
, ∂xj

) =
λ1

2α
h+(∂xi

, ∂xj
). (4.8)

Similarly we obtain

h2(∂yi
, ∂yj

) =
λ2

2α
h−(∂yi

, ∂yj
), (4.9)

where h− is the second fundamental form for f2. Formulas (4.8) and (4.9)
imply that

det h1 =
(

λ1

2α

)n

·
(

λ2

2α

)n

det h+ · det h−. (4.10)

In particular g is nondegenerate. Now we shall calculate θζ . Namely, we have

θζ(∂x1 , . . . , ∂xn
, ∂y1 , . . . , ∂yn

) = det[gx1 , . . . , gxn
, gy1 , . . . , gyn

, ζ, ˜Jζ]

= α
2
det[gx1 , . . . , gxn

, gy1 , . . . , gyn
, g, ˜Jg]

= 2α
2
det

[

gx1 , . . . , gxn
, gy1 , . . . , gyn

,
g + ˜Jg

2
,

˜Jg − g

2

]

= −2(−1)
n

α
2
det

[

gx1 , . . . , gxn
,

g + ˜Jg

2
, gy1 , . . . , gyn

,
g − ˜Jg

2

]

.

Let us denote

M :=

[

gx1 , . . . , gxn
,
g + ˜Jg

2
, gy1 , . . . , gyn

,
g − ˜Jg

2

]

.

It is easy to see that M has the following block form:

M =
[

M+ −M−

M+ M−

]

,

where

M+ = [f1x1
, . . . , f1xn

, f1] =
[

f1x1
, . . . , f1xn

,− 1
λ1

· ξ1

]

and

M− = [f2y1
, . . . , f2yn

, f2] =
[

f2y1
, . . . , f2yn

,− 1
λ2

· ξ2

]

.

Like in the first part of the proof we see that

det M = 2n+1 det M+ · det M−

= 2n+1 · −1
λ1

· θ+(∂x1 , . . . , ∂xn
) · −1

λ2
· θ−(∂y1 , . . . , ∂yn

)

=
2n+1

λ1λ2
θ+(∂x1 , . . . , ∂xn

) · θ−(∂y1 , . . . , ∂yn
),
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where θ+ and θ− are the induced volume elements for f1 and f2 respectively. To
simplify notation in the forthcoming formulas we will be omitting arguments
of θζ , θ+ and θ−. Now we obtain

θζ = (−1)n+1α2 · 2n+2

λ1λ2
θ+ · θ−.

Since ξ1 and ξ2 are the Blaschke fields we have ωh+ = θ+ and ωh− = θ−. In
particular (θ+)2 = |det h+| and (θ−)2 = |det h−|. Now using (4.10) we obtain

(θζ)2 = α4 · 22n+4

(λ1λ2)2
· (θ+)2 · (θ−)2

= α4 · 22n+4

(λ1λ2)2
· |det h+| · |det h−|

= α4 · 22n+4

(λ1λ2)2
·
(

2α

λ1

)n

·
(

2α

λ2

)n

· |det h1|

= α2n+4 · 24n+4

(λ1λ2)n+2
· |det h1|

= |det h1|,
where the last equality is an immediate consequence of (4.7). Summarizing we
have shown that

|Hζ | =
∣

∣

∣

∣

det h1

(θζ)2

∣

∣

∣

∣

= 1,

that is g is a proper para-complex affine hypersphere.

Case II f1 and f2 are improper affine hyperspheres. In this case we have
ξ1 = ξ2 = (0, . . . , 1) ∈ R

n+1. Let us define ζ := 2
−n
n+2 (0, . . . , 0, 1) ∈ R

2n+2 and
let α1, . . . , αn, β1, . . . , βn, γ, δ ∈ C∞(U) and

∑

αigxi
+

∑

βigyi
+ γζ + δ ˜Jζ = 0.

Like for proper hyperspheres we easily compute that
∑

(αif1xi
− βif2yi

) + 2
−n
n+2 δξ1 = 0

and
∑

(αif1xi
+ βif2yi

) + 2
−n
n+2 γξ2 = 0.

The above implies that αi = 0, βi = 0, γ = δ = 0 and in consequence

{gx1 , . . . , gxn
, gy1 , . . . , gyn

, ζ, ˜Jζ}
are linearly independent. It means that g is a para-complex affine hypersurface
with a transversal bundle {ζ, ˜Jζ}. Using similar methods like in the proof for
the first case we obtain

det h1 = 2
2n2
n+2 det h+ · det h− (4.11)
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and

θζ = (−1)n+12n · 2
−2n
n+2 θ+ · θ− (4.12)

where h+, h− and θ+, θ− are the second fundamental forms and the induced
volume elements for f1 and f2 respectively. It easily follows from (4.11) that
g is nondegenerate. From the Weingarten formula we have S = 0, τ1 = 0 and
τ2 = 0. Now (4.11) and (4.12) implies that

|Hζ | =

∣

∣

∣

∣

∣

∣

∣

2
2n2
n+2 det h+ · det h−

[

(−1)n+12n · 2
−2n
n+2 · θ+ · θ−

]2

∣

∣

∣

∣

∣

∣

∣

= 1,

that is g is an improper para-complex affine hypersphere. The proof is con-
cluded. �

The above theorem gives us a one-to-one correspondence between para-
complex affine hyperspheres and pairs of (real) affine hyperspheres. Now, we
shall show some examples

Example 4.1. Let g : R2 → R
4 be given by the formula

g(x, y) := λ1
− 3

4

⎛

⎜

⎜

⎝

cos x
sin x
cos x
sin x

⎞

⎟

⎟

⎠

+ λ2
− 3

4

⎛

⎜

⎜

⎝

− cos y
− sin y
cos y
sin y

⎞

⎟

⎟

⎠

, (4.13)

where λ1, λ2 > 0. It easily follows that g is an immersion. Moreover ˜Jgx = gx

and ˜Jgy = −gy, so g is a para-holomorphic hypersurface. If we take ζ :=

−
(

1
2

) 4
3 √

λ1λ2 ·g then {ζ, ˜Jζ} is a transversal bundle for g. By straightforward
computations we obtain

h1 =

⎡

⎣

2
1
3√

λ1λ2
0

0 2
1
3√

λ1λ2

⎤

⎦ , h2 =

⎡

⎣

2
1
3√

λ1λ2
0

0 − 2
1
3√

λ1λ2

⎤

⎦ ,

S =
(

1
2

) 4
3 √

λ1λ2 id, τ1 = τ2 = 0

relative to the canonical basis {∂x, ∂y}. Moreover, since

θζ(∂x, ∂y) := det[gx, gy, ζ, ˜Jζ] =
2

1
3√

λ1λ2

one may easily compute that Hζ = 1, that is g is a proper para-complex affine
sphere.
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Example 4.2. Let g : R2 → R
4 be given by the formula

g(x, y) := λ1
− 3

4

⎛

⎜

⎜

⎝

cosh x
sinh x
cosh x
sinh x

⎞

⎟

⎟

⎠

+ λ2
− 3

4

⎛

⎜

⎜

⎝

− cosh y
− sinh y
cosh y
sinh y

⎞

⎟

⎟

⎠

, (4.14)

where λ1, λ2 > 0. Exactly like in the previous example we have that g is
an immersion and ˜Jgx = gx and ˜Jgy = −gy, so g is a para-holomorphic

hypersurface. Again taking ζ := −
(

1
2

) 4
3 √

λ1λ2 · g we obtain that {ζ, ˜Jζ} is a
transversal bundle for g. We also have

h1 =

⎡

⎣

− 2
1
3√

λ1λ2
0

0 − 2
1
3√

λ1λ2

⎤

⎦ , h2 =

⎡

⎣

− 2
1
3√

λ1λ2
0

0 2
1
3√

λ1λ2

⎤

⎦ ,

S =
(

1
2

) 4
3 √

λ1λ2 id, τ1 = τ2 = 0

relative to the canonical basis {∂x, ∂y}. Moreover, since

θζ(∂x, ∂y) := det[gx, gy, ζ, ˜Jζ] =
2

1
3√

λ1λ2

we easily compute that Hζ = 1, that is g is a proper para-complex affine
sphere.

Example 4.3. In this example we consider two very similar surfaces. Let
g : R2 → R

4 and g′ : R2 → R
4 be given by the formulas:

g(x, y) := λ1
− 3

4

⎛

⎜

⎜

⎝

cosh x
sinhx
cosh x
sinhx

⎞

⎟

⎟

⎠

+ λ2
− 3

4

⎛

⎜

⎜

⎝

− cos y
− sin y
cos y
sin y

⎞

⎟

⎟

⎠

(4.15)

and

g′(x, y) := λ1
− 3

4

⎛

⎜

⎜

⎝

cos x
sin x
cos x
sin x

⎞

⎟

⎟

⎠

+ λ2
− 3

4

⎛

⎜

⎜

⎝

− cosh y
− sinh y
cosh y
sinh y

⎞

⎟

⎟

⎠

, (4.16)

where λ1, λ2 > 0. Exactly like in the previous examples we prove that g and

g′ are para-holomorphic hypersurfaces. Let ζ := −
(

1
2

) 4
3 √

λ1λ2 · g and ζ ′ :=

−
(

1
2

) 4
3 √

λ1λ2 · g′ then {ζ, ˜Jζ} and {ζ ′, ˜Jζ ′} are transversal bundles for g and
g′ respectively. For g we have

h1 =

⎡

⎣

− 2
1
3√

λ1λ2
0

0 2
1
3√

λ1λ2

⎤

⎦ , h2 =

⎡

⎣

− 2
1
3√

λ1λ2
0

0 − 2
1
3√

λ1λ2

⎤

⎦ ,
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S =
(

1
2

) 4
3 √

λ1λ2 id, τ1 = τ2 = 0

and

θζ(∂x, ∂y) := det[gx, gy, ζ, ˜Jζ] =
2

1
3√

λ1λ2

relative to the canonical basis {∂x, ∂y}. Now it easily follows that Hζ = −1
that is g is a proper para-complex affine sphere. In a similar way we show that
also g′ is a para-complex affine sphere.

Example 4.4. Let g : R2 → R
4 be given by the formula

g(x, y) :=

⎛

⎜

⎜

⎝

x
1
2x2

x
1
2x2

⎞

⎟

⎟

⎠

+

⎛

⎜

⎜

⎝

−y
− 1

2y2

y
1
2y2

⎞

⎟

⎟

⎠

. (4.17)

It easily follows that g is an immersion and ˜Jgx = gx and ˜Jgy = −gy, so
g is a para-holomorphic hypersurface. Let ζ := 2− 1

3 (0, 0, 0, 1)T then ˜Jζ =
2− 1

3 (0, 1, 0, 0)T and {ζ, ˜Jζ} is a transversal bundle for g. We compute

h1 =
[

2
1
3 0
0 2

1
3

]

, h2 =
[

2
1
3 0
0 −2

1
3

]

, S = 0, τ1 = τ2 = 0

relative to the canonical basis {∂x, ∂y}. Since

θζ(∂x, ∂y) := det[gx, gy, ζ, ˜Jζ] = 2
1
3

then Hζ = 1, that is g is an improper para-complex affine sphere.

Using Theorem 4.1 we give a complete local classification of 1-dimensional
(in para-complex sense) para-complex affine spheres. Namely we have the fol-
lowing theorem:

Theorem 4.2. Let g : M2 → R
4 be a para-complex affine hypersphere. If g is

proper then it can be locally expressed in one of the forms (4.13)–(4.16). If g
is improper then it can be locally expressed in the form (4.17).

Proof. It is well known [8] that the only (up to equiaffine transformation)
1-dimensional (real) affine spheres are a circle γ1(t) = k− 3

4 (cos t, sin t), hyper-
bola γ2(t) = k− 3

4 (cosh t, sinh t) and a parabola γ3(t) = (t, 1
2 t2). γ1 and γ2 are

proper spheres and γ3 is an improper sphere. Now, applying Theorem 4.1 we
easily obtain that there are only four (up to a para-complex equiaffine trans-
formation) proper 1-dimensional para-complex affine spheres, that is spheres
from Examples 4.1, 4.2 and 4.3. Similarly the only improper 1-dimensional
para-complex affine sphere is the sphere form Example 4.4. �
Remark 4.2. Surfaces (4.13)–(4.17) are examples of so called translation sur-
faces (see [10,11] for details).
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