On Para-Complex Affine Hyperspheres

Zuzanna Szancer

Abstract

In this paper we introduce a notion of a para-complex affine hypersphere. We give a complete local classification of such hypersurfaces and give several examples. It turns out that every para-complex affine hypersphere can be constructed from (real) affine hyperspheres. As an application, we classify all 2-dimensional para-complex affine hyperspheres.

Mathematics Subject Classification. 53A15, 53D15.
Keywords. Affine hypersphere, para-complex structure, para-complex hypersphere.

1. Introduction

The main motivation for this paper are results obtained by Dillen et al. [1]. In that paper the authors introduce a notion of a complex affine hypersurface and, in particular, a notion of a complex affine hypersphere. Now, it seems to be natural to ask what happens in a para-complex case. Para-complex structures are widely studied by many authors (see e.g. [2-4]). A concept of a para-complex affine immersion as well as a para-complex affine hypersurface was introduced by Schäfer and Lawn [5].

In this paper we introduce a notion of a para-complex affine hypersphere and give a complete local classification of such hypersurfaces. More precisely, we show that every para-complex affine hypersphere can be locally obtained from two real affine hyperspheres. In particular, we can construct several examples of para-complex affine hyperspheres using well know examples of real affine hyperspheres. As an application we provide examples of 1-dimensional

[^0](in a para-complex sense) para-complex affine spheres and show that they are the only 1-dimensional para-complex affine spheres up to a para-complex equiaffine transformation.

In Sect. 2 we briefly recall basic formulas of affine differential geometry and recall the notion of an affine hypersphere. Since para-complex affine hypersufaces are hypersurfaces of a real codimension two, we recall also a concept of an affine hypersurface of codimension two.

In the first part of Sect. 3 we recall some basic concepts related to paracomplex geometry (for details we refer to [5-7]). Later, using similar methods like in [1] we introduce a notion of affine normal fields for para-complex affine hypersurfaces and study several basic properties of hypersurfaces equipped with such vector field.

The Sect. 4 contains main results of this paper. In this section we introduce a notion of a para-complex affine hypersphere and prove classification theorems. Especially, we shall show that there is a strict correspondence between real and para-complex affine hyperspheres. We also give several examples.

2. Preliminaries

We briefly recall the basic formulas for affine differential geometry. For more details, we refer to [8]. Let $f: M \rightarrow \mathbb{R}^{n+1}$ be an orientable connected differentiable n-dimensional hypersurface immersed in affine space \mathbb{R}^{n+1} equipped with its usual flat connection D . Then for any transversal vector field C we have

$$
\mathrm{D}_{X} f_{*} Y=f_{*}\left(\nabla_{X} Y\right)+h(X, Y) C
$$

and

$$
\mathrm{D}_{X} C=-f_{*}(S X)+\tau(X) C
$$

where X, Y are tangent vector fields. For any transversal vector field ∇ is a torsion-free connection, h is a symmetric bilinear form on M, called the second fundamental form, S is a tensor of type $(1,1)$, called the shape operator and τ is a 1 -form.

In this paper we assume that h is nondegenerate so that h defines a pseudo-Riemannian metric on M. If h is nondegenerate, then we say that the hypersurface or the hypersurface immersion is nondegenerate. We have the following

Theorem 2.1. ([8], Fundamental equations) For an arbitrary transversal vector field C the induced connection ∇, the second fundamental form h, the shape operator S, and the 1-form τ satisfy the following equations:

$$
\begin{align*}
& R(X, Y) Z=h(Y, Z) S X-h(X, Z) S Y \tag{2.1}\\
& \left(\nabla_{X} h\right)(Y, Z)+\tau(X) h(Y, Z)=\left(\nabla_{Y} h\right)(X, Z)+\tau(Y) h(X, Z) \tag{2.2}\\
& \left(\nabla_{X} S\right)(Y)-\tau(X) S Y=\left(\nabla_{Y} S\right)(X)-\tau(Y) S X \tag{2.3}
\end{align*}
$$

$$
\begin{equation*}
h(X, S Y)-h(S X, Y)=2 d \tau(X, Y) \tag{2.4}
\end{equation*}
$$

The Eqs. (2.1), (2.2), (2.3), and (2.4) are called the equation of Gauss, Codazzi for h, Codazzi for S and Ricci, respectively.

For an affine hypersurface the cubic form Q is defined by the formula

$$
\begin{equation*}
Q(X, Y, Z)=\left(\nabla_{X} h\right)(Y, Z)+\tau(X) h(Y, Z) \tag{2.5}
\end{equation*}
$$

It follows from the equation of Codazzi (2.2) that Q is symmetric in all three variables.

For a hypersurface immersion $f: M \rightarrow \mathbb{R}^{n+1}$ a transversal vector field C is said to be equiaffine (resp. locally equiaffine) if $\tau=0$ (resp. $d \tau=0$). For an affine hypersurface $f: M \rightarrow \mathbb{R}^{n+1}$ with a transversal vector field C we consider the following volume element on M :

$$
\theta\left(X_{1}, \ldots, X_{n}\right)=\operatorname{det}\left[f_{*} X_{1}, \ldots, f_{*} X_{n}, C\right]
$$

for all $X_{1}, \ldots, X_{n} \in \mathcal{X}(M)$. We call θ the induced volume element on M.
When f is nondegenerate, there exists a canonical transversal vector field C, called the affine normal (or the Blaschke field). The affine normal is uniquely determined up to sign by the following conditions:

$$
\begin{aligned}
\tau & =0 \quad \text { (i.e. C is equiaffine), } \\
\omega_{h} & =\theta,
\end{aligned}
$$

where ω_{h} is defined by $\omega_{h}\left(X_{1}, \ldots, X_{n}\right)=\left|\operatorname{det}\left[h\left(X_{i}, X_{j}\right)\right]\right|^{1 / 2}$, where X_{1}, \ldots, X_{n} is positively oriented basis relative to the induced volume form θ. The affine immersion f with a Blaschke field C is called a Blaschke hypersurface.

A Blaschke hypersurface M is called an improper affine hypersphere if $S=0$. If $S=\lambda \mathrm{id}$, where λ is a nonzero constant, then M is called a proper affine hypersphere.

Remark 2.1. Sometimes it is convenient to weak the condition $\omega_{h}=\theta$ and replace it with $\omega_{h}=c \cdot \theta$, where $c \in \mathbb{R} \backslash\{0\}$. When for some equiaffine vector field ξ we have $\omega_{h}=c \cdot \theta$ then ξ is proportional to the Blaschke field. Namely we have that $\xi^{\prime}:= \pm|c|^{\frac{2}{n+2}} \cdot \xi$ is the Blaschke field. Note also that if the shape operator is proportional to identity then f (with ξ^{\prime}) is an affine hypersphere. We will often make use of this observation later in this paper.

Let (M, ∇) and $(\widetilde{M}, \widetilde{\nabla})$ be two differential manifolds of dimension n and $n+p$ with torsion-free affine connections ∇ and $\widetilde{\nabla}$ respectively.

An immersion $f: M \rightarrow \widetilde{M}$ is called an affine immersion if there exists around each point of M, a field \mathcal{N} of transversal subspaces of dimension p, denoted by $x \mapsto N_{x} \subset T_{f(x)}(\widetilde{M})$ and such that

$$
\begin{equation*}
T_{f(x)}(\widetilde{M})=f_{*}\left(T_{x} M\right)+N_{x} \tag{2.6}
\end{equation*}
$$

holds and, for all vector fields X and Y on M, we have a decomposition

$$
\begin{equation*}
\widetilde{\nabla}_{X} f_{*} Y=f_{*} \nabla_{X} Y+\alpha(X, Y), \tag{2.7}
\end{equation*}
$$

where $\nabla_{X} Y \in T_{x} M$ and $\alpha(X, Y) \in N_{x}$ at each point x. We call N_{x} the transversal space and α the affine fundamental form. If ξ is a vector field with values in $\mathcal{N}, \xi_{x} \in N_{x}$, then we write

$$
\begin{equation*}
\widetilde{\nabla}_{X} \xi=-f_{*} S_{\xi} X+\nabla_{X}^{\perp} \xi, \tag{2.8}
\end{equation*}
$$

where $S_{\xi} X \in T_{x} M$ and $\nabla \frac{\perp}{X} \xi \in N_{x}$ at each point x. We call S_{ξ} the shape operator for ξ, and ∇^{\perp} the normal connection.

Now, let $\widetilde{M}=\mathbb{R}^{n+2}$ and $\widetilde{\nabla}=D$ be the ordinary flat connection on \mathbb{R}^{n+2}. Let $f: M \rightarrow \mathbb{R}^{n+2}$ be an immersion, and $\mathcal{N}: M \ni x \mapsto N_{x}$ be a transversal bundle for the immersion f. Immersion f together with the transversal bundle \mathcal{N} we call an affine hypersurface of codimension two. For any local basis $\left\{\xi_{1}, \xi_{2}\right\}$ of \mathcal{N}, we can write

$$
\begin{align*}
D_{X} f_{*} Y & =f_{*}\left(\nabla_{X} Y\right)+h_{1}(X, Y) \xi_{1}+h_{2}(X, Y) \xi_{2} \tag{2.9}\\
D_{X} \xi_{1} & =-f_{*}\left(S_{1} X\right)+\tau_{11}(X) \xi_{1}+\tau_{12}(X) \xi_{2} \tag{2.10}\\
D_{X} \xi_{2} & =-f_{*}\left(S_{2} X\right)+\tau_{21}(X) \xi_{1}+\tau_{22}(X) \xi_{2} \tag{2.11}
\end{align*}
$$

Then ∇ is a torsion-free affine connection on M, which depends only on \mathcal{N} and not on the choice of local basis $\left\{\xi_{1}, \xi_{2}\right\}$. We call it the affine connection induced by \mathcal{N}. The other objects $h_{i}, S_{i}, \tau_{i j}, i, j \in\{1,2\}$, are respectively the affine fundamental forms, the shape operators and the normal connection forms.

3. Para-Complex Affine Hypersurfaces

Fist we recall some basic concepts related to para-complex geometry. For details see $[6,7]$ and [5].

A para-complex structure on a real finite dimensional vector space V is an endomorphism $\widetilde{J} \in \operatorname{End}(V)$, such that $\widetilde{J}^{2}=\mathrm{id}$ and the two eigenspaces $V^{ \pm}:=\operatorname{ker}(\operatorname{id} \mp \widetilde{J})$ of \widetilde{J} have the same dimension. An almost para-complex structure on a smooth manifold M is a $(1,1)$-tensor \widetilde{J} on M such that, for all $p \in M, \widetilde{J}_{p}$ is a para-complex structure on $T_{p} M$. An almost para-complex structure \widetilde{J} on M is called integrable if the distributions $D^{ \pm}:=\operatorname{ker}(\mathrm{id} \mp \widetilde{J})$ are integrable. An integrable almost para-complex structure on M is called a paracomplex structure and a manifold M endowed with a para-complex structure is called a para-complex manifold.

Lemma 3.1. [7] An almost para-complex structure \widetilde{J} is integrable if and only if $N_{\widetilde{J}}=0$, where $N_{\widetilde{J}}$ is the Nijenhuis tensor for \widetilde{J}.

Let us denote by $\widetilde{\mathbb{C}}$ the real algebra of para-complex numbers, which is generated by 1 and the para-complex unit $e\left(e^{2}=1\right)$. For every $z=x+e y \in \widetilde{\mathbb{C}}$ we have the para-complex conjugation $\overline{x+e y}:=x-e y$ and the real and imaginary parts of $z: \Re(z):=x$ and $\Im(z):=y$. The free $\widetilde{\mathbb{C}}$-module $\widetilde{\mathbb{C}}^{n}$ is a para-complex vector space, where the para-complex structure is just the
multiplication by e. The para-complex conjugation extends componentwise to $\widetilde{\mathbb{C}}^{n}$. The para-complex dimension of a para-complex manifold M is the integer $n=\operatorname{dim}_{\widetilde{\mathbb{C}}} M:=\frac{\operatorname{dim} M}{2}$.

Let $\left(M, \widetilde{J}_{M}\right)$ and $\left(N, \widetilde{J}_{N}\right)$ be para-complex manifolds. A smooth function $f:\left(M, \widetilde{J}_{M}\right) \rightarrow\left(N, \widetilde{J}_{N}\right)$ is called para-holomorphic if $d f \circ \widetilde{J}_{M}=\widetilde{J}_{N} \circ d f$. A paraholomorphic map $f:\left(M, \widetilde{J}_{M}\right) \rightarrow \widetilde{\mathbb{C}}$ is called a para-holomorphic function.

Let $g: M^{2 n} \rightarrow \mathbb{R}^{2 n+2}$ be an immersion and let \widetilde{J} be the standard paracomplex structure on $\mathbb{R}^{2 n+2}$. That is

$$
\widetilde{J}\left(x_{1}, \ldots, x_{n+1}, y_{1}, \ldots, y_{n+1}\right):=\left(y_{1}, \ldots, y_{n+1}, x_{1}, \ldots, x_{n+1}\right)
$$

We always identify $\left(\mathbb{R}^{2 n+2}, \widetilde{J}\right)$ with $\widetilde{\mathbb{C}}^{n+1}$.
Assume now that $g_{*}(T M)$ is \widetilde{J}-invariant and $\left.\widetilde{J}\right|_{g_{*}\left(T_{x} M\right)}$ is a para-complex structure on $g_{*}\left(T_{x} M\right)$ for every $x \in M$. Then \widetilde{J} induces an almost paracomplex structure on M, which we will also denote by \widetilde{J}. Moreover, since $\left(\mathbb{R}^{2 n+2}, \widetilde{J}\right)$ is para-complex then (M, \widetilde{J}) is para-complex as well. By assumption we have that $d g \circ \widetilde{J}=\widetilde{J} \circ d g$ that is $g: M^{2 n} \rightarrow \mathbb{R}^{2 n+2} \cong \widetilde{\mathbb{C}}^{n+1}$ is a paraholomorphic immersion. Since para-complex dimension of M is n, immersion g is called a para-holomorphic hypersurface.

Let $g: M^{2 n} \rightarrow \mathbb{R}^{2 n+2}$ be an affine hypersurface of codimension 2 with a transversal bundle \mathcal{N}. If g is para-holomorphic then it is called affine paraholomorphic hypersurface. If additionally the transversal bundle \mathcal{N} is \widetilde{J}-invariant then g is called a para-complex affine hypersurface.

Let $g: M^{2 n} \rightarrow \mathbb{R}^{2 n+2}$ be a para-holomorphic hypersurface. We say that g is para-complex centro-affine hypersurface if $\{g, \widetilde{J} g\}$ is a transversal bundle for g.

Now, let $g: M^{2 n} \rightarrow \mathbb{R}^{2 n+2}$ be a para-holomorphic hypersurface. Then for every $x \in M$ there exists a neighborhood U of x and a transversal vector field $\zeta: U \rightarrow \mathbb{R}^{2 n+2}$ such that $\{\zeta, \widetilde{J} \zeta\}$ is a transversal bundle for $\left.g\right|_{U}$. That is $\left.g\right|_{U}$ considered with $\{\zeta, \widetilde{J} \zeta\}$ is a para-complex affine hypersurface. Indeed, let N_{x} be any vector space transversal to $g_{*}\left(T_{x} M\right)$. If N_{x} is \widetilde{J}-invariant then it must be a para-complex vector space, so we can find vector $v \in N_{x}$ such that $\{v, \widetilde{J} v\}$ is a basis for N_{x}. If N_{x} is not \widetilde{J}-invariant then $N_{x} \cap \widetilde{J} N_{x}$ must be 1-dimensional. In this case we can choose $v \in N_{x}$ such that $v \notin N_{x} \cap \widetilde{J} N_{x}$. Now vector $\widetilde{J} v$ is transversal to $g_{*}\left(T_{x} M\right)$ and linearly independent with v. That is $\{v, \widetilde{J} v\}$ is a para-complex transversal vector space to $g_{*}\left(T_{x} M\right)$. Summarizing at x we can always find a transversal vector v such that $g_{*}\left(T_{x} M\right) \oplus \operatorname{span}\{v, \widetilde{J} v\}=\mathbb{R}^{2 n+2}$. Hence, in a neighborhood of x we can find a transversal vector field ζ such that $\{\zeta, \widetilde{J} \zeta\}$ is a transversal bundle for g in this neighborhood.

Let $g: M^{2 n} \rightarrow \mathbb{R}^{2 n+2}$ be a para-holomorphic hypersurface and let $\zeta: U \rightarrow$ $\mathbb{R}^{2 n+2}$ be a local transversal vector field on $U \subset M$ such that $\{\zeta, \widetilde{J} \zeta\}$ is a transversal bundle to g. So for all tangent vector fields $X, Y \in \mathcal{X}(U)$ we can
decompose $D_{X} Y$ and $D_{X} \zeta$ into tangent and transversal part. So we have
$\mathrm{D}_{X} g_{*} Y=g_{*}\left(\nabla_{X} Y\right)+h_{1}(X, Y) \zeta+h_{2}(X, Y) \widetilde{J} \zeta \quad$ (formula of Gauss)
$\mathrm{D}_{X} \zeta=-g_{*}(S X)+\tau_{1}(X) \zeta+\tau_{2}(X) \widetilde{J} \zeta \quad$ (formula of Weingarten)
where ∇ is a torsion free affine connection on U, h_{1} and h_{2} are symmetric bilinear forms on U, S is a $(1,1)$-tensor field on U and τ_{1} and τ_{2} are 1-forms on U.

Using the fact that $D \widetilde{J}=0$ and the formula of Gauss by straightforward computations we can prove the following

Lemma 3.2. [5]

$$
\begin{align*}
\nabla \widetilde{J} & =0 \tag{3.1}\\
h_{1}(X, \widetilde{J} Y) & =h_{1}(\widetilde{J} X, Y)=h_{2}(X, Y) \tag{3.2}\\
h_{2}(X, \widetilde{J} Y) & =h_{1}(X, Y) \tag{3.3}
\end{align*}
$$

We say that a hypersurface is nondegenerate if h_{1} (and in consequence h_{2}) is nondegenerate.
Lemma 3.3. Let $g: M \rightarrow \mathbb{R}^{2 n+2}$ be a para-complex affine hypersurface with a transversal bundle $\{\zeta, \widetilde{J} \zeta\}$. Then the induced connection ∇, the affine fundamental forms h_{1}, h_{2}, the shape operator S and the transversal connection forms τ_{1}, τ_{2} satisfy the following equations:

$$
\begin{align*}
R(X, Y) Z= & h_{1}(Y, Z) S X+h_{2}(Y, Z) \widetilde{J}(S X) \\
& -h_{1}(X, Z) S Y-h_{2}(X, Z) \widetilde{J}(S Y), \tag{3.4}\\
\left(\nabla_{X} h_{1}\right)(Y, Z)-\left(\nabla_{Y} h_{1}\right)(X, Z)= & \tau_{1}(Y) h_{1}(X, Z)+\tau_{2}(Y) h_{2}(X, Z) \\
& -\tau_{1}(X) h_{1}(Y, Z)-\tau_{2}(X) h_{2}(Y, Z), \tag{3.5}\\
\left(\nabla_{X} h_{2}\right)(Y, Z)-\left(\nabla_{Y} h_{2}\right)(X, Z)= & \tau_{1}(Y) h_{2}(X, Z)+\tau_{2}(Y) h_{1}(X, Z) \\
& -\tau_{1}(X) h_{2}(Y, Z)-\tau_{2}(X) h_{1}(Y, Z), \tag{3.6}\\
\left(\nabla_{X} S\right)(Y)-\left(\nabla_{Y} S\right)(X)= & \tau_{1}(X) S Y+\tau_{2}(X) \widetilde{J}(S Y) \\
& -\tau_{1}(Y) S X-\tau_{2}(Y) \widetilde{J}(S X), \tag{3.7}\\
h_{1}(X, S Y)-h_{1}(S X, Y)= & 2 d \tau_{1}(X, Y), \tag{3.8}\\
h_{2}(X, S Y)-h_{2}(S X, Y)= & 2 d \tau_{2}(X, Y) . \tag{3.9}
\end{align*}
$$

Assume now that $\{\widetilde{\zeta}, \widetilde{J} \widetilde{\zeta}\}$ is any other transversal bundle on U. Then there exist functions φ, ψ on U and $Z \in \mathcal{X}(U)$ such that

$$
\widetilde{\zeta}=\varphi \zeta+\psi \widetilde{J} \zeta+g_{*} Z
$$

Since $\{\widetilde{\zeta}, \widetilde{J} \widetilde{\zeta}\}$ is transversal the above formula implies that $\varphi^{2}-\psi^{2} \neq 0$. Indeed, we have

$$
\varphi \widetilde{\zeta}-\psi \widetilde{J} \widetilde{\zeta}=\left(\varphi^{2}-\psi^{2}\right) \zeta+\varphi g_{*} Z-\psi \widetilde{J} g_{*} Z
$$

If $\varphi^{2}-\psi^{2}=0$ then $\varphi \widetilde{\zeta}-\psi \widetilde{J} \widetilde{\zeta} \in T U$, but since $\{\widetilde{\zeta}, \widetilde{J} \widetilde{\zeta}\}$ is transversal we obtain $\varphi=\psi=0$, what is impossible because $\widetilde{\zeta}$ is transversal.

By the formulas of Gauss and Weingarten with respect to $\widetilde{\zeta}$ we obtain the objects $\widetilde{\nabla}, \widetilde{h_{1}}, \widetilde{h_{2}}, \widetilde{S}, \widetilde{\tau_{1}}, \widetilde{\tau_{2}}$ which satisfy the following relations

Lemma 3.4.

$$
\begin{align*}
& h_{1}(X, Y)=\varphi \widetilde{h_{1}}(X, Y)+\psi \widetilde{h_{2}}(X, Y) \tag{3.10}\\
& h_{2}(X, Y)=\psi \widetilde{h_{1}}(X, Y)+\varphi \widetilde{h_{2}}(X, Y) \tag{3.11}\\
& \nabla_{X} Y=\widetilde{\nabla}{ }_{X} Y+\widetilde{h_{1}}(X, Y) Z+\widetilde{h_{2}}(X, Y) \widetilde{J} Z \tag{3.12}\\
& \quad-\varphi S X-\psi S X+\nabla_{X} Z=-\widetilde{S} X+\widetilde{\tau_{1}}(X) Z+\widetilde{\tau_{2}}(X) \widetilde{J} Z \tag{3.13}\\
& X(\varphi)+\varphi \tau_{1}(X)+\psi \tau_{2}(X)+h_{1}(X, Z)=\varphi \widetilde{\tau_{1}}(X)+\psi \widetilde{\tau_{2}}(X), \tag{3.14}\\
& \varphi \tau_{2}(X)+X(\psi)+\psi \tau_{1}(X)+h_{2}(X, Z)=\psi \widetilde{\tau_{1}}(X)+\varphi \widetilde{\tau_{2}}(X) \tag{3.15}\\
& \widetilde{h_{1}}=\frac{h_{1} \varphi-h_{2} \psi}{\varphi^{2}-\psi^{2}} \tag{3.16}\\
& \widetilde{\tau_{1}}(X)=\frac{1}{2} X\left(\ln \left|\varphi^{2}-\psi^{2}\right|\right)+\tau_{1}(X)+\frac{1}{\varphi^{2}-\psi^{2}}\left(\varphi h_{1}(X, Z)-\psi h_{2}(X, Z)\right) . \tag{3.17}
\end{align*}
$$

Proof. Formulas (3.10)-(3.15) are straightforward. Formulas (3.16) and (3.17) follow at once from (3.10), (3.11), (3.14) and (3.15).

On U we define the volume form θ_{ζ} by the formula

$$
\theta_{\zeta}\left(X_{1}, \ldots, X_{2 n}\right):=\operatorname{det}\left(g_{*} X_{1}, \ldots, g_{*} X_{2 n}, \zeta, \widetilde{J} \zeta\right)
$$

for tangent vectors $X_{i}, i=1, \ldots, 2 n$. Then, consider the function H_{ζ} on U defined by

$$
H_{\zeta}:=\operatorname{det}\left[h_{1}\left(X_{i}, X_{j}\right)\right]_{i, j=1 \ldots 2 n}
$$

where $X_{1}, \ldots, X_{2 n}$ is a local basis in $T U$ such that $\theta_{\zeta}\left(X_{1}, \ldots, X_{2 n}\right)=1$. This definition is independent of the choice of basis. It is easy to see that ∇, θ_{ζ} and τ_{1} are related by the following formula:

$$
\begin{equation*}
\nabla_{X} \theta_{\zeta}=2 \tau_{1}(X) \theta_{\zeta} \tag{3.18}
\end{equation*}
$$

If $\{\widetilde{\zeta}, \widetilde{J} \zeta\}$ is other transversal bundle on U then we have the following relations between $\theta_{\widetilde{\zeta}}, H_{\widetilde{\zeta}}$ and $\theta_{\zeta}, H_{\zeta}$

Lemma 3.5.

$$
\begin{align*}
\theta_{\widetilde{\zeta}} & =\left(\varphi^{2}-\psi^{2}\right) \theta_{\zeta}, \tag{3.19}\\
H_{\widetilde{\zeta}} & =\frac{1}{\left(\varphi^{2}-\psi^{2}\right)^{n+2}} \cdot H_{\zeta} \tag{3.20}
\end{align*}
$$

Proof. Since Formula (3.19) is straightforward it is enough to prove (3.20). Let $\left\{X_{1}, \widetilde{J} X_{1}, \ldots, X_{n}, \widetilde{J} X_{n}\right\}$ be a local basis on $T M$. Then

$$
\theta_{\zeta}\left(X_{1}, \widetilde{J} X_{1}, \ldots, X_{n}, \widetilde{J} X_{n}\right)=\alpha
$$

where $\alpha \neq 0($ either $\alpha<0$ or $\alpha>0)$. Now let $\widetilde{X_{1}}:=\frac{X_{1}}{\sqrt{|\alpha|}}$ then

$$
\theta_{\zeta}\left(\widetilde{X_{1}}, \widetilde{J} \widetilde{X_{1}}, X_{2}, \widetilde{J} X_{2}, \ldots, X_{n}, \widetilde{J} X_{n}\right)=\frac{\alpha}{|\alpha|}
$$

It follows that we can choose the basis $\left\{X_{1}, \widetilde{J} X_{1}, \ldots, X_{n}, \widetilde{J} X_{n}\right\}$ such that

$$
\theta_{\zeta}\left(X_{1}, \widetilde{J} X_{1}, \ldots, X_{n}, \widetilde{J} X_{n}\right)= \pm 1
$$

Let $Y_{i}=\frac{X_{i}}{\left|\varphi^{2}-\psi^{2}\right|^{\frac{1}{2 n}}}$ for $i=1, \ldots, n$. Then

$$
\begin{aligned}
\theta_{\widetilde{\zeta}}\left(Y_{1}, \ldots, \widetilde{J} Y_{n}\right) & =\left(\varphi^{2}-\psi^{2}\right) \theta_{\zeta}\left(Y_{1}, \ldots, \widetilde{J} Y_{n}\right) \\
& =\left(\varphi^{2}-\psi^{2}\right) \cdot \frac{1}{\left|\varphi^{2}-\psi^{2}\right|} \theta_{\zeta}\left(X_{1}, \ldots, \widetilde{J} X_{n}\right) \\
& =\operatorname{sgn}\left(\varphi^{2}-\psi^{2}\right) \theta_{\zeta}\left(X_{1}, \ldots, \widetilde{J} X_{n}\right)= \pm 1
\end{aligned}
$$

and in consequence

$$
\begin{aligned}
H_{\widetilde{\zeta}} & =\operatorname{det}\left[\begin{array}{cccc}
\widetilde{h_{1}}\left(Y_{1}, Y_{1}\right) & \widetilde{h_{1}}\left(Y_{1}, \widetilde{J} Y_{1}\right) & \cdots & \widetilde{h_{1}}\left(Y_{1}, \widetilde{J} Y_{n}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\widetilde{h_{1}}\left(\widetilde{J} Y_{n}, Y_{1}\right) \widetilde{h_{1}}\left(\widetilde{J} Y_{n}, \widetilde{J} Y_{1}\right) & \cdots & \widetilde{h_{1}}\left(\widetilde{J} Y_{n}, \widetilde{J} Y_{n}\right)
\end{array}\right] \widetilde{ } \\
& =\frac{1}{\left(\varphi^{2}-\psi^{2}\right)^{2}} \operatorname{det}\left[\begin{array}{cccc}
\widetilde{h_{1}}\left(X_{1}, X_{1}\right) & \widetilde{h_{1}}\left(X_{1}, \widetilde{J} X_{1}\right) & \cdots & \widetilde{h_{1}}\left(X_{1}, \widetilde{J} X_{n}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\widetilde{h_{1}}\left(\widetilde{J} X_{n}, X_{1}\right) \widetilde{h_{1}}\left(\widetilde{J} X_{n}, \widetilde{J} X_{1}\right) & \cdots \widetilde{h_{1}}\left(\widetilde{J} X_{n}, \widetilde{J} X_{n}\right)
\end{array}\right] .
\end{aligned}
$$

We also have

$$
\begin{aligned}
\operatorname{det} & {\left[\begin{array}{ll}
\widetilde{h_{1}}\left(X_{k}, X_{l}\right) & \widetilde{h_{1}}\left(X_{m}, X_{l}\right) \\
\widetilde{h_{1}}\left(X_{k}, \widetilde{J} X_{l}\right) \\
\left.\widetilde{J} X_{l}\right)
\end{array}\right] } \\
= & \frac{1}{\left(\varphi^{2}-\psi^{2}\right)^{2}} \operatorname{det}\left[\begin{array}{cc}
\varphi h_{1}\left(X_{k}, X_{l}\right)-\psi h_{2}\left(X_{k}, X_{l}\right) & \varphi h_{1}\left(X_{k}, \widetilde{J} X_{l}\right)-\psi h_{2}\left(X_{k}, \widetilde{J} X_{l}\right) \\
\varphi h_{1}\left(X_{m}, X_{l}\right)-\psi h_{2}\left(X_{m}, X_{l}\right) & \varphi h_{1}\left(X_{m}, \widetilde{J} X_{l}\right)-\psi h_{2}\left(X_{m}, \widetilde{J} X_{l}\right)
\end{array}\right] \\
= & \frac{1}{\left(\varphi^{2}-\psi^{2}\right)^{2}} \operatorname{det}\left[\begin{array}{ll}
\varphi h_{1}\left(X_{k}, X_{l}\right)-\psi h_{1}\left(X_{k}, \widetilde{J} X_{l}\right) & \varphi h_{1}\left(X_{k}, \widetilde{J} X_{l}\right)-\psi h_{1}\left(X_{k}, X_{l}\right) \\
\varphi h_{1}\left(X_{m}, X_{l}\right)-\psi h_{1}\left(X_{m}, \widetilde{J} X_{l}\right) & \varphi h_{1}\left(X_{m}, \widetilde{J} X_{l}\right)-\psi h_{1}\left(X_{m}, X_{l}\right)
\end{array}\right] \\
= & \frac{1}{\left(\varphi^{2}-\psi^{2}\right)^{2}} \operatorname{det}\left[\begin{array}{ll}
\varphi h_{1}\left(X_{k}, X_{l}\right) & \varphi h_{1}\left(X_{k}, \widetilde{J} X_{l}\right) \\
\varphi h_{1}\left(X_{m}, X_{l}\right) & \varphi h_{1}\left(X_{m}, \widetilde{J} X_{l}\right)
\end{array}\right] \\
& +\frac{1}{\left(\varphi^{2}-\psi^{2}\right)^{2}} \operatorname{det}\left[\begin{array}{ll}
-\psi h_{1}\left(X_{k}, \widetilde{J} X_{l}\right) & -\psi h_{1}\left(X_{k}, X_{l}\right) \\
-\psi h_{1}\left(X_{m}, \widetilde{J} X_{l}\right) & -\psi h_{1}\left(X_{m}, X_{l}\right)
\end{array}\right] \\
= & \frac{\varphi^{2}-\psi^{2}}{\left(\varphi^{2}-\psi^{2}\right)^{2}} \operatorname{det}\left[\begin{array}{ll}
h_{1}\left(X_{k}, X_{l}\right) & h_{1}\left(X_{k}, \widetilde{J} X_{l}\right) \\
h_{1}\left(X_{m}, X_{l}\right) & h_{1}\left(X_{m}, \widetilde{J} X_{l}\right)
\end{array}\right] .
\end{aligned}
$$

Now we obtain

$$
\operatorname{det}\left[\begin{array}{cc}
\widetilde{h_{1}}\left(X_{k}, X_{l}\right) & \widetilde{h_{1}}\left(X_{k}, \widetilde{J} X_{l}\right) \\
\widetilde{h_{1}}\left(X_{m}, X_{l}\right) & \widetilde{h_{1}}\left(X_{m}, \widetilde{J} X_{l}\right)
\end{array}\right]=\frac{1}{\varphi^{2}-\psi^{2}} \operatorname{det}\left[\begin{array}{cc}
h_{1}\left(X_{k}, X_{l}\right) & h_{1}\left(X_{k}, \widetilde{J} X_{l}\right) \\
h_{1}\left(X_{m}, X_{l}\right) & h_{1}\left(X_{m}, \widetilde{J} X_{l}\right)
\end{array}\right] .
$$

The above implies that

$$
H_{\widetilde{\zeta}}=\frac{1}{\left(\varphi^{2}-\psi^{2}\right)^{2}} \cdot \frac{1}{\left(\varphi^{2}-\psi^{2}\right)^{n}} \cdot H_{\zeta}
$$

and eventually

$$
H_{\widetilde{\zeta}}=\frac{1}{\left(\varphi^{2}-\psi^{2}\right)^{n+2}} \cdot H_{\zeta}
$$

When g is nondegenerate there exist transversal vector fields ζ satisfying the following two conditions:

$$
\begin{aligned}
& \left|H_{\zeta}\right|=1 \\
& \tau_{1}=0
\end{aligned}
$$

Such vector fields are called affine normal vector fields. The first condition is a kind of normalization and the second condition implies that $\nabla \theta_{\zeta}=0$ [see (3.18) formula].

Indeed, let $\{\zeta, \widetilde{J} \zeta\}$ be an arbitrary transversal bundle for g. Since g is nondegenerate we have $H_{\zeta} \neq 0$, so we can find functions φ and ψ such that $\varphi^{2}-\psi^{2} \neq 0$ and

$$
\begin{equation*}
\left|\left(\varphi^{2}-\psi^{2}\right)^{n+2}\right|=\left|H_{\zeta}\right| \tag{3.21}
\end{equation*}
$$

Let $\widetilde{\zeta}:=\varphi \zeta+\psi \zeta+Z$ where Z is an arbitrary vector field on M. Lemma 3.5 (Formula (3.20)] and (3.21) imply that $\left|H_{\widetilde{\zeta}}\right|=1$. We shall show that we can choose Z in such a way that $\widetilde{\zeta}$ is an affine normal vector field.

By Lemma 3.4 [Formula (3.17)] we have

$$
\widetilde{\tau}_{1}(X)=\frac{1}{2} X\left(\ln \left|\varphi^{2}-\psi^{2}\right|\right)+\tau_{1}(X)+\frac{1}{\varphi^{2}-\psi^{2}}\left(\varphi h_{1}(X, Z)-\psi h_{2}(X, Z)\right)
$$

Now using Lemma 3.2 we obtain

$$
\widetilde{\tau_{1}}(X)=\frac{1}{2} X\left(\ln \left|\varphi^{2}-\psi^{2}\right|\right)+\tau_{1}(X)+\frac{1}{\varphi^{2}-\psi^{2}} \cdot h_{1}(X, \varphi Z-\psi \widetilde{J} Z)
$$

Since h_{1} is nondegenerate we can find Z such that $\widetilde{\tau}_{1}(X)=0$ for all vector fields X defined on U. In this way we have shown that on every paraholomorphic hypersurface one may find (at least locally) an affine normal vector field.

Lemma 3.6. Let $g: M^{2 n} \rightarrow \mathbb{R}^{2 n+2}$ be a nondegenerate para-holomorphic hypersurface and let $\zeta, \widetilde{\zeta}: U \rightarrow \mathbb{R}^{2 n+2}$ be two affine normal vector fields on $U \subset M$. Then $\widetilde{\zeta}=\varphi \zeta+\psi \widetilde{J} \zeta$, where $\left|\varphi^{2}-\psi^{2}\right|=1$.

Proof. Since $\zeta, \widetilde{\zeta}$ are transversal there exist functions $\underset{\sim}{\varphi}, \psi \in C^{\infty}(U)$ and a tangent vector field $Z \in \mathcal{X}(U)$ such that $\widetilde{\zeta}=\varphi \zeta+\psi \widetilde{J} \zeta+Z$. Since $\left|H_{\zeta}\right|=$ $\left|H_{\widetilde{\zeta}}\right|=1$ the Formula (3.20) implies that $\left|\varphi^{2}-\psi^{2}\right|=1$. Now, due to the fact that $\tau_{1}=\widetilde{\tau}_{1}=0$ and by Formula (3.17) and Lemma 3.2 we obtain
$0=\varphi h_{1}(X, Z)-\psi h_{2}(X, Z)=\varphi h_{1}(X, Z)-\psi h_{1}(X, \widetilde{J} Z)=h_{1}(X, \varphi Z-\psi \widetilde{J} Z)$
for all $X \in \mathcal{X}(U)$. Since h_{1} is nondegenerate and $\varphi^{2}-\psi^{2} \neq 0$ the last formula implies that $Z=0$. The proof is completed.

Lemma 3.7. Let $g: M \rightarrow \mathbb{R}^{2 n+2}$ be a para-complex affine hypersurface with a transversal bundle $\{\zeta, \widetilde{J} \zeta\}$. Then for each point $x \in M$ there exists a local coordinate system $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}$ with origin at x such that $\partial_{x_{1}}, \ldots, \partial_{x_{n}}$ and $\partial_{y_{1}}, \ldots, \partial_{y_{n}}$ are local bases for D^{+}and D^{-}respectively and

$$
\begin{align*}
& h_{1}\left(\partial_{x_{i}}, \partial_{y_{j}}\right)=0, \tag{3.22}\\
& h_{2}\left(\partial_{x_{i}}, \partial_{y_{j}}\right)=0, \tag{3.23}\\
& \nabla_{\partial_{x_{i}}} \partial_{y_{j}}=\nabla_{\partial_{y_{j}}} \partial_{x_{i}}=0, \tag{3.24}\\
& \nabla_{\partial_{x_{i}}} \partial_{x_{j}} \in \mathrm{D}^{+}, \tag{3.25}\\
& \nabla_{\partial_{y_{i}}} \partial_{y_{j}} \in \mathrm{D}^{-} \tag{3.26}
\end{align*}
$$

for $i, j=1, \ldots, n$.
Proof. Since D^{+}and D^{-}are involutive and $\mathrm{D}^{+} \oplus \mathrm{D}^{-}=T M$ using lemma about direct product of involutive distributions (see Prop. 5.2, p. 182 in [9]) we have that for each $x \in M$ there exists a neighbourhood U of x and a local coordinate system $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}$ on U such that $\partial_{x_{i}} \in \mathrm{D}^{+}, \partial_{y_{i}} \in \mathrm{D}^{-}$ for $i=1, \ldots, n$. Lemma 3.2 implies that

$$
h_{1}\left(\partial_{x_{i}}, \widetilde{J} \partial_{y_{j}}\right)=h_{1}\left(\widetilde{J} \partial_{x_{i}}, \partial_{y_{j}}\right) .
$$

Since $\widetilde{J} \partial_{x_{i}}=\partial_{x_{i}}$ and $\widetilde{J} \partial_{y_{j}}=-\partial_{y_{j}}$ we have $h_{1}\left(\widetilde{J} \partial_{x_{i}}, \partial_{y_{j}}\right)=h_{1}\left(\partial_{x_{i}}, \partial_{y_{j}}\right)$ that is $h_{1}\left(\partial_{x_{i}}, \partial_{y_{j}}\right)=0$ for $i, j=1, \ldots, n$. As an immediate consequence we get that $h_{2}\left(\partial_{x_{i}}, \partial_{y_{j}}\right)=0$ for $i, j=1, \ldots, n$ as well.

From (3.1) we obtain

$$
-\nabla_{\partial_{x_{i}}} \partial_{y_{j}}=\nabla_{\partial_{x_{i}}} \widetilde{J} \partial_{y_{j}}=\widetilde{J}\left(\nabla_{\partial_{x_{i}}} \partial_{y_{j}}\right)
$$

and

$$
\nabla_{\partial_{y_{j}}} \partial_{x_{i}}=\nabla_{\partial_{y_{j}}} \widetilde{J} \partial_{x_{i}}=\widetilde{J}\left(\nabla_{\partial_{y_{j}}} \partial_{x_{i}}\right)
$$

so $\nabla_{\partial_{x_{i}}} \partial_{y_{j}} \in \mathrm{D}^{-}$and $\nabla_{\partial_{y_{j}}} \partial_{x_{i}} \in \mathrm{D}^{+}$. Since ∇ is torsion free we also have $\nabla_{\partial_{x_{i}}} \partial_{y_{j}}=\nabla_{\partial_{y_{j}}} \partial_{x_{i}}$ that is

$$
\nabla_{\partial_{x_{i}}} \partial_{y_{j}}=\nabla_{\partial_{y_{j}}} \partial_{x_{i}}=0
$$

Using again Formula (3.1) we get

$$
\nabla_{\partial_{x_{i}}} \partial_{x_{j}}=\nabla_{\partial_{x_{i}}} \widetilde{J} \partial_{x_{j}}=\widetilde{J}\left(\nabla_{\partial_{x_{i}}} \partial_{x_{j}}\right)
$$

and

$$
-\nabla_{\partial_{y_{i}}} \partial_{y_{j}}=\nabla_{\partial_{y_{i}}} \widetilde{J} \partial_{y_{j}}=\widetilde{J}\left(\nabla_{\partial_{y_{i}}} \partial_{y_{j}}\right)
$$

that is $\nabla_{\partial_{x_{i}}} \partial_{x_{j}} \in \mathrm{D}^{+}$and $\nabla_{\partial_{y_{i}}} \partial_{y_{j}} \in \mathrm{D}^{-}$for $i, j=1, \ldots, n$. The proof is completed.

As an immediate consequence of the above lemma we obtain
Corollary 3.1. Let $g: M \rightarrow \mathbb{R}^{2 n+2}$ be a para-complex affine hypersurface with a transversal bundle $\{\zeta, \widetilde{J} \zeta\}$. Then for each $X \in \mathrm{D}^{+}, Y \in \mathrm{D}^{-}$we have

1. $h_{i}(X, Y)=0$ for $i=1,2$;
2. Distributions D^{+}and D^{-}are ∇ parallel. That is for every $Z \in \mathcal{X}(M)$ we have $\nabla_{Z} X \in \mathrm{D}^{+}$and $\nabla_{Z} Y \in \mathrm{D}^{-}$.

Lemma 3.8. Let $g: M \rightarrow \mathbb{R}^{2 n+2}$ be a para-complex affine hypersurface with a transversal bundle $\{\zeta, \widetilde{J} \zeta\}$. Then for each point $x \in M$ there exists a local coordinate system $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}$ with origin at x such that g can be locally expressed in the form

$$
g\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)=A\left(x_{1}, \ldots, x_{n}\right)+B\left(y_{1}, \ldots, y_{n}\right)
$$

where

$$
A: U_{1} \ni\left(x_{1}, \ldots, x_{n}\right) \mapsto A\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{2 n+2}
$$

and

$$
B: U_{2} \ni\left(y_{1}, \ldots, y_{n}\right) \mapsto B\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{2 n+2}
$$

are smooth immersions from open subsets $U_{1}, U_{2} \subset \mathbb{R}^{n}$. Moreover $\widetilde{J} A=A$ and $\widetilde{J} B=-B$.

Proof. Let $x \in M$ and let $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}$ be a local coordinate system from Lemma 3.7. By formula of Gauss we have

$$
g_{x_{i} y_{j}}=D_{\partial_{x_{i}}} g_{*} \partial_{y_{j}}=g_{*} \nabla_{\partial_{x_{i}}} \partial_{y_{j}}+h_{1}\left(\partial_{x_{i}}, \partial_{y_{j}}\right) \zeta+h_{2}\left(\partial_{x_{i}}, \partial_{y_{j}}\right) \tilde{J} \zeta
$$

Now (3.22)-(3.24) imply that $g_{x_{i} y_{j}}=0$ for $i, j=1, \ldots, n$. Solving this system of partial differential equations we immediately get that there exist open subsets $U_{1}, U_{2} \subset \mathbb{R}^{n}$ and smooth functions $\bar{A}: U_{1} \rightarrow \mathbb{R}^{2 n+2}, \bar{B}: U_{2} \rightarrow \mathbb{R}^{2 n+2}$ such that

$$
g\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)=\bar{A}\left(x_{1}, \ldots, x_{n}\right)+\bar{B}\left(y_{1}, \ldots, y_{n}\right)
$$

for $\left(x_{1}, \ldots, x_{n}\right) \in U_{1}$ and $\left(y_{1}, \ldots, y_{n}\right) \in U_{2}$. Since g is an immersion it is obvious that both \bar{A} and \bar{B} are immersions too. To prove the last part of the lemma it is enough to note that since g is para-holomorphic we have $\bar{A}_{x_{i}}=g_{*}\left(\partial_{x_{i}}\right)=\widetilde{J} g_{*}\left(\partial_{x_{i}}\right)=\widetilde{J} \bar{A}_{x_{i}}$ and $-\bar{B}_{y_{i}}=-g_{*}\left(\partial_{y_{i}}\right)=\widetilde{J} g_{*}\left(\partial_{y_{i}}\right)=\widetilde{J} \bar{B}_{y_{i}}$ for $i=1, \ldots, n$. That is there exist constants $C_{1}, C_{2} \in \mathbb{R}^{2 n+2}$ such that $\widetilde{J} \bar{A}=$ $\bar{A}+C_{1}$ and $\widetilde{J} \bar{B}=-\bar{B}+C_{2}$. Note that $\widetilde{J} C_{1}=-C_{1}$ and $\widetilde{J} C_{2}=C_{2}$. Let us define
$A:=\bar{A}+\frac{1}{2} C_{1}+\frac{1}{2} C_{2}$ and $B:=\bar{B}-\frac{1}{2} C_{1}-\frac{1}{2} C_{2}$. Then we have $A+B=\bar{A}+\bar{B}=g$ and

$$
\begin{aligned}
\widetilde{J} A=\widetilde{J} \bar{A}-\frac{1}{2} C_{1}+\frac{1}{2} C_{2} & =\bar{A}+C_{1}-\frac{1}{2} C_{1}+\frac{1}{2} C_{2} \\
& =\bar{A}+\frac{1}{2} C_{1}+\frac{1}{2} C_{2}=A \\
\widetilde{J} B=\widetilde{J} \bar{B}+\frac{1}{2} C_{1}-\frac{1}{2} C_{2} & =-\bar{B}+C_{2}+\frac{1}{2} C_{1}-\frac{1}{2} C_{2} \\
& =-\bar{B}+\frac{1}{2} C_{1}+\frac{1}{2} C_{2}=-B .
\end{aligned}
$$

4. Para-Complex Affine Hyperspheres

In this section we focus on a special type of para-complex hypersurfaces. Namely, we study so called para-complex affine hyperspheres. The definition of para-complex affine hypersphere is very similar to definition of a hypersphere in a complex case. The aim of this section is to give a complete local classification of such hypersurfaces. Especially, we shall show that there is a strict correspondence between real and para-complex affine hyperspheres.

A nondegenerate para-complex hypersurface is said to be a proper paracomplex affine hypersphere if there exists an affine normal vector field ζ such that $S=\alpha I$, where $\alpha \in \mathbb{R} \backslash\{0\}$ and $\tau_{2}=0$. If there exists an affine normal vector field ζ such that $S=0$ and $\tau_{2}=0$ we say about an improper paracomplex affine hypersphere.
Remark 4.1. Let $g: M \rightarrow \mathbb{R}^{2 n+2}$ be a proper para-complex affine hypersphere with a transversal bundle $\{\zeta, \widetilde{J} \zeta\}$ such that $S=\alpha I$ for ζ. Then g is a paracomplex affine hypersphere with a transversal bundle $\{\widetilde{\zeta}, \widetilde{J} \widetilde{\zeta}\}$, where $\widetilde{\zeta}=\frac{1}{2}(\alpha+$ $\left.\frac{1}{\alpha}\right) \zeta+\frac{1}{2}\left(\frac{1}{\alpha}-\alpha\right) \widetilde{J} \zeta$ and $\widetilde{S}=$ id.

Now we shall prove a classification theorem for para-complex affine hyperspheres.

Theorem 4.1. Let $g: M \rightarrow \mathbb{R}^{2 n+2}$ be a para-complex affine hypersphere with a transversal bundle $\{\zeta, \widetilde{J} \zeta\}$. Then there exist open subsets $U_{1} \subset \mathbb{R}^{n}, U_{2} \subset \mathbb{R}^{n}$ and (real) affine hyperspheres

$$
f_{1}: U_{1} \rightarrow \mathbb{R}^{n+1}, \quad f_{2}: U_{2} \rightarrow \mathbb{R}^{n+1}
$$

such that g can be locally expressed in the form

$$
\begin{equation*}
g=f_{1} \times f_{2}+\widetilde{J} \circ\left(f_{1} \times\left(-f_{2}\right)\right) \tag{4.1}
\end{equation*}
$$

Moreover, if g is proper (respectively improper) then both f_{1} and f_{2} are proper (respectively improper) as well. The converse is also true, in the sense, that for every two proper (respectively improper) affine hyperspheres f_{1} and f_{2} the

Formula (4.1) defines a proper (respectively improper) para-complex affine hypersphere.

Proof. Let $g: M \rightarrow \mathbb{R}^{2 n+2}$ be a para-complex affine hypersphere and let $x \in$ M. Since g is a para-complex affine hypersurface the Lemma 3.8 implies that there exist open subsets $U_{1}, U_{2} \subset \mathbb{R}^{n}$ and smooth immersions $A: U_{1} \rightarrow \mathbb{R}^{2 n+2}$, $B: U_{2} \rightarrow \mathbb{R}^{2 n+2}$ such that $\widetilde{J} A=A, \widetilde{J} B=-B$ and g can be expressed in some neighborhood of x in the form:

$$
g: U_{1} \times U_{2} \ni\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right) \mapsto A\left(x_{1}, \ldots, x_{n}\right)+B\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{2 n+2}
$$

Let $\nabla, h_{1}, S, \tau_{1}$ and τ_{2} be induced affine objects for g. Since g is a hypersphere we have $\tau_{1}=\tau_{2}=0$ and $S=\alpha$ id for some $\alpha \in \mathbb{R}$.

Let $\pi_{1}: \mathbb{R}^{2 n+2} \rightarrow \mathbb{R}^{n+1}$ be a projection of first $(n+1)$ variables on \mathbb{R}^{n+1} and let $\pi_{2}: \mathbb{R}^{2 n+2} \rightarrow \mathbb{R}^{n+1}$ be a projection of last $(n+1)$ variables on \mathbb{R}^{n+1}. Let us define $f_{1}: U_{1} \ni\left(x_{1}, \ldots, x_{n}\right) \mapsto \pi_{1} \circ A\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n+1}$ and $f_{2}: U_{2} \ni$ $\left(y_{1}, \ldots, y_{n}\right) \mapsto \pi_{2} \circ B\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n+1}$. Since A and B are immersions and $\widetilde{J} A=A$ and $\widetilde{J} B=-B$ we easily verify that f_{1} and f_{2} are immersions too. We also have

$$
g=f_{1} \times f_{2}+\widetilde{J} \circ\left(f_{1} \times\left(-f_{2}\right)\right)
$$

Now, it is enough to show that f_{1} and f_{2} are affine hyperspheres. For this purpose we shall consider the following two cases.
Case I $\alpha \neq 0$. In this case we have $\zeta=-\alpha g$. Since ζ and $\widetilde{J} \zeta$ are linearly independent and transversal to g then also $\frac{1}{2}(\zeta+\widetilde{J} \zeta)=-\alpha A$ and $\frac{1}{2}(\zeta-\widetilde{J} \zeta)=-\alpha B$ are transversal to g. In particular $\left\{A_{x_{1}}, \ldots, A_{x_{n}}, A\right\}$ and $\left\{B_{y_{1}}, \ldots, B_{y_{n}}, B\right\}$ are linearly independent. Let $\alpha_{1}, \ldots, \alpha_{n}, \beta$ be functions on U_{1} such that

$$
\sum_{i} \alpha_{i} f_{1_{x_{i}}}+\beta f_{1}=0
$$

Then

$$
\begin{aligned}
\sum_{i} \alpha_{i} A_{x_{i}}+\beta A & =\sum_{i} \alpha_{i}\left(\pi_{1} A_{x_{i}}, \pi_{1} A_{x_{i}}\right)+\beta\left(\pi_{1} A, \pi_{1} A\right) \\
& =\left(\sum_{i} \alpha_{i} f_{1 x_{i}}+\beta f_{1}, \sum_{i} \alpha_{i} f_{1_{x_{i}}}+\beta f_{1}\right)=(0,0)
\end{aligned}
$$

Since $\left\{A_{x_{1}}, \ldots, A_{x_{n}}, A\right\}$ are linearly independent the above implies that $\alpha_{1}=$ $\cdots=\alpha_{n}=\beta=0$ that is f_{1} is linearly independent with $\left\{f_{1_{x_{i}}}\right\}_{i=1}^{n}$. Now $\xi_{1}:=-2 \alpha f_{1}$ is a transversal vector field to f_{1}. In a similar way we show that $\xi_{2}:=-2 \alpha f_{2}$ is a transversal vector field to f_{2}.

The Gauss formula for g implies that

$$
\begin{align*}
D_{\partial_{x_{i}}} g_{*} \partial_{x_{j}} & =g_{*}\left(\nabla_{\partial_{x_{i}}} \partial_{x_{j}}\right)+h_{1}\left(\partial_{x_{i}}, \partial_{x_{j}}\right) \zeta+h_{2}\left(\partial_{x_{i}}, \partial_{x_{j}}\right) \widetilde{J} \zeta \\
& =\Gamma_{i j}^{k} g_{x_{k}}+h_{1}\left(\partial_{x_{i}}, \partial_{x_{j}}\right)(\zeta+\widetilde{J} \zeta) \\
& =\Gamma_{i j}^{k} A_{x_{k}}+h_{1}\left(\partial_{x_{i}}, \partial_{x_{j}}\right) \cdot(-2 \alpha A), \tag{4.2}
\end{align*}
$$

where $\Gamma_{i j}^{k}$ are Christoffel's symbols for ∇ and we used the fact that $h_{1}=h_{2}$ on D^{+}. On the other hand we have

$$
\begin{equation*}
D_{\partial_{x_{i}}} g_{*} \partial_{x_{j}}=g_{x_{i} x_{j}}=A_{x_{i} x_{j}}=\left(f_{1 x_{i} x_{j}}, f_{1 x_{i} x_{j}}\right) . \tag{4.3}
\end{equation*}
$$

Using (4.3) in (4.2) and applying π_{1} projection we get

$$
\begin{align*}
f_{1_{x_{i} x_{j}}} & =\Gamma_{i j}^{k} f_{1_{x_{k}}}+h_{1}\left(\partial_{x_{i}}, \partial_{x_{j}}\right) \cdot\left(-2 \alpha f_{1}\right) \\
& =\Gamma_{i j}^{k} f_{1_{x_{k}}}+h_{1}\left(\partial_{x_{i}}, \partial_{x_{j}}\right) \xi_{1} . \tag{4.4}
\end{align*}
$$

For f_{1} we have the Gauss formula, that is

$$
f_{1_{x_{i} x_{j}}}=D_{\partial_{x_{i}}} f_{1 *} \partial_{x_{j}}=f_{1 *}\left(\nabla_{\partial_{x_{i}}}^{+} \partial_{x_{j}}\right)+h^{+}\left(\partial_{x_{i}}, \partial_{x_{j}}\right) \xi_{1},
$$

where ∇^{+}is the induced connection and h^{+}is the second fundamental form for f_{1}. Now (4.4) implies that $\nabla^{+}=\left.\nabla\right|_{T U_{1} \times T U_{1}}$ and $h^{+}=\left.h_{1}\right|_{T U_{1} \times T U_{1}}$. In particular h^{+}is nondegenerate since h_{1} is nondegenerate on $T U_{1} \times T U_{1}$. Note also that for f_{1} we have the induced volume element θ^{+}given by the formula

$$
\begin{aligned}
\theta^{+}\left(\partial_{x_{1}}, \ldots, \partial_{x_{n}}\right): & =\operatorname{det}\left[f_{1_{x_{1}}}, \ldots, f_{1_{x_{n}}}, \xi_{1}\right] \\
& =-2 \alpha \operatorname{det}\left[f_{1_{x_{1}}}, \ldots, f_{1_{x_{n}}}, f_{1}\right] .
\end{aligned}
$$

In a similar way like above (but now using the fact that $h_{2}=-h_{1}$ on D^{-}) we obtain that $\nabla^{-}=\left.\nabla\right|_{T U_{2} \times T U_{2}}, h^{-}=\left.h_{1}\right|_{T U_{2} \times T U_{2}}$ and

$$
\theta^{-}\left(\partial_{y_{1}}, \ldots, \partial_{y_{n}}\right)=-2 \alpha \operatorname{det}\left[f_{2 y_{1}}, \ldots, f_{2 y_{n}}, f_{2}\right]
$$

where ∇^{-}is the induced connection, h^{-}is the second fundamental form and θ^{-}is the induced volume element for f_{2}.

Let θ be the induced volume element for g, that is

$$
\begin{aligned}
\theta\left(\partial_{x_{1}}, \ldots, \partial_{x_{n}}, \partial_{y_{1}}, \ldots, \partial_{y_{n}}\right)= & \operatorname{det}\left[A_{x_{1}}, \ldots, A_{x_{n}}, B_{y_{1}}, \ldots, B_{y_{n}},\right. \\
& -\alpha(A+B),-\alpha(A-B)] \\
= & \alpha^{2} \operatorname{det}\left[A_{x_{1}}, \ldots, A_{x_{n}}, B_{y_{1}}, \ldots, B_{y_{n}}, A,-B\right] \\
& +\alpha^{2} \operatorname{det}\left[A_{x_{1}}, \ldots, A_{x_{n}}, B_{y_{1}}, \ldots, B_{y_{n}}, B, A\right] \\
= & -2 \alpha^{2} \operatorname{det}\left[A_{x_{1}}, \ldots, A_{x_{n}}, B_{y_{1}}, \ldots, B_{y_{n}}, A, B\right] \\
= & -2 \alpha^{2} \cdot(-1)^{n} \operatorname{det}\left[A_{x_{1}}, \ldots, A_{x_{n}}, A, B_{y_{1}}, \ldots, B_{y_{n}}, B\right] .
\end{aligned}
$$

Let us denote

$$
\begin{aligned}
M & :=\left[A_{x_{1}}, \ldots, A_{x_{n}}, A, B_{y_{1}}, \ldots, B_{y_{n}}, B\right], \\
M^{+} & :=\left[\pi_{1} A_{x_{1}}, \ldots, \pi_{1} A_{x_{n}}, \pi_{1} A\right], \\
M^{-} & :=\left[\pi_{2} B_{y_{1}}, \ldots, \pi_{2} B_{y_{n}}, \pi_{2} B\right] .
\end{aligned}
$$

Then M can be expressed in the following block form:

$$
M=\left[\begin{array}{cc}
M^{+} & -M^{-} \\
M^{+} & M^{-}
\end{array}\right]
$$

Now replacing the row i with the sum of rows i and $i+n+1$ for $i=1, \ldots, n+1$, we obtain a new matrix

$$
M^{\prime}=\left[\begin{array}{cc}
2 M^{+} & 0 \\
M^{+} & M^{-}
\end{array}\right]
$$

It is easy to see that

$$
\begin{aligned}
\operatorname{det} M & =\operatorname{det} M^{\prime}=\operatorname{det}\left(2 M^{+}\right) \cdot \operatorname{det}\left(M^{-}\right) \\
& =2^{n+1} \operatorname{det} M^{+} \cdot \operatorname{det} M^{-} \\
& =\frac{2^{n-1}}{\alpha^{2}} \theta^{+}\left(\partial_{x_{1}}, \ldots, \partial_{x_{n}}\right) \cdot \theta^{-}\left(\partial_{y_{1}}, \ldots, \partial_{y_{n}}\right)
\end{aligned}
$$

Finally we get the following relation between θ, θ^{+}and θ^{-}:

$$
\begin{equation*}
\theta\left(\partial_{x_{1}}, \ldots, \partial_{x_{n}}, \partial_{y_{1}}, \ldots, \partial_{y_{n}}\right)=2^{n} \cdot(-1)^{n+1} \theta^{+}\left(\partial_{x_{1}}, \ldots, \partial_{x_{n}}\right) \theta^{-}\left(\partial_{y_{1}}, \ldots, \partial_{y_{n}}\right) \tag{4.5}
\end{equation*}
$$

Let det h_{1} be the determinant of h_{1} in the basis $\left\{\partial_{x_{1}}, \ldots, \partial_{x_{n}}, \partial_{y_{1}}, \ldots, \partial_{y_{n}}\right\}$. Since $h_{1}\left(\partial_{x_{i}}, \partial_{y_{j}}\right)=0$ for $i, j=1, \ldots, n$ we have that

$$
\begin{equation*}
\operatorname{det} h_{1}=\operatorname{det} h^{+} \cdot \operatorname{det} h^{-} \tag{4.6}
\end{equation*}
$$

where $\operatorname{det} h^{+}$is the determinant of h^{+}with respect to the basis $\left\{\partial_{x_{1}}, \ldots, \partial_{x_{n}}\right\}$ and $\operatorname{det} h^{-}$is the determinant of h^{-}with respect to the basis $\left\{\partial_{y_{1}}, \ldots, \partial_{y_{n}}\right\}$. Now using (4.5), (4.6) and the fact that $\left|H_{\zeta}\right|=1$ we obtain

$$
\begin{aligned}
1=\left|H_{\zeta}\right| & =\left|\frac{\operatorname{det} h_{1}}{\theta^{2}}\right|=\left|\frac{\operatorname{det} h^{+} \cdot \operatorname{det} h^{-}}{2^{2 n}\left(\theta^{+}\right)^{2} \cdot\left(\theta^{-}\right)^{2}}\right| \\
& =\frac{1}{2^{2 n}}\left(\frac{\omega_{h^{+}}\left(\partial_{x_{1}}, \ldots, \partial_{x_{n}}\right)}{\theta^{+}\left(\partial_{x_{1}}, \ldots, \partial_{x_{n}}\right)}\right)^{2} \cdot\left(\frac{\omega_{h^{-}}\left(\partial_{y_{1}}, \ldots, \partial_{y_{n}}\right)}{\theta^{-}\left(\partial_{y_{1}}, \ldots, \partial_{y_{n}}\right)}\right)^{2}
\end{aligned}
$$

That is

$$
\left|\frac{\omega_{h^{+}}\left(\partial_{x_{1}}, \ldots, \partial_{x_{n}}\right)}{\theta^{+}\left(\partial_{x_{1}}, \ldots, \partial_{x_{n}}\right)}\right| \cdot\left|\frac{\omega_{h^{-}}\left(\partial_{y_{1}}, \ldots, \partial_{y_{n}}\right)}{\theta^{-}\left(\partial_{y_{1}}, \ldots, \partial_{y_{n}}\right)}\right|=2^{n}
$$

Since $\omega_{h^{+}}, \theta^{+}$depends only on x_{1}, \ldots, x_{n} and $\omega_{h^{-}}, \theta^{-}$depends only on y_{1}, \ldots, y_{n} the last equality implies that both $\omega_{h^{+}} / \theta^{+}$and $\omega_{h^{-}} / \theta^{-}$are constant. So there exist constants c^{+}and c^{-}such that $\omega_{h^{+}}=c^{+} \theta^{+}$and $\omega_{h^{-}}=c^{-} \theta^{-}$.

Case II $\alpha=0$. Without loss of generality we may assume that $\zeta=(0, \ldots, 0,1)$ $\in \mathbb{R}^{2 n+2}$. Let us denote $\xi_{1}=\xi_{2}=(0, \ldots, 0,1) \in \mathbb{R}^{n+1}$. Since $\{\zeta, \widetilde{J} \zeta\}$ is transversal to g we have that $\zeta+\widetilde{J} \zeta=\left(\xi_{1}, \xi_{1}\right)$ is transversal to g as well. Let $\alpha_{1}, \ldots, \alpha_{n}, \beta$ be functions on U_{1} such that

$$
\sum_{i} \alpha_{i} f_{1 x_{i}}+\beta \xi_{1}=0
$$

Then

$$
\begin{aligned}
& \sum_{i} \alpha_{i} A_{x_{i}}+\beta(\zeta+\widetilde{J} \zeta) \\
& \quad=\sum_{i} \alpha_{i}\left(\pi_{1} A_{x_{i}}, \pi_{1} A_{x_{i}}\right)+\beta\left(\xi_{1}, \xi_{1}\right) \\
& \quad=\left(\sum_{i} \alpha_{i} f_{1 x_{i}}+\beta \xi_{1}, \sum_{i} \alpha_{i} f_{1 x_{i}}+\beta \xi_{1}\right)=(0,0)
\end{aligned}
$$

Now, since $\left\{g_{x_{1}}, \ldots, g_{x_{n}}, \zeta+\widetilde{J} \zeta\right\}$ are linearly independent it immediately follows that $\alpha_{1}=\cdots=\alpha_{n}=\beta=0$ and in consequence ξ_{1} is transversal to f_{1}. In a similar way we show that ξ_{2} is transversal to f_{2}. Like for $\alpha \neq 0$, using the Gauss formulas for g, f_{1} and f_{2}, we obtain that $h^{+}=h_{1}$ on $\mathrm{D}^{+}, h^{-}=h_{1}$ on D^{-}and $\operatorname{det} h_{1}=\operatorname{det} h^{+} \cdot \operatorname{det} h^{-}$. In particular we get that both f_{1} and f_{2} are nondegenerate.

For the induced volume θ we have

$$
\begin{aligned}
& \theta\left(\partial_{x_{1}}, \ldots, \partial_{x_{n}}, \partial_{y_{1}}, \ldots, \partial_{y_{n}}\right) \\
& \quad=\operatorname{det}\left[A_{x_{1}}, \ldots, A_{x_{n}}, B_{y_{1}}, \ldots, B_{y_{n}}, \zeta, \widetilde{J} \zeta\right] \\
& \quad=\frac{1}{2} \cdot(-1)^{n+1} \operatorname{det}\left[A_{x_{1}}, \ldots, A_{x_{n}}, \zeta+\widetilde{J} \zeta, B_{y_{1}}, \ldots, B_{y_{n}}, \zeta-\widetilde{J} \zeta\right]
\end{aligned}
$$

The above implies that
$\theta\left(\partial_{x_{1}}, \ldots, \partial_{x_{n}}, \partial_{y_{1}}, \ldots, \partial_{y_{n}}\right)=2^{n} \cdot(-1)^{n+1} \theta^{+}\left(\partial_{x_{1}}, \ldots, \partial_{x_{n}}\right) \cdot \theta^{-}\left(\partial_{y_{1}}, \ldots, \partial_{y_{n}}\right)$, where θ^{+}and θ^{-}are the induced volume forms for f_{1} and f_{2} respectively. Now, since ζ is affine normal, we have

$$
\begin{aligned}
1=\left|H_{\zeta}\right| & =\left|\frac{\operatorname{det} h_{1}}{(\theta)^{2}}\right|=\left|\frac{\operatorname{det} h^{+} \cdot \operatorname{det} h^{-}}{4^{n}\left(\theta^{+} \cdot \theta^{-}\right)^{2}}\right| \\
& =\frac{1}{4^{n}}\left|\frac{\omega_{h^{+}}}{\theta^{+}}\right|^{2} \cdot\left|\frac{\omega_{h^{-}}}{\theta^{-}}\right|^{2} .
\end{aligned}
$$

Since $\omega_{h^{+}}, \theta^{+}$depends only on x_{1}, \ldots, x_{n} and $\omega_{h^{-}}, \theta^{-}$depends only on y_{1}, \ldots, y_{n} the last equality implies that both $\omega_{h^{+}} / \theta^{+}$and $\omega_{h^{-}} / \theta^{-}$are constant and in consequence f_{1} and f_{2} are improper affine hyperspheres.

In order to prove the converse assume that $f_{1}: U_{1} \rightarrow \mathbb{R}^{n+1}$ and $f_{2}: U_{2} \rightarrow$ \mathbb{R}^{n+1} are two affine hyperspheres with the Blaschke field ξ_{1} and ξ_{2} respectively. Let us denote $U=U_{1} \times U_{2}$ and let $g: U \rightarrow \mathbb{R}^{2 n+2}$ be defined by the Formula (4.1) that is

$$
\begin{aligned}
g\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)= & \left(f_{1}\left(x_{1}, \ldots, x_{n}\right), f_{1}\left(x_{1}, \ldots, x_{n}\right)\right) \\
& +\left(-f_{2}\left(y_{1}, \ldots, y_{n}\right), f_{2}\left(y_{1}, \ldots, y_{n}\right)\right)
\end{aligned}
$$

For the above and similar expressions we will often ommit arguments using the following short notation:

$$
g=\left(f_{1}, f_{1}\right)+\left(-f_{2}, f_{2}\right)
$$

Like in the proof of the first part of the theorem we shall consider two cases.
Case I f_{1} and f_{2} are proper affine hyperspheres. In this case we have $\xi_{1}=$ $-\lambda_{1} f_{1}$ and $\xi_{2}=-\lambda_{2} f_{2}$ for some $\lambda_{1}, \lambda_{2} \in \mathbb{R}_{+}$. Let us define $\zeta:=-\alpha g$, where

$$
\begin{equation*}
\alpha:=\left(\frac{1}{2}\right)^{\frac{2 n+2}{n+2}} \cdot \sqrt{\lambda_{1} \lambda_{2}} . \tag{4.7}
\end{equation*}
$$

We shall show that g with ζ is a para-complex affine hypersphere. For this purpose let $\alpha_{1}, \ldots, \alpha_{n}, \beta_{1}, \ldots, \beta_{n}, \gamma, \delta \in C^{\infty}(U)$ and

$$
\sum \alpha_{i} g_{x_{i}}+\sum \beta_{i} g_{y_{i}}+\gamma \zeta+\delta \widetilde{J} \zeta=0
$$

Since $g_{x_{i}}=\left(f_{1 x_{i}}, f_{1 x_{i}}\right)$ and $g_{y_{i}}=\left(-f_{2 y_{i}}, f_{2 y_{i}}\right)$ we obtain

$$
\sum\left(\alpha_{i} f_{1_{x_{i}}}-\beta_{i} f_{2_{y_{i}}}\right)-\alpha(\gamma+\delta) f_{1}-\alpha(\delta-\gamma) f_{2}=0
$$

and

$$
\sum\left(\alpha_{i} f_{1 x_{i}}+\beta_{i} f_{2 y_{i}}\right)-\alpha(\gamma+\delta) f_{1}-\alpha(\gamma-\delta) f_{2}=0
$$

The above implies that

$$
\sum \alpha_{i} f_{1_{x_{i}}}-\alpha(\gamma+\delta) f_{1}=0
$$

and

$$
\sum \beta_{i} f_{2 y_{i}}-\alpha(\gamma-\delta) f_{2}=0
$$

Since f_{1} and f_{2} are proper affine hyperspheres then $\left\{f_{1_{x_{1}}}, \ldots, f_{1_{x_{n}}}, f_{1}\right\}$ as well as $\left\{f_{2 y_{1}}, \ldots, f_{2 y_{n}}, f_{2}\right\}$ are linearly independent, that is

$$
\alpha_{1}=\cdots=\alpha_{n}=0, \gamma+\delta=0
$$

and

$$
\beta_{1}=\cdots=\beta_{n}=0, \gamma-\delta=0
$$

In particular $\gamma=\delta=0$. In this way we have shown that

$$
\left\{g_{x_{1}}, \ldots, g_{x_{n}}, g_{y_{1}}, \ldots, g_{y_{n}}, \zeta, \widetilde{J} \zeta\right\}
$$

are linearly independent. Since $\widetilde{J} g_{x_{i}}=g_{x_{i}}$ and $\widetilde{J} g_{y_{i}}=-g_{y_{i}}$ we see that g is a para-complex hypersurface with a transversal bundle $\{\zeta, \widetilde{J} \zeta\}$. The Weingarten formula for g immediately implies that $S=\alpha$ id and $\tau_{1}=\tau_{2}=0$, so it is enough to show that g is nondegenerate and $\left|H_{\zeta}\right|=1$. For this purpose note that since $\partial_{x_{i}} \in \mathrm{D}^{+}$and $\partial_{y_{i}} \in \mathrm{D}^{-}$we have $h_{1}\left(\partial_{x_{i}} \partial_{x_{j}}\right)=h_{2}\left(\partial_{x_{i}}, \partial_{x_{j}}\right), h_{1}\left(\partial_{y_{i}} \partial_{y_{j}}\right)=$ $-h_{2}\left(\partial_{y_{i}}, \partial_{y_{j}}\right)$ and $h_{1}\left(\partial_{x_{i}}, \partial_{y_{j}}\right)=h_{2}\left(\partial_{x_{i}}, \partial_{y_{j}}\right)=0$ for $i, j=1, \ldots, n$. Now using the Gauss formula we get

$$
g_{x_{i} x_{j}}=g_{*}\left(\nabla_{\partial_{x_{i}}} \partial_{x_{j}}\right)-2 \alpha h_{1}\left(\partial_{x_{i}}, \partial_{x_{j}}\right)\left(f_{1}, f_{1}\right)
$$

On the other hand

$$
g_{x_{i} x_{j}}=\left(f_{1_{x_{i} x_{j}}}, f_{1_{x_{i} x_{j}}}\right)=\left(f_{1_{*}}\left(\nabla_{\partial_{x_{i}}}^{+} \partial_{x_{j}}\right), f_{1_{*}}\left(\nabla_{\partial_{x_{i}}}^{+} \partial_{x_{j}}\right)\right)
$$

$$
-h^{+}\left(\partial_{x_{i}}, \partial_{x_{j}}\right) \lambda_{1}\left(f_{1}, f_{1}\right)
$$

where ∇^{+}and h^{+}are the induced affine connection and the second fundamental form for f_{1}. Now it easily follows that

$$
\begin{equation*}
h_{1}\left(\partial_{x_{i}}, \partial_{x_{j}}\right)=\frac{\lambda_{1}}{2 \alpha} h^{+}\left(\partial_{x_{i}}, \partial_{x_{j}}\right) . \tag{4.8}
\end{equation*}
$$

Similarly we obtain

$$
\begin{equation*}
h_{2}\left(\partial_{y_{i}}, \partial_{y_{j}}\right)=\frac{\lambda_{2}}{2 \alpha} h^{-}\left(\partial_{y_{i}}, \partial_{y_{j}}\right), \tag{4.9}
\end{equation*}
$$

where h^{-}is the second fundamental form for f_{2}. Formulas (4.8) and (4.9) imply that

$$
\begin{equation*}
\operatorname{det} h_{1}=\left(\frac{\lambda_{1}}{2 \alpha}\right)^{n} \cdot\left(\frac{\lambda_{2}}{2 \alpha}\right)^{n} \operatorname{det} h^{+} \cdot \operatorname{det} h^{-} . \tag{4.10}
\end{equation*}
$$

In particular g is nondegenerate. Now we shall calculate θ_{ζ}. Namely, we have

$$
\begin{aligned}
\theta_{\zeta}\left(\partial_{x_{1}}, \ldots, \partial_{x_{n}}, \partial_{y_{1}}, \ldots, \partial_{y_{n}}\right) & =\operatorname{det}\left[g_{x_{1}}, \ldots, g_{x_{n}}, g_{y_{1}}, \ldots, g_{y_{n}}, \zeta, \widetilde{J} \zeta\right] \\
& =\alpha^{2} \operatorname{det}\left[g_{x_{1}}, \ldots, g_{x_{n}}, g_{y_{1}}, \ldots, g_{y_{n}}, g, \widetilde{J} g\right] \\
& =2 \alpha^{2} \operatorname{det}\left[g_{x_{1}}, \ldots, g_{x_{n}}, g_{y_{1}}, \ldots, g_{y_{n}}, \frac{g+\widetilde{J} g}{2}, \frac{\widetilde{J} g-g}{2}\right] \\
& =-2(-1)^{n} \alpha^{2} \operatorname{det}\left[g_{x_{1}}, \ldots, g_{x_{n}}, \frac{g+\widetilde{J} g}{2}, g_{y_{1}}, \ldots, g_{y_{n}}, \frac{g-\widetilde{J} g}{2}\right] .
\end{aligned}
$$

Let us denote

$$
M:=\left[g_{x_{1}}, \ldots, g_{x_{n}}, \frac{g+\widetilde{J} g}{2}, g_{y_{1}}, \ldots, g_{y_{n}}, \frac{g-\widetilde{J} g}{2}\right] .
$$

It is easy to see that M has the following block form:

$$
M=\left[\begin{array}{cc}
M^{+} & -M^{-} \\
M^{+} & M^{-}
\end{array}\right]
$$

where

$$
M^{+}=\left[f_{1_{x_{1}}}, \ldots, f_{1_{x_{n}}}, f_{1}\right]=\left[f_{1_{x_{1}}}, \ldots, f_{1_{x_{n}}},-\frac{1}{\lambda_{1}} \cdot \xi_{1}\right]
$$

and

$$
M^{-}=\left[f_{2 y_{1}}, \ldots, f_{2 y_{n}}, f_{2}\right]=\left[f_{2 y_{1}}, \ldots, f_{2 y_{n}},-\frac{1}{\lambda_{2}} \cdot \xi_{2}\right] .
$$

Like in the first part of the proof we see that

$$
\begin{aligned}
\operatorname{det} M & =2^{n+1} \operatorname{det} M^{+} \cdot \operatorname{det} M^{-} \\
& =2^{n+1} \cdot \frac{-1}{\lambda_{1}} \cdot \theta^{+}\left(\partial_{x_{1}}, \ldots, \partial_{x_{n}}\right) \cdot \frac{-1}{\lambda_{2}} \cdot \theta^{-}\left(\partial_{y_{1}}, \ldots, \partial_{y_{n}}\right) \\
& =\frac{2^{n+1}}{\lambda_{1} \lambda_{2}} \theta^{+}\left(\partial_{x_{1}}, \ldots, \partial_{x_{n}}\right) \cdot \theta^{-}\left(\partial_{y_{1}}, \ldots, \partial_{y_{n}}\right),
\end{aligned}
$$

where θ^{+}and θ^{-}are the induced volume elements for f_{1} and f_{2} respectively. To simplify notation in the forthcoming formulas we will be omitting arguments of $\theta_{\zeta}, \theta^{+}$and θ^{-}. Now we obtain

$$
\theta_{\zeta}=(-1)^{n+1} \alpha^{2} \cdot \frac{2^{n+2}}{\lambda_{1} \lambda_{2}} \theta^{+} \cdot \theta^{-}
$$

Since ξ_{1} and ξ_{2} are the Blaschke fields we have $\omega_{h^{+}}=\theta^{+}$and $\omega_{h^{-}}=\theta^{-}$. In particular $\left(\theta^{+}\right)^{2}=\left|\operatorname{det} h^{+}\right|$and $\left(\theta^{-}\right)^{2}=\left|\operatorname{det} h^{-}\right|$. Now using (4.10) we obtain

$$
\begin{aligned}
\left(\theta_{\zeta}\right)^{2} & =\alpha^{4} \cdot \frac{2^{2 n+4}}{\left(\lambda_{1} \lambda_{2}\right)^{2}} \cdot\left(\theta^{+}\right)^{2} \cdot\left(\theta^{-}\right)^{2} \\
& =\alpha^{4} \cdot \frac{2^{2 n+4}}{\left(\lambda_{1} \lambda_{2}\right)^{2}} \cdot\left|\operatorname{det} h^{+}\right| \cdot\left|\operatorname{det} h^{-}\right| \\
& =\alpha^{4} \cdot \frac{2^{2 n+4}}{\left(\lambda_{1} \lambda_{2}\right)^{2}} \cdot\left(\frac{2 \alpha}{\lambda_{1}}\right)^{n} \cdot\left(\frac{2 \alpha}{\lambda_{2}}\right)^{n} \cdot\left|\operatorname{det} h_{1}\right| \\
& =\alpha^{2 n+4} \cdot \frac{2^{4 n+4}}{\left(\lambda_{1} \lambda_{2}\right)^{n+2}} \cdot\left|\operatorname{det} h_{1}\right| \\
& =\left|\operatorname{det} h_{1}\right|
\end{aligned}
$$

where the last equality is an immediate consequence of (4.7). Summarizing we have shown that

$$
\left|H_{\zeta}\right|=\left|\frac{\operatorname{det} h_{1}}{\left(\theta_{\zeta}\right)^{2}}\right|=1
$$

that is g is a proper para-complex affine hypersphere.
Case II f_{1} and f_{2} are improper affine hyperspheres. In this case we have $\xi_{1}=\xi_{2}=(0, \ldots, 1) \in \mathbb{R}^{n+1}$. Let us define $\zeta:=2^{\frac{-n}{n+2}}(0, \ldots, 0,1) \in \mathbb{R}^{2 n+2}$ and let $\alpha_{1}, \ldots, \alpha_{n}, \beta_{1}, \ldots, \beta_{n}, \gamma, \delta \in C^{\infty}(U)$ and

$$
\sum \alpha_{i} g_{x_{i}}+\sum \beta_{i} g_{y_{i}}+\gamma \zeta+\delta \widetilde{J} \zeta=0
$$

Like for proper hyperspheres we easily compute that

$$
\sum\left(\alpha_{i} f_{1 x_{i}}-\beta_{i} f_{2 y_{i}}\right)+2^{\frac{-n}{n+2}} \delta \xi_{1}=0
$$

and

$$
\sum\left(\alpha_{i} f_{1 x_{i}}+\beta_{i} f_{2 y_{i}}\right)+2^{\frac{-n}{n+2}} \gamma \xi_{2}=0
$$

The above implies that $\alpha_{i}=0, \beta_{i}=0, \gamma=\delta=0$ and in consequence

$$
\left\{g_{x_{1}}, \ldots, g_{x_{n}}, g_{y_{1}}, \ldots, g_{y_{n}}, \zeta, \widetilde{J} \zeta\right\}
$$

are linearly independent. It means that g is a para-complex affine hypersurface with a transversal bundle $\{\zeta, \widetilde{J} \zeta\}$. Using similar methods like in the proof for the first case we obtain

$$
\begin{equation*}
\operatorname{det} h_{1}=2^{\frac{2 n^{2}}{n+2}} \operatorname{det} h^{+} \cdot \operatorname{det} h^{-} \tag{4.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\theta_{\zeta}=(-1)^{n+1} 2^{n} \cdot 2^{\frac{-2 n}{n+2}} \theta^{+} \cdot \theta^{-} \tag{4.12}
\end{equation*}
$$

where h^{+}, h^{-}and θ^{+}, θ^{-}are the second fundamental forms and the induced volume elements for f_{1} and f_{2} respectively. It easily follows from (4.11) that g is nondegenerate. From the Weingarten formula we have $S=0, \tau_{1}=0$ and $\tau_{2}=0$. Now (4.11) and (4.12) implies that

$$
\left|H_{\zeta}\right|=\left|\frac{2^{\frac{2 n^{2}}{n+2}} \operatorname{det} h^{+} \cdot \operatorname{det} h^{-}}{\left[(-1)^{n+1} 2^{n} \cdot 2^{\frac{-2 n}{n+2}} \cdot \theta^{+} \cdot \theta^{-}\right]^{2}}\right|=1
$$

that is g is an improper para-complex affine hypersphere. The proof is concluded.

The above theorem gives us a one-to-one correspondence between paracomplex affine hyperspheres and pairs of (real) affine hyperspheres. Now, we shall show some examples

Example 4.1. Let $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{4}$ be given by the formula

$$
g(x, y):=\lambda_{1}^{-\frac{3}{4}}\left(\begin{array}{c}
\cos x \tag{4.13}\\
\sin x \\
\cos x \\
\sin x
\end{array}\right)+\lambda_{2}^{-\frac{3}{4}}\left(\begin{array}{c}
-\cos y \\
-\sin y \\
\cos y \\
\sin y
\end{array}\right)
$$

where $\lambda_{1}, \lambda_{2}>0$. It easily follows that g is an immersion. Moreover $\widetilde{J} g_{x}=g_{x}$ and $\widetilde{J} g_{y}=-g_{y}$, so g is a para-holomorphic hypersurface. If we take $\zeta:=$ $-\left(\frac{1}{2}\right)^{\frac{4}{3}} \sqrt{\lambda_{1} \lambda_{2}} \cdot g$ then $\{\zeta, \widetilde{J} \zeta\}$ is a transversal bundle for g. By straightforward computations we obtain

$$
\begin{aligned}
h_{1} & =\left[\begin{array}{cc}
\frac{2^{\frac{1}{3}}}{\sqrt{\lambda_{1} \lambda_{2}}} & 0 \\
0 & \frac{2^{\frac{1}{3}}}{\sqrt{\lambda_{1} \lambda_{2}}}
\end{array}\right], \quad h_{2}=\left[\begin{array}{cc}
\frac{2^{\frac{1}{3}}}{\sqrt{\lambda_{1} \lambda_{2}}} & 0 \\
0 & -\frac{2^{\frac{1}{3}}}{\sqrt{\lambda_{1} \lambda_{2}}}
\end{array}\right] \\
S & =\left(\frac{1}{2}\right)^{\frac{4}{3}} \sqrt{\lambda_{1} \lambda_{2}} \text { id, } \quad \tau_{1}=\tau_{2}=0
\end{aligned}
$$

relative to the canonical basis $\left\{\partial_{x}, \partial_{y}\right\}$. Moreover, since

$$
\theta_{\zeta}\left(\partial_{x}, \partial_{y}\right):=\operatorname{det}\left[g_{x}, g_{y}, \zeta, \widetilde{J} \zeta\right]=\frac{2^{\frac{1}{3}}}{\sqrt{\lambda_{1} \lambda_{2}}}
$$

one may easily compute that $H_{\zeta}=1$, that is g is a proper para-complex affine sphere.

Example 4.2. Let $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{4}$ be given by the formula

$$
g(x, y):=\lambda_{1}^{-\frac{3}{4}}\left(\begin{array}{c}
\cosh x \tag{4.14}\\
\sinh x \\
\cosh x \\
\sinh x
\end{array}\right)+\lambda_{2}^{-\frac{3}{4}}\left(\begin{array}{c}
-\cosh y \\
-\sinh y \\
\cosh y \\
\sinh y
\end{array}\right)
$$

where $\lambda_{1}, \lambda_{2}>0$. Exactly like in the previous example we have that g is an immersion and $\widetilde{J} g_{x}=g_{x}$ and $\widetilde{J} g_{y}=-g_{y}$, so g is a para-holomorphic hypersurface. Again taking $\zeta:=-\left(\frac{1}{2}\right)^{\frac{4}{3}} \sqrt{\lambda_{1} \lambda_{2}} \cdot g$ we obtain that $\{\zeta, \widetilde{J} \zeta\}$ is a transversal bundle for g. We also have

$$
\begin{aligned}
h_{1} & =\left[\begin{array}{cc}
-\frac{2^{\frac{1}{3}}}{\sqrt{\lambda_{1} \lambda_{2}}} & 0 \\
0 & -\frac{2^{\frac{1}{3}}}{\sqrt{\lambda_{1} \lambda_{2}}}
\end{array}\right], \quad h_{2}=\left[\begin{array}{cc}
-\frac{2^{\frac{1}{3}}}{\sqrt{\lambda_{1} \lambda_{2}}} & 0 \\
0 & \frac{2^{\frac{1}{3}}}{\sqrt{\lambda_{1} \lambda_{2}}}
\end{array}\right] \\
S & =\left(\frac{1}{2}\right)^{\frac{4}{3}} \sqrt{\lambda_{1} \lambda_{2}} \mathrm{id}, \quad \tau_{1}=\tau_{2}=0
\end{aligned}
$$

relative to the canonical basis $\left\{\partial_{x}, \partial_{y}\right\}$. Moreover, since

$$
\theta_{\zeta}\left(\partial_{x}, \partial_{y}\right):=\operatorname{det}\left[g_{x}, g_{y}, \zeta, \widetilde{J} \zeta\right]=\frac{2^{\frac{1}{3}}}{\sqrt{\lambda_{1} \lambda_{2}}}
$$

we easily compute that $H_{\zeta}=1$, that is g is a proper para-complex affine sphere.
Example 4.3. In this example we consider two very similar surfaces. Let $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{4}$ and $g^{\prime}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{4}$ be given by the formulas:

$$
g(x, y):=\lambda_{1}-\frac{3}{4}\left(\begin{array}{c}
\cosh x \tag{4.15}\\
\sinh x \\
\cosh x \\
\sinh x
\end{array}\right)+\lambda_{2}^{-\frac{3}{4}}\left(\begin{array}{c}
-\cos y \\
-\sin y \\
\cos y \\
\sin y
\end{array}\right)
$$

and

$$
g^{\prime}(x, y):=\lambda_{1}^{-\frac{3}{4}}\left(\begin{array}{c}
\cos x \tag{4.16}\\
\sin x \\
\cos x \\
\sin x
\end{array}\right)+\lambda_{2}^{-\frac{3}{4}}\left(\begin{array}{c}
-\cosh y \\
-\sinh y \\
\cosh y \\
\sinh y
\end{array}\right)
$$

where $\lambda_{1}, \lambda_{2}>0$. Exactly like in the previous examples we prove that g and g^{\prime} are para-holomorphic hypersurfaces. Let $\zeta:=-\left(\frac{1}{2}\right)^{\frac{4}{3}} \sqrt{\lambda_{1} \lambda_{2}} \cdot g$ and $\zeta^{\prime}:=$ $-\left(\frac{1}{2}\right)^{\frac{4}{3}} \sqrt{\lambda_{1} \lambda_{2}} \cdot g^{\prime}$ then $\{\zeta, \widetilde{J} \zeta\}$ and $\left\{\zeta^{\prime}, \widetilde{J} \zeta^{\prime}\right\}$ are transversal bundles for g and g^{\prime} respectively. For g we have

$$
h_{1}=\left[\begin{array}{cc}
-\frac{2^{\frac{1}{3}}}{\sqrt{\lambda_{1} \lambda_{2}}} & 0 \\
0 & \frac{2^{\frac{1}{3}}}{\sqrt{\lambda_{1} \lambda_{2}}}
\end{array}\right], \quad h_{2}=\left[\begin{array}{cc}
-\frac{2^{\frac{1}{3}}}{\sqrt{\lambda_{1} \lambda_{2}}} & 0 \\
0 & -\frac{2^{\frac{1}{3}}}{\sqrt{\lambda_{1} \lambda_{2}}}
\end{array}\right]
$$

$$
S=\left(\frac{1}{2}\right)^{\frac{4}{3}} \sqrt{\lambda_{1} \lambda_{2}} \text { id }, \quad \tau_{1}=\tau_{2}=0
$$

and

$$
\theta_{\zeta}\left(\partial_{x}, \partial_{y}\right):=\operatorname{det}\left[g_{x}, g_{y}, \zeta, \widetilde{J} \zeta\right]=\frac{2^{\frac{1}{3}}}{\sqrt{\lambda_{1} \lambda_{2}}}
$$

relative to the canonical basis $\left\{\partial_{x}, \partial_{y}\right\}$. Now it easily follows that $H_{\zeta}=-1$ that is g is a proper para-complex affine sphere. In a similar way we show that also g^{\prime} is a para-complex affine sphere.
Example 4.4. Let $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{4}$ be given by the formula

$$
g(x, y):=\left(\begin{array}{c}
x \tag{4.17}\\
\frac{1}{2} x^{2} \\
x \\
\frac{1}{2} x^{2}
\end{array}\right)+\left(\begin{array}{c}
-y \\
-\frac{1}{2} y^{2} \\
y \\
\frac{1}{2} y^{2}
\end{array}\right) .
$$

It easily follows that g is an immersion and $\widetilde{J} g_{x}=g_{x}$ and $\widetilde{J} g_{y}=-g_{y}$, so g is a para-holomorphic hypersurface. Let $\zeta:=2^{-\frac{1}{3}}(0,0,0,1)^{T}$ then $\widetilde{J} \zeta=$ $2^{-\frac{1}{3}}(0,1,0,0)^{T}$ and $\{\zeta, \widetilde{J} \zeta\}$ is a transversal bundle for g. We compute

$$
h_{1}=\left[\begin{array}{cc}
2^{\frac{1}{3}} & 0 \\
0 & 2^{\frac{1}{3}}
\end{array}\right], \quad h_{2}=\left[\begin{array}{cc}
2^{\frac{1}{3}} & 0 \\
0 & -2^{\frac{1}{3}}
\end{array}\right], \quad S=0, \quad \tau_{1}=\tau_{2}=0
$$

relative to the canonical basis $\left\{\partial_{x}, \partial_{y}\right\}$. Since

$$
\theta_{\zeta}\left(\partial_{x}, \partial_{y}\right):=\operatorname{det}\left[g_{x}, g_{y}, \zeta, \widetilde{J} \zeta\right]=2^{\frac{1}{3}}
$$

then $H_{\zeta}=1$, that is g is an improper para-complex affine sphere.
Using Theorem 4.1 we give a complete local classification of 1-dimensional (in para-complex sense) para-complex affine spheres. Namely we have the following theorem:
Theorem 4.2. Let $g: M^{2} \rightarrow \mathbb{R}^{4}$ be a para-complex affine hypersphere. If g is proper then it can be locally expressed in one of the forms (4.13)-(4.16). If g is improper then it can be locally expressed in the form (4.17).
Proof. It is well known [8] that the only (up to equiaffine transformation) 1-dimensional (real) affine spheres are a circle $\gamma_{1}(t)=k^{-\frac{3}{4}}(\cos t, \sin t)$, hyperbola $\gamma_{2}(t)=k^{-\frac{3}{4}}(\cosh t, \sinh t)$ and a parabola $\gamma_{3}(t)=\left(t, \frac{1}{2} t^{2}\right) . \gamma_{1}$ and γ_{2} are proper spheres and γ_{3} is an improper sphere. Now, applying Theorem 4.1 we easily obtain that there are only four (up to a para-complex equiaffine transformation) proper 1-dimensional para-complex affine spheres, that is spheres from Examples 4.1, 4.2 and 4.3. Similarly the only improper 1-dimensional para-complex affine sphere is the sphere form Example 4.4.

Remark 4.2. Surfaces (4.13)-(4.17) are examples of so called translation surfaces (see [10,11] for details).

Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

[1] Dillen, F., Vrancken, L., Verstraelen, L.: Complex affine differential geometry Atti Acc. Peloritana dei Pericolanti LXVI, pp. 232-260 (1988)
[2] Al-Aqeel, A., Bejancu, A.: On the geometry of paracomplex submanifolds. Demonstr. Math. 34(4), 919-932 (2001)
[3] Cruceanu, V., Fortuny, P., Gadea, P.M.: A survey on para-complex geometry. Rocky Mt. J. Math. 26(1), 83-115 (1996)
[4] Schäfer, L.: Para-tt*-bundles on the tangent bundle of an almost para-complex manifold. Ann. Glob. Anal. Geom. 32(2), 125-145 (2007)
[5] Lawn, M.A., Schäfer, L.: Decompositions of para-complex vector bundles and para-complex affine immersions. Results Math. 48, 246-274 (2005)
[6] Cortés, V., Lawn, M.A., Schäfer, L.: Affine hyperspheres associated to special para-Kähler manifolds. Int. J. Geom. Methods Mod. Phys. 3, 995-1009 (2006)
[7] Cortés, V., Mayer, C., Mohaupt, T., Saueressing, F.: Special geometry of Euclidean supersymmetry I: vector multiplets. J. High Energy Phys. 73, 3-28 (2004)
[8] Nomizu, K., Sasaki, T.: Affine Differential Geometry. Cambridge University Press, Cambridge (1994)
[9] Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, vol. 1. Wiley, New York (1963)
[10] Magid, M., Vrancken, L.: Affine translation surfaces with constant sectional curvature. J. Geom. 68, 192-199 (2000)
[11] Magid, M., Vrancken, L.: Affine translation surfaces. Results Math. 35, 134-144 (1999)

Zuzanna Szancer

Department of Applied Mathematics
University of Agriculture in Krakow
253 Balicka St.
30-198 Kraków
Poland
e-mail: Zuzanna.Szancer@ur.Krakow.pl
Received: September 17, 2016.
Accepted: March 22, 2017.

[^0]: This Research was financed by the Ministry of Science and Higher Education of the Republic of Poland.

