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Abstract. In the present paper, inspired by methods contained in Gajda
and Kominek (Stud Math 100:25–38, 1991) we generalize the well known
sandwich theorem for subadditive and superadditive functionals to the
case of delta-subadditive and delta-superadditive mappings. As a conse-
quence we obtain the classical Hyers–Ulam stability result for the Cauchy
functional equation. We also consider the problem of supporting delta-
subadditive maps by additive ones.
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1. Introduction

We denote by R,N the sets of all reals and positive integers, respectively,
moreover, unless explicitly stated otherwise, (Y, ‖ · ‖) denotes a real normed
space and (S, ·) stands for not necessary commutative semigroup.

We recall that a functional f : S → R is said to be subadditive if

f(x · y) ≤ f(x) + f(y), x, y ∈ S.

A functional g : S → R is called superadditive if f := −g is subadditive or,
equivalently, if g satisfies

g(x) + g(y) ≤ g(x · y), x, y ∈ S.

If a : S → R is at the same time subadditive and superadditive then we say
that it is additive, in this case a satisfies the Cauchy functional equation

a(x · y) = a(x) + a(y), x, y ∈ S.

The generalizations of the celebrated separation theorem of Rodé [19] (cf.
also Köning [16]) which represents a far-reaching generalization of the classical
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Hahn–Banach theorem has been studied by many mathematicians. A survey
of results of this type can be found for instance in the book of Buskes [5]. The
problem reads as follow:
Suppose f, g : S → R are maps with f subadditive, g superadditive, and

g(x) ≤ f(x), x, y ∈ S.

Does there exist an additive map a : S → R separating g from f , that is,
satisfying

g(x) ≤ a(x) ≤ f(x),

for every x ∈ S ?
Results of this type, for commutative semigroups were first obtained by

Kaufman [14] and Kranz [17]. The paper of Gajda and Kominek [9] on sep-
arations theorems and the paper of Chaljub-Simon and Volkmann [7] on the
non-commutative version of Rode’s theorems are examples of papers where
the assumption of the commutativity is replaced by some essentially weaker
conditions.

Recall that a semigroup (S, ·) is said to be weakly commutative if

(x · y)2
n

= x2n · y2n

, x, y ∈ S.

This implies that for any x, y ∈ S there exists a sequence of positive integers
nk (depending on x and y) such that nk → ∞ as k → ∞ and

(x · y)2
nk = x2nk · y2nk

, x, y ∈ S.

The definition of weakly commutative semigroups was introduced by Józef
Tabor in [21]. It is clear that every Abelian semigroup is weakly commu-
tative, but there exist non-Abelian semigroups and even groups which are
weakly commutative. The multiplicative group consisting of the quaternions
1,−1, i,−i, j,−j, k,−k, with i, j and k being the quaternion imaginary units
is an example of non-Abelian weakly commutative group.

The aim of the present paper is to prove some version of separation and
support theorem for delta-subadditive mappings. In the second section fol-
lowing Ger [9] we introduce and study a basic properties of delta-subadditive
and delta-superadditive maps. Section 3 deals with the definition of Lorenz
cone and a partial order generated by this cone. It turns out that there is a
close relationship between the above-mentioned order and the concept of delta-
subadditivity. The fourth section contains the main result of the paper. We
prove the separation theorem for delta-subadditive mappings. Using this the-
orem we give an easy proof of the Hyers–Ulam stability result for the Cauchy
equation. In the last section we give a necessary and sufficient conditions under
which a delta-subadditive map can be support at a given point by an additive
map.

We recall in this place the following well-known definition.
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Definition 1. Let (S, ·) and (Y,+) be semigroups and let x0 be a fixed element
of S. A mapping F : S → Y satisfying

F (xn
0 ) = nF (x0) (1)

for some n ∈ N is said to be n-homogeneous at x0. If (1) holds for every n ∈ N,
then F is N-homogeneous at x0. Moreover, if F is n-(resp. N)-homogeneous at
every point of S, then we simply say that it is n-(resp. N)-homogeneous.

In the sequel we will need the following result from [9].

Lemma 1. Let (S, ·) be a semigroup and let f : S → R be a subadditive or super-
additive function. If f is 2-homogeneous then it is N-homogeneous, moreover,

f(x · y) = f(y · x), x, y ∈ X.

2. Delta-Subadditive Maps

In 1989 L. Veselý and L. Zajic̆ek introduced an interesting generalization of
functions which are representable as a difference of two convex functions. In
the paper [20] the authors have introduced the following definition.

Definition 2. Given two real normed spaces (X, ‖·‖), (Y, ‖·‖) and a non-empty
open and convex subset D ⊆ X we say that a map F : D → Y is delta-convex if
there exists a continuous and convex functional f : D → R such that f +y∗ ◦F
is continuous and convex for any member y∗ of the space Y ∗ dual to Y with
‖y∗‖ = 1. If this is the case then we say that F is a delta-convex mapping with
a control function f .

It turns out that a continuous function F : D → Y is a delta-convex
mapping controlled by a continuous function f : D → R if and only if the
functional inequality

∥
∥
∥F

(x + y

2

)

− F (x) + F (y)
2

∥
∥
∥ ≤ f(x) + f(y)

2
− f

(x + y

2

)

, (2)

is satisfied for all x, y ∈ D. (Corollary 1.18 in [20])
The inequality (2) may obviously be investigated without any regular-

ity assumption upon F and f which, additionally considerably enlarges the
class of solutions. Note that the notion of delta-convex mappings has many
nice properties (see [20]) and seems to be the most natural generalization of
functions which are representable as a difference of two convex functions.

Motivated by the concept of delta-convexity Ger in [10] introduced the
following definition.

Definition 3. A map F : S → Y is called delta-subadditive with a control
function f : S → R if the following inequality

‖F (x) + F (y) − F (x · y)‖ ≤ f(x) + f(y) − f(x · y), (3)

holds for all x, y ∈ S.



388 A. Olbryś Results Math

In a natural way, this allows us to the following definition.

Definition 4. A map F : S → Y is said to be a delta superadditive, if −F is a
delta-subadditive i.e. there exists a control function f : S → R such that the
inequality

‖F (x) + F (y) − F (x · y)‖ ≤ f(x · y) − f(x) − f(y),

is satisfied for all x, y ∈ S.

Observe that, if F is at the same time delta-subadditive and delta-
superadditive with a control function f then both maps F and f are additive.

The following result establishes the necessary and sufficient conditions
for a given map to be delta-subadditive.

Proposition 1. For the mappings F : S → Y and f : S → R the following
statements are equivalent:

(i) y∗ ◦ F + f is subadditive for any y∗ ∈ Y ∗, ‖y∗‖ = 1,
(ii) ‖F (x) + F (y) − F (x · y)‖ ≤ f(x) + f(y) − f(x · y), for all x, y ∈ S,
(iii)

∥
∥
∥

n∑

i=1

F (xi) − F
( n∏

i=1

xi

)∥
∥
∥ ≤

n∑

i=1

f(xi) − f
( n∏

i=1

xi

)

,

for all x1, . . . , xn ∈ S, n ∈ N. (4)

Proof. (i) implies (ii). For every y∗ ∈ Y ∗, ‖y∗‖ = 1 we have

y∗(F (x · y)) + f(x · y) ≤ y∗(F (x)) + f(x) + y∗(F (y)) + f(y),

and, consequently,

‖F (x) + F (y) − F (x · y)‖
= sup{y∗(F (x) + F (y) − F (x · y)) : y∗ ∈ Y ∗, ‖y∗‖ = 1}
≤ f(x) + f(y) − f(x · y), x, y ∈ S.

(ii) implies (iii). The proof runs by induction on n. The case n = 1 is
trivial, while for n = 2 the inequality (4) is identical with (3). Now suppose
(4) to be true for an n ∈ N, n > 2. Take arbitrary x1, . . . , xn+1 ∈ S. By (ii)
and the induction hypothesis we obtain
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∥
∥
∥
∥
∥
∥

n+1∑

j=1

F (xj) − F

⎛

⎝

n+1∏

j=1

xj

⎞

⎠

∥
∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥
∥

n∑

j=1

F (xj) + F (xn+1) − F

⎛

⎝

n∏

j=1

xj · xn+1

⎞

⎠

∥
∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥
∥

n∑

j=1

F (xj) − F

⎛

⎝

n∏

j=1

xj

⎞

⎠ + F

⎛

⎝

n∏

j=1

xj

⎞

⎠ + F (xn+1)

−F

⎛

⎝

n∏

j=1

xj · xn+1

⎞

⎠

∥
∥
∥
∥
∥
∥

≤
∥
∥
∥
∥
∥
∥

n∑

j=1

F (xj) − F

⎛

⎝

n∏

j=1

xj

⎞

⎠

∥
∥
∥
∥
∥
∥

+

∥
∥
∥
∥
∥
∥

F (xn+1) + F

⎛

⎝

n∏

j=1

xj

⎞

⎠ − F

⎛

⎝

n+1∏

j=1

xj

⎞

⎠

∥
∥
∥
∥
∥
∥

≤
n∑

j=1

f(xj) − f

⎛

⎝

n∏

j=1

xj

⎞

⎠

+f(xn+1) + f

⎛

⎝

n∏

j=1

xj

⎞

⎠ − f

⎛

⎝

n+1∏

j=1

xj

⎞

⎠

=

n+1∑

j=1

f(xj) − f

⎛

⎝

n+1∏

j=1

xj

⎞

⎠ .

(iii) implies (ii). Trivial.
(ii) implies (i). Let y∗ ∈ Y ∗, ‖y∗‖ = 1 be arbitrary. For x, y ∈ S, we have

y∗(F (x) + F (y) − F (x · y)) ≤ ‖F (x) + F (y) − F (x · y)‖
≤ f(x) + f(y) − f(x · y),

or, equivalently,

y∗(F (x · y)) + f(x · y) ≤ y∗(F (x)) + f(x) + y∗(F (y)) + f(y),

which completes the proof. �

Immediately from the above proposition we obtain the following result.

Corollary 1. Under the assumptions of the previous proposition if F : S → Y
is a delta-subadditive map with a control function f : S → R then

(i) ‖nF (x) − F (xn)‖ ≤ nf(x) − f(xn), x ∈ S, n ∈ N,
(ii) If e ∈ S is a neutral element of semigroup S, then ‖F (e)‖ ≤ f(e).

In the sequel we will use the following notation:

Ds(S) := {F := (F, f) : F : S → Y

is delta-subadditive with control function f : S → R}
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3. A Partially Order connected with the Notion of
Delta-Subadditivity

In this place we give the definition and basic properties of so-called the Lorenz
cone and partially order generated by this cone. As we will see this partial
order appears in a natural way in the connection of the concept of delta-
subadditivity.

Let us recall that a nonempty subset C of a vector space is said to be a
pointed, convex cone if it satisfies the following properties:
(i) C + C ⊆ C,
(ii) αC ⊆ C, for all α ≥ 0,
(iii) C ∩ (−C) = {0}.

An arbitrary pointed, convex cone C of a vector space Y induces a vector
ordering �C letting x �C y whenever y−x ∈ C. This partial order is compatible
with the linear structure of Y in the sense that if x �C y, then
(1) x + z �C y + z, for each z ∈ Y ,
(2) αx �C αy, for all α ≥ 0.

Now, for a normed space (Y, ‖ · ‖) consider the linear space Y := Y × R,
where as usual, the addition and scalar multiplication are defined coordinate-
wise. Given a positive number ε, the convex cone defined by the formula

Cε := {(x, t) ∈ Y : ε‖x‖ ≤ t}
is called the Lorenz cone or ice cream cone. More informations about the
Lorenz cone can be found for instance in the book [1]. It is easy to check that
this cone is closed, pointed and defines a vector ordering on Y in the following
manner

(x1, t1) �Cε
(x2, t2) ⇔ ε‖x2 − x1‖ ≤ t2 − t1.

In 1962 Bishop and Phelps [4] introduced a slightly different order in
functional analysis. The proof of the Bishop–Phelps lemma on the existence
of certain minimal elements uses this order concept. As a consequence of this
lemma one obtains the celebrated Bishop–Phelps theorem which says that the
set of support functionals of a non-empty closed, bounded and convex subset
of a real Banach space is dense in its dual space.

Now, for an arbitrary map F : S → Y and a function f : S → R let
define a map F : S → Y via the formula:

F (x) := (F (x), f(x)), x ∈ S.

Observe that we can rewrite the inequality defining the notion of
delta-subadditivity of F in the form

F (x · y) �C1 F (x) + F (y), x, y ∈ S,

where C1 = {(x, t) ∈ Y : ‖x‖ ≤ t} is the Lorenz cone. In the sequel for
Y1, Y2 ∈ Y we will write Y1 � Y2 instead of Y1 �C1 Y2.
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4. The Separation Theorem

The following lemma corresponds to the Lemma 2 from [9].

Lemma 2. Let (S, ·) be a weakly commutative semigroup, let (Y, ‖ · ‖) be a real
Banach space and assume that F = (F, f) ∈ Ds(S) and −G = (−G,−g) ∈
Ds(S). If

G(x) � F (x), x ∈ S, (5)
then there exist F 1 = (F1, f1), G1 = (G1, g1) : D → Y such that
(a) G(x) � G1(x) � F1(x) � F (x), x ∈ S,
(b) F 1,−G1 ∈ Ds(S),
(c) F 1, G1 are N − homogeneous,
(d) F 1(x · y) = F 1(y · x) and G1(x · y) = G1(y · x), x, y ∈ S,
(e) moreover, if f (resp. g) is N-homogeneous at a point x0 ∈ X, then

F 1(x0) = F (x0) (resp. G1(x0) = G(x0)).

Proof. On account of condition (i) from Corollary 1 we have

‖2nF (x) − F (x2n

)‖ ≤ 2nf(x) − f(x2n

), x ∈ S, n ∈ N, (6)

and
‖2nG(x) − G(x2n

)‖ ≤ g(x2n

) − 2ng(x), x ∈ S, n ∈ N. (7)
Define the sequences Fn, Gn : S → Y by the formulas

Fn(x) := (Fn(x), fn(x)), Gn(x) := (Gn(x), gn(x)),

where

Fn(x) :=
1
2n

F (x2n

), fn(x) :=
1
2n

f(x2n

),

and,

Gn(x) :=
1
2n

G(x2n

), gn(x) :=
1
2n

g(x2n

).

By virtue of (5), (6), (7) we have

G(x) � Gn(x) � Fn(x) � F (x), x ∈ S.

Observe that the sequence {Fn}n∈N is decreasing, {Gn}n∈N is increasing in
the sense of an order generated by a Lorenz cone. Indeed, for the sequence
{Fn}n∈N we get

‖Fn+1(x) − Fn(x)‖ =
∥
∥
∥

1
2n+1

F (x2n+1
) − 1

2n
F (x2n

)
∥
∥
∥

=
1

2n+1

∥
∥
∥F ((x2n

)2) − 2F (x2n

)
∥
∥
∥

≤ 1
2n+1

(

2f(x2n

) − f(x2n+1
)
)

=
1
2n

f(x2n

) − 1
2n+1

f(x2n+1
)

= fn(x) − fn+1(x),
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and similarly for the sequence {Gn}n∈N. Therefore

G(x) � Gn(x) � Gn+1(x) � Fn+1(x) � Fn(x) � F (x), x ∈ S, n ∈ N.

In particular, we have

g(x) ≤ gn(x) ≤ gn+1(x) ≤ fn+1(x) ≤ fn(x) ≤ f(x), x ∈ S, n ∈ N.

For each, fixed x ∈ S, the sequences {fn(x)}n∈N and {gn(x)}n∈N being
monotone and bounded, are convergent in R. Therefore we may define f0, g0 :
S → R by

f0(x) := lim
n→∞ fn(x), g0(x) := lim

n→∞ gn(x).

Since the sequences {fn(x)}n∈N and {gn(x)}n∈N are convergent, in particular,
they are the Cauchy sequences. Observe that {Fn(x)}n∈N and {Gn(x)}n∈N

also are the Cauchy sequences. Indeed, for arbitrary n, k ∈ N we have

‖Fn+k(x) − Fn(x)‖ =
∥
∥
∥

1
2n+k

F (x2n+k

) − 1
2n

F (x2n

)
∥
∥
∥

=
1

2n+k
‖F ((x2n

)2
k

) − 2kF (x2n

)‖

≤ 1
2n+k

(

2kf(x2n

) − f(x2n+k

)
)

= fn(x) − fn+k(x).

The proof for the sequence {Gn}n∈N is similar. By the completeness of the
space Y we can define functions F0, G0 as

F0(x) := lim
n→∞ Fn(x), G0(x) := lim

n→∞ Gn(x).

Observe that (F0, f0), (−G0,−g0) ∈ Ds(S). To see it, fix x, y ∈ S. Using the
week commutativity of S we can find a sequence {nk}k∈N of positive integers
such that nk → ∞ as k → ∞ and

(x · y)2
nk = x2nk · y2nk

, k ∈ N.

Then we get

‖Fnk
(x) + Fnk

(y) − Fnk
(x · y)‖

=
∥
∥
∥

1
2nk

F (x2nk ) +
1

2nk
F (y2nk ) − 1

2nk
F (x2nk · y2nk )

∥
∥
∥

≤ 1
2nk

(

f(x2nk ) + f(y2nk ) − f(x2nk · y2nk )
)

= fnk
(x) + fnk

(y) − fnk
(x · y).

Tending to the limit with n → ∞ we obtain

‖F0(x) + F0(y) − F0(x · y)‖ ≤ f0(x) + f0(y) − f0(x · y), x, y ∈ S,

which means that F0 is delta-subadditive with a control function f0. A similar
argument ensures the delta-superadditivity of G0. Moreover, since

‖Fn(x) − Gn(x)‖ ≤ fn(x) − gn(x), x ∈ S, n ∈ N,
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then

‖F0(x) − G0(x)‖ ≤ f0(x) − g0(x), x ∈ S,

which means that G(x) � F (x), x ∈ S. Further, observe that for each x ∈ S,
one has

f0(x2)= lim
n→∞

1
2n

f((x2)2
n

)= lim
n→∞

1
2n

f(x2n+1
)=2 lim

n→∞
1

2n+1
f(x2n+1

)=2f0(x),

and analogously,

g0(x2) = 2g0(x), x ∈ S.

On account of Lemma 1 and condition (i) from Corollary 1 the last two identi-
ties guarantee the N-homogeneity of F 0 and G0, whereas Lemma 1 also implies
(d). Finally, if f is N-homogeneous at x0 ∈ S then fn(x0) = f(x0), n ∈ N.
The same argument works for g0. �

We apply the above lemma to the proof of the following theorem.

Theorem 1. Let (S, ·) be a weakly commutative semigroup,and let (Y, ‖ · ‖) be
a real Banach space. Assume that F : S → Y is a delta-subadditive map with
a control function f : S → R and G : S → Y is a delta-superadditive map with
a control function g : S → R. Suppose that (G, g) � (F, f), i.e.

‖F (x) − G(x)‖ ≤ f(x) − g(x), x ∈ S.

If, moreover,

sup{f(x) − g(x) : x ∈ S} < ∞,

then there exist unique additive mappings A : S → Y and a : S → R such that

(G(x), g(x)) � (A(x), a(x)) � (F (x), f(x)), x ∈ S.

Proof. Let F1, G1 : S → Y and f1, g1 : S → R be the mappings associated
with F,G : S → Y and f, g : S → R according to Lemma 2. Using assertions
(a) and (c) of that lemma, we obtain

n‖F1(x) − G1(x)‖ = ‖F1(xn) − G1(xn)‖ ≤ f1(xn) − g1(xn) ≤ M,

for every x ∈ S and n ∈ N, where M = sup{f(x) − g(x) : x ∈ S}. Whence

‖F1(x) − G1(x)‖ ≤ f1(x) − g1(x) ≤ M

n
,

for x ∈ S, n ∈ N, consequently passing to the limit as n → ∞, we infer that
F1 = G1, f1 = g1. Obviously A := F1 = G1 and a := f1 = g1 are additive,
moreover,

(G, g) � (A, a) � (F, f).

Now, suppose that A1 : S → Y and a1 : S → R are another mappings
that A1 := (A1, a1) separate (F, f) and (G, g). Then

n‖A(x) − A1(x)‖ = ‖A(xn) − A1(xn)‖ ≤ f(xn) − g(xn) ≤ M,
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for each x ∈ S and n ∈ N. Dividing by n and passing to the limit as n → ∞
we obtain

A(x) = A1(x), and a(x) = a1(x).

This proves the uniqueness of A and a. �

As an application of this theorem we obtain an easy proof of the classical
Hyers–Ulam stability result for the Cauchy equation. For the theory of the
stability of functional equations see Hyers et al. [13].

Corollary 2. Let (S, ·) be a weakly commutative semigroup, and let (Y, ‖ · ‖) be
a real Banach space. If F : S → Y is an ε-additive map i.e.

‖F (x) + F (y) − F (x · y)‖ ≤ ε, x, y ∈ S,

where ε > 0, then there exists a unique additive map A : S → Y such that

‖F (x) − A(x)‖ ≤ ε, x ∈ S.

Proof. Observe that by our assumption F is a delta-subadditive mapping with
a control function f(x) := ε, x ∈ S, and it is a delta-superadditive with a
control function g(x) := −ε, x ∈ S. Since

sup
x∈S

[f(x) − g(x)] = 2ε < ∞,

and

(F (x),−ε) � (F (x), ε), x ∈ S,

then by Theorem 1 there exist unique additive mappings A : S → Y and
a : S → R such that

‖F (x) − A(x)‖ ≤ ε − a(x), and ‖F (x) − A(x)‖ ≤ a(x) + ε,

which means that

‖F (x) − A(x)‖ ≤ ε,

and finishes the proof of our theorem. �

5. Support Theorem

In this section (X,+) is assumed to be a uniquely 2-divisible abelian group.
It means that the mapping ω : X → X, ω(x) = 2x, x ∈ X is bijective. Then
both ω and ω−1 are authomorphism of (X,+), and we write 1

2x for ω−1(x).
In the sequel we will use an additive notation + for a group operation and 0
stands for a neutral element of X.

We consider the following problem: Whether for a given delta-subadditive
map F : X → Y with a control function f : X → R and a given point y ∈ X
there exist additive functions Ay : X → Y, ay : X → R such that a map



Vol. 72 (2017) On Sandwich Theorem for Delta-Subadditive 395

Ay = (Ay, ay) : X → Y support F = (F, f) at y in the sense of an order
generated by a Lorenz cone. It means that

‖F (x) − Ay(x)‖ ≤ f(x) − ay(x), x ∈ X (8)

and
Ay(y) = f(y), ay(y) = f(y). (9)

In the proof of our main result of this section we apply the following theorem,
which is a particular case of Theorem 4 proved in [18] (Actually this theorem
has been proved in the case when X is a real Banach space but its proof in
our case runs without any essential changes).

Theorem 2. Assume that (X,+) is a uniquely divisible by 2 abelian group, and
(Y, ‖ · ‖) is a real Banach space. If F : X → Y is a delta Jensen-convex map
with a control function f : X → R that is

∥
∥
∥F (x) + F (z) − 2F

(x + z

2

)∥
∥
∥ ≤ f(x) + f(z) − 2f

(x + z

2

)

, x, z ∈ X, (10)

then for an arbitrary point y ∈ X there exist affine maps By : X → Y and
by : X → R such that

‖F (x) − By(x)‖ ≤ f(x) − by(x), x ∈ X, (11)

moreover,
By(y) = f(y), by(y) = f(y). (12)

Main result of this section reads as follows.

Theorem 3. Let (X,+) be a uniquely divisible by 2 abelian group and let (Y, ‖·‖)
be a real Banach space. Let F : X → Y be a delta-subadditive map with a
control function f : X → R, and let y ∈ Y be arbitrary. Then there exist
additive maps Ay : X → Y and ay : X → R such that (8) and (9) hold if and
only if f is N-homogeneous at y.

Proof. Assume that (F, f) ∈ Ds(X), moreover,

f(yn) = nf(y), n ∈ N.

Observe, that N-homogeneity of F at y follows from the condition (i) from
Corollary 1. Let define the map G : X → Y by formula

G(x) = (G(x), g(x)) := (−F (−x),−f(−x)), x ∈ X.

Obviously, −G ∈ Ds(X), moreover, using a delta-subadditivity of F and con-
dition (ii) from Corollary 1 we obtain

‖F (x) − G(x)‖ = ‖F (x) + F (−x) − F (0) + F (0)‖
≤ ‖F (x) + F (−x) − F (0)‖ + ‖F (0)‖
≤ f(x) + f(−x) − f(0) + f(0)
= f(x) + f(−x) = f(x) − g(x),
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which means that

G(x) � F (x), x ∈ X.

On account of Lemma 2 there exist N-homogeneous maps F 0, G0 : X → Y
such that F 0,−G0 ∈ Ds(X) and

F (x) � F 0(x) � G0(x) � G(x), x ∈ X.

Since f and g are N-homogeneous at y then by condition (e) of Lemma 2 we
know that

F (y) = F0(y), and G(y) = G0(y).

Observe that F0 is a delta Jensen-convex map with a control function f0.
Indeed, for any x, z ∈ X by 2-homogeneity of F0 and f0 we get

∥
∥
∥F0(x) + F0(z) − 2F0

(x + z

2

)∥
∥
∥ = ‖F0(x) + F0(z) − F0(x + z)‖

≤ f0(x) + f0(z) − f0(x + z)

= f0(x) + f0(z) − 2f0

(x + z

2

)

.

Now, we are able to apply the Theorem 2. By virtue of this theorem there are
affine maps By : X → Y and by : X → R such that

‖F0(x) − By(x)‖ ≤ f0(x) − by(x), x ∈ X, (13)

moreover,
By(y) = F0(y), by(y) = f0(y). (14)

It is known (see for instance [15]) that the maps By and by have the form

By(x) = Ay(x) + C, by(x) = ay(x) + c, x ∈ X, (15)

where Ay : X → Y, ay : X → R are additive maps and C ∈ X and c ∈ R

are constants. We need to show that C = 0 and c = 0. By (13), (14) and
N-homogeneity of Ay, ay, F0 and f0 for all x ∈ X we obtain

‖F0(2nx)−Ay(2nx)−C‖=‖2nF0(x) − 2nAy(x) − C‖≤2nf0(x) − 2nay(x) − c.

The above inequality is equivalent to the following one
∥
∥
∥F0(x) − Ay(x) − C

2n

∥
∥
∥ ≤ f0(x) − ay(x) − c

2n
, x ∈ X,

therefore,

‖F0(x) − Ay(x)‖ ≤ f0(x) − ay(x), x ∈ X.

By (14) and (15) we have

C = F0(y) − Ay(y), and c = f0(y) − ay(y),

whence,
‖C‖ = ‖F0(y) − Ay(y)‖ ≤ f0(y) − ay(y) = c. (16)
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On the other hand, using again the N-homogeneity of Ay, ay, F0 and f0 for all
x ∈ X we obtain

∥
∥
∥

1
2n

F0(x) − 1
2n

Ay(x) − C
∥
∥
∥ ≤ 1

2n
f0(x) − 1

2n
ay(x) − c,

or, equivalently,

‖F0(x) − Ay(x) − 2nC‖ ≤ f0(x) − ay(x) − 2nc.

In particular,

2nc ≤ f0(x) − ay(x), x ∈ X, n ∈ N,

hence c ≤ 0 and this together with (16) implies that c = 0 and C = 0.
To end the proof of sufficiency it is enough to observe that

‖F (x) − Ay(x)‖ ≤ ‖F (x) − F0(x)‖ + ‖F0(x) − Ay(x)‖
≤ f(x) − f0(x) + f0(x) − ay(x) = f(x) − ay(x), x ∈ X.

Conversely, observe that the N-homogeneity at y ∈ X is necessary for
existence of additive map (Ay, ay) supporting (F, f) at y. Indeed, if (F, f) ∈
Ds(X) and additive map (Ay, ay) supports (F, f) at y, then for any n ∈ N we
have

‖F (ny) − nF (y)‖ ≤ ‖F (ny) − Ay(ny)‖ + ‖nAy(y) − nF (y)‖
= ‖F (ny) − Ay(ny)‖ ≤ f(ny) − ay(ny)
= f(ny) − nay(y) ≤ nf(y) − nay(y) = 0.

�
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