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Approximation of Integrable Functions
by Wavelet Expansions
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Abstract. Walter (J Approx Theory 80:108-118, 1995), Xiehua (Approx
Theory Appl 14(1):81-90, 1998) and Lal and Kumar (Lobachevskii J
Math 34(2):163-172, 2013) established results on pointwise and uniform
convergence of wavelet expansions. Working in this direction new more
general theorems on degree of pointwise approximation by such expan-
sions have been proved.
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1. Introduction

In this paper we use the following notations.

LP(R) (1 < p < o0) denotes the space of measurable, integrable with p—th
power functions f. The norm of f € LP(R) is written by || f[| s g)-

I2(Z) is the vector space of square-summable functions.

A multiresolution approximation of L?(R) (see [3]) is a sequence (V;);jez
of closed subspaces of L?(R) such that the following hold:

VjezVi C Vita,

U,ez Vj is dense in L*(R) and (¢, V; = &,

Vienf(2) € V; & f(20) € Vi,

Vj)kezf(l‘) < ij =4 f(a: — 2_jki) S ij,

There exists an isomorphism I from Vj onto 1?(Z) which commutes with
the action of Z.

We consider orthonormal bases of wavelets in L?(RR) (see [1]). These are
functions of the form

b () = 259 (V2 — k),
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for some fixed function % and are in turn based on a scaling function ¢. In
addition to the ladder of approximation spaces

cVaicVycVvic---c L*R)

we have the orthogonal complement of each in the next higher one on the
ladders i.e.,

Vo Wo=V, VieW, =V,

The translates of the scaling function ¢ are an orthonormal basis of V) while
the translates of 1) are an orthogonal basis of W, (see [1]). The same holds for
their dilations in V; and W;. Hence each f € L?(R) has a representation

f@) = ful2) + fo (@),

where
Z Gn,kPn,k (l’) s Pnk ({E) = 2%90 (2n$ _ ]ﬂ)
k=—oo
and
- Z Z bixik (), Yk (x)= 2%¢ (ij _ k)
j=—nk=—o0
and

= Z Z bj7kql)j7k (m) ) with fTL Z Z bj k% k

j=—00 k=—o0 Jj=—00 k=—oc0

where ay, 1, bj 1 are expansion coefficients of f. f,, is said to be the partial sums
of the wavelet expansion. It is given

fn (2) :/00 qn(x,t)f(t)dt:/oo pn (x,t) f(t)dL,

— 00 — 00

by the reproducing kernels

Z @nk Sonk() andpn($t Z Z 1/)], ,(/)J, ()

k=—o0 Jj=—00 k=—0o0
(see [4]).
The pointwise modules of continuity of the function f at point x are given
by
ww(fva) = Sup |f(t +J}) - f($)| )
[t] <6
10 =5 / ft+x)— f(x)dt,
for fixed x.

The deviation f, (z) — f (x) was estimated by Xiehua [11, Theorem 3.1,
p. 84] ( see also [5, Theorem 3.1] and [10]) as follows:



Vol. 72 (2017) Approximation of Integrable Functions by Wavelet Expansions 1205

Theorem A. Assume the scaling function o satisfies the condition

|§Laa
1+ ||

If f € L3(R) is continuous at x, then we have

u@)~ £ (2)
1 2
o) { (11520 + g 1) 260+ S ke, k2‘”)} ,

k=1

| () a>1. (1)

where “O” depends only on C.
We also note the following well known result of Daubechies.

Theorem B [2, Theorem 9.1.6.]. Let ¢’ be a continuous function such that ¢
and ¢’ satisfy (1). If oy constitute an orthonormal basis on L*(R), then the
{nk : 1,k € Z} also constitute an unconditional basis for all the spaces LP(R)
(I1<p< o).

Here, we will give more general and precise estimates of the pointwise
convergence of wavelet expansions.

2. Statement of the Results
We determine the degree of approximation of functions by wavelet expansions.

Theorem 1. Assume that a continuous function @’ is such that p and @' satisfy
(1). If fe LP(R) (1 <p < 0), then

|fn(z) = f(2)] <K {wa(ﬁ 27" 4 q2n(1-9) /

at every point x and with a positive constant K dependent on C'.

oo

tw,(f, t)dt}

—n

Proof. From (1) it is easy to say that
) < —mp5-

o0l < 15—

Following Walter [10], Meyer [6] and Novikov, Protasov, Skopina [7]

/ qn (z,t)dt =1, forzeR (3)

and we have

Next, using (2)
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mhT e Ko
Lo <], mmemto-r@ia

27" Kon
:/0 T M ) = F @I+ 1f (<t ) — (@) de

(2m])
27" Kom 4 It
:/0 H—(Qiﬂa[dt/ |f(u+$)—f(x)du}dt
K27L 2—71,
[1+ 2n t)° / |f (u )|du]0
- akon (14a) |t|a 1 |: t ) :|
/0 [+ (2 [¢)°] M uta) = f (@)l du] dt
— ﬁ“’m(fﬂ )+ we(f,2 )/O [1+(2nt)a]2dt
= Kw,(f,27").

and

r—2"" fo%e)
[+
— 0 z42-n

<</PWEA:—>Hﬁff)UU F@)d
</_2 /n>1+ 2 tn”  |f (t+x)— f(z)|dt

< K2n- a)(/w /)Ift+ﬁ| f@)

:K2"<1—u>/%t [dt/ If (u |du] 0

|f(u+x)—f(x)|du]

_ K2n(17a) |:ta

-t 2—n

00 t
+aK2n(1fa)/ a1 { If (u+x)— f(x)] du] dt
- —t

Observing that

hmt o |f(u+3:)—f(x)|du

— 00

S tll}/r()lo {21 t_OH-l |: / |f ‘p du:| + 2t_a+1 |f (.T)}

: 1-L —at+1-2% —«
< Jim {2 gy + 20 ()]} =0

t—o0
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we obtain
r—2"" oo 0o
/ +/ < Kwy(f,27") +K2"(1_a)a/ t™%w, (f, t)dt.
— 00 r+27’7l —n
Collecting our partial estimates the result follows. O
Corollary 1. If f € {g € LP(R) : w4 (g,d) = O (w,(0))} where wy is a function

of modulus of continuity type, then by the monotonicity of w“’T@ and o > 2,

we obtain
|fn (x) = f(2)] = O (we(277)) .

Theorem 2. Under the assumptions of Theorem 1, we have

@)~ 1 ()] < 2w (.27 4 Ka220=) [ U o (f, e

—n

2 1
——7, 27 ) Ifllee
<(aq — 1)t ) e

2 (1) 1f (@)
a—1 wh
Proof. Similarly as above

L@ == [ aE@io-sa- [ Ty / T /:O

—00 — 00 —2—n +277L

/JJ-‘,—Q"
r—2—"

+K2n(1—a)

1,1
where;—kg—l.

and

< Kw,(f,27").

Further

r—2"" o
— 0 z4+2-n

sy [T D)~ F @I+ ) =@, [N, [
srrt | g S

and

1 1 t
/ :Kznﬂ—a)/ o th _t|f(u+x)—f(:v)|du] dt

—n —n

1

_ gon(-o) {ta /_ tt I (u+2)— f (2) du]

2—n

taK2(1-) / " [ / t |f(u+x)—f(x)|du] it
2-n —t
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< K200 (9175 | £1] ) +21f (@)]] + K (£,277)

1
+K2"(1_")a/ t=%w, (f, t)dt

—n

e {(/ﬁ”‘xdt); ([iserar dt);
+ ([wt—qadt)‘l’ (/le(—t+x>|pdt)’l’ +2|f(m)|/100t_adt}

9 2
< Koo (W 11l Loy + |f( 1)|> .

Thus we obtain the desired estimate. O

Corollary 2. Under the assumptions of Theorem 1 and if w,(f,d) = O (§7),
then by Theorem 2

O2™™) when0<y<a-—1,
\fo(z) = f(z)| =4 O(2"@"D)  wheny>a—1,
0 (n2_"(0‘_1)) when 7= a — 1.

The same order of approximation one can find in the paper of Skopina
[9].

Remark 1. If x is a point of continuity of f € LP(R), then wy(f,d) = o(1),
whence w,(f,d) = o(1) and thus

[fn(2) = f (@) = 0(1).
We also show our estimates in the following summation forms.

Theorem 3. Under the assumptions of Theorem 1

2" 2
(@) = [ (@) € Ka2"0 S (04220, (f, ! )

e v+1

= 1
+20K Y v, (f, ”; > ,

v=2"n

where Ko = K [2°72 + 20 .

Proof. Since dw,(f,9) is nondecreasing function of d, therefore for N > 1

/ﬂ (£, £)dt = </ /)t—wmm

N2"—1 .(u41)2

:/12n (f, )du+ > / t‘a‘lth(f,t)dt

v=2n



Vol. 72 (2017) Approximation of Integrable Functions by Wavelet Expansions 1209

v+1 (v+1)2
/ (f, >du+ Z / t= Y, (f, t)dt

2" -1

v=1 v=2"n
2" -1 v+1 N2™ (v+1)2~
1 1 u® v+1
< - f I
- Z sz <f7 V) |: « :|u_ - VZQn ( 7 ) |:_a:|t_,,2n

IN
)
: 3
gl
\»—t
H
N\
ol
|~
v
<
+
=
_|_

Sk
= 2 an

2" —1 1 N2™—1 V+1
(e (20
v=2n

2" -2 N2"—1

a— 1 n(a— a +]‘
<23 (4 Pl )+ 2 Y (f,” )
v=0 v=2"n

2" —2 .
_ 1 ) 1
=2 Z (v+2)° Qwa: (fa V+1> 4 gnla=h+1 Z v %w, (f’ V;;)

v=0 v=2"
and
2m_2 1
S o ()
2" —2
1 1
> a—1 -
- Z v+2) v+2 (f’zz+1)
y=2n—1_1
2m 9
1 1 1
> = 2 o 1,
-2 Z (V + ) v+1 (f v+ 1)
p=2on—1_7
1 A 1 1y _11 1 ]
> = 2a 1 . . > - - - - 27171 1 o= 2n71
11 1 1 1
S 2 o 2(n—1)a _ Qn(a 1) i
—22nw“ (f72n) 2a+1 f’2n
Thus, by Theorem 1 our result follows. O

Theorem 4. Under the assumptions of Theorem 1

2" —1
o) = 1 @) < Ko 3 vow (1,752
v=1

2 1
(W + 2") 11l e (m)
s2( i+ 1)lr@I).

where Ko = K [2072 + 20] .

+K2n(1—a)
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Proof. Using the monotonicity of dw,(f,d) we obtain that

1 2"-1 (v41)27"
/ twy(f, t)dt = Z/ t= Mg (f, t)dt

y=1 Jv27"

2"—1 v41)27"
v+1 v+1 (vt a1
< Z 27”11% <f72">/l, t dt

v=1 2
Py (f o) ]
peri A A=y
-3 e () - (5)]
a = wa(f: on v+1 v
_éz = a)n (f,y+1)[y —(u+1)“’}

2" —1
+1
<2(a71)n 1) py—o1 . v
< Do Dy T (£

v=1

< 9la—1)n+1 2&? v=w, ( f v+1
B v=1 ’ 7 2

and
2" 1
o v+1
Z v We (f’ on )
v=1
2"—1 2" —1
aV+ 1 v+1 1 _1-a
> on N >w, | f,— 1
> ;(H) o (f, )w (f2n);(V+)
lea 1 o 1
Hence, by Theorem 2, analogously as above, our result follows. O
Remark 2. Since

we can immediately write all of the above estimations with w, instead of w,.

Remark 3. In the case p = 2 our assumptions confine to the function ¢ only
and thus the mentioned result of Xiehua [11, Theorem 3.1, p. 84] follows im-
mediately from Theorem 4, by Remark 2.

Remark 4. The convergence at Lebesgue’s and strong Lebesgue’s points were
investigated in the papers of Skopina [8] and of Kelly, Kon, Raphael [4].

We very thank the referee for helpful comments and constructive sugges-
tions.
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