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Abstract. We classify, up to isometry, non-symmetric simply-connected
four-dimensional pseudo-Riemannian generalized symmetric spaces which
are algebraic Ricci solitons. It turns out that those of Cerny–Kowalski’s
types A, C and D are algebraic Ricci solitons, whereas those of type B
are not. Thus, we give new examples of algebraic Ricci solitons.
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1. Introduction

The concept of algebraic Ricci soliton was introduced by Lauret in the Rie-
mannian case ([9]). The definition extends to the pseudo-Riemannian case as
follows.

Definition 1.1. Let (G, g) be a simply-connected Lie group equipped with a
left-invariant pseudo-Riemannian metric g, and let g denote the Lie algebra of
G. The metric g is called an algebraic Ricci soliton if it satisfies

Ric = c Id + D, (1.1)
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where Ric denotes the Ricci operator, c is a real number, and D ∈ Der(g), that
is,

D[X,Y ] = [DX,Y ] + [X,DY ], for all X,Y ∈ g. (1.2)

In particular, an algebraic Ricci soliton on a solvable Lie group (resp. a nilpo-
tent Lie group) is called a solvsoliton (resp. a nilsoliton).

Obviously, Einstein metrics on a Lie group are algebraic Ricci solitons.
A Ricci soliton metric g on a manifold M is a pseudo-Riemannian metric

such that there exists a vector field on X satisfying

�g = c g + LXg, (1.3)

where L denotes the Lie derivative, � is the Ricci tensor and c is a real constant.
The condition (1.3) is equivalent to gt = (−2ct+1)ϕ∗

s(t)g being a solution
of the Ricci flow

∂

∂t
(gt)ij = −2(�gt

)ij ,

where ϕs is the family of diffeomorphisms generated by X which one repara-
metrizes to s(t) = 1

c ln(−2ct + 1).
In [9], Lauret studied the relation between solvsolitons and Ricci solitons

on Riemannian manifolds. More precisely, he proved that any left-invariant
Riemannian solvsoliton metric is a Ricci soliton. This was extended by the
second author to the pseudo-Riemannian case as follows.

Theorem 1.2. ([10]) Let (G, g) be a simply-connected Lie group endowed with
a left-invariant pseudo-Riemannian metric g. If g is a solvsoliton, then g is a
Ricci soliton, that is, g satisfies (1.3), with

X =
dϕt

dt

∣
∣
∣
t=0

(p) and exp
(

t
2
D

)

= dϕt |e,

where e denotes the identity element of G.

Note that changing “solvsoliton” to “algebraic Ricci soliton” the theorem
above is correct.

On the other hand, if (M, g) is a homogeneous (pseudo-)Riemannian man-
ifold, there exists a group G of isometries acting transitively on it [11]. Such
(M, g) can be then identified with (G/H, g), where H is the isotropy group at a
fixed point p of M . Let g denote the Lie algebra of G and fix an Ad(H)-invari-
ant decomposition g = h ⊕ m, where h is the Lie algebra of H. The space m is
naturally identified with TpM . In the Riemannian case such a decomposition
always exists, since homogeneous Riemannian manifolds are reductive. In the
general pseudo-Riemannian, reductivity should generally instead be imposed.
Now, for instance, a three-dimensional homogeneous Lorentzian manifold is
necessarily reductive. This was proved in [7] and it also follows independently
from the classification obtained by Calvaruso in [2]. Furthermore, the existence
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of non-reductive four-dimensional pseudo-Riemannian homogeneous manifolds
was proven in [7].

Homogeneous Ricci solitons have been investigated in [8]. A natural gen-
eralization of algebraic Ricci solitons on Lie groups to homogeneous spaces is
the following [8].

Definition 1.3. Let (M = G/H, g) be a homogeneous Riemannian manifold.
Then g is called an algebraic Ricci soliton if

Ric = c Id + pr ◦ D (1.4)

where Ric denotes the Ricci operator on m, pr : g → m is the orthogonal pro-
jection map, c is a real number, and D ∈ Der(g).

Note that the above definition can be extended to the pseudo-Riemann-
ian case, changing “homogeneous Riemannian manifold” to “reductive homo-
geneous pseudo-Riemannian manifold”. In [1], we obtained the classification
of three-dimensional Lorentzian Lie groups which are algebraic Ricci solitons.

In [4], pseudo-Riemannian four-dimensional generalized symmetric spaces
have been classified into four classes, named A, B, C and D, and the (pseudo-)
Riemannian metrics can have any signature. All these spaces are reductive
homogeneous.

In [3] and [6], the Levi-Civita connection, the curvature tensor and the
Ricci tensor of these spaces are computed; proving that type C is symmetric,
that is, the covariant derivative of its curvature tensor vanishes at each point.
We will use the results of these computations to study which types of these
spaces are algebraic Ricci solitons.

The main result of this paper can be stated (cf. Theorems 3.3, 4.3 , 5.3,
6.3) as follows.

Theorem 1.4. Non-symmetric simply-connected four-dimensional pseudo-Rie-
mannian generalized symmetric spaces of type A, C and D in Cerny–Kowal-
ski’s classification are algebraic Ricci solitons, whereas those of type B are
not.

2. Preliminaries

We start by recalling the definition of generalized symmetric space. Let (M, g)
be a (pseudo-)Riemannian manifold. A regular s-structure on M is a family
of isometries {sp | p ∈ M} of (M, g) such that

• the mapping M × M → M , (p, q) �→ sp(q), is smooth,
• p is an isolated fixed point of sp, ∀p ∈ M ,
• sp ◦ sq = ssp(q) ◦ sp, ∀p, q ∈ M .

The map sp is called the symmetry centered at p. The order of a regular
s-structure is the smallest integer k � 2 such that sk

p = idM for all p ∈ M . If
such an integer does not exist, we say that the regular s-structure has order



256 W. Batat and K. Onda Results. Math.

infinity. A generalized symmetric space is a connected, pseudo-Riemannian
manifold, carrying at least one regular s-structure. In particular, a generalized
symmetric space is a pseudo-Riemannian symmetric space if and only if it
admits a regular s-structure of order 2. The order of a generalized symmetric
space is the minimum of orders of all possible s-structures on it. Furthermore,
if (M, g) is a generalized symmetric space then it is homogeneous, that is, the
full isometry group I(M) of M acts transitively on it, which means that (M, g)
can be identified with (G/H, g), where G ⊂ I(M) is a subgroup of I(M) acting
transitively on M and H is the isotropy group at a fixed point o ∈ M .

Generalized symmetric spaces of low dimension have been completely
classified. The following theorem recalls the classification of non-symmetric
simply-connected four-dimensional pseudo-Riemannian generalized symmetric
spaces.

Theorem 2.1. (Cerny and Kowalski [4]) Non-symmetric, simply-connected gen-
eralized symmetric spaces (M, g) of dimension 4 are of order either 3 or 4, or
infinity. All these spaces are indecomposable, and belong, up to isometry, to
one of the following four types.

• Type A. The underlying homogeneous space is G/H, where

G =

⎛

⎝

a b u
c d v
0 0 1

⎞

⎠ , H =

⎛

⎝

cos t − sin t 0
sin t cos t 0
0 0 1

⎞

⎠ ,

with ad − bc = 1. (M, g) is the space R
4(x, y, u, v) with the pseudo-Rie-

mannian metric

g = λ[(1 + y2)dx2 + (1 + x2)dy2 − 2xy dx dy]/(1 + x2 + y2)

±[(−x +
√

1 + x2 + y2)du2

+(x +
√

1 + x2 + y2)dv2 − 2y2du dv], (2.1)

where λ 	= 0 is a real constant. The order is k = 3 and the possible
signatures are (4, 0), (2, 2) and (0, 4).

• Type B. The underlying homogeneous space is G/H, where

G =

⎛

⎜
⎜
⎝

e−(x+y) 0 0 a
0 ex 0 b
0 0 ey c
0 0 0 1

⎞

⎟
⎟
⎠

, H =

⎛

⎜
⎜
⎝

1 0 0 −w
0 1 0 −2w
0 0 1 2w
0 0 0 1

⎞

⎟
⎟
⎠

.

(M, g) is the space R
4(x, y, u, v) with the pseudo-Riemannian metric

g = λ(dx2 + dy2 + dx dy) + e−y(2dx + dy)dv + e−x(dx + 2dy)du (2.2)

where λ is a real constant. The order is k = 3 and the signature is always
(2, 2).
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• Type C. The underlying homogeneous space G/H is the matrix group

G =

⎛

⎜
⎜
⎝

e−t 0 0 x
0 et 0 y
0 0 1 z
0 0 0 1

⎞

⎟
⎟
⎠

.

(M, g) is the space R
4(x, y, z, t) with the pseudo-Riemannian metric

g = ±(e2tdx2 + e−2tdy2) + dz dt. (2.3)

The order is k = 3 and the possible signatures are (1, 3), (3, 1).
• Type D. The underlying homogeneous space is G/H where

G =

⎛

⎝

a b x
c d y
0 0 1

⎞

⎠ , H =

⎛

⎝

et 0 0
0 e−t 0
0 0 1

⎞

⎠

with ad − bc = 1. (M, g) is the space R
4(x, y, u, v) with the pseudo-Rie-

mannian metric

g = −2 cosh(2u) cos(2v)dx dy + λ(du2 − cosh2(2u)dv2)
+(sinh(2u) − cosh(2u) sin(2v))dx2

+(sinh(2u) + cosh(2u) sin(2v))dy2, (2.4)

where λ 	= 0 is a real constant. The order is infinite and the signature is
(2, 2).

3. Spaces of Type A with Neutral Signature

Let (M, g) be a four-dimensional generalized pseudo-Riemannian symmetric
space and denote by ∇ and R the Levi-Civita connection and the Riemann
curvature tensor of M , respectively. Throughout this paper, we will use the
sign convention

R(X,Y ) = ∇[X,Y ] − [∇X ,∇Y ].

The Ricci tensor � of (M, g) is defined by

�(X,Y ) =
4∑

k=1

εk g(R(X, ek)Y, ek),

where {e1, e2, e3, e4} is a pseudo-orthonormal frame field, with g(ek, ek) = εk =
±1. The Ricci operator Ric is then given by

�(X,Y ) = g(Ric(X), Y ).

Now, consider a non-symmetric simply-connected four-dimensional gen-
eralized symmetric space (M = G/H, g) of type A and signature (2, 2). Then,
taking into account the results of [4] and [5], the Lie algebra g of the Lie group
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G may be decomposed into the vector space direct sum g = h ⊕ m where h
denotes the Lie algebra of H and m is a vector subspace of g.

The Lie algebra g admits a basis {U1, U2, U3, U4, U5}, where {U1, U2, U3,
U4} is an orthogonal basis of m and {U5} a basis of h, such that the Lie bracket
[ , ] on g and the scalar product 〈 , 〉 on m are given by

[ , ] U1 U2 U3 U4 U5

U1 0 0 −δU1 δU2 U2

U2 0 0 δU2 δU1 −U1

U3 δU1 −δU2 0 −2δ2U5 −2U4

U4 −δU2 −δU1 2δ2U5 0 2U3

U5 −U2 U1 2U4 −2U3 0

(3.1)

where δ > 0 is a real constant, and

〈 , 〉 U1 U2 U3 U4

U1 1 0 0 0
U2 0 1 0 0
U3 0 0 −2 0
U4 0 0 0 −2

,

respectively.
We now recall the following result on the curvature tensor and the Ricci

tensor of four-dimensional generalized symmetric spaces of type A (see [3]).

Lemma 3.1. Let M be a four-dimensional generalized symmetric space of type
A and signature (2, 2). Then, there exist a pseudo-orthonormal frame field
{e1 = U1, e2 = U2, e3 = 1√

2
U3, e4 = 1√

2
U4} on M , with 〈e1, e1〉 = 〈e2, e2〉 =

−〈e3, e3〉 = −〈e4, e4〉 = 1. The non-vanishing components of the Levi-Civita
connection ∇ of M are given by

∇e1e1 = − δ√
2
e3, ∇e1e2 =

δ√
2
e4, ∇e1e3 = − δ√

2
e1, ∇e1e4 =

δ√
2
e2,

∇e2e1 =
δ√
2
e4, ∇e2e2 =

δ√
2
e3, ∇e2e3 =

δ√
2
e2, ∇e2e4 =

δ√
2
e1.

The only non-zero components of the Riemann curvature tensor R(X,Y,
Z,W ) = g(R(X,Y )Z,W ), with respect to {e1, e2, e3, e4}, are

R1212 = −R1234 = −δ2,

R1313 = −R1324 = R1414 = R1423 = R2323 = R2424 = −δ2

2
and the non-zero components of the Ricci tensor are given by

�33 = �44 = −δ2.

Now, let D ∈ Der(g), where g is the Lie algebra in (3.1). Put

DUl = λ1
l U1 + λ2

l U2 + λ3
l U3 + λ4

l U4 + λ5
l U5 for all l = 1, . . . , 5.

Starting from (3.1), we can write down (1.2), getting
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λ5
3 + δ(2λ2

1 + λ4
3) = 0, λ5

3 + δ(2λ1
2 − λ4

3) = 0,

λ5
4 + δ(λ1

1 − λ2
2) = 0, λ1

2 − λ2
1 + λ3

4 = 0,

λ1
1 − λ2

2 + δλ4
5 = 0, λ2

1 + λ1
2 + δλ3

5 = 0,

λ2
3 + λ1

4 + 2δλ1
5 = 0, λ1

3 − λ2
4 + 2δλ2

5 = 0, (3.2)

2λ1
4 − λ2

3 + δλ1
5 = 0, 2λ2

4 + λ1
3 − δλ2

5 = 0,

λ1
4 − 2λ2

3 − δλ1
5 = 0, λ2

4 + 2λ1
3 + δλ2

5 = 0,

λ5
3 = δ2λ3

5, λ3
4 = −λ4

3, λ5
4 = δ2λ4

5,

λ3
1 = λ4

1 = λ5
1 = λ3

2 = λ4
2 = λ5

2 = λ3
3 = λ4

4 = λ5
5 = 0.

A standard computation proves that all solutions of (3.2) are given by

λ1
2 = −λ2

1 − δλ3
5, λ2

2 = λ1
1 + δλ4

5, λ1
3 = −λ2

4 = −δλ2
5,

λ2
3 = λ1

4 = −δλ1
5, λ3

4 = −λ4
3 = 2λ2

1 + δλ3
5.

So, we have proved the following

Lemma 3.2. Let g = h⊕m be the Lie algebra in (3.1). Then D ∈ Der(g) if and
only if

D =

⎛

⎜
⎜
⎜
⎜
⎝

λ1
1 −λ2

1 − δλ3
5 −δλ2

5 −δλ1
5 λ1

5

λ2
1 λ1

1 + δλ4
5 −δλ1

5 δλ2
5 λ2

5

0 0 0 2λ2
1 + δλ3

5 λ3
5

0 0 −2λ2
1 − δλ3

5 0 λ4
5

0 0 δ2λ3
5 δ2λ4

5 0

⎞

⎟
⎟
⎟
⎟
⎠

.

Using the lemma above, we now prove the following.

Theorem 3.3. Any four-dimensional generalized symmetric space (M =G/H, g)
of type A and signature (2, 2) is an algebraic Ricci soliton. In particular,

pr ◦ D =

⎛

⎜
⎜
⎝

−δ2 0 0 0
0 −δ2 0 0
0 0 0 0
0 0 0 0

⎞

⎟
⎟
⎠

and c = δ2 .

Proof. Using Lemma 3.1 we obtain that the Ricci operator of (M = G/H, g)
is given, with respect to the basis {U1, U2, U3, U4, U5}, by

Ric =

⎛

⎜
⎜
⎝

0 0 0 0
0 0 0 0
0 0 δ2 0
0 0 0 δ2

⎞

⎟
⎟
⎠

.

Hence, the algebraic Ricci soliton condition (1.4) on M is satisfied if and only
if

λ1
1 = −c = −δ2, λ2

1 = λ1
5 = λ2

5 = λ3
5 = λ4

5 = 0.

�
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Remark 3.4. Riemannian spaces of type A which are algebraic Ricci solitons
are obtained as follows. Changing U3 and U4 in the pseudo-Riemannian case
to (1/δ)U3 and (1/δ)U4 and letting � = −δ2, we obtain the Lie bracket of
the Riemannian case. It is easy to check that one thus get an algebraic Ricci
soliton.

4. Spaces of Type B

Let (M = G/H, g) be a non-symmetric simply-connected four-dimensional
generalized symmetric space of type B and signature (2, 2). Then, g = h ⊕ m
and {U1, U2, U3, U4} and {U5} are bases of m and h, respectively, such that
the Lie bracket [ , ] on g and the scalar product 〈 , 〉 on m are given by

[ , ] U1 U2 U3 U4 U5

U1 0 0 −U1 εU5 + U2 0
U2 0 0 −εU5 + U2 U1 0
U3 U1 εU5 − U2 0 0 2U2

U4 −εU5 − U2 −U1 0 0 −2U1

U5 0 0 −2U2 2U1 0

, (4.1)

where ε = ±1, and

〈 , 〉 U1 U2 U3 U4

U1 0 0 −1 0
U2 0 0 0 −1
U3 −1 0 2λ 0
U4 0 −1 0 2λ

,

respectively.
The following result was proven in [3].

Lemma 4.1. Let M be a four-dimensional generalized symmetric space of type
B and signature (2, 2). There exists a pseudo-orthonormal frame field

e1 =
(

λ − 1
2

)

U1 + U2, e2 =
(

λ − 1
2

)

U3 + U4,

e3 =
(

λ +
1
2

)

U1 + U2, e4 =
(

λ +
1
2

)

U3 + U4,

on M , with 〈e1, e1〉 = 〈e2, e2〉 = −〈e3, e3〉 = −〈e4, e4〉 = 1. The Levi-Civita
connection ∇ of M is determined by

∇e1e1 = −e3, ∇e2e1 = e4, ∇e3e1 = −e3, ∇e4e1 = e4,

∇e1e2 = e4, ∇e2e2 = e3, ∇e3e2 = e4, ∇e4e2 = e3,

∇e1e3 = −e1, ∇e2e3 = e2, ∇e3e3 = −e1, ∇e4e3 = e2,

∇e1e4 = e2, ∇e2e4 = e1, ∇e3e4 = e2, ∇e4e4 = e1.
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The only non-zero components of the Riemann curvature tensor R, with respect
to {e1, e2, e3, e4}, are

R1212 = R1214 = −R1223 = −R1234 = −R1434 = R2334 = −R3434 = −2

and the non-zero components of the Ricci tensor are given by

�11 = �22 = �33 = �44 = −2, �13 = �24 = −4.

Next, let D ∈ Der(g), where g is the Lie algebra in (4.1) and put

DUl = λ1
l U1 + λ2

l U2 + λ3
l U3 + λ4

l U4 + λ5
l U5 for all l = 1, . . . , 5.

Using (4.1) , we prove that (1.2) is satisfied if and only if

λ4
3 + 2(λ2

1 − λ5
1) = 0, λ5

1 + ε(λ4
3 − λ2

1) = 0,

λ2
1 − λ3

4 + 2λ5
1 − ελ1

5 − λ1
2 = 0, λ1

1 + λ4
4 − ελ2

5 − λ2
2 = 0,

λ5
2 − ε(λ1

1 + λ4
4 − λ5

5) = 0, λ4
3 − 2λ1

2 + ελ1
5 = 0,

λ5
2 + ε(λ2

2 − λ5
5) = 0, λ1

1 − λ2
2 − λ4

4 − 2λ5
2 = 0,

λ2
1 − λ1

2 − λ3
4 = 0, λ5

1 + ε(λ3
4 − λ1

2) = 0,

λ2
3 + λ1

4 + 2λ5
3 = 0, λ1

3 − λ2
4 + 2λ5

4 = 0, (4.2)

λ1
5 − 2(λ1

2 + λ4
3) = 0, λ2

5 + 2(λ2
2 − λ5

5) = 0,

λ2
5 + 2(−λ1

1 + λ4
4 + λ5

5) = 0, λ1
5 − 2(λ2

1 + λ3
4) = 0,

λ2
4 = −λ1

3, λ1
5 = 2ελ5

1, λ2
5 = 2ελ5

2,

λ3
1 = λ4

1 = λ3
2 = λ4

2 = λ3
3 = λ3

5 = λ4
5 = 0.

So, we need to consider two cases:
• If ε = 1, it is easily seen that all solutions of (4.2) are given by

λ5
1 = λ1

2 = λ2
1, λ1

4 = −λ2
3 − 2λ5

3, λ2
4 = λ5

4 = −λ1
3, λ2

2 = λ1
1 − 2λ5

2,

λ1
5 = 2λ2

1, λ2
5 = 2λ5

2, λ5
5 = λ1

1 − λ5
2, λ4

3 = λ3
4 = λ4

4 = 0.

• If ε = −1, all solutions of (4.2) are given by

λ1
4 = −λ2

3 − 2λ5
3, λ2

4 = λ5
4 = −λ1

3, λ5
5 = λ2

2 = λ1
1,

λ2
1 = λ5

1 = λ1
2 = λ5

2 = λ4
3 = λ3

4 = λ4
4 = λ1

5 = λ2
5 = 0.

Therefore, we have proved the following

Lemma 4.2. Let g = h⊕m be the Lie algebra in (4.1). Then D ∈ Der(g) if and
only if
• ε = 1:

D =

⎛

⎜
⎜
⎜
⎜
⎝

λ1
1 λ2

1 λ1
3 −λ2

3 − 2λ5
3 2λ2

1

λ2
1 λ1

1 − 2λ5
2 λ2

3 −λ1
3 2λ5

2

0 0 0 0 0
0 0 0 0 0
λ2

1 λ5
2 λ5

3 −λ1
3 λ1

1 − λ5
2

⎞

⎟
⎟
⎟
⎟
⎠

,
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• ε = −1:

D =

⎛

⎜
⎜
⎜
⎜
⎝

λ1
1 0 λ1

3 −λ2
3 − 2λ5

3 0
0 λ1

1 λ2
3 −λ1

3 0
0 0 0 0 0
0 0 0 0 0
0 λ5

2 λ5
3 −λ1

3 λ1
1

⎞

⎟
⎟
⎟
⎟
⎠

.

Using the lemma above, we now prove the following.

Theorem 4.3. Any 4-dimensional generalized symmetric space (M = G/H, g)
of type B is not an algebraic Ricci soliton.

Proof. Using Lemma 4.1 we obtain that the Ricci operator of (M = G/H, g)
is given, with respect to the basis {U1, U2, U3, U4, U5}, by

Ric =

⎛

⎜
⎜
⎝

−4λ 0 4λ2 + 3 0
0 −4λ 0 4λ2 + 3

−4 0 4λ 0
0 −4 0 4λ

⎞

⎟
⎟
⎠

.

Hence it follows, from the lemma above, that the algebraic Ricci soliton con-
dition (1.4) on M is not satisfied. �

5. Spaces of Type C

Let (M = G, g) be a non-symmetric simply-connected four-dimensional sym-
metric space of type C. Without loss of generality, we assume that the signature
is (3, 1). The Lie algebra g admits a basis {U1, U2, U3, U4}, such that the Lie
bracket [ , ] and the scalar product 〈 , 〉 on g are given by

[ , ] U1 U2 U3 U4

U1 0 0 0 −U1

U2 0 0 0 U2

U3 0 0 0 0
U4 U1 −U2 0 0

(5.1)

and

〈 , 〉 U1 U2 U3 U4

U1 1 0 0 0
U2 0 1 0 0
U3 0 0 0 1/2
U4 0 0 1/2 0

,

respectively.
The following result was proven in [6].



Vol. 64 (2013) Four-Dimensional Pseudo-Riemannian Generalized Symmetric Spaces 263

Lemma 5.1. Let M be a four-dimensional symmetric space of type C and sig-
nature (3, 1). There exists a pseudo-orthonormal frame field

e1 = U1, e2 = U2, e3 = U3 + U4, e4 = U3 − U4,

on M , with 〈e1, e1〉 = 〈e2, e2〉 = 〈e3, e3〉 = −〈e4, e4〉 = 1. The non-vanishing
components of the Levi-Civita connection ∇ of M are given by

∇e1e1 = −∇e2e2 = e3 + e4, ∇e1e4 = −∇e1e3 = e1, ∇e2e3 = −∇e2e4 = e2.

The non-zero components of the Riemann curvature tensor R, with respect to
{e1, e2, e3, e4}, are

R1313 = −R1314 = R1414 = R2323 = −R2324 = R2424 = −1

and the non-zero components of the Ricci tensor are given by

�33 = �22 = −�34 = −2.

Next, put DUl = λ1
l U1 + λ2

l U2 + λ3
l U3 + λ4

l U4 for all l = 1, . . . , 4, where
{U1, U2, U3, U4} is the basis in (5.1). Standard computations prove that D ∈
Der(g) if and only if

λ2
1 = λ3

1 = λ4
1 = λ1

2 = λ3
2 = λ4

2 = λ1
3 = λ2

3 = λ4
3 = λ4

4 = 0.

So, we deduce the following

Lemma 5.2. Let g = h⊕m be the Lie algebra in (5.1). Then D ∈ Der(g) if and
only if

D =

⎛

⎜
⎜
⎝

λ1
1 0 0 λ1

4

0 λ2
2 0 λ2

4

0 0 λ3
3 λ3

4

0 0 0 0

⎞

⎟
⎟
⎠

.

We can now prove the following.

Theorem 5.3. Any non-symmetric simply-connected four-dimensional symmet-
ric space (M = G/H, g) of type C is an algebraic Ricci soliton. In particular,

D = Ric =

⎛

⎜
⎜
⎝

0 0 0 0
0 0 0 0
0 0 0 −4
0 0 0 0

⎞

⎟
⎟
⎠

and c = 0 .

Proof. Using Lemma 5.1 we write down the Ricci operator of (M = G/H, g),
with respect to the basis {U1, U2, U3, U4}, getting

Ric =

⎛

⎜
⎜
⎝

0 0 0 0
0 0 0 0
0 0 0 −4
0 0 0 0

⎞

⎟
⎟
⎠

.
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Thus, using the lemma above, we obtain that the algebraic Ricci soliton con-
dition (1.4) on M is satisfied if and only if

λ1
1 = λ2

2 = λ3
3 = λ1

4 = λ2
4 = c = 0 and λ3

4 = −4.

�

6. Spaces of Type D

Let (M = G/H, g) be a four-dimensional generalized symmetric space of type
D and signature (2, 2). The Lie algebra g = h⊕m of the Lie group G admits a
basis {U1, U2, U3, U4, U5}, where {U1, U2, U3, U4} and {U5} are bases of m and
of h, respectively, such that

[ , ] U1 U2 U3 U4 U5

U1 0 0 0 −U2 U1

U2 0 0 −U1 0 −U2

U3 0 U1 0 −U5 2U3

U4 U2 0 U5 0 −2U4

U5 −U1 U2 −2U3 2U4 0

(6.1)

and
〈 , 〉 U1 U2 U3 U4

U1 0 1 0 0
U2 1 0 0 0
U3 0 0 0 λ
U4 0 0 λ 0

where λ 	= 0 is a real constant.
The following result was proven in [3].

Lemma 6.1. Let M be a four-dimensional generalized symmetric space of type
D and signature (2, 2). There exists a pseudo-orthonormal frame field

e1 =
1√
2
(U1 + U2), e2 =

1
√

2|λ| t(U3 + εU4),

e3 =
1√
2
(U1 − U2), e4 =

1
√

2|λ| (U3 − εU4),

on M , with ε = ±1 and 〈e1, e1〉 = 〈e2, e2〉 = −〈e3, e3〉 = −〈e4, e4〉 = 1. The
non-vanishing components of the Levi-Civita connection ∇ of M are given by

∇e1e1 =
1

2
√

2|λ| ((ε + 1)e2 + (ε − 1)e4),

∇e1e2 = − 1
2
√

2|λ| ((ε + 1)e1 − (ε − 1)e3),

∇e1e3 =
1

2
√

2|λ| ((ε − 1)e2 + (ε + 1)e4),
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∇e1e4 =
1

2
√

2|λ| ((ε − 1)e1 − (ε + 1)e3),

∇e3e1 =
1

2
√

2|λ| ((ε − 1)e2 + (ε + 1)e4),

∇e3e2 =
1

2
√

2|λ| ((1 − ε)e1 + (ε + 1)e3),

∇e3e3 =
1

2
√

2|λ| ((ε + 1)e2 + (ε − 1)e4),

∇e3e4 =
1

2
√

2|λ| ((ε + 1)e1 − (ε − 1)e3).

The non-zero components of the Riemann curvature tensor, with respect to
{e1, e2, e3, e4}, are

R1212 = −R1234 = −R1414 = −R1423 = −R2323 = R3434 = − 1
2λ

,

R1313 = −R1324 = − 1
λ

and the non-zero components of the Ricci tensor are given by

�(e2, e2) = −�(e4, e4) = − 1
λ

.

Now, let D ∈ Der(g) where g is the Lie algebra in (6.1). Put

DUl = λ1
l U1 + λ2

l U2 + λ3
l U3 + λ4

l U4 + λ5
l U5 for all l = 1, . . . , 5.

Starting from (6.1), we can write down (1.2), obtaining

λ3
3 = λ1

1 − λ2
2 , λ5

3 = λ2
1, λ4

4 = −λ3
3, λ5

4 = −λ1
2,

λ1
5 = −λ2

4, λ2
5 = λ1

3, λ3
5 = 2λ1

2, λ4
5 = −2λ2

1,

λ3
1 = λ4

1 = λ5
1 = λ3

2 = λ4
2 = λ5

2 = λ2
3 = λ4

3 = λ1
4 = λ3

4 = λ5
5 = 0.

We deduce the following.

Lemma 6.2. Let g = h⊕m be the Lie algebra in (6.1). Then D ∈ Der(g) if and
only if

D =

⎛

⎜
⎜
⎜
⎜
⎝

λ1
1 λ1

2 λ1
3 0 −λ2

4

λ2
1 λ2

2 0 λ2
4 λ1

3

0 0 λ1
1 − λ2

2 0 2λ1
2

0 0 0 λ2
2 − λ1

1 −2λ2
1

0 0 λ2
1 −λ1

2 0

⎞

⎟
⎟
⎟
⎟
⎠

.

Using the lemma above, we prove the following.
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Theorem 6.3. Any four-dimensional generalized symmetric space (M =G/H, g)
of type D is an algebraic Ricci soliton. In particular,

pr ◦ D =

⎛

⎜
⎜
⎝

1
λ 0 0 0
0 1

λ 0 0
0 0 0 0
0 0 0 0

⎞

⎟
⎟
⎠

and c = − 1
λ

.

Proof. Using Lemma 6.1 we write down the Ricci operator of (M = G/H, g),
with respect to the basis {U1, U2, U3, U4}, getting

Ric =

⎛

⎜
⎜
⎝

0 0 0 0
0 0 0 0
0 0 − 1

λ 0
0 0 0 − 1

λ

⎞

⎟
⎟
⎠

.

Using the lemma above, we obtain that the algebraic Ricci soliton condition
(1.4) on M is satisfied if and only if

λ1
1 = λ2

2 = −c =
1
λ

and λ2
1 = λ1

2 = λ1
3 = λ3

3 = λ2
4 = 0.

�
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