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Abstract. In this paper we provide a characterization of structural
equigeodesics on generalized flag manifolds with second Betti number
b2(G/K) = 1, and give examples of structural equigeodesics on general-
ized flag manifolds of the exceptional Lie groups Fu, Es and Er with three
isotropy summands.

Mathematics Subject Classification (2010) . 14M15, 14M17, 53C22, 53C30.

Keywords. Generalized flag manifolds, structural equigeodesics,
isotropy representation.

1. Introduction

The orbits of the adjoint action of a semisimple compact Lie group define an
important class of homogeneous manifolds called generalized flag manifolds.
These manifolds were studied by many authors (see [5-8]).

Let M = G/K be a homogeneous manifold with origin o = eK (trivial
coset) and g be a G-invariant metric on M. A geodesic (t) on G/K through
the origin o is called homogeneous, if it is the orbit of a 1-parameter subgroup
of GG, that is,

A(t) = (eaptX) - o,

where X € g, and g is the Lie algebra of G.

In [3] the authors introduce the notion of homogeneous equigeodesics.
A homogeneous equigeodesic is a homogeneous curve 7 which is geodesic
with respect to any G-invariant metric. Since the infinitesimal generator of a
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1-parameter subgroup is an element of the Lie algebra of G, it is natu-
ral to characterize the equigeodesics in terms of their infinitesimal gener-
ators. This allows us to use a Lie theoretical approach to study homoge-
neous geodesics on flag manifolds. The infinitesimal generator of an equi-
geodesics is called an equigeodesic vector. In [4] the authors have provided
a characterization of all homogeneous equigeodesics with two isotropy sum-
mands.

Let € and g be the Lie algebra of K and G, IIx and II be the simple root
system of € and g respectively, where T = II—{a;, } and where «;, is a simple
root of g, and Iy = II — g = {a;,}. Let I' = T'(II) be the Dynkin diagram
of the set of simple roots II. By painting the vertice «;, black we obtain the
painted Dynkin diagram of M = G/K.

An algebraic characterization of equigeodesic vectors in generalized flag
manifolds is given in [3]. In [3] the authors provide a version of this formula (see
Proposition 3.1) for equigeodesic vectors on generalized flag manifolds. Using
this formula to determine whether a vector is equigeodesic is equivalent to
solve an algebraic nonlinear system of equations whose variables are the com-
ponents of the vector. However there exist some subspaces of the equigeodesic
vectors, in these subspaces all the equigeodesic vectors are called structural
equigeodesic vectors (see Definition 3.2).

The structural equigeodesic vectors are more treatable, since the geomet-
ric structure can be expressed in terms of Lie groups and algebras, root space
decomposition, isotropy representation, etc.

In this paper we provide a characterization in terms of the equigeodesic
vectors of homogeneous equigeodesics in generalized flag manifold G/K with
second Betti number bo(G/K) = 1 (see Lemma 3.5). We give a method (see
Theorem 3.7) to find the structural equigeodesics associated to generalized flag
manifolds with second Betti number by(G/K) = 1.

We explicitly describe the families of subspaces of which all elements
are structural equigeodesic vectors on generalized flag manifolds associated
to exceptional Lie groups Fy, Fg and E7 with three isotropy summands. Our
results concern the generalized flag manifolds

F,/SU(2) x U(1) x SU(3),

Es/SU(3) x U(1) x SU(3) x SU(2)
and

E;/SU(5) x U(1) x SU(3).

The families of structural equigeodesic vectors are given in Tables 1, 2,
and 3 respectively.

This paper is organized as follows: in Sect. 2 we recall some basic con-
cepts about the geometry of flag manifolds. In Sect. 3 we focus on the case
where the isotropy representation with second Betti number by(G/K) = 1, to
find the structural equigeodesics associated to generalized flag manifolds with
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TABLE 1. Structural equigeodesic vectors for F,/SU(2) x
U(1) x SU(3)

mg, O My, O Meg O M, O My, mg, O Ma, O May O Mayy DMy,
Mg, © Mo, O Moy O Moy G May mg, © My © Moy O Mayy O May,y
Mgs DMy, O Mo, G Moy D Meg mg; D Mo, O Moy © Ma, D May,
mg, O mg; O My, mg, O mg; O Ma,
Mg; D Mgy © Ma, mg, Mg, O May
Mg, © Mg, & Ma, mg, D Mgy D My,
mg, © Mg, G Ma; mg, © Mg, © May
Mg, B mg, O May mg, B mg, G Mq,,
Mg, Dmg, G Mq,, mg, O mg; O May,
mg, Dmg; O Ma, DMy mg, D Mg, © My, O Ma,
mg, G mg; B my, O Mg, mg, ©mg; &My, My,
Mg, DM, © Moy DMy, mgp, D Mg, O My, © May,
m% D Mag ® Moy D Mag & m'YQ D Moy D May, @ May D
My, My, My, Moy D Mayy D May,

second Betti number by(G/K) = 1 we give Theorem 3.7. In Sect. 4 we give
the results about structural equigeodesic vectors on generalized flag manifolds
associated to the exceptional Lie groups Fjy, Eg and E; with three isotropy
summands.

2. Flag Manifolds

Let G be a compact connected simple Lie group and g be the corresponding
Lie algebra. We denote by ¢ the complexification of g and Ad : G — Aut(g)
be the adjoint representation of G. A generalized flag manifold is a homoge-
neous space G/K where the isotropy subgroup K is the centralizer C(S) of a
torus S in G. If S = T is a maximal torus then K = C(S) =T, and G/T is
called a full flag manifold.

Let G/K be generalized flag manifold and £ be the Lie algebra of K.
We denote by o = eK the origin of the flag manifold (the identity coset
of G/K). Since the Lie group G is simple and compact, the Cartan—Kill-
ing form (-,-) is non-degenerated and negative definite. Thus Q(-,) = —(-,")
is an inner product. Let m = £+ be the orthogonal complement of £ with
respect to ). Then the decomposition ¢ = m @ £ is reductive, that is,
Ad(K)m C m and the tangent space at the origin T,(G/K) is identified
with m.

We denote by j : K — Aut(m) the isotropy representation of K on m. For
a generalized flag manifold it is well known that the isotropy representation is
completely reducible, that is,

m=m; G- Hmg, (1)



80 Y. Wang and G. Zhao

Results. Math.

TABLE 2. Structural equigeodesic vectors for Eg/SU(3) X

U(1) x SU(3) x SU(2)

m,, ®my; DMy, My, DMy, O
Moy, D Moy ©Mayg O Moy, ©Mayy

my, Emy, Mgy, My, Smy, My, S
Myy DMy O My, © May;

mg, O Mo, & Moy O Moy & Moy, Dmg,, O
Mgy, © Moy © Mayg

mg, O My, © Mo, O Moy G Me,, Dmg,; O
mOé14 D ma17 D mOéls

mg, © My, My, My, My, Dmg,, O
My, 3 © Moy, © Mayg

mg, @ Mg, DMy, My G My, O Me,y, O
Ma,, D Mgy, O May,

mg, B My, &My, B My, B My, BMy,, S
mOé15 @ mals D n10417

Mg; © Mg, O Mag O Moy D Mayy O My, D
Mgy 5 © Mayg © Mayg

mg, @ Ma, O My, O My G My, G Mgy, O
moé13 D ma15 D malG

Mg, © Ma, O Mo, O Moy © Moy © Mo, O
My, © Moy, © Mayg

mg, @ Mg, Mg, DMy, S My; Mg, D
My DMy, O My,

Ma,, Mg, ©mg, Mg, Gmg,

My, O Mg, ©mg, ©mg, O mg,

My, © Mg, G mg; O mg, ©mp,

Mo,z G Mg, O Mg, © Mg, O mpg,

My, O Mas Mg, © Mgy S Mg, © Mgy
Mo, © Moy ©mp, ©mp, ©mg, ©mp,
mag @ mau EB mﬁl @ mBS @ mﬂB EB mBQ

Mayo O M,y Mg, G mg, G mg, Dmg,

My, S mg, Gmg, G mg, S mg,
My, G Mg, Gmg, B mg, S mg,
My, G mg, G mg, Gmg, Gmg,
My, S mg, Gmg, Gmg, S mg,
My, D mg, Gmg, G mg, G mg,
Mo Dmg, Dmg; ©mg, G mg,
My, Mg, G mg, B mg, S mg,
My, Mg, G mg, Gmg, G mg,
My, DM, S Mg, © Mg, G Mgy
Mo, D Mg, ©mp; Gmg, Smg,
Mgy, G mg, G mg, ©mg, G mg,

My, © Mg, © Mg, G mg, Smg,

Mo,; DM, O mg, & mg, ©mg,

Mg,, & Mmg, O mg, ©mg, O mg,

Mg, D Mg, G mg, ©mg, D
mg; O mg,

Mo, B Mo, & mg, G mg, D
mg, © Mg,

My 5 DMy Dmg, Gmg, ©
Mg, & mg,

Moy D Mg, G mg, ©mg, D
mg; O Mgy

Mo,y ©Ma,yy DMg, Gmg, O
Mge D Mpg

where each m; is an irreducible inequivalent component of the isotropy

representation.
In this paper we consider equideosic vectors on flag manifolds G/K with

b2(G/K) = 1. Now we give a Lie theoretical description of the structure of flag
manifolds with bo(G/K) = 1.
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Let T be a maximal torus of G, and n be the Lie algebra of T'. The
complexification 7* is a Cartan subalgebra of g€. Let R be a root system of
(¢%,7n%) and consider the root space decomposition

gc - 77(: @ Z 957 (2)
aER

where g§ denote the complex 1-dimensional root space.

Let R be a choice of positive roots and II be corresponding set of sim-
ple roots. We fix once and for all a Weyl basis of g© which amounts to take
E, € g€ such that Q(E,, E_,) = —1, and [E,, E_,| = —H,, where H, € n°
is determined by the equation Q(H, H,) = a(H), for all H € n*. The vectors
E, satisty the relation [E,, Eg] = No gEaypg With Ny g € R,N_, _g = —Ny
and No g =01if a+ 8 € R (see [5, Chap. IX]).

Let A, = E, — E_, and B, = /—1(E, + E_,). The vectors

Aw,Ba,V—=1Hg, (a € RY and B €1I) (3)

form a basis of g (compact real form of the Lie algebra ¢©).
For o € R™ let

m,, = spang{Aq, Ba}, (4)

be the real root space.
We have the following decomposition

g=n® Y ma. (5)
aERT

The next lemma gives us information about the Lie algebra structure of g.

Lemma 2.1. The Lie bracket between the elements of (3) of g are given by
[V—1Ha, Ag] = 3(Ha)Bs, [Aa; Ag]=Na,sAats+N-a,8Aa—p,
[V _lHouBﬂ} = _ﬁ(Ha)Aﬁ’ [BomBﬁ] = _NaﬁAa-&-ﬁ - Na,—ﬁAa—ﬂa (6)
[Aaa Ba] =2V —1H,, [A(uBB] = Na,BBa-i-B + Na,—ﬁBa—ﬁ.

Since n® is also a Cartan subalgebra of £ (complexification of the Lie
algebra of K), let R be the root system for (£¢, %) and let Ryy = R\ Rx. In
a similar way, let R} be a choice of positive roots and I the corresponding
set of simple roots for € and define Ry = R \ Rx and IIj; = IT\ Ik be the
set of positive and simple complementary roots.

Let [ be the rank of £ and y = Zi:l n;a; be the highest root of R, that
is the unique root such that any root a = 22:1 c;a; must satisfy ¢; < n; for
all 7. The coefficients n; € Z are called heights of the simple root «;.

We only consider the generalized flag manifolds corresponding to the
Dynkin diagram I' = ['(II)with one simple root painted black, thus a
generalized flag manifolds has s isotropy summands if I = II — {a;,} and
the simple root «;, has height s, that is n;, = s.
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In order to describe the irreducible components m;(i = 1,...,s), Let oy,
be a simple root of height s and g = II — {a;,}. Forn =1,...,s let

l

R+(ai0,n):{aERJF:a:chaj,ciO:n}, (7)
i=1

and we define the subspaces m,, of g by

m, = Z My (8)

a€R* (aiq,m)

Then m =m; @ &my and RY, = R (i, 1) U--- URT(ay,, 8), each
m, (n=1,---,s)is an irreducible and inequivalent component of the isotropy
representation, see [4].

Ezample 2.2. (Flag manifold of the exceptional Lie group Go with three isot-
ropy summands). Let IT = {a1, as} be the simple roots of Go and p = 2a4 +
3as be the highest root. The Dynkin diagram for the Lie algebra of Gy is

Oas = Oaj -

We describe the flag manifold associated G2/U(2) with g = II — {2 }.
The painted Dynkin graph of Go/U(2) is

0y = Oaj -
Since the height of the root as is 3, we have that m = m; + mo + mg
and R*(ag,1) = {ag, a1 + as}, R (a2,2) = {1 + 22} and RV (as,3) =
{Otl + 30(2, 20(1 + 30[2}.

3. Equigeodesics

Let g be the invariant inner and B be the Ad-invariant scalar product
on m. Then B isgiven by B(X,Y) = Q(AX,Y), where the linear operator
A :m — m is symmetric and positive with respect to the Cartan—Killing form
of g. We will denote by A such invariant metric.

Let m =my + - -+ + mg be a decomposition of m into irreducible inequiv-
alent components of the isotropy representation. A consequence of Schur’s
lemma is that Alw, = A\Id|m, for i = 1,---,s and therefore any invariant
scalar product has the form

B(X, Y) = >\1Q(X, Y)|m1 +-+ /\SQ(X, Y)|msa

where A\; > 0,...,A\s > 0. Therefore the set of invariant metrics can be param-
eterized by

ME ={(\1,..., ) ER*: A >0,..., ), >0}

Let G/K be a generalized flag manifold. A curve of the form ~(t) =
(exptX) - o is called an equigeodesic on G/K if it is a geodesic with respect
to each invariant metric on G/K. The vector X is called equigeodesic vector.
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The study of equigeodesics in generalized flag manifolds started in [3] with the
description of equigeodesics on SU (n)-flags.
We have the following algebraic characterization of equigeodesic vectors.

Proposition 3.1. [3] Let G/K be a generalized flag manifold and X € m be a
nonzero vector. Then X is an equigeodesic vector if, and only if,

[X, AX]m =0, (9)
for each invariant metric A.

We remark that to solve Eq. (9) is equivalent to solve a nonlinear algebraic
system of equations whose variables are the components of the vector X. Ana-
lysing the Lie bracket of the form [A,, Bg|, [Aa, Ag] and [B,, Bg|] described
in Eq. (6) is clear that if the structural constants Ny g, N_q 3, No,—g vanish
(e.g. if a £ 8 ¢ R) then these bracket also vanish and the system can be
simplified. In some cases (depending just on the m;-parts of X) the nonlinear
system vanishes completely (i.e. the system is identically zero). This motivates
the following definition:

Definition 3.2. An equigeodesic vector is said to be

(a) structural: if the algebraic system associated to Eq. (9) vanishes com-
pletely.

(b) Otherwise we call an equigeodesic vector algebraic, i.e. the coordinates of
the vector X come from a solution of a (not identically zero) nonlinear
algebraic system associated to Eq. (9).

Definition 3.3. An equigeodesic vector X € m is trivial if X € m; for some ¢;
otherwise is said to be nontrivial.

Remark 3.4. By definition trivial equigeodesic vectors are structural equigeo-
desic vectors.

We now focus on generalized flag manifolds with bs(G/K) = 1. In this
case the tangent space at the origin splits into m =m; & --- G m, and a vector
X € mis written as X = Xy, + -+ + X, with Xp, e my(i =1, ,s).

Lemma 3.5. Let G/K be a generalized flag manifold with decomposition (1).
A wvector

X=Xn + 4+ Xn. e€m
s equigeodesic if, and only if
(X, s Xm;] =0, (10)

where 1 < 1,5 < s.
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Proof. Let 7 : g — m be the projection onto m, then [ X, AX]n = 7([X, AX]).
If X =Xn, +--+ X, €m then we have
[X,AX], =7([X,AX])
=7([Xm, + -+ X, A X, + -+ X))
T([ Xy + Xmy + Xmgs M X, + -+ A X))
= (As = A)T[ Xy X ]+ Aot = A)7[Xiny s X ]+
+ (A2 = A)7[ Xy, X
+ (As = A2)m[ Xy, Xin, | + (Asm1 = A2) 7 [ Xy, Xiny ]+ -+
+ (A3 = A2)7[ Xy, Ximg ] + -+ (s = Asm2)T[Xin, s X ]
+ (Asm1 = >\S—2)7T[Xms—2’Xmsfl] (As = As—1)7[Xm, 5 Xon,]
= (A = A)[ Xy, X+ (Aot = M) [ Xy s X, £
+ (A2 = A1) [ Xy, Ximo| + (s — >\2)[Xm2»Xms]
+ (Asfl - )\2)[Xm27Xm571] ()\3 - )\2)[szva3]
+ot (>\s - AS_Q)[Xmsf27 ] (/\5 1= As— 2)[Xms—2’Xmsfl]
+ (As = Asm1) [ X,y 5 X, |-

O

According to [6] let {z4, a0 € R;h;, 1 < i < k} be a Chevalley basis of
g, then we have [h;,h;] = 0,1 < i,j < kj[h,z0] =< o, > 24,1 <0 <
k,a € R;[Ta, T—a] = ha, where hy, is a Z-linear combination of hy, ha, -+« hy;
if a, B are independent roots, 8 —ra, - -- , 8 + qa the a-string through 3, then
[za, 23] =0, if ¢ = 0, while [z4, 28] = £(r + 1)zaqp f a+ 5 € R.

Thus we get when @ < j if i +j < s then [Xy,, Xin,] € mj; ® my_y, if
i+j > sthen [Xpn,, Xn,] € mj_s; wheni = jif 20 < sthen [Xy,, Xin,| € EOmy;,
if 20 > s then [Xm“Xm,,] €t

Since X is equigeodesic if, and only if [X,AX] = 0 for each invariant
metric A = {A\,..., A} (A1 > 0,---,A\¢ > 0) and it occurs if, and only if
(X, Xm,;] =0, where 1 <14,j <.

Remark 3.6. When s = 2 this gives Proposition 3.5 in [4] of L. Grama and
C. Negreiros.

The next proposition provides a family of structural equigeodesic vectors on
generalized flag manifolds G/K with s isotropy summands, which depends
only on the Lie algebra structure of g.

Theorem 3.7. Let G/K be a generalized flag manifold with m = m; &
- @dmg and Uxg = 7 — {a;}. Let the positive roots RT(a;,,1) =
{81, B b R (i, 2) = {81, B} - R (vigo 8) = {85, ... B3 . If

DrprE. LB ER,
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where (1 <y <idg < -+ <4 <8,2<1<s;51=1,....m1(r1 < ki,);j2 =
Lo ra(re < ki) 55 =1,...,m)(r; < k;y). Then all vectors in the sub-
spacemﬂi-1 D-- -@mﬁi% @mﬂP D-- ~69mﬁ7.g D-- '@mﬁi" b-- -@mﬁi, are structure

equigeodesic vectors. Here mg: is defined by (4).

Proof. Let X = X, +Xm,, + - +Xm, , where X, = ai' A i +07 Byoy +- -+
! 1

aillAﬁH + b2 B 51 Tepresent its my, component, Xm,, = af Ay + 0By +
-+ a%Aﬁg + b?zBBf% represent its m;, component, ..., Xy, = G?AB;'L +

b Bﬂi’ e aill Aﬁf-’l' + bi’llBBf-’,' represents its m;, component. Choosing a

Weyl basis E, € g5 (a € R) of g© with

0, if a+B¢R,

Na,ﬂEa+ﬂ7 Zf o+ ﬁ € 7?'7

[Ea, Eﬁ} = {

where the constants N, g satisfy Ny g = —N_q,_g and Ng o = —N, g. Since
ﬂ;i iﬁ;i iiﬁ;; gR(]l = 17'~-aT1;j2 =1,...,7m9; - 7]1 = 17"'arl)a we

have N iy 4io = N i1 4o = N_i g = o= N i o =N i i —
Bi1Bia =651 83 Bi1 =B B, 2155 —B5, 185
Nﬁil,l gt = 0. Since X is a equigeodesics vector if, and only if
-1’ P

[qu 9 Xm,] = 07

for 1 <14, j < s. By direct computation, using the relations in (6), we know that
the system of equations above vanishes, therefore the vector X is a structural
equigeodesics vector. ]

Remark 3.8. When s = 2 this is Proposition 3.8 in [4] of Grama and Negreiros.

Ezample 3.9. We describe the flag manifold G2/U(2) associated with IIx =
IT — {as}. The painted Dynkin diagram is

%y, 1S5 Oy -

The highest root is u = 2a1 + 3aa, consider the positive roots R]T/I, let
(1= ag, By =ay + QoY = o + 20(2;51 = + 30[2,52 = 2w + 3az. We have
R*+(a2,1) = {1, Ba}, R (a2,2) = {7} and R (az,3) = {&1, &2} Since S £
are not roots, the vectors in mg, ® m¢, are structural equigeodesic vectors.

4. Structural Equigeodesic Vectors on Flag Manifolds

In this section we give a family of structural equigeodesic vectors in some
generalized flag manifolds of exceptional Lie groups. We classify the posi-
tive roots that satisfy the hypothesis of Theorem 3.7, for the flag manifolds
Fy/SU(2) x U(1) x SU(3),Es/SU(3) x U(1) x SU(3) x SU(2) and partial
classification of such root spaces in the flag E7/SU(5) x U(1) x SU(3).
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4.1. Structural Equigeodesic Vectors on F,/SU (2) X U(1) x SU(3)

Let T = {ay, ae, a3, ay } be a system of simple roots for Fy such that the high-
est root is given by u = 2a; + 3ag + 4as + 2ay. The flag manifold Fy/SU(2) x
U(1) x SU(3) is determined by IIx = IT— {as}. In order to simplify the nota-
tion we denote a positive root by their coefficients, that is, if § = 107 +
ZToy + T3z + T4 1S a positive root, we write 5 = (1, x2, 3, Z4).

Consider the positive roots

a1 = (0,1,0,0), Qo = (0,1,1,0), a3 = (1,1,1,0), Qg = (0, 1,2,2),
as = (1,1,2,2), ag=(1,1,0,0), «a7r=(1,1,2,0), ag=1(1,1,1,1),
Qg — (0, ]., ]., ].), 19 — (0, 1,2, 1), Q11 = (1, 1,2, ].)7 12 = (0, 1,2,0),
B = (1727372)7 B2 = (1727272)7 B3 = (1a274v2)7 Bs = (1,2,2,0)7
G5 =(1,2,3,1), fs=1(1,2,2,1), 1 =(1,3,4,2), v =1(23,4,2).

We have R¥(as,1) = {a1, -+, 012}, R (2,2) = {B1,--,fs} and
Rt (az2,3) = {71,72} and the irreducible components of the decomposition
m =my + my + m3 are given by

m; = § My, Mg = § My, M3 = § Mgy

aeR*(az,1) aeR(az,2) aeR'(az,3)

Proposition 4.1. The root spaces whose roots satisfy Theorem 3.7 are listed
in Table 1 for the generalized flag manifold Fy/SU(2) x U(1) x SU(3). In
particular all vectors in these subspaces are structural equigeodesic vectors

4.2. Structural Equigeodesic Vectors on Fg/SU (3) xU (1) x SU (3) x SU(2)
Let 1T = {o, a2, a3, a4, a5, g} be a system of simple roots for Eg such that
the highest root is given by p = a1 + 2ae + 2a3 + 34 + a5 + 206. The flag
manifold Eg/SU(3) x U(1) x SU(3) x SU(2) is determined by IIx = IT—{a4}.
As before, in order to simplify the notation we denote a positive root just by
their coefficients.

Consider the positive roots

a1=(0,0,1,0,0,0), a2=(1,1,1,0,0,0), a3=(1,1,1,1,0,0), as=(1,1,1,1,1,0),
as=(1,1,1,1,1,1), as=(1,1,1,0,0,1), ar=(1,1,1,1,0,1), as=(0,1,1,0,0,0),
a9=(0,1,1,1,0,0), ai10=(0,1,1,1,1,0), a11=(0,1,1,0,0,1), ai2=(0,1,1,1,0,1)
a13=(0,1,1,1,1,1), 014=(0,0,1,1,0,0), a15=(0,0,1,1,1,0), ais=(0,0,1,1,1,1),
a17=(0,0,1,0,0,1), a18=(0,0,1,1,0,1); p1=(1,1,2,1,0,1), B2=(1,2,2,1,0,1),
Ba=(1,1,2,1,1,1), Ba=(1,1,2,2,1,1), B5=(1,2,2,1,1,1), Bs=(1,2,2,2,1,1),
67:(071,2,1,0,1)7 68:(0,1,2,1,1,1), ﬁ97(071,2,2,1,1); 71:(1,2,3,271,1),
v2=(1,2,3,2,1,2).

We have R+(O‘47 1) = {ala cee 70[18}7R+(054a 2) = {/817 cee 7ﬂ9}7 and
Rt (c4,3) = {71,72}, and the irreducible components of the decomposition
m =my + my + m3 are given by

m; = E My, Mo = E My, M3 = E My

a€ER*(au,l) a€R*(aq,2) a€R*(aq,3)
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Proposition 4.2. Consider the generalized flag manifold Es/SU(3) x U(1) x
SU(3) x SU(2). The root spaces whose roots satisfy Theorem 3.7 are listed in
Table 2. In particular all vectors in these subspaces are structural equigeodesic
vectors.

4.3. Structural Equigeodesic Vectors on E;/SU (5) X U(1) x SU(3)

Let I = {ay, a9, a3, a4, as, ag, a7} be a system of simple roots for E7 such
that the highest root is given by u = 2aq + 2ais + 3as + 4oy + 3as + 206 + 7.
The flag manifold E/SU(5) x U(1) x SU(3) is determined by IIx = II—{as}.
As before, in order to simplify the notation, we denote positive roots just by
their coefficients.

— (0,0,0,0,1,0,0), as = (0,0,1,1,1,0,0), az = (0,1,1,1,1,0,0),
as=(0,1,1,2,1,0,0), as = (1,0,1,1,1,0,0), ag = (1,1,1,1,1,0,0),
~(1,1,1,2,1,0,0), a :(1,1,2,2,1,0 0), ag = (0,0,0,1,1,0,0),
a0 = (0,1,0,1,1,0,0), a1y = (0,0,0,0,1,1,0), ars = (0,0,0,1,1,1,0),
a3 = (0,0,0,0,1,1,1), a1s = (0,1,0,1,1,1,0), a15 = (0,0,1,1,1,1,0),
as = (0,0,0,1,1,1,1), a1r = (1,0,1,1,1,1,0), a1s = (0,1,1,1,1,1,0),
are = (0,1,0,1,1,1,1), as = (0,0,1,1,1,1,1), as1 = (1,1,1,1,1,1,0),
= (1,0,1,1,1,1,1), aa3 = (0,1,1,2,1,1,0), ana = (0,1,1,1,1,1, 1),
= (1,1,1,2,1,1,0), asg = (1,1,1,1,1,1,1), aoy = (0,1,1,2,1,1,1),
—(1,1,2,2,1,1,0), asg = (1,1,1,2,1,1,1), ago = (1,1,2,2,1,1,1);
= (1,1,1,2,2,1,0), B2 = (0,1,1,2,2,1,1), B3 = (1,1,2,2,2,1,0),
:(1 1,1,2,2,1,1), G5 = (1,1,2,3,2,1,0), f6 = (1,1,2,2,2,1,1),
:(1 2,2,3,2,1,0), s = (1,1,2,3,2,1,1), fo = (1,2,2,3,2,1,1),
—(1,2,2,3,2,2,1), B = (1,1,2,3,2,2,1), fia = (1,1,2,2,2,2,1),
= (1,1,1,2,2,2,1), Bra = (0,1,1,2,2,2,1), Bi5 = (0,1,1,2,2,1,0);
—(2,2,3,4,3,2,1), 7 = (1,2,3,4,3,2,1), 75 = (1,2,2,4,3,2,1),
= (1,2,2,3,3,2,1), 75 = (1,1,2,3,3,2,1).
We have Rt (as5,1) = {a1,...,a30}, R (a5,2) = {B1,...,015} and

Rt (as,3) = {71,--.,75} and the irreducible components of the decomposi-
tion m = my; + my + mg are given by

aeRt(as,1) a€R*(as,2) a€Rt(as5,3)

m; = My, Mg = my, M3 = mey.

Proposition 4.3. A partial classification of the root spaces whose roots satisfy
Theorem 3.7 are listed in Table 3 for the generalized flag manifold E7/SU(5) x
U(1) x SU(2). In particular, all vectors in these subspaces are structural equi-
geodesic vectors.
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