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1. Introduction

The orbits of the adjoint action of a semisimple compact Lie group define an
important class of homogeneous manifolds called generalized flag manifolds.
These manifolds were studied by many authors (see [5–8]).

Let M = G/K be a homogeneous manifold with origin o = eK (trivial
coset) and g be a G-invariant metric on M . A geodesic γ(t) on G/K through
the origin o is called homogeneous, if it is the orbit of a 1-parameter subgroup
of G, that is,

γ(t) = (exptX) · o,

where X ∈ g, and g is the Lie algebra of G.
In [3] the authors introduce the notion of homogeneous equigeodesics.

A homogeneous equigeodesic is a homogeneous curve γ which is geodesic
with respect to any G-invariant metric. Since the infinitesimal generator of a
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1-parameter subgroup is an element of the Lie algebra of G, it is natu-
ral to characterize the equigeodesics in terms of their infinitesimal gener-
ators. This allows us to use a Lie theoretical approach to study homoge-
neous geodesics on flag manifolds. The infinitesimal generator of an equi-
geodesics is called an equigeodesic vector. In [4] the authors have provided
a characterization of all homogeneous equigeodesics with two isotropy sum-
mands.

Let k and g be the Lie algebra of K and G,ΠK and Π be the simple root
system of k and g respectively, where ΠK = Π−{αi0} and where αi0 is a simple
root of g, and ΠM = Π − ΠK = {αi0}. Let Γ = Γ(Π) be the Dynkin diagram
of the set of simple roots Π. By painting the vertice αi0 black we obtain the
painted Dynkin diagram of M = G/K.

An algebraic characterization of equigeodesic vectors in generalized flag
manifolds is given in [3]. In [3] the authors provide a version of this formula (see
Proposition 3.1) for equigeodesic vectors on generalized flag manifolds. Using
this formula to determine whether a vector is equigeodesic is equivalent to
solve an algebraic nonlinear system of equations whose variables are the com-
ponents of the vector. However there exist some subspaces of the equigeodesic
vectors, in these subspaces all the equigeodesic vectors are called structural
equigeodesic vectors (see Definition 3.2).

The structural equigeodesic vectors are more treatable, since the geomet-
ric structure can be expressed in terms of Lie groups and algebras, root space
decomposition, isotropy representation, etc.

In this paper we provide a characterization in terms of the equigeodesic
vectors of homogeneous equigeodesics in generalized flag manifold G/K with
second Betti number b2(G/K) = 1 (see Lemma 3.5). We give a method (see
Theorem 3.7) to find the structural equigeodesics associated to generalized flag
manifolds with second Betti number b2(G/K) = 1.

We explicitly describe the families of subspaces of which all elements
are structural equigeodesic vectors on generalized flag manifolds associated
to exceptional Lie groups F4, E6 and E7 with three isotropy summands. Our
results concern the generalized flag manifolds

F4/SU(2) × U(1) × SU(3),
E6/SU(3) × U(1) × SU(3) × SU(2)

and

E7/SU(5) × U(1) × SU(3).

The families of structural equigeodesic vectors are given in Tables 1, 2,
and 3 respectively.

This paper is organized as follows: in Sect. 2 we recall some basic con-
cepts about the geometry of flag manifolds. In Sect. 3 we focus on the case
where the isotropy representation with second Betti number b2(G/K) = 1, to
find the structural equigeodesics associated to generalized flag manifolds with
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Table 1. Structural equigeodesic vectors for F4/SU(2) ×
U(1) × SU(3)

mβ1 ⊕ mα1 ⊕ mα6 ⊕ mα7 ⊕ mα12 mβ2 ⊕ mα2 ⊕ mα3 ⊕ mα10 ⊕ mα11

mβ3 ⊕ mα2 ⊕ mα3 ⊕ mα8 ⊕ mα9 mβ4 ⊕ mα8 ⊕ mα9 ⊕ mα10 ⊕ mα11

mβ5 ⊕ mα1 ⊕ mα4 ⊕ mα5 ⊕ mα6 mβ6 ⊕ mα4 ⊕ mα5 ⊕ mα7 ⊕ mα12

mβ1 ⊕ mβ5 ⊕ mα1 mβ2 ⊕ mβ3 ⊕ mα2

mβ5 ⊕ mβ6 ⊕ mα4 mβ2 ⊕ mβ3 ⊕ mα3

mβ5 ⊕ mβ6 ⊕ mα5 mβ1 ⊕ mβ5 ⊕ mα6

mβ1 ⊕ mβ6 ⊕ mα7 mβ3 ⊕ mβ4 ⊕ mα8

mβ3 ⊕ mβ4 ⊕ mα9 mβ2 ⊕ mβ4 ⊕ mα10

mβ2 ⊕ mβ4 ⊕ mα11 mβ1 ⊕ mβ6 ⊕ mα12

mβ1 ⊕ mβ5 ⊕ mα1 ⊕ mα6 mβ2 ⊕ mβ3 ⊕ mα2 ⊕ mα3

mβ5 ⊕ mβ6 ⊕ mα4 ⊕ mα5 mβ1 ⊕ mβ6 ⊕ mα7 ⊕ mα12

mβ3 ⊕ mβ4 ⊕ mα8 ⊕ mα9 mβ2 ⊕ mβ4 ⊕ mα10 ⊕ mα11

mγ1 ⊕ mα3 ⊕ mα5 ⊕ mα6 ⊕
mα7 ⊕ mα8 ⊕ mα11

mγ2 ⊕ mα1 ⊕ mα2 ⊕ mα4 ⊕
mα9 ⊕ mα10 ⊕ mα12

second Betti number b2(G/K) = 1 we give Theorem 3.7. In Sect. 4 we give
the results about structural equigeodesic vectors on generalized flag manifolds
associated to the exceptional Lie groups F4, E6 and E7 with three isotropy
summands.

2. Flag Manifolds

Let G be a compact connected simple Lie group and g be the corresponding
Lie algebra. We denote by gC the complexification of g and Ad : G → Aut(g)
be the adjoint representation of G. A generalized flag manifold is a homoge-
neous space G/K where the isotropy subgroup K is the centralizer C(S) of a
torus S in G. If S = T is a maximal torus then K = C(S) = T , and G/T is
called a full flag manifold.

Let G/K be generalized flag manifold and k be the Lie algebra of K.
We denote by o = eK the origin of the flag manifold (the identity coset
of G/K). Since the Lie group G is simple and compact, the Cartan–Kill-
ing form 〈·, ·〉 is non-degenerated and negative definite. Thus Q(·, ·) = −〈·, ·〉
is an inner product. Let m = k⊥ be the orthogonal complement of k with
respect to Q. Then the decomposition g = m ⊕ k is reductive, that is,
Ad(K)m ⊂ m and the tangent space at the origin To(G/K) is identified
with m.

We denote by j : K → Aut(m) the isotropy representation of K on m. For
a generalized flag manifold it is well known that the isotropy representation is
completely reducible, that is,

m = m1 ⊕ · · · ⊕ ms, (1)
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Table 2. Structural equigeodesic vectors for E6/SU(3) ×
U(1) × SU(3) × SU(2)

mγ1 ⊕ mα5 ⊕ mα6 ⊕ mα7 ⊕ mα11 ⊕
mα12 ⊕ mα13 ⊕ mα16 ⊕ mα17 ⊕ mα18

mα1 ⊕ mβ2 ⊕ mβ4 ⊕ mβ5 ⊕ mβ9

mγ2 ⊕ mα1 ⊕ mα2 ⊕ mα3 ⊕ mα4 ⊕ mα8 ⊕
mα9 ⊕ mα10 ⊕ mα14 ⊕ mα15

mα2 ⊕ mβ4 ⊕ mβ6 ⊕ mβ7 ⊕ mβ8

mβ1 ⊕ mα4 ⊕ mα5 ⊕ mα8 ⊕ mα9 ⊕ mβ11 ⊕
mα12 ⊕ mα15 ⊕ mα16

mα3 ⊕ mβ3 ⊕ mβ5 ⊕ mβ7 ⊕ mβ9

mβ2 ⊕ mα1 ⊕ mα4 ⊕ mα5 ⊕ mα10 ⊕ mβ13 ⊕
mα14 ⊕ mα17 ⊕ mα18

mα4 ⊕ mβ1 ⊕ mβ2 ⊕ mβ8 ⊕ mβ9

mβ3 ⊕ mα3 ⊕ mα7 ⊕ mα8 ⊕ mα10 ⊕ mβ11 ⊕
mα13 ⊕ mα14 ⊕ mα18

mα5 ⊕ mβ1 ⊕ mβ2 ⊕ mβ8 ⊕ mβ9

mβ4 ⊕ mα1 ⊕ mα2 ⊕ mα6 ⊕ mα9 ⊕ mα10 ⊕
mα12 ⊕ mβ13 ⊕ mα17

mα6 ⊕ mβ4 ⊕ mβ6 ⊕ mβ7 ⊕ mβ8

mβ5 ⊕ mα1 ⊕ mα3 ⊕ mα7 ⊕ mα9 ⊕ mα12 ⊕
mα15 ⊕ mα16 ⊕ mα17

mα7 ⊕ mβ3 ⊕ mβ5 ⊕ mβ7 ⊕ mβ9

mβ6 ⊕ mα2 ⊕ mα6 ⊕ mα8 ⊕ mα11 ⊕ mα14 ⊕
mα15 ⊕ mα16 ⊕ mα18

mα8 ⊕ mβ1 ⊕ mβ3 ⊕ mβ6 ⊕ mβ9

mβ7 ⊕ mα2 ⊕ mα3 ⊕ mα6 ⊕ mα7 ⊕ mα10 ⊕
mα13 ⊕ mα15 ⊕ mα16

mα9 ⊕ mβ1 ⊕ mβ4 ⊕ mβ5 ⊕ mβ8

mβ8 ⊕ mα2 ⊕ mα4 ⊕ mα5 ⊕ mα6 ⊕ mα9 ⊕
mα12 ⊕ mα14 ⊕ mα18

mα10 ⊕ mβ2 ⊕ mβ3 ⊕ mβ4 ⊕ mβ7

mβ9 ⊕ mα1 ⊕ mα3 ⊕ mα4 ⊕ mα5 ⊕ mα7 ⊕
mα8 ⊕ mα11 ⊕ mα17

mα11 ⊕ mβ1 ⊕ mβ3 ⊕ mβ6 ⊕ mβ9

mα12 ⊕ mβ1 ⊕ mβ4 ⊕ mβ5 ⊕ mβ8 mα13 ⊕ mβ2 ⊕ mβ3 ⊕ mβ4 ⊕ mβ7

mα14 ⊕ mβ2 ⊕ mβ3 ⊕ mβ6 ⊕ mβ8 mα15 ⊕ mβ1 ⊕ mβ5 ⊕ mβ6 ⊕ mβ7

mα16 ⊕ mβ1 ⊕ mβ5 ⊕ mβ6 ⊕ mβ7 mα17 ⊕ mβ2 ⊕ mβ4 ⊕ mβ5 ⊕ mβ9

mα18 ⊕ mβ2 ⊕ mβ3 ⊕ mβ6 ⊕ mβ8 mα1 ⊕ mα17 ⊕ mβ2 ⊕ mβ4 ⊕
mβ5 ⊕ mβ9

mα2 ⊕ mα6 ⊕ mβ4 ⊕ mβ6 ⊕ mβ7 ⊕ mβ8 mα3 ⊕ mα7 ⊕ mβ3 ⊕ mβ5 ⊕
mβ7 ⊕ mβ9

mα4 ⊕ mα5 ⊕ mβ1 ⊕ mβ2 ⊕ mβ8 ⊕ mβ9 mα15 ⊕ mα16 ⊕ mβ1 ⊕ mβ5 ⊕
mβ6 ⊕ mβ7

mα8 ⊕ mα11 ⊕ mβ1 ⊕ mβ3 ⊕ mβ6 ⊕ mβ9 mα9 ⊕ mα12 ⊕ mβ1 ⊕ mβ4 ⊕
mβ5 ⊕ mβ8

mα10 ⊕ mα13 ⊕ mβ2 ⊕ mβ3 ⊕ mβ4 ⊕ mβ7 mα14 ⊕ mα18 ⊕ mβ2 ⊕ mβ3 ⊕
mβ6 ⊕ mβ8

where each mi is an irreducible inequivalent component of the isotropy
representation.

In this paper we consider equideosic vectors on flag manifolds G/K with
b2(G/K) = 1. Now we give a Lie theoretical description of the structure of flag
manifolds with b2(G/K) = 1.
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Let T be a maximal torus of G, and η be the Lie algebra of T . The
complexification ηC is a Cartan subalgebra of gC. Let R be a root system of
(gC, ηC) and consider the root space decomposition

gC = ηC ⊕
∑

α∈R
gC

α, (2)

where gC
α denote the complex 1-dimensional root space.

Let R+ be a choice of positive roots and Π be corresponding set of sim-
ple roots. We fix once and for all a Weyl basis of gC which amounts to take
Eα ∈ gC

α such that Q(Eα, E−α) = −1, and [Eα, E−α] = −Hα, where Hα ∈ ηC

is determined by the equation Q(H,Hα) = α(H), for all H ∈ ηC. The vectors
Eα satisfy the relation [Eα, Eβ ] = Nα,βEα+β with Nα,β ∈ R, N−α,−β = −Nα,β

and Nα,β = 0 if α + β �∈ R (see [5, Chap. IX]).
Let Aα = Eα − E−α and Bα =

√−1(Eα + E−α). The vectors

Aα, Bα,
√−1Hβ , (α ∈ R+ and β ∈ Π) (3)

form a basis of g (compact real form of the Lie algebra gC).
For α ∈ R+ let

mα = spanR{Aα, Bα}, (4)

be the real root space.
We have the following decomposition

g = η ⊕
∑

α∈R+

mα. (5)

The next lemma gives us information about the Lie algebra structure of g.

Lemma 2.1. The Lie bracket between the elements of (3) of g are given by

[
√−1Hα, Aβ ] = β(Hα)Bβ , [Aα, Aβ ]=Nα,βAα+β +N−α,βAα−β ,

[√−1Hα, Bβ

]
= −β(Hα)Aβ , [Bα, Bβ ] = −Nα,βAα+β − Nα,−βAα−β , (6)

[Aα, Bα] = 2
√−1Hα, [Aα, Bβ ] = Nα,βBα+β + Nα,−βBα−β.

Since ηC is also a Cartan subalgebra of kC (complexification of the Lie
algebra of K), let RK be the root system for (kC, ηC) and let RM = R\RK . In
a similar way, let R+

K be a choice of positive roots and ΠK the corresponding
set of simple roots for kC and define RM = R \ RK and ΠM = Π \ ΠK be the
set of positive and simple complementary roots.

Let l be the rank of kC and μ =
∑l

i=1 niαi be the highest root of R, that
is the unique root such that any root α =

∑l
i=1 ciαi must satisfy ci ≤ ni for

all i. The coefficients ni ∈ Z are called heights of the simple root αi.
We only consider the generalized flag manifolds corresponding to the

Dynkin diagram Γ = Γ(Π)with one simple root painted black, thus a
generalized flag manifolds has s isotropy summands if ΠK = Π − {αi0} and
the simple root αi0 has height s, that is ni0 = s.
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In order to describe the irreducible components mi(i = 1, . . . , s), Let αi0

be a simple root of height s and ΠK = Π − {αi0}. For n = 1, . . . , s let

R+(αi0 , n) =

{
α ∈ R+ : α =

l∑

i=1

cjαj , ci0 = n

}
, (7)

and we define the subspaces mn of g by

mn =
∑

α∈R+(αi0 ,n)

mα. (8)

Then m = m1 ⊕ · · · ⊕ ms and R+
M = R+(αi0 , 1) ∪ · · · ∪ R+(αi0 , s), each

mn (n = 1, · · · , s ) is an irreducible and inequivalent component of the isotropy
representation, see [4].

Example 2.2. (Flag manifold of the exceptional Lie group G2 with three isot-
ropy summands). Let Π = {α1, α2} be the simple roots of G2 and μ = 2α1 +
3α2 be the highest root. The Dynkin diagram for the Lie algebra of G2 is

◦α2 � ◦α1 .

We describe the flag manifold associated G2/U(2) with ΠK = Π − {α2}.
The painted Dynkin graph of G2/U(2) is

•α2 � ◦α1 .

Since the height of the root α2 is 3, we have that m = m1 + m2 + m3

and R+(α2, 1) = {α2, α1 + α2},R+(α2, 2) = {α1 + 2α2} and R+(α2, 3) =
{α1 + 3α2, 2α1 + 3α2}.

3. Equigeodesics

Let g be the invariant inner and B be the Ad-invariant scalar product
on m. Then B is given by B(X,Y ) = Q(ΛX,Y ), where the linear operator
Λ : m → m is symmetric and positive with respect to the Cartan–Killing form
of g. We will denote by Λ such invariant metric.

Let m = m1 + · · · + ms be a decomposition of m into irreducible inequiv-
alent components of the isotropy representation. A consequence of Schur’s
lemma is that Λ|mi

= λiId|mi
for i = 1, · · · , s and therefore any invariant

scalar product has the form

B(X,Y ) = λ1Q(X,Y )|m1 + · · · + λsQ(X,Y )|ms
,

where λ1 > 0, . . . , λs > 0. Therefore the set of invariant metrics can be param-
eterized by

MG = {(λ1, . . . , λs) ∈ R
s : λ1 > 0, . . . , λs > 0}.

Let G/K be a generalized flag manifold. A curve of the form γ(t) =
(exptX) · o is called an equigeodesic on G/K if it is a geodesic with respect
to each invariant metric on G/K. The vector X is called equigeodesic vector.
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The study of equigeodesics in generalized flag manifolds started in [3] with the
description of equigeodesics on SU(n)-flags.

We have the following algebraic characterization of equigeodesic vectors.

Proposition 3.1. [3] Let G/K be a generalized flag manifold and X ∈ m be a
nonzero vector. Then X is an equigeodesic vector if, and only if,

[X,ΛX]m = 0, (9)

for each invariant metric Λ.

We remark that to solve Eq. (9) is equivalent to solve a nonlinear algebraic
system of equations whose variables are the components of the vector X. Ana-
lysing the Lie bracket of the form [Aα, Bβ ], [Aα, Aβ ] and [Bα, Bβ ] described
in Eq. (6) is clear that if the structural constants Nα,β , N−α,β , Nα,−β vanish
(e.g. if α ± β �∈ R) then these bracket also vanish and the system can be
simplified. In some cases (depending just on the mi-parts of X) the nonlinear
system vanishes completely (i.e. the system is identically zero). This motivates
the following definition:

Definition 3.2. An equigeodesic vector is said to be

(a) structural: if the algebraic system associated to Eq. (9) vanishes com-
pletely.

(b) Otherwise we call an equigeodesic vector algebraic, i.e. the coordinates of
the vector X come from a solution of a (not identically zero) nonlinear
algebraic system associated to Eq. (9).

Definition 3.3. An equigeodesic vector X ∈ m is trivial if X ∈ mi for some i;
otherwise is said to be nontrivial.

Remark 3.4. By definition trivial equigeodesic vectors are structural equigeo-
desic vectors.

We now focus on generalized flag manifolds with b2(G/K) = 1. In this
case the tangent space at the origin splits into m = m1 ⊕ · · ·⊕ms and a vector
X ∈ m is written as X = Xm1 + · · · + Xms

with Xmi
∈ mi(i = 1, · · · , s).

Lemma 3.5. Let G/K be a generalized flag manifold with decomposition (1).
A vector

X = Xm1 + · · · + Xms
∈ m

is equigeodesic if, and only if

[Xmi
,Xmj

] = 0, (10)

where 1 ≤ i, j ≤ s.
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Proof. Let π : g → m be the projection onto m, then [X,ΛX]m = π([X, ΛX]).
If X = Xm1 + · · · + Xms

∈ m then we have

[X, ΛX]m = π([X,ΛX])

= π([Xm1 + · · · + Xms
,Λ(Xm1 + · · · + Xms

)])

= π([Xm1 + Xm2 + Xm3 , λ1Xm1 + · · · + λsXms
])

= (λs − λ1)π[Xm1 ,Xms
] + (λs−1 − λ1)π[Xm1 ,Xms−1 ] + · · ·

+ (λ2 − λ1)π[Xm1 ,Xm2 ]

+ (λs − λ2)π[Xm2 ,Xms
] + (λs−1 − λ2)π[Xm2 ,Xms−1 ] + · · ·

+ (λ3 − λ2)π[Xm2 ,Xm3 ] + · · · + (λs − λs−2)π[Xms−2 ,Xms
]

+ (λs−1 − λs−2)π[Xms−2 ,Xms−1 ] + (λs − λs−1)π[Xms−1 ,Xms
]

= (λs − λ1)[Xm1 ,Xms
] + (λs−1 − λ1)[Xm1 ,Xms−1 ] + · · ·

+ (λ2 − λ1)[Xm1 ,Xm2 ] + (λs − λ2)[Xm2 ,Xms
]

+ (λs−1 − λ2)[Xm2 ,Xms−1 ] + · · · + (λ3 − λ2)[Xm2 ,Xm3 ]

+ · · · + (λs − λs−2)[Xms−2 ,Xms
] + (λs−1 − λs−2)[Xms−2 ,Xms−1 ]

+ (λs − λs−1)[Xms−1 ,Xms
].

�
According to [6] let {xα, α ∈ R;hi, 1 ≤ i ≤ k} be a Chevalley basis of

g, then we have [hi, hj ] = 0, 1 ≤ i, j ≤ k; [h, xα] =< α,αi > xα, 1 ≤ i ≤
k, α ∈ R; [xα, x−α] = hα, where hα is a Z-linear combination of h1, h2, · · · hk;
if α, β are independent roots, β − rα, · · · , β + qα the α-string through β, then
[xα, xβ ] = 0, if q = 0, while [xα, xβ ] = ±(r + 1)xα+β if α + β ∈ R.

Thus we get when i < j if i + j ≤ s then [Xmi
,Xmj

] ∈ mi+j ⊕ mj−i, if
i+j > s then [Xmi

,Xmj
] ∈ mj−i; when i = j if 2i ≤ s then [Xmi

,Xmi
] ∈ k⊕m2i,

if 2i > s then [Xmi
,Xmi

] ∈ k.
Since X is equigeodesic if, and only if [X, ΛX] = 0 for each invariant

metric Λ = {λ1, . . . , λs}(λ1 > 0, · · · , λs > 0) and it occurs if, and only if
[Xmi

,Xmj
] = 0, where 1 ≤ i, j ≤ s.

Remark 3.6. When s = 2 this gives Proposition 3.5 in [4] of L. Grama and
C. Negreiros.
The next proposition provides a family of structural equigeodesic vectors on
generalized flag manifolds G/K with s isotropy summands, which depends
only on the Lie algebra structure of g.

Theorem 3.7. Let G/K be a generalized flag manifold with m = m1 ⊕
· · · ⊕ ms and ΠK = π − {αi0}. Let the positive roots R+(αi0 , 1) =
{β1

1 , . . . , β1
k1

},R+(αi0 , 2) = {β2
1 , . . . , β2

k2
}, . . . ,R+(αi0 , s) = {βs

1, . . . , β
s
ks

}. If

βi1
j1

± βi2
j2

± · · · ± βil
jl

�∈ R,
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where (1 ≤ i1 < i2 < · · · < il ≤ s, 2 ≤ l ≤ s; j1 = 1, . . . , r1(r1 ≤ ki1); j2 =
1, . . . , r2(r2 ≤ ki2); · · · ; jl = 1, . . . , rl)(rl ≤ kil

). Then all vectors in the sub-
spacem

β
i1
1

⊕· · ·⊕m
β

i1
r1

⊕m
β

i2
1

⊕· · ·⊕m
β

i2
r2

⊕· · ·⊕m
β

il
1

⊕· · ·⊕m
β

il
rl

are structure
equigeodesic vectors. Here mβi

j
is defined by (4).

Proof. Let X = Xmi1
+Xmi2

+· · ·+Xmil
, where Xmi1

= ai1
1 A

β
i1
1

+bi1
1 B

β
i1
1

+· · ·+
ai1

r1
A

β
i1
r1

+ bi1
r1

B
β

i1
r1

represent its mi1 component, Xmi2
= ai2

1 A
β

i2
1

+ bi2
1 B

β
i2
1

+

· · · + ai2
r2

A
β

i2
r2

+ bi2
r2

B
β

i2
r2

represent its mi2 component, . . . , Xmil
= ail

1 A
β

il
1

+

bil
1 B

β
il
1

+ · · · + ail
rl

A
β

il
rl

+ bil
rl

B
β

il
rl

represents its mil
component. Choosing a

Weyl basis Eα ∈ gC
α (α ∈ R) of gC with

[Eα, Eβ ] =

{
0, if α + β �∈ R,

Nα,βEα+β , if α + β ∈ R,

where the constants Nα,β satisfy Nα,β = −N−α,−β and Nβ,α = −Nα,β . Since
βi1

j1
± βi2

j2
± · · · ± βil

jl
�∈ R(j1 = 1, . . . , r1; j2 = 1, . . . , r2; · · · ; jl = 1, . . . , rl), we

have N
β

i1
j1

,β
i2
j2

= N−β
i1
j1

,β
i2
j2

= N
β

i1
j1

,−β
i2
j2

= · · · = N
β

il−1
jl−1

,β
il
jl

= N−β
il−1
jl−1

,β
il
jl

=

N
β

il−1
jl−1

,−β
il
jl

= 0. Since X is a equigeodesics vector if, and only if

[Xmi
,Xmj

] = 0,

for 1 ≤ i, j ≤ s. By direct computation, using the relations in (6), we know that
the system of equations above vanishes, therefore the vector X is a structural
equigeodesics vector. �

Remark 3.8. When s = 2 this is Proposition 3.8 in [4] of Grama and Negreiros.

Example 3.9. We describe the flag manifold G2/U(2) associated with ΠK =
Π − {α2}. The painted Dynkin diagram is

•α2 � ◦α1 .

The highest root is μ = 2α1 + 3α2, consider the positive roots R+
M , let

β1 = α2, β2 = α1 + α2; γ = α1 + 2α2; ξ1 = α1 + 3α2, ξ2 = 2α1 + 3α2. We have
R+(α2, 1) = {β1, β2},R+(α2, 2) = {γ} and R+(α2, 3) = {ξ1, ξ2}. Since β2 ±ξ1

are not roots, the vectors in mβ2 ⊕ mξ1 are structural equigeodesic vectors.

4. Structural Equigeodesic Vectors on Flag Manifolds

In this section we give a family of structural equigeodesic vectors in some
generalized flag manifolds of exceptional Lie groups. We classify the posi-
tive roots that satisfy the hypothesis of Theorem 3.7, for the flag manifolds
F4/SU(2) × U(1) × SU(3), E6/SU(3) × U(1) × SU(3) × SU(2) and partial
classification of such root spaces in the flag E7/SU(5) × U(1) × SU(3).
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4.1. Structural Equigeodesic Vectors on F4/SU(2) × U(1) × SU(3)
Let Π = {α1, α2, α3, α4} be a system of simple roots for F4 such that the high-
est root is given by μ = 2α1 +3α2 +4α3 +2α4. The flag manifold F4/SU(2)×
U(1)×SU(3) is determined by ΠK = Π−{α2}. In order to simplify the nota-
tion we denote a positive root by their coefficients, that is, if β = x1α1 +
x2α2 + x3α3 + x4α4 is a positive root, we write β = (x1, x2, x3, x4).

Consider the positive roots
α1 = (0, 1, 0, 0), α2 = (0, 1, 1, 0), α3 = (1, 1, 1, 0), α4 = (0, 1, 2, 2),
α5 = (1, 1, 2, 2), α6 = (1, 1, 0, 0), α7 = (1, 1, 2, 0), α8 = (1, 1, 1, 1),
α9 = (0, 1, 1, 1), α10 = (0, 1, 2, 1), α11 = (1, 1, 2, 1), α12 = (0, 1, 2, 0),
β1 = (1, 2, 3, 2), β2 = (1, 2, 2, 2), β3 = (1, 2, 4, 2), β4 = (1, 2, 2, 0),
β5 = (1, 2, 3, 1), β6 = (1, 2, 2, 1), γ1 = (1, 3, 4, 2), γ2 = (2, 3, 4, 2).

We have R+(α2, 1) = {α1, · · · , α12},R+(α2, 2) = {β1, · · · , β6} and
R+(α2, 3) = {γ1, γ2} and the irreducible components of the decomposition
m = m1 + m2 + m3 are given by

m1 =
∑

α∈R+(α2,1)

mα, m2 =
∑

α∈R+(α2,2)

mα, m3 =
∑

α∈R+(α2,3)

mα.

Proposition 4.1. The root spaces whose roots satisfy Theorem 3.7 are listed
in Table 1 for the generalized flag manifold F4/SU(2) × U(1) × SU(3). In
particular all vectors in these subspaces are structural equigeodesic vectors

4.2. Structural Equigeodesic Vectors on E6/SU(3)×U(1)×SU(3)×SU(2)
Let Π = {α1, α2, α3, α4, α5, α6} be a system of simple roots for E6 such that
the highest root is given by μ = α1 + 2α2 + 2α3 + 3α4 + α5 + 2α6. The flag
manifold E6/SU(3)×U(1)×SU(3)×SU(2) is determined by ΠK = Π−{α4}.
As before, in order to simplify the notation we denote a positive root just by
their coefficients.

Consider the positive roots

α1 =(0, 0, 1, 0, 0, 0), α2 =(1, 1, 1, 0, 0, 0), α3 =(1, 1, 1, 1, 0, 0), α4 =(1, 1, 1, 1, 1, 0),
α5 =(1, 1, 1, 1, 1, 1), α6 =(1, 1, 1, 0, 0, 1), α7 =(1, 1, 1, 1, 0, 1), α8 =(0, 1, 1, 0, 0, 0),
α9 =(0, 1, 1, 1, 0, 0), α10 =(0, 1, 1, 1, 1, 0), α11 =(0, 1, 1, 0, 0, 1), α12 =(0, 1, 1, 1, 0, 1)

α13 =(0, 1, 1, 1, 1, 1), α14 =(0, 0, 1, 1, 0, 0), α15 =(0, 0, 1, 1, 1, 0), α16 =(0, 0, 1, 1, 1, 1),
α17 =(0, 0, 1, 0, 0, 1), α18 =(0, 0, 1, 1, 0, 1); β1 =(1, 1, 2, 1, 0, 1), β2 =(1, 2, 2, 1, 0, 1),
β3 =(1, 1, 2, 1, 1, 1), β4 =(1, 1, 2, 2, 1, 1), β5 =(1, 2, 2, 1, 1, 1), β6 =(1, 2, 2, 2, 1, 1),
β7 =(0, 1, 2, 1, 0, 1), β8 =(0, 1, 2, 1, 1, 1), β9 =(0, 1, 2, 2, 1, 1); γ1 =(1, 2, 3, 2, 1, 1),
γ2 =(1, 2, 3, 2, 1, 2).

We have R+(α4, 1) = {α1, . . . , α18},R+(α4, 2) = {β1, . . . , β9}, and
R+(α4, 3) = {γ1, γ2}, and the irreducible components of the decomposition
m = m1 + m2 + m3 are given by

m1 =
∑

α∈R+(α4,1)

mα, m2 =
∑

α∈R+(α4,2)

mα, m3 =
∑

α∈R+(α4,3)

mα.
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Proposition 4.2. Consider the generalized flag manifold E6/SU(3) × U(1) ×
SU(3) × SU(2). The root spaces whose roots satisfy Theorem 3.7 are listed in
Table 2. In particular all vectors in these subspaces are structural equigeodesic
vectors.

4.3. Structural Equigeodesic Vectors on E7/SU(5) × U(1) × SU(3)
Let Π = {α1, α2, α3, α4, α5, α6, α7} be a system of simple roots for E7 such
that the highest root is given by μ = 2α1 + 2α2 + 3α3 + 4α4 + 3α5 + 2α6 + α7.
The flag manifold E7/SU(5)×U(1)×SU(3) is determined by ΠK = Π−{α5}.
As before, in order to simplify the notation, we denote positive roots just by
their coefficients.

α1 = (0, 0, 0, 0, 1, 0, 0), α2 = (0, 0, 1, 1, 1, 0, 0), α3 = (0, 1, 1, 1, 1, 0, 0),
α4 = (0, 1, 1, 2, 1, 0, 0), α5 = (1, 0, 1, 1, 1, 0, 0), α6 = (1, 1, 1, 1, 1, 0, 0),
α7 = (1, 1, 1, 2, 1, 0, 0), α8 = (1, 1, 2, 2, 1, 0, 0), α9 = (0, 0, 0, 1, 1, 0, 0),

α10 = (0, 1, 0, 1, 1, 0, 0), α11 = (0, 0, 0, 0, 1, 1, 0), α12 = (0, 0, 0, 1, 1, 1, 0),
α13 = (0, 0, 0, 0, 1, 1, 1), α14 = (0, 1, 0, 1, 1, 1, 0), α15 = (0, 0, 1, 1, 1, 1, 0),
α16 = (0, 0, 0, 1, 1, 1, 1), α17 = (1, 0, 1, 1, 1, 1, 0), α18 = (0, 1, 1, 1, 1, 1, 0),
α19 = (0, 1, 0, 1, 1, 1, 1), α20 = (0, 0, 1, 1, 1, 1, 1), α21 = (1, 1, 1, 1, 1, 1, 0),
α22 = (1, 0, 1, 1, 1, 1, 1), α23 = (0, 1, 1, 2, 1, 1, 0), α24 = (0, 1, 1, 1, 1, 1, 1),
α25 = (1, 1, 1, 2, 1, 1, 0), α26 = (1, 1, 1, 1, 1, 1, 1), α27 = (0, 1, 1, 2, 1, 1, 1),
α28 = (1, 1, 2, 2, 1, 1, 0), α29 = (1, 1, 1, 2, 1, 1, 1), α30 = (1, 1, 2, 2, 1, 1, 1);
β1 = (1, 1, 1, 2, 2, 1, 0), β2 = (0, 1, 1, 2, 2, 1, 1), β3 = (1, 1, 2, 2, 2, 1, 0),
β4 = (1, 1, 1, 2, 2, 1, 1), β5 = (1, 1, 2, 3, 2, 1, 0), β6 = (1, 1, 2, 2, 2, 1, 1),
β7 = (1, 2, 2, 3, 2, 1, 0), β8 = (1, 1, 2, 3, 2, 1, 1), β9 = (1, 2, 2, 3, 2, 1, 1),

β10 = (1, 2, 2, 3, 2, 2, 1), β11 = (1, 1, 2, 3, 2, 2, 1), β12 = (1, 1, 2, 2, 2, 2, 1),
β13 = (1, 1, 1, 2, 2, 2, 1), β14 = (0, 1, 1, 2, 2, 2, 1), β15 = (0, 1, 1, 2, 2, 1, 0);
γ1 = (2, 2, 3, 4, 3, 2, 1), γ2 = (1, 2, 3, 4, 3, 2, 1), γ3 = (1, 2, 2, 4, 3, 2, 1),
γ4 = (1, 2, 2, 3, 3, 2, 1), γ5 = (1, 1, 2, 3, 3, 2, 1).

We have R+(α5, 1) = {α1, . . . , α30},R+(α5, 2) = {β1, . . . , β15} and
R+(α5, 3) = {γ1, . . . , γ5} and the irreducible components of the decomposi-
tion m = m1 + m2 + m3 are given by

m1 =
∑

α∈R+(α5,1)

mα, m2 =
∑

α∈R+(α5,2)

mα, m3 =
∑

α∈R+(α5,3)

mα.

Proposition 4.3. A partial classification of the root spaces whose roots satisfy
Theorem 3.7 are listed in Table 3 for the generalized flag manifold E7/SU(5)×
U(1) × SU(2). In particular, all vectors in these subspaces are structural equi-
geodesic vectors.
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