Erratum to: Differentiated Generalized Voronovskaja's Theorem in Compact Disks

Sorin G. Gal

Erratum to: Results Math (2012) 61:347-353
 DOI 10.1007/s00025-011-0121-1

The original article has been published with an error in the proof of Theorem 2.2 , case (ii) (when $k-1 \geq 2 p$). Additional assumptions are needed for the inverse estimate in Theorem 2.2, case $k-1 \geq 2 p$ to hold. The correct version of Theorem 2.2 for the case $k-1 \geq 2 p$ is given below.

1. Introduction

For $f: \mathbb{D}_{R} \rightarrow \mathbb{C}$ analytic in \mathbb{D}_{R}, say $f(z)=\sum_{k=0}^{\infty} c_{k} z^{k}$ for all $z \in \mathbb{D}_{R}$, let us consider the sequence of complex Bernstein polynomials attached to f by $B_{n}(f)(z)=\sum_{k=0}^{n}\binom{n}{k} z^{k}(1-z)^{n-k} f(k / n), n \in \mathbb{N}, z \in \mathbb{D}_{R}$.

Also, denote $T_{n, j}(z):=\sum_{k=0}^{n}(k-n z)^{j}\binom{n}{k} z^{k}(1-z)^{n-k}$ and $E_{n, p, k}(f)(z):=$ $\left[B_{n}(f)(z)-f(z)-\sum_{j=1}^{2 p} \frac{f^{(j)}(z)}{j!} n^{-j} T_{n, j}(z)\right]^{(k)}$.

Theorem 2.2 in [1] states that for all $p, k \in \mathbb{N}$ and under the hypothesis that f is not a polynomial of degree $\leq \max \{k-1,2 p\}$, for any $1 \leq r<$ R we have the exact estimate $\left\|E_{n, p, k}(f)\right\|_{r} \sim \frac{1}{n^{p+1}}, n \in \mathbb{N}$, where $\|f\|_{r}=$ $\max \{|f(z)| ;|z| \leq r\}$.

While the above exact estimate is correct for $k<2 p+1$, unfortunately for $k \geq 2 p+1$ is valid the upper estimate only (by Theorem 2.1 in [1]), as the following counterexample shows. For $p=1$ and $k=3$ (that is for $k=2 p+1$), choose

[^0]$f(z)=z^{3}$. Denoting $e_{m}(z)=z^{m}$, by $B_{n}\left(e_{3}\right)(z)=z^{3}+\frac{3 z^{2}(1-z)}{n}+\frac{z(1-z)(1-2 z)}{n^{2}}$, a simple calculation implies $\left\|E_{n, 1,3}\left(e_{3}\right)\right\|_{r} \sim \frac{1}{n}$, while Theorem 2.2 in [1] would imply $\left\|E_{n, 1,3}\left(e_{3}\right)\right\|_{r} \sim \frac{1}{n^{2}}$.

2. Main Result

Analysing the case $k \geq 2 p+1$ (Case (ii)) in the proof of Theorem 2.2 in [1], it can be recovered under some simple additional hypothesis, as follows.

Theorem 2.1. Let $R>1, p, k \in \mathbb{N}$ and $f: \mathbb{D}_{R} \rightarrow \mathbb{C}$ be an analytic function in \mathbb{D}_{R}, say $f(z)=\sum_{k=0}^{\infty} c_{k} z^{k}$, for all $z \in \mathbb{D}_{R}$.
(i) Let $k=2 p+1$. If f is not a polynomial of degree $\leq k-1$ and $\left\{f^{(2 p+1)}(0)=\right.$ 0 or $\left.f^{(2 p+1)}(1)=1\right\}$, then for any $1 \leq r<R$ we have

$$
\begin{equation*}
\left\|\left[B_{n}(f)-f-\sum_{j=1}^{2 p} \frac{f^{(j)}}{j!} n^{-j} T_{n, j}\right]^{(k)}\right\|_{r} \sim \frac{1}{n^{p+1}}, \quad n \in \mathbb{N}, \tag{2.1}
\end{equation*}
$$

where the constants in the equivalence depend only on f, r, p, k but are independent of n.
(ii) Let $k=2 p+2$ or $k=2 p+3$. If f is not a polynomial of degree $\leq k-1$ and $\left\{f^{(2 p+1)}(0)=f^{(2 p+1)}(1)=f^{(2 p+2)}(1 / 2)=0\right\}$, then again (2.1) holds.
(iii) More general, let $k=2 p+s$ with $s \geq 4$. If f is not a polynomial of degree $\leq k-1$ and
$f^{(2 p+1)}(0)=f^{(2 p+2)}(0)=\cdots=f^{(2 p+s-1)}(0)=f^{(2 p+2)}(1 / 2)=f^{(2 p+1)}(1)=0$,
or
$f^{(2 p+1)}(1)=f^{(2 p+2)}(1)=\cdots=f^{(2 p+s-1)}(1)=f^{(2 p+2)}(1 / 2)=f^{(2 p+1)}(0)=0$,
then again (2.1) holds.
Proof. By Theorem 2.1 in [1], in the above points (i), (ii) and (iii) what remain to be proved is the lower estimate in (2.1). Then, keeping the notations for U in the proof of Theorem 2.2 in [1], namely

$$
U(z):=\left[\frac{a_{p}}{(2 p+1)!}(1-2 z)[z(1-z)]^{p} f^{(2 p+1)}(z)+\frac{[z(1-z)]^{p+1}}{2^{p+1}(p+1)!} f^{(2 p+2)}(z)\right]^{(k)}
$$

where $a_{p}>0$, what remains to prove is that $\|U\|_{r}>0$ (see the reasoning in the proof of Theorem 2.2 in [1]).

For that purpose, supposing the contrary we get that f necessarily satisfies the differential equation $U(z)=0$ for all $|z| \leq r$, which by the substitution $f^{(2 p+1)}(z):=y(z)$, implies that $y(z)$ necessarily is analytic in \mathbb{D}_{R} (since f is supposed analytic there) and is a solution of the differential equation

$$
\frac{a_{p}}{(2 p+1)!}(1-2 z)[z(1-z)]^{p} y(z)+\frac{[z(1-z)]^{p+1}}{2^{p+1}(p+1)!} y^{\prime}(z)=P_{k-1}(z), \quad|z| \leq r
$$

where $P_{k-1}(z)$ is a polynomial of degree $\leq k-1$.
But $k \geq 2 p+1$ necessarily implies that $P_{k-1}(z)=[z(1-z)]^{p} Q_{l}(z)$, where $l=k-1-2 p \geq 0$ and $Q_{l}(z)$ is a polynomial of degree $\leq l$. Dividing by $[z(1-z)]^{p}$, we obtain that $y(z)$ is an analytic function in \mathbb{D}_{R}, satisfying the differential equation (here recall that $a_{p}>0$)

$$
\begin{equation*}
\frac{a_{p}}{(2 p+1)!}(1-2 z) y(z)+\frac{z(1-z)}{2^{p+1}(p+1)!} y^{\prime}(z)=Q_{l}(z), \quad|z| \leq r, z \neq 0, z \neq 1 \tag{2.2}
\end{equation*}
$$

(i) Let $k=2 p+1$, that is above we have $l=0$ and $Q_{l}(z)$ is a constant. By hypothesis, in (2.2) we have $y(0)=0$ or $y(1)=0$, which implies $Q_{l}(0)=0$ or $Q_{l}(1)=0$, that is (2.2) necessarily becomes

$$
\frac{a_{p}}{(2 p+1)!}(1-2 z) y(z)+\frac{z(1-z)}{2^{p+1}(p+1)!} y^{\prime}(z)=0, \quad|z| \leq r .
$$

Writing $y(z)$ in the form $y(z)=\sum_{k=0}^{\infty} b_{k} z^{k}$ and replacing in the above differential equation, by comparison of coefficients we easily obtain that $b_{k}=0$, for all $k=0,1, \ldots$, that is $y(z)=0$ for all $\overline{\mathbb{D}}_{r}$. But from the identity theorem of analytic functions, it necessarily follows that $y(z)=0$ for all $|z|<R$.

Therefore, $f(z)$ necessarily is a polynomial of degree $\leq 2 p=k-1$, a contradiction with the hypothesis.
(ii) Let $k=2 p+2$ or $k=2 p+3$, that is $l=1$ or $l=2$ in the differential equation (2.2). By the hypothesis on f it follows $Q_{l}(0)=Q_{l}(1)=$ $Q_{l}(1 / 2)=0$, where $Q_{l}(z)$ is a polynomial of degree ≤ 2, which necessarily implies that Q_{l} is identically equal to zero. In continuation, reasoning exactly as in the proof of the above point (i), it necessarily follows that $y(z)=0$ for all $|z|<R$, that is $f(z)$ necessarily is a polynomial of degree $\leq 2 p<k-1$, contradicting the hypothesis.
(iii) Let $k=2 p+s$ with $s \geq 4$. It follows that in the differential equation (2.2), we have $l=s-1$. Differentiating successively (2.2) until the order $s-3$ (including $s-3$), it is easy to check that we get equalities of the form

$$
\begin{aligned}
c_{1}^{(1)} y(z)+c_{2}^{(1)}(1-2 z) y^{\prime}(z)+c_{3}^{(1)} z(1-z) y^{\prime \prime}(z) & =Q_{l}^{\prime}(z), \\
c_{1}^{(2)} y^{\prime}(z)+c_{2}^{(2)}(1-2 z) y^{\prime \prime}(z)+c_{3}^{(2)} z(1-z) y^{\prime \prime \prime}(z) & =Q_{l}^{\prime \prime}(z),
\end{aligned}
$$

and so on, finally we get

$$
c_{1}^{(s-3)} y^{(s-4)}(z)+c_{2}^{(s-3)}(1-2 z) y^{(s-3)}(z)+c_{3}^{(s-3)} z(1-z) y^{(s-2)}(z)=Q_{l}^{(s-3)}(z)
$$

where $c_{k}^{(j)}$ are real constants.

Taking now into account the hypothesis on f and that $y(z)=f^{(2 p+1)}(z)$, we immediately obtain

$$
Q_{l}(0)=Q_{l}^{\prime}(0)=\cdots=Q_{l}^{(s-3)}(0)=0, \quad Q_{l}(1 / 2)=0, Q_{l}(1)=0
$$

or

$$
Q_{l}(1)=Q_{l}^{\prime}(1)=\cdots=Q_{l}^{(s-3)}(1)=0, \quad Q_{l}(1 / 2)=0, Q_{l}(0)=0
$$

respectively, which immediately implies that Q_{l} is identically equal to zero. In continuation, reasoning exactly as in the proof of the above point (i), it necessarily follows that $y(z)=0$ for all $|z|<R$, that is $f(z)$ necessarily is a polynomial of degree $\leq 2 p<k-1$, contradicting the hypothesis.

So in all the three cases (i), (ii) and (iii) we necessarily have $\|U\|_{r}>0$.
For $n \in\left\{1, \ldots, n_{0}-1\right\}$, in all the cases (i), (ii) and (iii) we get $\left\|E_{n, p, k}(f)\right\|_{r} \geq$ $\frac{M_{r, n}(f)}{n^{p+1}}$ with $M_{r, n}(f)=n^{p+1} \cdot\left\|E_{n, p, k}(f)\right\|_{r}>0$, which implies $\left\|E_{n, p, k}(f)\right\|_{r} \geq$ $\frac{C_{p, r}(f)}{n^{p+1}}$, for all $n \in \mathbb{N}$, where $C_{p, r}(f)=\min \left\{M_{r, 1}(f), \ldots, M_{r, n_{0}-1}(f), \frac{1}{2}\|U\|_{r}\right\}$.

Remark 2.2. Simple functions f satisfying the hypothesis of Theorem 2.1 are of the form $f(z)=z^{2 p+s}(1-z)(z-1 / 2)^{2} g(z)$, or $f(z)=(1-z)^{2 p+s} z(z-1 / 2)^{2} g(z)$, where $s \geq 4$ and g is an arbitrary analytic function in \mathbb{D}_{R}. We see that $f(z)=$ z^{3} does not satisfy any hypothesis in Theorem 2.1.

Reference

[1] Gal, S.G.: Differentiated generalized Voronovskaja's theorem in compact disks. Results Math. 61, 347-353 (2012)

Sorin G. Gal
Department of Mathematics and Computer Science
University of Oradea
410087 Oradea, Romania
e-mail: galso@uoradea.ro

[^0]: The online version of the original article can be found under doi:10.1007/s00025-011-0121-1.

