
Results. Math. 64 (2013), 1–12
c© 2012 The Author(s).
This article is published with open access at Springerlink.com
1422-6383/13/010001-12
published online August 9, 2012
DOI 10.1007/s00025-012-0275-5 Results in Mathematics

On Selections of Set-Valued Inclusions
in a Single Variable with Applications
to Several Variables

Magdalena Piszczek

Abstract. We present some applications of the result corresponding to the
existence of a unique selection of a set-valued function satisfying inclu-
sions in a single variable to the inclusions in several variables, especially
the general linear inclusions or quadratic inclusions.

Mathematics Subject Classification (2000). 39B05, 39B82, 54C60, 54C65.

Keywords. Set-valued map, selection, inclusion.

1. Introduction

The stability theory of functional equations has developed in connection with
a problem set by S.M. Ulam during his talk at a conference at the Wisconsin
University in 1940. The first answer was given in 1941 by Hyers [5] who proved
the following theorem:

Let X be a linear normed space, Y a Banach space and ε > 0. Then for
every function f : X → Y satisfying the inequality

‖f(x + y) − f(x) − f(y)‖ ≤ ε, x, y ∈ X (1)

there exists a unique additive function g : X → Y such that

‖f(x) − g(x)‖ ≤ ε, x ∈ X. (2)

From now on the subject has been intensively investigated by many
authors (see for example: [1,3,6,7,10,11,16]).
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Smajdor [18] and Gajda and Ger [4] observed that if f satisfies (1), then
the set-valued function F : X → n(Y ) (n(Y ) denotes the family of all non-
empty subsets of Y ) given by

F (x) = f(x) + B(0, ε), x ∈ X,

where B(0, ε) is the closed ball of radius ε centered at 0, is subadditive (i.e.,
F (x + y) ⊂ F (x) + F (y), x, y ∈ X) and the function g from the relation (2)
is an additive selection of F (i.e., g(x + y) = g(x) + g(y) and g(x) ∈ F (x) for
x, y ∈ X).

Now one may ask under what conditions a subadditive set-valued func-
tion admits an additive selection. We recall the result of Gajda and Ger [4]
(δ(F (x)) denotes the diameter of the set F (x)).

Theorem 1. Let (S,+) be a commutative semigroup with zero, X a real Banach
space and F : S → 2X a set-valued map with convex and closed values such
that

F (x + y) ⊂ F (x) + F (y), x, y ∈ S (3)

and sup{δ(F (x)) : x ∈ S} < ∞. Then F admits a unique additive selection.

Later the above result was extended by Nikodem and Popa to the set-
valued functions satisfying the following general linear inclusions:

F (ax + by + c) ⊂ pF (x) + qF (y) + C,

pF (x) + qF (y) ⊂ F (ax + by + c) + C,

where a, b, p, q ∈ R,X is a real vector space, Y is a real Banach space, F : X →
n(Y ), c ∈ X,C ∈ 2Y (see [9,13–15]).

The aim of this paper is to give some modification of Theorem 1 in [12]
and its applications. We also show that our theorem generalizes the above
results.

2. Main Results

Let (Y, d) be a metric space. We will denote by n(Y ) the family of all non-
empty subsets of Y . We understand the convergence of sets with respect to the
Hausdorff metric derived from the metric d. The number δ(A) = sup{d(x, y) :
x, y ∈ A} is said to be the diameter of A ⊂ Y . For F : K → n(Y ) we denote
by cl F the multifunction defined as (clF )(x) = cl F (x), x ∈ K. A function
f : K → Y such that f(x) ∈ F (x) for all x ∈ K is called a selection of the
multifunction F . We write a0(x) = x for x ∈ K and an+1 = an ◦ a for all
n ∈ N0.

The subsequent theorem is a simple modification of Theorem 1 in [12].
However, we prove it for the convenience of the readers.
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Theorem 2. Assume that K is a nonempty set, (Y, d) is a metric space. Let
F : K → n(Y ), Ψ : Y → Y, a : K → K,λ ∈ (0,+∞),

d(Ψ(x), Ψ(y)) ≤ λd(x, y) for x, y ∈ Y (4)

and

lim
n→∞ λnδ(F (an(x))) = 0 for x ∈ K.

(1) If Y is complete and

Ψ(F (a(x))) ⊂ F (x), x ∈ K, (5)

then, for each x ∈ K, the limit limn→∞ cl Ψn◦F ◦an(x) = f(x) exists and
f is a unique selection of the multifunction cl F such that Ψ ◦ f ◦ a = f .

(2) If

F (x) ⊂ Ψ(F (a(x))), x ∈ K, (6)

then F is a single-valued function and Ψ ◦ F ◦ a = F .

Proof. (1) Let us fix x ∈ K. Replacing x by an(x) in (5) we get

Ψ(F (an+1(x))) ⊂ F (an(x))

for all n ∈ N0. Hence

Ψn+1(F (an+1(x))) ⊂ Ψn(F (an(x))) for n ∈ N0.

Thus (cl Ψn(F (an(x))))n∈N0 is a decreasing sequence of closed sets in a com-
plete metric space. Moreover, in virtue of (4),

δ(cl Ψn(F (an(x)))) ≤ λnδ(F (an(x))),

so limn→∞ δ(cl Ψn(F (an(x)))) = 0. Therefore

lim
n→∞ cl Ψn(F (an(x))) =

⋂

n∈N0

cl Ψn(F (an(x))) =: f(x)

is a singleton. Of course, f(x) ∈ cl F (x) and as Ψ is continuous we have

Ψ(f(a(x))) = Ψ( lim
n→∞ cl Ψn(F (an(a(x)))) ⊂ lim

n→∞ cl Ψn+1(F (an+1(x)))

= f(x),

thus Ψ ◦ f ◦ a = f .
It remains to show the uniqueness of f . Suppose that f, g are selections of

cl F and Ψ ◦f ◦a = f, Ψ ◦g◦a = g. By induction we obtain that Ψn ◦f ◦an = f
and Ψn ◦ g ◦ an = g for n ∈ N0. Hence, for x ∈ K,n ∈ N0,

d(f(x), g(x)) = d
(
Ψn ◦ f ◦ an(x), Ψn ◦ g ◦ an(x)

)

≤ λnd(f(an(x)), g(an(x))) ≤ λnδ(F (an(x))).

As limn→∞ λnδ(F (an(x))) = 0, we have f = g.
(2) By (6) we obtain

F (x) ⊂ Ψn(F (an(x))) ⊂ Ψn+1(F (an+1(x))), n ∈ N, x ∈ K.



4 M. Piszczek Results. Math.

It follows that (Ψn(F (an(x))))n∈N0 is an increasing sequence of sets in a metric
space satisfying

δ(Ψn(F (an(x)))) ≤ λnδ(F (an(x))).

Hence δ(Ψn(F (an(x)))) converges to 0 as n → ∞. Consequently, Ψn◦F ◦an(x)
is single-valued for all n ∈ N0, x ∈ K and Ψ ◦ F ◦ a = F . �

Obviously, if Ψ is a contraction and sup{δ(F (x)) : x ∈ K} < ∞, then the
limit limn→∞ λnδ(F (an(x))) = 0 and the assertions of Theorem 2 are satisfied.

From now on we assume that Y is a real normed space. By ccl(Y ) we
denote the family of all nonempty, convex and closed subsets of Y . For A,B ∈
n(Y ) and λ ∈ R we define

A + B = {a + b : a ∈ A, b ∈ B} and λA = {λa : a ∈ A}.

It is known (see [8]) that

λ(A + B) = λA + λB and (λ + μ)A ⊂ λA + μA

for A,B ∈ n(Y ) and λ, μ ∈ R. If additionally A is convex and λμ ≥ 0, then

(λ + μ)A = λA + μA.

Now we give some applications of Theorem 2 to the problem of the sta-
bility of set-valued functional equations in several variables.

Notice that Theorem 1 follows from Theorem 2. Indeed, setting y = x
in (3) we get

F (2x) ⊂ F (x) + F (x), x ∈ K.

As the set F (x) is convex we have

F (2x) ⊂ 2F (x), x ∈ K

and
1
2
F (2x) ⊂ F (x), x ∈ K.

By Theorem 2, with Ψ(x) = 1
2x and a(x) = 2x, the limit limn→∞ Ψn(F (an(x)))

= limn→∞ 1
2n F (2nx) = f(x) exists and f is the selection of F . Moreover,

1
2n

F (2n(x + y)) ⊂ 1
2n

F (2nx) +
1
2n

F (2ny)

for n ∈ N, so letting n → ∞ we obtain f(x + y) = f(x) + f(y). Theorem 2
gives the uniqueness of f as well.

If the inverse inclusion is satisfied, i.e,

F (x) + F (y) ⊂ F (x + y) for x, y ∈ K,

then F must be single-valued. This comes out from Theorem 2, too. We have

F (x) ⊂ 1
2
F (2x), x ∈ K,
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thus, with Ψ(x) = 1
2x and a(x) = 2x, we obtain that F is single-valued and

F (x + y) = F (x) + F (y) for x, y ∈ K.
Next corollaries concern the general linear inclusions and correspond to

the results in [9,13].

Corollary 1. Let X be a real vector space, Y be a real Banach space, K be
a convex cone in X, a, b, p, q > 0, F : K → ccl(Y ),

F (ax + by) ⊂ pF (x) + qF (y) for x, y ∈ K (7)

and sup{δ(F (x)) : x ∈ K} < ∞.

(1) If p + q > 1, then there exists a unique selection f : K → Y of the multi-
function F such that

f(ax + by) = pf(x) + qf(y) for x, y ∈ K.

(2) If p + q < 1, then F is single-valued.

Proof. (1) Setting y = x in (7) we get

F ((a + b)x) ⊂ (p + q)F (x), x ∈ K.

Dividing both sides of the last inclusion by p + q we have

1
p + q

F ((a + b)x) ⊂ F (x), x ∈ K.

By Theorem 2, with Ψ(x) = 1
p+q x, a(x) = (a + b)x, there exists the limit

limn→∞ Ψn(F (an(x))) = limn→∞ 1
(p+q)n F ((a + b)nx) = f(x), f is single-val-

ued and f(x) ∈ F (x) for x ∈ K. Moreover, the inclusion

F ((a + b)n(ax + by))
(p + q)n

⊂ p
F ((a + b)nx)

(p + q)n
+ q

F ((a + b)ny)
(p + q)n

, x, y ∈ K,

with n → ∞, yields

f(ax + by) = pf(x) + qf(y), x, y ∈ K.

The uniqueness also follows from Theorem 2.
(2) Putting y = x in (7) we have

F ((a + b)x) ⊂ (p + q)F (x), x ∈ K.

Now, replacing x by 1
a+bx in the last inclusion we obtain

F (x) ⊂ (p + q)F
(

1
a + b

x

)
, x ∈ K.

Using Theorem 2, with Ψ(x) = (p + q)x, a(x) = 1
a+bx, we get that F is single-

valued and satisfies the equality F (ax+ by) = pF (x)+ qF (y) for x, y ∈ K. �
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By the same method as in the proof of Theorem 2.1 in [13] we can also
obtain the same result for the inclusion

F (ax + by + k) ⊂ pF (x) + qF (y), x, y ∈ K,

where k ∈ K, a + b 
= 1. Taking x0 = k
1−a−b and defining a multifunction

G : K − x0 → ccl(Y ) by G(x) = F (x + x0) we obtain

G(ax + by) ⊂ pG(x) + qG(y) for x, y ∈ K.

If F : K → ccl(Y ) satisfies, instead of (7), the inclusion

F (ax + by + k) ⊂ pF (x) + qF (y) + C, x, y ∈ K,

where C is a compact and convex subset of Y, a + b 
= 1, p + q > 1, then there
exists a unique single-valued function f : K → Y satisfying the equation

f(ax + by + k) = pf(x) + qf(y), x, y ∈ K

and

f(x) ∈ F (x) +
1

p + q − 1
C, x ∈ K.

It is sufficient, as in [13], to consider the multifunction G(x) = F (x)+ 1
p+q−1C

and use Corollary 1.

Corollary 2. Let X be a real vector space, Y be a real Banach space, K be
a convex cone in X, a, b, p, q > 0, F : K → ccl(Y ),

pF (x) + qF (y) ⊂ F (ax + by) for x, y ∈ K (8)

and sup{δ(F (x)) : x ∈ K} < ∞.

(1) If p + q < 1, then there exists a unique selection f : K → Y of the multi-
function F such that

f(ax + by) = pf(x) + qf(y), x, y ∈ K.

(2) If p + q > 1, then F is single-valued.

Proof. (1) Putting y = x in (8) and taking into account that F has convex
values we get

(p + q)F (x) ⊂ F ((a + b)x), x ∈ K.

Replacing x by 1
a+bx in the last inclusion we have

(p + q)F
( 1

a + b
x
)

⊂ F (x), x ∈ K.

Again by Theorem 2, with Ψ(x) = (p + q)x and a(x) = 1
a+bx, we get that the

limit limn→∞(p + q)nF ( 1
(a+b)n x) = f(x) exists and f is the selection of F .
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Moreover, by

p(p + q)nF
( 1

(a + b)n
x
)

+ q(p + q)nF
( 1

(a + b)n
y
)

⊂ (p + q)nF
( 1

(a + b)n
(ax + by)

)

we obtain

pf(x) + qf(y) = f(ax + by) for x, y ∈ K.

(2) Setting y = x in (8) and dividing both sides of (8) by p + q we get

F (x) ⊂ 1
p + q

F ((a + b)x), x ∈ K.

By Theorem 2, F must be single-valued. �

We can also obtain a similar result if F satisfies

pF (x) + qF (y) ⊂ F (ax + by + k) + C, x, y ∈ K + x0,

where x0 = k
1−a−b , a+b 
= 1, p+q < 1. Then there exists a unique single-valued

map f : K + x0 → Y such that

pf(x) + qf(y) = f(ax + by + k), x, y ∈ K + x0

and

f(x) ∈ F (x) +
1

1 − a − b
C, x ∈ K + x0

(see [9]). To obtain this, we define a multifunction G : K → ccl(Y ) by

G(x) = F (x + x0) +
1

1 − a − b
C, x ∈ K.

Since the multifunction G satisfies (8) we can use Corollary 2.
Notice that if p + q = 1 the above method breaks down. Moreover, if

a = b = 1
2 and p = q = 1

2 , then we get the Jensen inclusions

F
(x + y

2

)
⊂ F (x) + F (y)

2
or

F (x) + F (y)
2

⊂ F
(x + y

2

)
.

It easy to see that a multifunction F : R → ccl(R) given by F (x) = [x−1, x+1]
satisfies

F
(x + y

2

)
=

F (x) + F (y)
2

, x, y ∈ R

and each function f(x) = x + b, where b ∈ [−1, 1] is a Jensen selection of F .
Observe also that a constant set-valued function F (x) = M , where M ∈

ccl(X) satisfies inclusions (7), (8) (in fact, F satisfies even the equality) if
p + q = 1 and each constant function f(x) = m, where m ∈ M satisfies
f(ax + by) = pf(x) + qf(y).
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Let (T, �) be a groupoid, where � is square symmetric, i.e, (x�y)�(x�y) =
(x � x) � (y � y) for x, y ∈ T . Then the map ρ : T → T given by ρ(x) := x � x
for x ∈ T is an endomorphism of the grupoid (T, �). It is easy to check that

x � y := ax + by + k, a, b > 0, x, y, k ∈ K,

where K is a convex cone, is square symmetric. The operation

x � y := α(x) + β(y) + γ0, x, y, γ0 ∈ T

is square symmetric as well, where α, β : T → K are homomorphisms with
α ◦ β = β ◦ α. Next corollaries complement the above results and correspond
to the Corollary 2.8 in [2].

Corollary 3. Let (T, �) be a grupoid, S ⊂ T, ρ(S) ⊂ S, a, b > 0, Y be a real
Banach space, F : S → ccl(Y ),

F (x � y) ⊂ pF (x) + qF (y) for x, y ∈ S, x � y ∈ S (9)

and sup{δ(F (x)) : x ∈ S} < ∞.
(1) If p + q > 1, then there exists a unique selection f : S → Y of the multi-

function F such that

f(x � y) = pf(x) + qf(y) for x, y ∈ S, x � y ∈ S.

(2) If p + q < 1 and ρ is an invertible function, then F is single-valued.

Proof. (1) Setting y = x in (9) and dividing both sides of (9) by p + q we get
1

p + q
F (ρ(x)) ⊂ F (x), x ∈ S.

Then, by Theorem 2 with Ψ(x) = 1
p+q x, a(x) = ρ(x), there exists a limit

limn→∞
F (ρn(x))
(p+q)n = f(x) and f is a unique selection of the multifunction F

such that

f(x � y) = pf(x) + qf(y), x, y ∈ S, x � y ∈ S.

(2) Putting y = x in (9) we get

F (ρ(x)) ⊂ (p + q)F (x), x ∈ S.

As ρ is invertible we have

F (x) ⊂ (p + q)F (ρ−1(x)), x ∈ S.

By Theorem 2, F must be single-valued, which establishes the proof. �

We observe that if

F (x � y) ⊂ pF (x) + qF (y) + C for x, y ∈ S, x � y ∈ S,

where p + q > 1, C is a compact and convex subset of Y , then G(x) = F (x) +
1

p+q−1C, x ∈ S, satisfies the inclusion (9) (see [2]). Thus, by Corollary 3, there
exists a unique selection f of G (that is f(x) ∈ F (x) + 1

p+q−1C, x ∈ S) such
that
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f(x � y) = pf(x) + qf(y), x, y ∈ S, x � y ∈ S.

Corollary 4. Let (T, �) be a grupoid, S ⊂ T, ρ(S) ⊂ S, a, b > 0, Y be a real
Banach space, F : S → ccl(Y )

pF (x) + qF (y) ⊂ F (x � y), x, y ∈ S, x � y ∈ S (10)

and sup{δ(F (x)) : x ∈ S} < ∞.
(1) If p + q < 1 and ρ is an invertible function, then there exists a unique

selection f : S → Y of the multifunction F such that

f(x � y) = pf(x) + qf(y), x, y ∈ S, x � y ∈ S.

(2) If p + q > 1, then F is single-valued.

Proof. (1) Putting y = x in (10) we get

(p + q)F (x) ⊂ F (ρ(x)), x ∈ S.

As ρ is an invertible function we have

(p + q)F (ρ−1(x)) ⊂ F (x), x ∈ S.

In the same manner by Theorem 2, with Ψ(x) = (p + q)x, a(x) = ρ−1(x), we
get the assertion.

(2) Setting y = x in (10) and dividing both sides of the (10) by p + q we
get

F (x) ⊂ 1
p + q

F (ρ(x)), x ∈ S.

Therefore, by Theorem 2, the proof is complete. �

We can also obtain a result similar to the above for F satisfying

pF (x) + qF (y) ⊂ F (x � y) + C, x, y ∈ S, x � y ∈ S,

where p + q < 1, ρ is invertible and C is a compact and convex subset of Y .
Then, for G(x) = F (x) + 1

p+q−1C, x ∈ S, we have

pG(x) + qG(y) ⊂ G(x � y), x, y ∈ S, x � y ∈ S

and by Corollary 4 there exists a unique selection f of the multifunction G
(that is f(x) ∈ F (x) + 1

p+q−1C, x ∈ S) such that

f(x � y) = pf(x) + qf(y), x, y ∈ S, x � y ∈ S,

We end presenting an application of Theorem 2 to the quadratic
inclusions.

Corollary 5. Let X be a real vector space, Y be a real Banach space, K be a set
in X such that for x, y ∈ K,x + y ∈ K and x − y ∈ K,F : K → ccl(Y ) and
sup{δ(F (x)) : x ∈ K} < ∞.
(1) If

F (x + y) + F (x − y) ⊂ 2F (x) + 2F (y), x, y ∈ K, (11)
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then there exists a unique selection f : K → Y of the multifunction F
such that

f(x + y) + f(x − y) = 2f(x) + 2f(y), x, y ∈ K.

(2) If

2F (x) + 2F (y) ⊂ F (x + y) + F (x − y), x, y ∈ K, (12)

then F is single-valued.

Proof. (1) Setting y = 0 in (11) we have

F (x) + F (x) ⊂ 2F (x) + 2F (0) for x ∈ K.

By the R̊adström cancelation lemma [17] we get

{0} ⊂ F (0).

Next setting y = x in (11) and using the last inclusion we obtain

F (2x) ⊂ F (2x) + F (0) ⊂ 4F (x), x ∈ K

and
F (2x)

4
⊂ F (x) for x ∈ K.

By Theorem 2, with Ψ(x) = 1
4x, a(x) = 2x, there exists the limit

limn→∞ Ψn(F (an(x))) = F (2nx)
4n = f(x), f(x) ∈ F (x) for x ∈ K and as

F (2n(x + y))
4n

+
F (2n(x − y))

4n
⊂ 2

F (2nx)
4n

+ 2
F (2ny)

4n

we get f(x+y)+f(x−y) = 2f(x)+2f(y) for x, y ∈ K. Moreover, f is unique.
(2) Setting y = 0 in (12) and using the R̊adström cancelation lemma we

get

F (x) + F (0) ⊂ F (x), x ∈ K.

Thus and by (12) with y = x we have

4F (x) ⊂ F (2x) + F (0) ⊂ F (2x) x ∈ K

and

F (x) ⊂ F (2x)
4

for x ∈ K.

By Theorem 2, with Ψ(x) = 1
4x, a(x) = 2x, F must be single-valued. �
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