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Abstract. We present some applications of the result corresponding to the
existence of a unique selection of a set-valued function satisfying inclu-
sions in a single variable to the inclusions in several variables, especially
the general linear inclusions or quadratic inclusions.
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1. Introduction

The stability theory of functional equations has developed in connection with
a problem set by S.M. Ulam during his talk at a conference at the Wisconsin
University in 1940. The first answer was given in 1941 by Hyers [5] who proved
the following theorem:

Let X be a linear normed space, Y a Banach space and € > 0. Then for
every function f: X — 'Y satisfying the inequality

[f(z+y)—flz) - fll<e, zyeX (1)
there exists a unique additive function g: X — Y such that
If(z) —g(@)[ <€ zeX (2)

From now on the subject has been intensively investigated by many
authors (see for example: [1,3,6,7,10,11,16]).
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Smajdor [18] and Gajda and Ger [4] observed that if f satisfies (1), then
the set-valued function F: X — n(Y) (n(Y) denotes the family of all non-
empty subsets of Y') given by

F(z) = f(z) + B(0,¢), =€ X,

where B(0, ) is the closed ball of radius € centered at 0, is subadditive (i.e.,
F(x+vy) C F(z)+ F(y),z,y € X) and the function g from the relation (2)
is an additive selection of F' (i.e., g(z +y) = g(x) + g(y) and g(z) € F(x) for
z,y € X).

Now one may ask under what conditions a subadditive set-valued func-
tion admits an additive selection. We recall the result of Gajda and Ger [4]
(6(F(x)) denotes the diameter of the set F(x)).

Theorem 1. Let (S,+) be a commutative semigroup with zero, X a real Banach
space and F: S — 2% a set-valued map with conver and closed values such
that

Fle+y) CF@)+F(y), zyes (3)
and sup{d6(F(z)): x € S} < oco. Then F admits a unique additive selection.

Later the above result was extended by Nikodem and Popa to the set-
valued functions satisfying the following general linear inclusions:

F(az + by +¢) C pF(x) + ¢F(y) + C,
pF(x) + qF(y) C Faz +by +¢)+C,

where a, b, p,q € R, X is a real vector space, Y is a real Banach space, F': X —
n(Y),ce X,C €2Y (see [9,13-15]).

The aim of this paper is to give some modification of Theorem 1 in [12]
and its applications. We also show that our theorem generalizes the above
results.

2. Main Results

Let (Y,d) be a metric space. We will denote by n(Y") the family of all non-
empty subsets of Y. We understand the convergence of sets with respect to the
Hausdorff metric derived from the metric d. The number 6(A) = sup{d(z,y) :
x,y € A} is said to be the diameter of A C Y. For F: K — n(Y) we denote
by clF the multifunction defined as (cl F')(z) = clF(z),z € K. A function
f: K — Y such that f(x) € F(z) for all x € K is called a selection of the
multifunction F. We write a®(z) = = for r € K and a"™! = a" o a for all
n € Np.

The subsequent theorem is a simple modification of Theorem 1 in [12].
However, we prove it for the convenience of the readers.
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Theorem 2. Assume that K is a nonempty set, (Y,d) is a metric space. Let
F:K—->nY),¥:Y —>Y,a:K— K X\e(0,+0),

d(¥(z),¥(y)) < Ad(z,y) forz,y €Y (4)
and
7}1_{1;0 A"0(F(a™(x))) =0 forxze K.
(1) If Y is complete and
U(F(a(x))) C F(z), reK, (5)

then, for each x € K, the limit lim,,_, o cl¥" o Foa™(z) = f(x) ezists and
f is a unique selection of the multifunction cl F' such that W o foa = f.

(2) If
F(x) C¥(F(a(x))), z€K, (6)
then F is a single-valued function and W o Foa = F.
Proof. (1) Let us fix z € K. Replacing x by a(z) in (5) we get
(F(a"(2))) C F(a"(x))
for all n € Ng. Hence
v F(a™ T (2))) € (F(a™(z))) for n € No.

Thus (cl¥™(F(a™(x))))nen, is a decreasing sequence of closed sets in a com-
plete metric space. Moreover, in virtue of (4),

(el (F(a"(x)))) < A"S(F(a"(x))),
50 limy, 00 0(cl¥™(F(a™(z)))) = 0. Therefore
lim W (F(a"(2)) = [ d¥"(F(a" (@) = f(x)

neNy

\_/,.\

is a singleton. Of course, f(z) € ¢l F(z) and as ¥ is continuous we have
U(f(a(x))) = ¥(lim cl¥™(F(a™(a(x)))) C lim ¥ (F(a" ! (x)))

= f(m)a
thus Wo foa=f.

It remains to show the uniqueness of f. Suppose that f, g are selections of
clFand Yo foa = f,¥ogoa = g. By induction we obtain that "o foa™ = f
and ¥" o goa™ = g for n € Ny. Hence, for x € K,n € Ny,

d(f(z),9(x)) = d(¥" o f o a"(x),¥" 0 goa"(x))
< AMd(f(a™(2)),g(a"(2))) < A*6(F(a"(2))).
As limy, 00 A"0(F(a™(x))) = 0, we have f = g.
(2) By (6) we obtain
F(z) c¥"(F(a"(2))) ¥ (F(a"*' (), neN, zekK.
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It follows that (U™ (F(a™(z))))nen, is an increasing sequence of sets in a metric
space satisfying

S (F(a”(x)))) < A"0(F(a" (2)))-

Hence §(W"(F(a™(x)))) converges to 0 as n — oo. Consequently, ¥" o Foa™(x)
is single-valued for all n € No,x € K and Yo Foa = F. O

Obviously, if ¥ is a contraction and sup{d(F(z)) : x € K} < oo, then the
limit lim,, oo A”0(F(a™(x))) = 0 and the assertions of Theorem 2 are satisfied.

From now on we assume that Y is a real normed space. By ccl(Y) we
denote the family of all nonempty, convex and closed subsets of Y. For A, B €
n(Y) and A € R we define

A+B={a+b: ac A,be B} and M ={la: ac A}
It is known (see [8]) that
MA+B)=XA+AB and (A+pu)ACIA+ A
for A,B € n(Y) and A, u € R. If additionally A is convex and Ap > 0, then
A+ 1)A = A+ pA.

Now we give some applications of Theorem 2 to the problem of the sta-
bility of set-valued functional equations in several variables.

Notice that Theorem 1 follows from Theorem 2. Indeed, setting y = =
in (3) we get

F(Q2r) C F(xz)+ F(x), xz€K.
As the set F(x) is convex we have
F(2z) C2F(x), z€K

and

1
§F(2x) C F(z), zeK.

By Theorem 2, with ¥(z) = 1z and a(z) = 2z, the limit lim,,_,oc ¥"(F(a"(z)))

= limy, o0 5= F(2"x) = f(x) exists and f is the selection of F. Moreover,

2nF(2 (x+y)) C 2nF(2 ) + 2nF(2 Y)
for n € N, so letting n — oo we obtain f(z +vy) = f(z) + f(y). Theorem 2
gives the uniqueness of f as well.
If the inverse inclusion is satisfied, i.e,

F(z)+ Fly) C F(x +y) forz,y€ K,

then F' must be single-valued. This comes out from Theorem 2, too. We have

1
F(z) C §F(2;1c)7 reK,
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thus, with ¥(z) = 1z and a(z) = 2z, we obtain that F is single-valued and

Fz+y)=F(z)+ F(y) for z,y € K.
Next corollaries concern the general linear inclusions and correspond to
the results in [9,13].

Corollary 1. Let X be a real vector space, Y be a real Banach space, K be
a convez cone in X,a,b,p,q > 0,F: K — ccl(Y),

F(ax +by) C pF(x) + qF(y) forz,ye K (7)

and sup{d(F(z)): z € K} < oo.

(1) If p+q > 1, then there exists a unique selection f: K — Y of the multi-
function F such that

flaz +by) =pf(x) +qfly)  foraz,ye K.
(2) If p+q <1, then F is single-valued.
Proof. (1) Setting y = x in (7) we get
F((a+b)x) C (p+¢)F(x), r e K.

Dividing both sides of the last inclusion by p 4+ ¢ we have
——F((a+b)z) C F(x), z€K.
——Fl(a+ b)) € Fla)
By Theorem 2, with ¥(z) = mz a(x) = (a + b)z, there exists the limit
lim,, o U (F(a"(z))) = lim, o0 (p+q)nF((a +b)"z) = f(z), f is single-val-
ued and f(x) € F(zx) for x € K. Moreover, the inclusion
F((a+b)"(azx + by)) c F((a+b)z) F((a+b)"y)
(p+aqm (P+aqm (p+aq)"

with n — oo, yields

flax +by) =pf(x) +qf(y), =,yeK.

The uniqueness also follows from Theorem 2.
(2) Putting y = 2 in (7) we have

F(la+bz)C(p+qF(z), ze€K.

Y x?y€K7

Now, replacing x by a%rbx in the last inclusion we obtain

F(z) C (p+g)F (aibx), veK.

Using Theorem 2, with ¥(z) = (p + ¢)x,a(x) = bx we get that F is single-
valued and satisfies the equality F(az + by) = ( )+qF(y) forz,y e K. O
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By the same method as in the proof of Theorem 2.1 in [13] we can also
obtain the same result for the inclusion

F(ax +by+ k) C pF(z) + qF(y), z,y € K,
where k € K,a +b # 1. Taking z¢y = % and defining a multifunction
G: K —x9— cc(Y) by G(z) = F(x + ) we obtain
G(azx + by) C pG(z) + qG(y) for z,y € K.
If F: K — ccl(Y) satisfies, instead of (7), the inclusion
Flaz+by+k) CpF(z)+qF(y)+C, z,y€K,

where C' is a compact and convex subset of Y,a+ b # 1,p+ ¢ > 1, then there
exists a unique single-valued function f: K — Y satisfying the equation

flax +by + k) =pf(x) +qf(y), z,y€K

and

1

Tt is sufficient, as in [13], to consider the multifunction G(z) = F(z)+ C

and use Corollary 1.

_ 1
p+q—1
Corollary 2. Let X be a real vector space, Y be a real Banach space, K be
a convez cone in X,a,b,p,q > 0,F: K — ccl(Y),

pF(x) +qF(y) C F(ax +by) forx,ye K (8)

and sup{6(F(z)): z € K} < c©.

(1) If p+q < 1, then there exists a unique selection f: K — Y of the multi-
function F such that

flax +by) =pf(x) +af(y), z,yeK.
(2) If p+q > 1, then F is single-valued.

Proof. (1) Putting y = x in (8) and taking into account that F' has convex
values we get

(p+q)F(x) C F((a+b)z), z€K.

Replacing x by a%_bx in the last inclusion we have

(p+q)F(aiba:) C F(z), zekK.

Again by Theorem 2, with ¥(z) = (p + ¢)z and a(x) = a+bx we get that the
limit lim, oo (p + Q)"F((aer)n x) = f(z) exists and [ is the selection of F.
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Moreover, by

p(p + q)"F( +q(p + q)"F(#)ny)

1
(a+b)n””) (a+b

C(p+ q)"F( (azx + by))

b
(a+b)"
we obtain

pf(x) +qf(y) = flaz +by) forz,y € K.
(2) Setting y = « in (8) and dividing both sides of (8) by p + ¢ we get

1
F(x) C 2TqF((a +b)z), z€K.

By Theorem 2, F' must be single-valued. O
We can also obtain a similar result if F' satisfies
pF(z)+ qF(y) C Flax +by+k)+C, xz,y€ K+ xg,

where xg = ﬁ, a+b # 1,p+q < 1. Then there exists a unique single-valued

map f: K 4+ x9 — Y such that
pf(z)+qf(y) = flax+by + k), x,y€K+uxo

and
1
f(.l?)GF(l‘)—‘rmC, z e K+ x
(see [9]). To obtain this, we define a multifunction G: K — ¢cl(Y') by
1
=F P — K.
G(z) (m—i—xg)—i—l_a_bc, x €

Since the multifunction G satisfies (8) we can use Corollary 2.
Notice that if p + ¢ = 1 the above method breaks down. Moreover, if
a=b= % and p = ¢ = 3, then we get the Jensen inclusions

1
2
F F F F
F(Jf +y> cF@)+FPy) - F@)+Fy) F(Iﬂ/)
2 2 2 2
It easy to see that a multifunction F': R — ccl(R) given by F(x) = [z —1,2+1]
satisfies

F(ery):F(x)JrF(y) ey R

2 2 ’

and each function f(z) =z + b, where b € [—1,1] is a Jensen selection of F.
Observe also that a constant set-valued function F(z) = M, where M €
ccl(X) satisfies inclusions (7), (8) (in fact, F' satisfies even the equality) if
p+ q = 1 and each constant function f(x) = m, where m € M satisfies

flaxz +by) =pf(x) +qf(y).
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Let (T, %) be a groupoid, where % is square symmetric, i.e, (zxy)*(x*xy) =
(xxx)* (y*y) for z,y € T. Then the map p: T'— T given by p(x) == x *xx
for € T is an endomorphism of the grupoid (7, *). It is easy to check that

rxy:=ax+by+k, a,b>0, =zykelkK,
where K is a convex cone, is square symmetric. The operation
x*y:a(:ﬁ)—i—ﬁ(y)—i-'yo, 3371/7’)’0€T

is square symmetric as well, where o, 3: T — K are homomorphisms with
ao 3 = [oa. Next corollaries complement the above results and correspond
to the Corollary 2.8 in [2].

Corollary 3. Let (T,x) be a grupoid, S C T,p(S) C S,a,b > 0,Y be a real
Banach space, F: S — ccl(Y),

F(xxy) C pF(x)+qF(y) forax,y €S, zxye S (9)
and sup{d(F(z)) : = € S} < 0.

(1) If p+ q > 1, then there exists a unique selection f: S —Y of the multi-
function F such that

flexy) =pf(z) +qfly)  forz,yel zxyes
(2) If p+q <1 and p is an invertible function, then F is single-valued.

Proof. (1) Setting y = x in (9) and dividing both sides of (9) by p + ¢ we get

L P(p(a)) c F(z), zeSs.

p+q
Then, by Theorem 2 with ¥(z) = p—iq%a(x) = p(x), there exists a limit
lim,, o }z;iq()”i?) = f(x) and f is a unique selection of the multifunction F'
such that

flaxy)=pflx)+qfly), xyeS, zxycs
(2) Putting y = z in (9) we get
F(p(z)) C (p+q)F(z), z€S.
As p is invertible we have
F(z) C (p+@)F(p~'(z)), z€S.

By Theorem 2, F' must be single-valued, which establishes the proof. ]

We observe that if

F(zxy) CpF(x)+qF(y)+C forxz,ye S, zxye S,

where p+ ¢ > 1,C is a compact and convex subset of Y, then G(z) = F(x) +

ﬁa x € S, satisfies the inclusion (9) (see [2]). Thus, by Corollary 3, there

exists a unique selection f of G (that is f(z) € F(x) + pTLlC,a: € S) such
that
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flxxy)=pf(x) +qf(y), x,ye8l, x*xyebk.

Corollary 4. Let (T,*) be a grupoid, S C T,p(S) C S,a,b > 0,Y be a real
Banach space, F: S — ccl(Y)

pF(x) 4+ qF(y) C F(z*vy), r,yesS, zxye S (10)
and sup{6(F(z)) : = € S} < 0.

(1) If p+q < 1 and p is an invertible function, then there exists a unique
selection f: S — Y of the multifunction F such that

flaxy) =pf(x)+afly), =xyesS, axyes.
(2) If p+q> 1, then F is single-valued.
Proof. (1) Putting y = « in (10) we get
(p+@)F(x) C Fp(x)), weS.
As p is an invertible function we have
(p+a)F(p~'(x)) C F(z), z€S8.

In the same manner by Theorem 2, with ¥(z) = (p + q)x,a(z) = p~1(x), we
get the assertion.
(2) Setting y = « in (10) and dividing both sides of the (10) by p + ¢ we

get
F(#) C ——F(plw)), w8
x) C —F(p(x)), = :
p+yq
Therefore, by Theorem 2, the proof is complete. d

We can also obtain a result similar to the above for F' satisfying
pF(x) +qF(y) C Fzxy)+C,  zyel zxyels,
where p + ¢ < 1, p is invertible and C' is a compact and convex subset of Y.
Then, for G(z) = F(z) + ﬁC,x € S, we have
pG(x) + ¢G(y) C G(z *y), T,yeS, xTxyeSs
and by Corollary 4 there exists a unique selection f of the multifunction G
(that is f(z) € F(x) + ﬁ@x € S) such that
flaxy)=pf(x)+af(y), wyeS wxyes,
We end presenting an application of Theorem 2 to the quadratic
inclusions.
Corollary 5. Let X be a real vector space, Y be a real Banach space, K be a set
in X such that for v,y € K,x+y € K andx —y € K,F: K — ccl(Y) and
sup{0(F(z)): = € K} < oc.
(1) If
Flx+y)+ F(zx—y) C2F(z) +2F(y), =z,y€ K, (11)
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then there exists a unique selection f: K — Y of the multifunction F
such that

f@+y) +fz—y) =2f(2) +2f(y), =yekK.
(2) If
2F(z) +2F(y) C F(x +y) + F(r —y), =z,y€ckK, (12)
then F' is single-valued.
Proof. (1) Setting y = 0 in (11) we have
F(z)+ F(x) C 2F(z) + 2F(0) for x € K.
By the Radstrém cancelation lemma [17] we get
{0} C F(0).

Next setting y =  in (11) and using the last inclusion we obtain

F(2z) C F(2z) + F(0) C4F(z), ze K

and
F(jx) C F(x) forzeK.
By Theorem 2, with ¥(z) = fz,a(z) = 2z, there exists the limit
lim,, 0o T (F(a™(2))) = w = f(z), f(z) € F(x) for z € K and as
F(2"(452+ ) F(Q”(;— ) - 2F(j:x) n ZF(j:y)

we get f(x+y)+ f(x—y) = 2f(x)+2f(y) for 2,y € K. Moreover, f is unique.
(2) Setting y = 0 in (12) and using the Radstrom cancelation lemma we
get

F(z)+ F(0) C F(z), zeK.
Thus and by (12) with y = 2 we have
4F(z) C F(22) + F(0) C F(2z) z € K
and

F(z) C for z € K.

By Theorem 2, with ¥(z) = 1, a(z) = 2z, F must be single-valued. O
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