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Abstract—Here, the results of Soil and Water Assessment Tool

(SWAT) simulation are calibrated and validated using SWAT-CUP

Premium, and the R2 (coefficient of determination) values of sim-

ulated and observed flows are compared. According to the SWAT

analysis of the Cheongsong Yongjeon stream basin, low accuracy

of 0.40 was the R2 value for simulated and observed flows, and the

baseflow was calculated at an annual average of 46.659 m3/s.

During the same period, after calibration and validation using

SWAT-CUP Premium, the R2 value of simulated and observed

flows was improved to 0.71, and the evaluation indexes showed

0.51 for Nash–Sutcliffe efficiency (NS), 37.1 for percent bias

(PBIAS), 0.73 for P-factor, and 0.33 for R-factor, indicating that

the relationship between observed and simulated flows was

improved. In addition, after calibration and validation, the baseflow

was 56.951 m3/s, which was a more accurate value than the one

before calibration and validation.

Keywords: SWAT-CUP Premium, baseflow, coefficient of

determination, simulated flow.

1. Introduction

Recently, due to climate change and urbanization,

rainfall patterns and infiltration rates have changed,

which has led to a decrease in the groundwater levels

and stream drying, causing problems in supply of

water resources. In particular, a reduction in infiltra-

tion due to urbanization can lead to a reduction in

groundwater levels and underlying runoff, and a

decrease in baseflow rate can affect the supply of

stream flow during the dry season. For this reason,

accurate analysis and verification of baseflow is

essential, However, difficulty in integrated interpre-

tation, considering surface water–groundwater

interaction, uncertainty about analysis of baseflow

runoff, and technical limitations make the analysis of

baseflow challenging.

Since baseflow runoff is affected not only by

rainfall and flow rate but also by groundwater flowing

into and out of aquifers, it is closely related to

groundwater recharge, and it is necessary to differ-

entiate between direct runoff and baseflow runoff to

understand the characteristics of baseflow runoff

(Aizen et al., 2000; Ferket et al., 2010). Baseflow

runoff separation has been widely studied, including

master groundwater depletion curve, straight line,

fixed base, and variable slope methods, and inter-

pretation using watershed hydrological modeling is

currently a dominant technique.

Managing baseflow is crucial to ensuring a

stable water supply when water resources are not

sufficient. However, unlike direct runoff, there is a

lack of measured data on baseflow due to various

difficulties such as measurement time, equipment,

and technology. Therefore, many techniques have

been developed and used to analyze baseflow. A

baseflow analysis is usually performed by separating

direct runoff from baseflow using hydrographs and

analyzing baseflow using watershed-scale models.

However, separating baseflow using hydrographs

cannot be efficiently applied to long-term runoff, and

there are also difficulties in objective baseflow sep-

aration during the process. Therefore, watershed-

scale runoff models such as the Hydrological Simu-

lation Program—FORTRAN (HSPF), Soil and Water

Assessment Tool (SWAT), and Precipitation-Runoff

Modeling System, version 4 (PRMS-IV) are used to
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estimate baseflow runoff (Caldwell et al., 2015; Dams

et al., 2015; Gay et al., 2023).

In particular, the SWAT model is the most fre-

quently used model for interpreting baseflow runoff

among rainfall-runoff models (Ligaray et al., 2015;

Rouholahnejad et al., 2014; Veettil & Mishra, 2016).

Arnold et al. (2000) estimated groundwater

recharge in the Mississippi River basin using the

SWAT model and evaluated baseflow runoff through

it. A study was also conducted to simulate baseflow

runoff using the SWAT model and compare the

results (Abbaspour et al., 2007; Luo et al., 2012). In

addition, a scenario-specific analysis of climate

change, such as temperature and precipitation, and a

baseflow runoff analysis according to changes in soil

conditions and land use were conducted (Duan

et al2017; Zhang & Schilling, 2006). An analysis of

stream runoff and baseflow runoff was also con-

ducted for river basin management (Aboelnour et al.,

2020; Dechmi et al., 2012).

Srinivasan et al. (2010) applied the SWAT model

to simulate various hydrological components,

including baseflow, to analyze the water balance for

ungauged basins in the upper Mississippi River basin

and predict crop yield. Andrianaki et al. (2019) used

the SWAT model to analyze changes in runoff from

precipitation and glaciers, and compared the uncer-

tainties according to scenarios. Many studies have

also been conducted to perform effective hydrologi-

cal analysis while minimizing parameter

uncertainties and suggesting the most sensitive

parameters (Hosseini & Khaleghi, 2020; Khatun

et al., 2018; Malik et al., 2022; Sao et al., 2020). In

particular, some studies have analyzed the change in

baseflow and scenarios according to urbanization and

changes in land use (Aboelnour et al., 2019), and

other studies have calibrated and validated stream

flow estimations using the SWAT model and SWAT-

CUP (Hallouz et al., 2018; Jaiswal et al., 2020;

Vilaysane et al., 2015).

However, previous studies have mostly focused

on analyzing the baseflow index. Therefore, there is a

lack of research on the effective management of

water resources and quantitative baseflow estimates

after improving model uncertainties. Since the

SWAT model has many parameters related to each

hydrological element, calibration and validation are

crucial.

Baseflow in rivers is influenced by rainfall, river

flow, and groundwater flowing in and out of aquifers.

These different factors converge to enable the circu-

lation of water, with groundwater being a significant

source for supplementing river water. Therefore, as

various hydrological and water resources-related

analysis models are currently used for hydrological

analysis, enhancing the accuracy and reliability of

their simulations is imperative. If we have a highly

accurate hydrological analysis model, it can be uti-

lized to compare and analyze the correlation between

baseflow and groundwater fluctuations in order to

infer baseflow trends. It can also be used to ensure the

efficient use of water resources, enhanced research

and development (R&D), more accurate groundwater

level forecasting, and better management and con-

servation in areas where water resources are scarce

(such as the study area).

The study area in question is a small rural area

that is in need of effective agricultural water man-

agement due to water scarcity. Due to these

conditions, baseflow and runoff analysis using

groundwater is essential. Therefore, the long-term

goal of this study is to integrate the surface water and

groundwater factors to better enable baseflow and

water reserve analysis. This analysis is necessary for

providing accurate forecasting during the dry period.

To this end, SWAT simulation results were calibrated

and validated using SWAT-CUP Premium, and R2

values of simulated and observed flows were com-

pared. The accuracy of the simulation results was also

improved by comparing the baseflow before and after

calibration and validation.

2. Study Area and Methods

The aim of this study is to improve the accuracy

of baseflow and to analyze the uncertainty of base-

flow by calculating baseflow and performing

calibration and validation using the SWAT model.

The SWAT model is a semi-distributed rainfall-run-

off model, which can be run daily. Apart from runoff

and sediment, it can also simulate pollution.
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The Soil and Water Assessment Tool (SWAT) is a

model developed by the United States Department of

Agriculture (USDA) Agricultural Research Service

(ARS). It is used to estimate the impact of land

management practices on the behavior of runoff,

sediment discharge, and agricultural chemicals in

large, complex watersheds, depending on various soil

properties, long-term land use, and land management

conditions. SWAT is basically composed of four sub-

models: hydrology, soil loss, nutrients, and channel

tracking (Arnold et al., 1998).

The SWAT model divides the target watershed

into several subbasins to reflect the different surface

characteristics of the watershed, and is subdivided

into hydrological response units (HRU) that exhibit

similar characteristics within the subbasin.

However, models that require various input data

and parameters, such as SWAT, have difficulty pre-

senting simulation results. In particular, parameters

based on the characteristics of the watershed must be

accompanied by calibration and validation, as accu-

rate estimation is difficult due to inaccuracies in

observations. The calibration and validation of

hydrological models is a process of finding the opti-

mal parameters to simulate the hydrological

characteristics of a watershed as closely as possible.

However, further analysis of calibration, valida-

tion, and uncertainty are essential because uncertainty

exists regarding the simulation results. SWAT-CUP

is a program developed by the EAWAG Institute in

Switzerland for calibration, validation, and uncer-

tainty analysis of the SWAT model. SWAT-CUP

Premium is an improved version of SWAT-CUP that

can improve uncertainty about results of SWAT

simulation.

The program can select one of two algorithms,

SWAT parameter estimator (SPE) or particle swarm

optimization (PSO), and uses the selected algorithm

to perform calibration and derive optimal parameters

using exchange and relative parameter change

methods within the range of parameters. SWAT-CUP

Premium removes the generalized likelihood uncer-

tainty estimation (GLUE), parameter solution

(ParaSol), and Markov chain Monte Carlo (MCMC)

algorithms, which are highly inefficient for running

SWAT models, and instead uses the SPE algorithm,

an upgraded sequential uncertainty fitting version 2

(SUFI-2) algorithm. Therefore, we used the SPE

algorithm in this study. The SPE algorithm is a

method used to estimate parameters sequentially. It

consists of uncertain components such as parameters

and measurements. The degree of all uncertainties is

measured by a 95% confidence level uncertainty.

The study area is the Yongjeon stream basin in

Cheongsong County, which is a local river with a

watershed area of 381.0 km2 and river length of

48.0 km. The Yongjeon stream consists of smaller

streams, the third tributaries of the Nakdong River,

including the Singi, Sinheung, Jubang, Jusan, Nobu,

Kwae, and Gupyeong streams. The left bank of

Yongjeon stream is a basin with a narrow watershed

width, and the right bank basin is widely developed,

located at 129� 540 4400–129� 130 5000 east longitude

and 36� 130 1800–36� 300 north latitude. The input data

for simulation were analyzed using weather data

(Cheongsong Weather Station, Juwang Mountain

Weather Station) and measured data (Cheongsong

Water Level Gauge Station) from the observatories

located in the basin (Fig. 1).

Figure 1
Location of streams and weather stations in study area
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The geology of the study area consists of plu-

tonic, sedimentary, andesitic, granitic, and acidic

volcanic rocks, and alluvium (Fig. 2). Plutonic rocks

contain many pink feldspars and have a coarse to

medium granular texture. The main constituent min-

erals are quartz, orthoclase, microcline, plagioclase,

and biotite. In addition, small amounts of hornblende

and magnetite are distributed.

3. SWAT Analysis and Accuracy Improvement

3.1. Input Data for SWAT Model

The input data for the SWAT model include

weather data, digital elevation data, and land use,

soil, and groundwater information. In the case of

weather data, the input data for the model was

constructed using data from weather stations located

in the study area. Figure 3a shows digital elevation

data in the study area and smaller streams divided

into three. Medium scales (1:25,000) of land use map

were utilized; the largest distribution was of forest

areas (82.5%), and distribution of farmland, including

rice paddies and fields, was about 14.3% (Fig. 3b). A

1:25,000 scaled soil map was used. Figure 3c

provides the simulated spatial distribution of the

precision soil map of Yongjeon stream like the prior

land use map with the same spatial resolution as the

digital elevation model. There are 50 types of soil

Figure 2
Geological map of the study area
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series, and information on the area of each soil series

is shown in Tables 1 and 2.

3.2. SWAT Analysis

The input data for the SWAT model was

constructed using available meteorological data for

the study area that spanned the years from 2011 to

2019. Because some of the flow data from the

Cheongsong water level data from 2017 to 2019 was

missing (because measurements were not taken), the

SWAT simulation was conducted using the input data

from 2011 to 2016 instead. Since the first 2 years of

data (those being from 2011 and 2012) were excluded

to stabilize the SWAT model, the calibration and

validation period for comparing actual observations

Figure 3
Input data for SWAT analysis. a Digital elevation model. b Land use map. c Soil map
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and modeled values was a total of 4 years (spanning

2013–2016).

Figures 4 and 5 show a comparison graph of the

SWAT analysis results and observed flow and

Table 1

Land use items and associated area of Yongjeon stream

Land use classification item Description Area (km2) Ratio (%)

URMD Residential-medium density 2.87 0.94

UIDU Industrial 0.04 0.01

UCOM Commercial 0.33 0.11

UTRN Transportation 1.09 0.35

UINS Institutional 0.16 0.05

RICE Rice 8.35 2.72

AGRR Agricultural land–row crops 23.71 7.73

URML Residential–med/low density 0.05 0.02

ORCD Orchard 9.26 3.02

AGRL Agricultural land–generic 0.24 0.08

FRSD Forest–deciduous 75.30 24.55

FRSE Forest–evergreen 137.68 44.90

FRST Forest–mixed 39.93 13.02

PAST Pasture 0.33 0.11

BROS Smooth bromegrass 0.61 0.20

WETF Wetlands–forested 1.18 0.38

AGRC Agricultural land–close-grown 2.26 0.74

WATR Water 3.26 1.07

Table 2

Area by soil type in Yongjeon stream

Soil classification Area (km2) Ratio (%) Soil classification Area (km2) Ratio (%)

ANRYONG 2.26 0.74 HWADONG 0.33 0.11

ASAN 0.95 0.31 HWANGRYONG 4.39 1.43

BANHO 2.59 0.85 ISAN 0.97 0.32

BIGOG 0.58 0.19 JANGWEON 2.20 0.72

BONGGOG 0.14 0.04 JIGOG 3.28 1.07

BUYEO 0.31 0.1 JISAN 1.80 0.59

CHILGOG 1.19 0.39 JUGGOG 0.08 0.03

CHOGYE 0.07 0.02 JUNGDONG 0.19 0.06

DAEGU 27.30 8.9 MASAN 6.25 2.04

DEOGCHEON 1.84 0.6 MUDEUNG 53.39 17.41

DEOGPYEONG 0.15 0.05 NAMGYE 0.44 0.14

DEOGSAN 2.97 0.97 PANGOG 0.20 0.07

GAMGOG 0.67 0.22 SAMGAG 3.63 1.18

GANGSEO 0.33 0.11 SANGJU 0.60 0.19

GEUMGOG 0.65 0.21 SEOGTO 12.11 3.95

GOCHEON 2.99 0.98 SINHEUNG 0.75 0.25

GOSAN 65.74 21.44 SINJEONG 1.31 0.43

GUISAN 0.90 0.29 SONGSAN 66.13 21.57

GYEONGSAN 0.13 0.04 TAEHWA 2.73 0.89

HABIN 4.75 1.55 UGOG 0.06 0.02

HAENGGOG 1.12 0.37 UPYEONG 0.34 0.11

HAENGSAN 5.16 1.68 YEONGOG 6.85 2.23

HAMPYEONG 1.26 0.41 YONGGYE 2.01 0.66

HEUNGPYEONG 8.29 2.7 YONGJI 1.89 0.62

HOGYE 2.04 0.66 YUGA 0.36 0.12
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coefficient of determination (R2) for each year, and

Fig. 6 shows the comparison results for the entire

period (4 years). Results of the model analysis show

that patterns were similar to observations according

to precipitation, but the difference in flow rates was

significant. The comparison of R2 values for simu-

lated and observatory values showed that they were

highest in 2014 (0.52). In 2015, they were low (0.17),

and the R2 value for the entire period was 0.40, with

very low accuracy.

4. Calibration and Validation Using SWAT-CUP

Premium

Studies have been conducted consistently to

increase the prediction and accuracy of the SWAT

model and improve the uncertainty of simulation

results. Common techniques for calibration of

parameters are MCMC (Vrugt et al., 2008), GLUE

(Beven & Binley, 1992), PSO (Abbaspour, 2011),

ParaSol (van Griensven & Meixner, 2007), and

SUFI-2 (Abbaspour et al., 2004), and they can be

easily applied in conjunction with the SWAT model

using SWAT-CUP. SWAT-CUP Premium is a pro-

gram that calibrates, validates, and improves SWAT

analysis results through algorithms such as SPE,

which can be used to perform validation and sensi-

tivity analysis (Fig. 7). Notably, SWAT-CUP

Premium removes the GLUE, ParaSol, and MCMC

algorithms, which are highly inefficient for running

SWAT models, and instead uses the SPE algorithm,

an upgraded SUFI-2 algorithm. Therefore, the SPE

algorithm was used in this study. Table 3 provides a

description for each algorithm.

In this study, SWAT-CUP Premium was used to

perform calibration and validation, and 1000 simu-

lations were performed during the calibration in

consideration of the efficiency (Yu et al., 2020). In

addition, the simulated flow was optimized with the

SPE algorithm of SWAT-CUP Premium for the

observed flow; the optimized parameter results are

shown in Table 4.

The coefficient of determination (R2), Nash–Sut-

cliffe efficiency (NS), modified NS (MNS), and

percent bias (PBIAS) were used to evaluate the

simulation results with calibrated parameters. MNS,

R2, and NS were well matched, as they were closer to

1. The closer PBIAS was to zero, the better the

observed and simulated values were matched (Gupta

et al., 1999). Equation 1 shows the calculation of

PBIAS, and in the case of the NS value, if it is 0.50 or

Figure 4
Comparison graph of simulated and observed flows (before calibration and validation): a 2013, b 2014, c 2015, d 2016
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Figure 5
Comparison of R2 values for simulated and observed flows (before calibration and validation): a 2013, b 2014, c 2015, d 2016

Figure 6
Comparison of simulated and observed flows for the entire study period (2013–2016) (before calibration and validation). a Comparison of

observed and simulated flows. b Comparison of R2 values for observed and simulated flows
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greater, it can be determined that the improvement

effect on uncertainty is high, and can be expressed as

shown in Eq. 2 (Nash & Sutcliffe, 1970).

Figure 7
Schematic of SWAT-CUP and SWAT-CUP Premium (adapted from Abbaspour, 2011): a SWAT-CUP and b SWAT-CUP Premium

Table 3

The acronyms and descriptions for each algorithm

Acronym Algorithm Description

SUFI-2 Sequential

uncertainty fitting

ver.2

In SUFI-2, parameter

uncertainty is described by a

multivariate uniform

distribution in a parameter

hypercube (Abbaspour et al.,

2004)

PSO Particle swarm

optimization

PSO is a popular optimizer in

which each particle selects its

learning exemplars relying on

their fitness (Abbaspour,

2011)

GLUE Generalized

likelihood

uncertainty

estimation

GLUE is an uncertainty analysis

technique inspired by

importance sampling and

regional sensitivity analysis

(Beven & Binley, 1992)

ParaSol Parameter solution ParaSol is based on a

modification to the global

optimization algorithm SPE-

UA (van Griensven &

Meixner, 2007)

MCMC Markov chain Monte

Carlo

MCMC methods are a class of

algorithms for sampling from

probability distributions

based on constructing a

Markov chain that has the

desired distribution as its

equilibrium distribution

(Vrugt et al., 2008)

SPE SWAT parameter

estimator

Upgraded SUFI-2 algorithm

(adapted from Abbaspour,

2011)

Table 4

Maximum and minimum ranges and optimal parameter values for

SWAT input parameters

Input Parameter Initial range Initial

value

Fitted

value

Gw ALPHA_BF -0.048 to 0.952 0.653 0.316

Hru CANMX 0–100 28 58.950

Rte CH_K2 -0.01 to 500 155 294.746

Sub CH_N1 -0.004 to 29.986 24 10.058

Rte CH_N2 -0.024 to 0.286 0.128 0.065

Mgt CN2 -0.25 to 0.25 0.12 -0.115

Hru EPCO 0 to 1 0.143 0.350

Hru ESCO -0.95 to 0.05 -0.46 0.008

Gw GW_DELAY 0–500 237 382.250

Gw GW_REVAP 0.02–0.2 0.09 0.074

Gw GWQMN 0–5000 4150 1327.500

Gw RCHRG_DP -0.05 to 0.95 0.425 0.844

Gw REVAPMN 0–500 123 209.250

Bsn SFTMP -6 to 0 -4.3 -1.377

Hru SLSUBBSN 10 to 150 86 -0.043

Bsn SMFMN -4.5 to 5.5 1.5 -4.355

Bsn SMFMX -4.5 to 5.5 2.7 0.445

Bsn SMTMP -0.20 to 20 0.7 1.22

Sol SOL_AWC -0.25 to 0.25 0.1 -0.004

Sol SOL_K -0.25 to 0.25 0.14 0.248

Sol SOL_Z -0.25 to 0.25 0.15 -0.227

Bsn SURLAG -3.95 to 20 11.45 3.175

Bsn TIMP -1 to 0 -0.050 -0.650
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PBIAS ¼ ½
Pn

i¼1 Oi � Sið Þ � 100�
½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 Oið Þ�

p ; ð1Þ

where Oi is the observed values, and Si is simulated

values.

NS ¼ 1�
P

ðOo � OsÞ2
P

ðOo � OoÞ
2
; ð2Þ

where Oo is observed values, Os is simulated values,

and Oo is average observed values.

In the SPE algorithm, uncertainty of the simula-

tion results is quantified by 95 PPU (95% prediction

uncertainty band). The 95 PPU is calculated with

parameters, including a measured 95% prediction

interval, based on which P- and R-factors are mea-

sured. The P-factor is an indicator of the percentage

at which the observed values are included in the 95

PPU, and when the P-factor is 1, it means that the

observed value is 100% included in the 95% pre-

diction interval. On the contrary, the R-factor

represents an average band width of 95 PPU; the

closer the value is to zero, the better the calibration

results coincide with the observed values. In general,

for the simulation of runoff, if the P-factor is between

0.70 and 0.75, it is considered suitable.

Figures 8, 9, and 10 show graphs comparing the

simulated results and observed flow using optimal

parameters obtained by the SPE algorithm. The

graphs showed that the tendency of daily and sea-

sonal variability was well reproduced, and the flow

level corresponding to each day was similar to others.

Table 5 shows a comparison of R2 values before and

after calibration and validation. The R2 value for

SWAT analysis before calibration and validation is

0.40, but after calibration and validation using

SWAT-CUP Premium, the simulation result was

improved to 0.71. Table 6 shows the model perfor-

mance evaluation, with NS of 0.51, PBIAS of 37.1,

P-factor of 0.73, and R-factor of 0.33, indicating that

the relationship between the observed and simulated

flows has improved, which is considered to be well

matched.

5. Baseflow Analysis and Comparison

To compare baseflow before and after calibration

and validation, SWAT output data were used to

extract surface water runoff (SURQ_mm), interme-

diate runoff (LATQ_mm), and groundwater runoff

(GWQ_mm) for the basin. The extracted data per unit

Figure 8
Comparison graph of simulated and observed flows (after calibration and validation): a 2013, b 2014, c 2015, d 2016
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area was calculated by runoff through unit conver-

sion, and the baseflow was used for an intermediate

runoff and groundwater runoff. Table 7 and Fig. 11

show the results of the baseflow analysis for each

Figure 9
Comparison of R2 values of simulated and observed flows (after calibration and validation): a 2013, b 2014, c 2015, d 2016

Figure 10
Comparison of simulated and observed flow for the entire study period (2013–2016) (after calibration and validation). a Comparison of

observed and simulated flows. b Comparison of R2 values of observed and simulated flows
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year. The average baseflow before calibration and

validation was 46.659 m3/s, and it was increased to

56.951 m3/s after calibration and validation.

Although there is a difference in baseflow depending

on precipitation for each year, it was shown to

increase after calibration and validation in all the

years, and in 2015, the overall baseflow is low due to

the effects of precipitation. Figure 12 shows a com-

parison of precipitation in the study area with the

baseflow runoff before and after calibration and val-

idation. The change of baseflow is shown depending

on season and precipitation. It was confirmed that the

difference in baseflow occurred according to the

improvement of calibration, validation, and accuracy.

6. Conclusions

The study area, Cheongsong Yongjeon stream

basin, is a designated rural water management area

for securing water resources through the utilization of

baseflow and groundwater. Therefore, this study

simulated the runoff and baseflow of this area using

the SWAT model, which is widely used for hydro-

logical analysis, and compared the results after

calibration and validation. In addition, the study

checked for any uncertainties in the data by using

SWAT-CUP Premium.

– According to the SWAT analysis, the R2 value of

simulated and observed flows was 0.40, indicating

low accuracy. However, after calibration and

validation using SWAT-CUP Premium during the

same period, the R2 of simulated and observed

flows increased to 0.71. In terms of the evaluation

indexes, the NS was 0.51, PBIAS was 37.1, the

P-factor was 0.73, and the R-factor was 0.33,

showing an improved relationship between

observed and simulated flows. In particular, the

NS was greater than 0.50, indicating a significant

improvement in uncertainty, and the P-factor for

simulated runoff was also highly accurate.

– The baseflow before and after calibration and

validation was also compared using surface water

runoff, intermediate runoff, and groundwater run-

off variables. The average baseflow before

calibration and validation was 46.659 m3/s, which

increased to 56.951 m3/s after calibration and

validation. Although there are differences in base-

flow depending on the season and precipitation

level, it was able to obtain more accurate values

than before calibration and validation. In

Table 5

Comparison of R2 values by year before and after calibration and

validation

Year 2013 2014 2015 2016 2013–2016

Before calibration and

validation

(SWAT)

0.21 0.52 0.17 0.49 0.40

After calibration and

validation

(SWAT-CUP Premium)

0.55 0.80 0.56 0.74 0.71

Table 6

Simulation results using SWAT-CUP Premium after calibration

and validation

Evaluation factor R2 NS PBIAS MNS P-factor R-factor

Simulation results 0.71 0.51 37.1 0.52 0.73 0.33

Table 7

Baseflow comparison before and after calibration and validation

Baseflow 2013 2014 2005 2016 Average

Before calibration and

validation (m3/s)

42.553 60.631 23.404 60.048 46.659

After calibration and

validation (m3/s)

52.533 73.446 28.764 73.060 56.951

Figure 11
Graph of change in baseflow before and after calibration and

validation
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particular, the use of SWAT-CUP Premium’s SPE

algorithm parameters is considered to be highly

applicable for analyzing rainfall–runoff relation-

ships and managing water resources in small rural

areas.

– Baseflow is difficult to analyze because it changes

depending on various environmental factors, such

as climate and geological variables (e.g., geolog-

ical faults). There are also limitations to estimating

quantitative baseflow due to the uncertainty in

baseflow analysis. However, integrated analysis

that considers surface water and groundwater,

calibration and validation using SWAT-CUP Pre-

mium, and uncertainty improvement enables more

accurate baseflow calculations. The findings of this

study can also be used as fundamental data for

securing water resources through integrated sur-

face water–groundwater analysis in rural areas that

require water resource management, as in the case

of the study area.

– However, this study has limitations when it comes

to investigating natural baseflow due to the lack of

measured baseflow data and limits when it comes

to quantifying model input data. Therefore, data

acquisition and research on river flow, direct

runoff, and baseflow should be continued in order

to more accurately identify river characteristics.

Long-term baseflow observations on a national

level are also necessary to evaluate the baseflow

analysis accuracy of watershed models.
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