
High Resolution Model of the Vinton Salt-Dome Cap Rock by Joint Inversion of the Full

Tensor Gravity Gradient Data with the Simulated Annealing Global Optimization Method

MAURICIO NAVA-FLORES,1 CARLOS ORTIZ-ALEMÁN,2 and JAIME URRUTIA-FUCUGAUCHI
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Abstract—We present a 3D high-resolution modeling

methodology based on the interpretation of gravity gradient data

and its joint inversion with the simulated annealing (SA) global

optimization method. The geometry of the model, used as com-

putational domain in the solution of the forward and inverse

problems, is defined with an irregular ensemble of cubic prisms that

recreates the interpreted shape of the target, derived from the

results of applying different interpretation methods to the gravity

gradient data. In our inversion approach, the linear inverse problem

resulting from the domain discretization is not solved. Instead, the

cost function is explored with the SA algorithm, its low misfit

region is identified, and models belonging to it are selected for

obtaining the mean model, which represents the most likely model

among them, as well as for estimating its uncertainty. The SA

inversion algorithm we applied was numerically optimized to

reduce the computational burden required by the forward problem,

and it was driven by optimal tuning parameters, determined by a

parametric analysis. Tests on synthetic data show the efficiency of

our methodology to obtain a model that approximates the synthetic

target and the usefulness of the estimated uncertainty to comple-

ment the interpretation. Finally, by applying our methodology to

gravity gradient data acquired over the Vinton dome located in

Louisiana, USA, we obtained results that are in agreement with

geological information and previous studies.

Keywords: 3D gravity gradient modeling, gravity gradient

data processing, joint inversion, simulated annealing.

1. Introduction

Gravity gradient modeling is an important inter-

pretation tool in geophysical exploration. It started to

develop in the early 2000s, thanks to technological

advances in data acquisition that made gravity gra-

dient surveys routine for oil and mineral exploration

(Zhdanov et al., 2004).

Gravity gradiometry has higher resolution than

conventional gravimetry for characterizing shallow

targets. Unlike conventional gravity surveys, in

which only the vertical component of the gravity

field, gz, is measured, a gravity gradient survey

measures the gradient of the gravity field in different

orthogonal directions. If considering a Cartesian

coordinate system, this results in the six different

components of the full tensor gravity gradient

(FTGG), which is more sensitive to near-surface

density variations than the gravity field because its

decay rate with distance is greater than that of the

latter. In addition, the signal-to-noise ratio of the

FTGG components is higher than the gz component

because of their ability to reject common mode noise,

and their horizontal components provide lateral

information that cannot be provided by the gz com-

ponent alone (Martinez et al., 2013).

Some methods of interpreting gravity gradient

data have been developed for the purpose of

improving and mapping edges and lineaments (e.g.,

Beiki, 2010; Salem et al., 2013), identification of

anomalous three-dimensional structures (e.g., Peder-

sen & Rasmussen, 1990; Murphy & Brewster, 2007)

and the semi-automatic interpretation of anomaly

source bodies (e.g., Zhang et al., 2000; Mikhailov

et al., 2007). The information obtained from them is

useful for inferring some structural characteristics of
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the targets, such as their approximate lateral extent,

depth and shape, but is insufficient to estimate their

physical properties or spatial arrangement.

To achieve a better subsurface interpretation,

recent inversion methods have been developed that

are intended to estimate the shape and physical

properties of the observed anomaly sources. Most of

them have approached 3D subsurface modeling by

discretizing it with regular ensembles of rectangular

prisms with fixed geometry and constant but

unknown density contrast, leading to the formulation

of linear inverse problems. Problems formulated this

way are often ill-conditioned and require the incor-

poration of regularization terms to stabilize the

solution of the resulting system of linear equations,

such as presented by Zhdanov et al. (2004) and Qin

et al. (2016). Depending on the number of observed

data points and the resolution of the prism ensemble

employed, the problem to be solved can be chal-

lenging because of the large amount of memory

required to handle the sensitivity matrices and the

computational time needed to solve the system of

equations. For this reason, high-performance com-

puting strategies have been implemented to solve

these large-scale inverse problems (e.g., Čuma et al.,

2012; Wang et al., 2017; Hou et al., 2019).

On the other hand, only a few methods have been

developed to solve the nonlinear inverse problems

resulting from the discretization with prism ensem-

bles with fixed density and unknown geometry, in

which the geometry of the prisms used in the dis-

cretization is to be solved, such as those presented by

Barnes and Barraud (2012) and Oliveira Jr. and

Barbosa (2013).

Apart from the aforementioned methods, there are

other strategies, such as global optimization methods,

that have barely been applied for 3D gravity gradient

inversion. These strategies are based on the explo-

ration of the cost function in search of an optimal

solution, so it is necessary to apply some constraints

to reduce the non-uniqueness problem and, in case of

an exhaustive exploration, also some techniques to

reduce the computational cost involved.

To our knowledge, the only published method of

this type was presented by Uieda and Barbosa (2012),

who developed a robust gravity gradient inversion

method, named the planting algorithm, to estimate

density contrasts in a medium discretized by regular

prisms through systematic growth around some

specific prismatic elements called ‘‘seeds.’’ The

planting algorithm includes constraints to obtain

compact models, is not very sensitive to the effects of

nontargeted sources and noisy data and reduces

memory usage as well as computational burden.

However, it only allows accretion of bodies that

reduce the cost function, which could lead to stag-

nation at a local minimum, and no uncertainty

estimate of the inverted parameters is presented.

In this work, we present a 3D high-resolution

modeling approach based on the interpretation and

joint inversion of gravity gradient data. We dis-

cretized the target with an irregular ensemble of

identical cubic prisms, constraining its shape and

location with information derived from the applica-

tion of different interpretation methods, and solved

the inverse problem to estimate their density contrasts

with a numerically optimized SA algorithm. We

retrieved a representative model and assessed its

uncertainty from the low-misfit region of the cost

function identified by the inversion procedure.

Finally, we tested our methodology on synthetic data

and on airborne gravity gradient data acquired over

the Vinton dome located in southwestern Louisiana,

USA, validating its potential use for interpretation

purposes.

2. Methodology

2.1. Forward Gravity Gradient Modeling

of a Discrete Target Constrained by Data

Interpretation

The first step in our modeling approach is the

construction of the discrete computational domain to

solve the direct gravity gradient problem as well as to

compute the sensitivity matrices needed for the

inversion procedure.

We start with lateral and depth target constraints

from the application of interpretation methods to the

available FTGG data (Fig. 1).

To define the lateral extent of the target, we apply

some commonly used methods, such as the zero

contours of the Txx, Tyy and Tzz component data grids,
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tilt angle (Miller & Singh, 1994) applied to the Tzz
component (TA Tzz), maximum of the total horizon-

tal gradient (THG) (Cordell, 1979) and I2 invariant

grid of the gravity gradient tensor (Pedersen &

Rasmussen, 1990).

Given the available FTGG data, the depth to the

top of the target can be estimated with the 3D Euler

deconvolution (3DED) methodology (e.g., Reid et al.,

1990; Zhang et al., 2000; Beiki, 2010).

Also, the target topography can be approximated

with the I2 invariant (Murphy & Brewster, 2007),

scaling their amplitudes with the previously esti-

mated depths (Fig. 1).

The discrete domain will be constructed with an

irregular ensemble, considering that it extends from

the interpreted topography to a flat base deep enough

to contain the entire target (Fig. 2).

Finally, it is necessary to assign density contrasts

to the prisms of the computational domain to

compute the forward problem. Each prism can have

a different density contrast value, which can be

calculated if the densities of the target and the

medium in which it is immersed are known.

The gravity gradient components of the discrete

target are calculated by summing the individual

contributions of each of the M prisms of the ensemble

at the N observation points:

Tab kð Þ ¼
XM

q¼1

Tabðk; qqÞ; for a; b ¼ x; y; z and k ¼ 1; . . .;N

ð1Þ

where Tab kð Þ represents the Tab component of the

gravity gradient tensor calculated at the k-th obser-

vation point because of the whole ensemble, and

Tab k; qq
� �

is the contribution of the q-th prism at that

point.

Now, the gravity gradient components due to each

prism with constant density contrast, q, at each

observation point, are calculated through the second

derivatives of its gravitational potential U r~ð Þ:

Tab r~ð Þ ¼ o2U r~ð Þ
oaob

¼ cq
Z

v0

o2

oaob
1

jr~� r~0j
dv0 ð2Þ

where r~ and r~0 are the position vectors of the obser-

vation point and the differential element of

integration in the volume occupied by the prism,

respectively, and c is the universal gravitational

constant.

Solving Eq. (2) gives the numerical values of the

gravity gradient components due to the discrete

target. We use the numerical solutions derived by

Nagy et al. (2000):

Txx ¼ cq
X2

i¼1

X2

j¼1

X2

k¼1

lijk tan�1

�
yjzk
xirijk

�� �
ð3Þ

Txy ¼ �cq
X2

i¼1

X2

j¼1

X2

k¼1

lijk ln rijk þ zk
� �� 	

ð4Þ

Txz ¼ �cq
X2

i¼1

X2

j¼1

X2

k¼1

lijk ln rijk þ yj
� �� 	

ð5Þ

Tyy ¼ cq
X2

i¼1

X2

j¼1

X2

k¼1

lijk tan�1

�
xizk
yjrijk

�� �
ð6Þ

Tyz ¼ �cq
X2

i¼1

X2

j¼1

X2

k¼1

lijk ln rijk þ xi
� �� 	

ð7Þ

Tzz ¼ cq
X2

i¼1

X2

j¼1

X2

k¼1

lijk tan�1

�
xiyj
zkrijk

�� �
ð8Þ

Figure 1
Illustration of target interpretation with edge enhancement and

depth estimation methods applied to gravity gradient data
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where c ¼ 6:67 � 10�11 m3 kg�1 s�2
� 	

, lijk ¼ liljlk
(l1 ¼ �1; l2 ¼ 1) and rijk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
i þ y2

j þ z2
k

q
, with

xi ¼ xp � x0i , yj ¼ yp � y0j and zk ¼ zp � z0k (xp, yp,

zp are the coordinates of the observation point and x0i ,

y0j and z0k are the coordinates of the vertices that

define the prism, as shown in Fig. 2).

2.2. Joint Inversion of the Gravity Gradient Data

by Simulated Annealing

The gravity gradient forward problem, expressed

in Eq. (1), can be rewritten as:

fk ¼ Gf
kq � qq; for k ¼ 1; . . .;N ð9Þ

where Gf
kq is the sensitivity matrix of each component

f of the gravity gradient tensor

(f ¼ Tab for a; b ¼ x; y; z), and qq is the vector of

density contrasts of the model. Each element of Gf
kq

represents the contribution of the q-th prism of the

ensemble to the f-component of the gravity gradient

tensor, at the k-th observation point.

The forward problem (Eq. 9) represents a linear

system of equations for each gravity gradient tensor

component, where each system has the same

unknowns or parameters (qq vector), so the inverse

problem consists of calculating the vector of param-

eters, qq, that satisfies (Eq. 9) simultaneously for all

the components of the gravity gradient tensor.

We propose to perform the gravity gradient data

inversion with the SA global optimization method,

which is a single-solution based-metaheuristic,

inspired by the natural process of crystal formation

from a mineral fluid in a high initial energy state

(Kirkpatrick et al., 1983; Sen & Stoffa, 2013).

The SA method does not solve the linear system

of equations (Eq. 9) to obtain a model that fits the

observations. Instead, it explores, in a relatively

exhaustive way, the cost function associated with the

system, in search of the global optimum, requiring a

large number of evaluations of the forward problem

in a three nested loop algorithm (Fig. 3). The

innermost loop runs through the total number of

parameters (density contrasts of the M prisms of the

model), distorting each of them one by one to obtain

a different model at a time and accepting or rejecting

them with the Metropolis criteria. The perturbation to

each parameter is done by adding the product of a

uniformly distributed random number in the interval

�1; 1ð Þ by a real number VM, which controls the

maximum perturbation amplitude:

VM � rand �1; 1ð Þ. The intermediate loop repeats

Figure 2
a Schematic representation of the discretization of the target into an irregular ensemble of cubic prisms and the calculation of the gravity

gradient at an observation point. b Each prism in the ensemble has constant density and is defined from 4 vertices. P is the point at which the

gravity gradient components are calculated
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this model acceptance-rejection procedure for a NT

fixed number of times at each temperature value until

thermal equilibrium is reached. Finally, the outer

loop executes the intermediate and inner loops by

reducing the temperature in each cycle with a cooling

schedule until a predefined number of iterations is

reached or a tolerance error is achieved. In this work,

we used the exponential cooling scheme employed by

Nagihara and Hall (2001), which, according to them,

guarantees convergence to the global optimum and

consists of multiplying the current temperature Tk by

a real number RT\1:0 to obtain the reduced

temperature Tkþ1: Tkþ1 ¼ Tk � RT.

To reduce the computational cost required by the

SA method, the forward problem (Eq. 9) is imple-

mented as an accelerated matrix-vector product, as

proposed by Ortiz-Alemán and Martin (2005). It

consists of computing the forward problem for a

model disturbed in the q-th parameter, by adding a

previously computed problem to the product of the q-

th column of the matrix Gf
kq by the q-th parameter

disturbance Dqq:

Figure 3
Representative flow diagram of the simulated annealing (SA) method used in the gravity gradient data inversion. Modified from Nava-Flores

et al. (2016)

Vol. 180, (2023) High Resolution Model of the Vinton Salt-Dome 987



Gf
kq � qq þ Dqq

� �
¼ Gf

kq � qq þ

Gf
1;q

Gf
2;q

..

.

Gf
N;q

2

6666664

3

7777775
� Dqq ð10Þ

The cost function we propose to quantify the misfit in

the SA method is a weighted sum of the fitting errors

of each component of the gravity gradient tensor:

E ¼
X

f

kf � L1ðf Þ ð11Þ

where kf are the weighting factors applied to each

gravity gradient tensor component f, and the fitting

error is calculated with the normalized L1 norm,

defined as:

L1 fð Þ ¼
PN

k¼1 jfk � f calc
k j

PN
k¼1 jfkj

ð12Þ

where fk is the gravity gradient observed component

and f calc
k is the gravity gradient calculated component.

The kf weighting factors in Eq. (11) are deter-

mined in such a way that their sum is equal to unity,

and their values are inversely proportional to the

maximum sensitivity of the corresponding gravity

gradient component to which they are applied:

X

f

kf ¼ 1; where kf ¼ 1

5
1 �

max Gf
� �

P
f max Gfð Þ

" #

ð13Þ

The cost function jointly evaluates the fitting of the

gravity gradient tensor components assigning more

weight to the less sensitive, allowing them to con-

tribute in an equalized way to the calculated error,

which is based on the L1 norm, that is known to have

a low sensitivity to outliers in the data.

Figure 4
Convergence curve for the inversion of synthetic gravity gradient data. The convergence curve is shown as a solid line, and the constant

threshold value for equivalent model selection (TRS 800) is shown as a dashed horizontal line

Table 1

Test values for the parametric scan of the simulated annealing (SA)

inversion algorithm

Parameter Value

NT 1 (first stage); 1 to 100 (second stage)

T0 10; 1; 0:1; 0:01; 0:001; 0:0001; 0:00001; and 0:000001

RT 0:7; 0:8; 0:9; 0:95; 0:98; and 0:99 (first stage); 1.0

(second stage)

VM 100%; 50%; 25%; 10%; 5%; and 2% (% of the

maximum range of parameters variation)
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Figure 5
Model acceptance by temperature reduction step for the parametric scan of the simulated annealing (SA) method, applied to the joint inversion

of synthetic gravity gradient data

Figure 6
Perspective representation of model acceptance curves by temperature reduction step for T0 ¼ 0:0001

Vol. 180, (2023) High Resolution Model of the Vinton Salt-Dome 989



2.3. 3D Density Model Inverted and Uncertainty

Estimation

The SA method is able to compute a single model

with minimum fitting error, but that model is only one

of a possible infinite number of models that could

have the same error, given the intrinsic non-unique-

ness of the gravity problem. In addition, from that

single model it is not possible to assess the uncer-

tainty of their inverted parameters. Furthermore,

according to Fernández Martı́nez et al. (2012), the

cost function may be distorted by noise in the data,

which is always the case in a real scenario, creating a

false global optimum whose corresponding model

may not be the best for interpretation. Therefore, it is

necessary to adopt a statistical approach to overcome

these difficulties, assuming that the resulting model

and its uncertainty will only be approximations of the

optimal model.

Our approach was inspired by the work of Pallero

et al. (2018), who applied the particle swarm

optimization algorithm to invert gravity anomaly

data and described methods to estimate the model and

its uncertainty. We computed a useful model for

Figure 7
Synthetic noise-corrupted gravity gradient data grids. a XX component, b XY component, c XZ component, d YY component, e YZ

component and f ZZ component. The synthetic data grids are produced by the model shown in Fig. 8

990 M. Nava-Flores et al. Pure Appl. Geophys.



interpretation and its uncertainty from the set of

tested models during the SA inversion procedure that

samples the low-misfit region of the cost function.

These models are characterized by having compara-

ble fitting errors despite being composed of different

parameters, which makes them solution models of the

inverse problem with virtually the same level of

accuracy; therefore, a representative model extracted

from the low-misfit region could be determined from

them and a measure of their parameter dispersion

could be used as an estimate of their uncertainty. To

select them it is necessary to examine the inversion

convergence curve to set a threshold value for the

cost function below which all models can be consid-

ered equivalent with respect to the fitting error

(Fig. 4).

The resulting set of equivalent models is then

averaged to obtain the mean model, which is an

estimate of the most probable among them, and the

uncertainty is assessed with their mean deviation:

Md ¼ 1

w

XM

w¼1

jqwq � �qj ð14Þ

where qwq is the w-th equivalent model and �q is the

mean model.

Finally, a 3D model with the estimated uncer-

tainty values of the mean density model can be

configured to analyze its spatial distribution, which

can be useful to support the interpretation.

3. Tuning Parameters of the Simulated Annealing

Method by Parametric Scan

The performance of the SA method depends on

several parameters whose values must be entered

prior to its execution. These problem-dependent

Fig. 8
3D visualization of the synthetic model. a Perspective view from the southeast, b perspective view with two diagonal slices and a depth slice

at Z = 0.55 km, c perspective view from above of the low-density unit and d perspective view from below of the high-density unit
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Figure 9
Lateral extent of the synthetic model interpreted from edge enhancement methods. a Zero contours of the FTGG components Txx, Tyy (white

dashed lines) and Tzz (yellow dashed line) shown overlaying the Tzz component map, b lateral extent of the model (white dashed line)

interpreted from the I2 invariant map, c maximum of the total horizontal gradient (black dashed line) shown over the THG map and d zero

contour of the tilt angle applied to the Tzz component (black dashed line) shown over the TA Tzz map
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Figure 10
a Lateral boundaries of the synthetic model inferred by the zero contours of the Txx, Tyy and Tzz components as well as from the TA Tzz and

THG methods. b Unified interpretation of the lateral extent of the model by visual selection of the results of TA Tzz and I2. The true edge of

the model is shown in red dashed line

Figure 11
a 3D Euler deconvolution solutions of the synthetic gravity gradient data. The interpreted outer edge of the model is shown with black line.

b Histogram of the structural index calculated for the synthetic model

Vol. 180, (2023) High Resolution Model of the Vinton Salt-Dome 993



tuning parameters are the initial temperature T0, the

cooling factor RT, the maximum disturbance ampli-

tude VM and the number of perturbations per

temperature cycle NT.

To determine optimal values for them, we propose

to perform a parametric scan-based analysis by exe-

cuting the inversion algorithm for different

combinations of the T0, RT, VM and NT parameters in

two stages. In the first stage, the parametric scan is

Figure 12
Comparison of topographic surfaces of the synthetic model. a True topography of the model, b interpreted topography of the model and

c depth differences between true and interpreted model topography (true minus interpreted)

994 M. Nava-Flores et al. Pure Appl. Geophys.



performed to identify the optimal values of T0 and RT

as well as to define possible suitable values for VM. It

consists of several executions of the inversion algo-

rithm with a fixed maximum number of temperature

reductions and is performed only for NT ¼ 1, con-

sidering that the optimal parameters identified

correspond to the minimum acceptable performance,

so these parameters will also lead the SA to a good

performance for NT [ 1. In the second stage, the best

value of VM among the possible values identified in

the first stage and the optimum value of NT are

determined with another parametric scan. It consists

of some executions, keeping the RT parameter fixed

at 1 with a low maximum number of iterations each.

Table 1 shows the test values we proposed for the

tuning parameters of the SA in the parametric scan.

The results of the first parametric scan can be

analyzed by clustering the model acceptance curves

by temperature reduction step derived from the dif-

ferent executions of the inversion algorithm and

displayed as a surface, as shown in Fig. 5.

The curves forming the surface of the Fig. 5 are

grouped in eight blocks, corresponding to the test

values for T0, with six sub-blocks each, correspond-

ing to the RT test values, and each sub-block contains

six curves calculated for the different VM test values,

as illustrated in Fig. 6.

Inspecting the results in Figs. 5 and 6 shows the

influence of the parameters T0, RT and VM in the

model acceptance–rejection process by the Metro-

polis criteria, employed in the SA algorithm

throughout its executions. As the T0 parameter

decreases, the number of temperature reduction steps

(TRS) required for the percentage of accepted models

to begin a significant and sustained decline also

decreases. The RT parameter acts as a regulator of the

model acceptance-rejection process, causing an

increase in the rejection percentage at a fewer number

of temperature reductions, when it takes values close

to 0.0, and maintaining the tendency to get a high

acceptance percentage, when it takes values close to

1.0. Finally, the VM parameter, which limits the

maximum perturbation to be applied to a model to

create a new one, proportionally impacts the rejection

percentage of the models with respect to the TRS,

regardless of the values of T0 and RT.

3.1. Selection Criteria for the T0, RT and VM

Parameters

At the beginning of the SA inversion algorithm, it

is desirable that almost all tested models are accepted

by the Metropolis criteria, which reflects a suffi-

ciently high initial temperature to allow an adequate

Figure 13
3D visualization of the computational domain ensemble with initial density contrasts asigned (synthetic case). a Perspective view from the

southeast, b perspective view with two diagonal slices and a depth slice at Z = 0.55 km
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exploration of the solution space. It is also desirable

that not many TRS pass before models begin to be

rejected significantly to save computational time.

Therefore, a value for T0, which produces curves

between 80% and 100% model acceptance for the

first 10 TRS, for all values of the VM parameter and

RT� 0:95 will be a good choice (Fig. 14).

The SA inversion algorithm requires a gradual

cooling to perform a proper exploration of the

solution space, which will allow it to escape from

local optima and favor its convergence to the global

optimum. By inspecting the convergence curves for

the value of T0 that meets the first established

criterion, we will observe that they converge to the

minimum at different TRS (Fig. 15). Although

apparently the same error is reached in the three

cases, the convergence curves generated for the

smallest value of RT could reflect a premature

convergence because of the relatively low value of

the cooling factor, and at the other side, when RT

reaches its highest value, the convergence is too slow,

which would unnecessarily increase the computa-

tional cost, so an intermediate value for RT would be

the best choice.

Now, since the VM parameter is an important

factor influencing the convergence speed in addition

to T0 and RT, as shown in Fig. 15, it is important to

choose the value for it that generates smooth

convergence curves and at the same time does not

delay convergence.

The VM and NT parameters will be chosen from

the second-stage parametric scan by comparing the

convergence curves for the value of the T0 parameter

that meets the first criterion. The curve that converges

smoothly to a stable energy value in the least number

of iterations will correspond to the optimal VM

parameter, and that minimum number of iterations

will be the optimal NT value (Fig. 16).

4. Tests on Synthetic Data

To validate our methodology, we applied it to

noise-corrupted synthetic data grids of gravity gra-

dient components (Fig. 7). The synthetic data grids

consist of 101 � 101 regularly spaced observations

each, covering an area of 25 km2 (5 km � 5 km), and

are contaminated by pseudo-random Gaussian noise

with zero mean and standard deviation of 1.0 Eötvös.

The synthetic data correspond to a model formed by

an irregular ensemble of 27,959 cubic prisms of

identical dimensions (25 m � 25 m � 25 m) that

resembles a cap rock lying over a salt base. The

model has an irregular top surface with a minimum

depth of 150 m and a flat base with depth of 600 m

(Fig. 8). It is formed by two units with different and

constant densities, separated by a concave interface.

The top unit has a density of 2750.0 kg/m3, corre-

sponding to limestone, and the bottom unit has a

density of 2180.0 kg/m3, corresponding to salt,

according to density ranges reported by Telford et al.

(1990).

The background density was modeled as a sedi-

mentary environment with varying density, according

to the representative density-depth relationship for

the Gulf of Mexico sediments, published by Hudec

et al. (2009):

q zð Þ ¼ 1400:0 þ 172:0z0:21 ð15Þ

where q is the sediment density in kg/m3, and z is the

depth in m.

Prior to applying edge enhancement and depth

estimation methods, all synthetic data grids were

upward continued 100 m to filter out short-wave-

length noise that could strongly affect the gradient-

based methods (TA Tzz, THG and 3DED), but the

data inversion was done employing the data grids

without the upward continuation (Fig. 9).

We interpreted the lateral extent of the model by

inspecting the zero contours of the Txx, Tyy and Tzz

bFigure 14

Model acceptance curves by temperature reduction step for the

parametric scan applied to the simulated annealing (SA) inversion

algorithm for T0 ¼ 0:0001 and RT� 0:95 (synthetic case). a Model

acceptance curve for T0 ¼ 0:0001 and RT ¼ 0:95, b model

acceptance curve for T0 ¼ 0:0001 and RT ¼ 0:98 and c model

acceptance curve for T0 ¼ 0:0001 and RT ¼ 0:99
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gravity gradient components, zero contour of the

TA Tzz, maximum value of the THG and I2 invariant

grid. Although no method was able to accurately

approximate the outer edge of the model, the TA Tzz
and I2 methods yielded the best results and were the

only two considered for the interpretation, by visual

inspection, of the outer edge of the model shown in

Fig. 10.

Notably, the interpreted outer edge does not fully

coincide with the true outer edge. The interpreted

edge is slightly offset in y-direction with respect to

the true edge and is also slightly wider. This is

attributed to the topography of the model (Figs. 8, 12)

and the shape of the invariant I2 surface, which has a

relatively smooth appearance over the edges of the

model.

To estimate the depth of the model, we applied

the 3D Euler deconvolution (3DED) to the synthetic

gravity gradient data using a square window of 500 m

per side (equivalent to 10 grid points) with the for-

mulation proposed by Beiki (2010), in which the

solutions and the structural index (SI) are calculated.

The accepted solutions were those whose depth

estimation dispersion was B 10:0% and are shown in

Fig. 11. The histogram of the calculated SI shows a

peak at SI � 0:5, indicating that the model does not

have an integer structural index. However, the esti-

mated depths are in good agreement with the true

depth of the model.

Now, the interpreted topography of the model,

which results from scaling the amplitudes of the I2
invariant grid with the depths calculated by 3DED

and its lateral extent constrained by the unified

interpreted outer edge, is shown in Fig. 12.

The interpreted topography resembles the true

topography of the model, although it presents some

discrepancies in its lateral lower zone, where it

reaches the maximum difference of 70 m.

We constructed the computational domain with a

flat base at a maximum depth of 600 m from the

interpreted topography. The geometry of this

bFigure 15

Convergence curves for the parametric scan applied to the

simulated annealing (SA) inversion algorithm for T0 ¼ 0:0001

and RT� 0:95 (synthetic case). a Convergence curves for T0 ¼
0:0001 and RT ¼ 0:95, b convergence curves for T0 ¼ 0:0001 and

RT ¼ 0:98 and c convergence curves for T0 ¼ 0:0001 and

RT ¼ 0:99

Figure 16
Convergence curves for the second-stage parametric scan applied to the simulated annealing (SA) inversion algorithm for T0 ¼ 0:0001

(synthetic case)
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irregular ensemble correlates with that of the syn-

thetic model, showing some minimal differences due

to the inaccurate interpretation of the data. This

ensemble is the constrained discrete domain, used to

perform the synthetic data inversion.

Initially, a constant density value of 2750.0 kg/m3

was assigned to all prisms in the discrete domain, and

their density contrasts were determined with this

value and the Gulf of Mexico sediment density model

(Eq. 15). The search space of the inversion algorithm

was limited to a minimum value given by the sedi-

ment density and to the maximum value of 2750.0 kg/

m3, corresponding to the cap rock (Fig. 13).

The parametric analysis performed to determine

the optimal SA tuning parameters for synthetic data

inversion yielded the acceptance curves used for the

creation of Figs. 5 and 6 shown in Sect. 3. The model

acceptance curves, from which the optimal value of

T0 was determined, are shown in Fig. 14, showing

compliance with the established selection criterion:

the parameter T0 ¼ 0:0001 produces acceptance

curves between 80% and 100% for all the VM values

and for RT[ 0:95, for the first 10 TRS (Fig. 14).

The convergence curves analyzed to determine

the optimum RT value are shown in Fig. 15. For the

value of RT ¼ 0:95, the curves reach the minimum

between 80 and 200 TRS, for the value of RT ¼ 0:98,

they reach it between 200 and 400 TRS, and for the

value of RT ¼ 0:99, between 400 and 700 TRS, so

the value of RT ¼ 0:98 would be the best choice to

avoid premature convergence and the excessive

Figure 17
3D visualization of the mean density model resulting from the inversion of synthetic data. a Perspective view of the inverted mean density

model, b perspective view of the cap rock-density volume, c perspective view of the salt-density volume and d perspective view of the

sediment-density volume. The azimuth and elevation angles of all perspective views are 225� and 45�, respectively
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computational cost due to a very slow temperature

decrease.

The convergence curves used to determine the

optimum values of VM and NT are shown in Fig. 16,

where it is observed that for VM� 25% the curves

converge to a stable energy value in ten iterations

with a smooth behavior. Therefore, the optimum

value identified for NT is 10, and the optimum value

identified for VM is 25%.

Finally, after running the inversion algorithm with

the optimal parameters, we identify the low-misfit

region of the cost function by inspecting the con-

vergence curve generated by the inversion. We set the

fitting error at TRS 800 as the threshold below which

all models proved by the algorithm are equivalent

with respect to the error because it is the value to

which the convergence curve trends in the final stage

of the inversion procedure, as shown in Fig. 4.

The resulting set of models that samples the low-

misfit region consisted of [ 20.257 million models

with a maximum difference between their fitting

errors of 8:39 � 10�7. The mean model calculated

from them and the uncertainty model estimated with

their mean deviation (Eq. 14) are shown in Figs. 17

and 18, respectively.

The inverted mean model presents an internal

configuration of densities that is approximated to the

synthetic model. From its 3D visualization, it is

possible to distinguish the high density unit, corre-

sponding to the cap rock, and low density unit,

corresponding to salt. Although the inversion method

does not exactly retrieve the shape of the two model

density units, it was able to identify the sediment

border to the south that does not correspond to the

true edge of the model (Fig. 17). In addition, the

inverted mean model shows a shallow zone of low

density in the central part overlying the high-density

volume. This zone has the appearance of a shallow

layer that correlates with the area where the inter-

preted model topography is slightly shallower than

the true topography. Also, the salt density volume of

the inverted model shows two deep depressions that

correlate with areas where the model topography

exceeds the true topography.

The estimated uncertainty model shows that the

zones with the highest uncertainty in the inverted

mean density model, with values ranging from 200 to

212.3 kg/m3, are those corresponding to the rock-salt,

rock-sediment and salt-sediment interfaces. There is

also a large uncertainty associated with the upper

northern portion of the model, in a small area to the

south and in the central deepest zone of the model.

The gravity gradient data grids created by the

inverted mean density model are shown in Fig. 19.

The mismatch between them and the synthetic data

grids was evaluated by performing a statistical anal-

ysis of the residuals between synthetic and inverted

data. The histograms of the residuals with their mean

values and standard deviations are shown in Fig. 20.

Figure 18
3D visualization of the uncertainty model resulting from the

inversion of synthetic data. a Perspective view of the uncertainty

model, and b perspective view of the uncertainty model with two

diagonal slices and a depth slice at Z = 0.55 km. The azimuth

angles of the perspective views (a) and (b) are 225� and 180�,

respectively. The elevation angle of all perspective views is 45�
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The statistical analysis of residuals shows that all

the inverted data grids adequately fit the synthetic

data, since their averages are close to zero and their

standard deviations are close to 1.0 Eötvös, which are

the values that characterize the pseudo-random

Gaussian noise added to the synthetic data.

The global performance of the inversion algo-

rithm can be resumed with the values of the Table 2.

Our joint inversion algorithm was coded in

modern Fortran language (2008 standard), was com-

piled with the gfortran 9.4.0 compiler and was

executed on a mobile workstation with 31.3 GB

RAM and an Intel� CoreTM i7-4810MQ CPU @ 2.80

GHz � 8 processor, running on a 64-bit Linux

Operating System.

Notably, forward modeling alone calculated with

the numerical solutions proposed by Nagy et al.

(2000), shown in Eqs. (3) to (8), takes 18.6 min (0.31

h) of computing time, while the inverse problem,

consisting of 304.99 million evaluations of the for-

ward problem, takes 9.939 h, which represents a

small fraction (1:05 � 10�7) of the time it would

Figure 19
Gravity gradient data grids calculated for the inverted mean density model (synthetic case). a XX component, b XY component, c XZ

component, d YY component, e YZ component and f ZZ component
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require if the accelerated matrix-vector product

(Ortiz-Alemán & Martin, 2005) were not

implemented.

5. Application to Real Data

We applied our methodology to model the Vinton

dome cap rock with the FTGG data acquired from

Figure 20
Relative frequency histograms of the residuals of the gravity gradient data calculated for the inverted mean density model (synthetic case).

a XX component, b XY component, c XZ component, d YY component, e YZ component and f ZZ component
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July 3 to 6, 2008, by Bell Geospace Inc. The air

gravity gradient survey was carried out with the

general characteristics shown in Table 3.

Figure 21 shows the geographical location of the

area covered by the gravity gradient survey as well as

the central area used for the cap rock model.

The data provided by Bell Geospace already

included some essential processes that consisted of

peak and noisy data editing, micro-leveling, terrain

correction with a density of 1800 kg/m3 and high-

frequency noise filtering with a 150-m cut-off

wavelength filter (Selman, 2010).

The area selected for modeling corresponds to the

central section of the grid, where the anomaly

attributed to the cap rock of the Vinton dome stands

out. The area covers an area of 25 km2 (5 km per

side) and is located between coordinates 440.0 km

and 445.0 km in the E–W direction, and 3332.0 km

and 3337.0 km in the N–S direction (WGS 84/UTM

zone 15 N).

Figure 22 shows the gravity gradient tensor data

of the Vinton dome cap rock for the modeling

selected area. The data displayed were regularly

interpolated with a 50-m interval in X and Y direc-

tions (1021 data points) and upward continued to 100

m to filter out short-wavelength noise that could be

associated to shallow sources that are not of interest.

We built a model for the Vinton dome cap rock to

be used as computational domain in the inversion

procedure, based on information derived from the

processing and interpretation of the gravity gradient

data grids shown in Fig. 22. Maps of the lateral extent

of the cap rock, its depth estimation with 3DED and

its interpreted topography are shown in Fig. 23.

The 3DED depth solutions are consistent with

previous studies in the area (e.g., Thompson &

Eichelberger, 1928; Ennen & Hall, 2011), in which

the cap rock was found to have an irregular shape

approximating a low pyramid with an ovoid base,

flattened apex and offset to the southeast, with depths

ranging from about 150 m to the southeast to 350 m

to the northwest. Notably, the most representative

value of the structural index, estimated from its his-

togram, is close to zero, corresponding to contact-

type sources (Stavrev & Reid, 2007).

The geometry of the model employed as compu-

tational domain was built with an irregular ensemble

of identical cubic prisms, each with constant density,

constrained by the cap rock topography and a flat

horizontal base at 600 m depth, deep enough to

encompass the cap rock according to Thompson and

Eichelberger (1928), Oliveira Jr. and Barbosa (2013)

and Qin et al. (2016). The size and properties of the

ensemble are shown in Table 4.

The density contrasts of the model were deter-

mined from the work of Thompson and Eichelberger

(1928), who reported that the cap rock of the Vinton

dome is composed of limestone, gypsum and anhy-

drite in succession, with average densities of 2550.0

Table 2

Global performance of the SA algorithm applied to synthetic data

inversion

Number of inverted parameters 30,499

Number of observed data for each component 10,201

Energy of the final model (final misfit) 0.194369

Maximum number of TRS 1000

T0 parameter 0.0001

RT parameter 0.98

VM parameter 25%

NT parameter 10

Total number of evaluated models 304,990,000

Number of accepted models 100,644,060

Number of rejected models 204,345,940

Total memory occupied by the sensitivity matrices 13.908 GB

Total computing time 9.939 h

Table 3

Air gravity gradient survey general characteristics

Latitude 30:07� to 30:23� N

Longitude �93:66� to �93:53� W

Ground clearance 43–108 m

Number of survey lines 53

Number of tie lines 17

Linear coverage 1087.5 km

Covered area 196.2 km2 (approx.)
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kg/m3, 2350.0 kg/m3 and 2930.0 kg/m3, respectively

(Telford et al., 1990), and the density-depth rela-

tionship published by Hudec et al. (2009), given by

Eq. (15).

The lower and upper limits of the search space of

the inversion algorithm were defined by the sediment

density curve (Eq. 15) as the lower limit and the

density of the cap rock (2750.0 kg kg/m3) as the

upper limit.

We set TRS 900 as a threshold to identify the low-

misfit region of the cost function for the inversion of

the Vinton dome data. From the resulting set of

models, we calculate the mean model, which is an

estimate of the most likely model among them, and

its mean deviation to estimate its uncertainty. The

number of equivalent models was [ 31.911 million,

all with a maximum difference of 9:76 � 10�07

between their fitting errors.

The global performance of the inversion algo-

rithm applied to the Vinton dome data is resumed in

Table 5.

As we did for the synthetic case, we compared the

execution time required by the forward problem with

respect to the time required by the inverse problem

for the Vinton dome cap rock. We found that the

forward problem with the Nagy et al. (2000) solutions

Figure 21
Flight line location of the gravity gradient survey carried out by Bell Geospace Inc. over the Vinton dome. The central section used for the cap

rock model is highlighted with dashed red lines
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(Eqs. 3–8) takes 25.506 min (0.425 h) of computing

time, and the inverse problem takes 13.830 h, which

represents a factor of 7:8 � 10�8 of the time that

would be needed for the evaluation of the 414.59

million forward problems required by the FTGG data

inversion without the accelerated matrix-vector

product.

The parameter values (i.e., densities) of the

resulting mean model are bimodally distributed in

two well-defined sets within the limits established by

the inversion algorithm, which is reflected in both the

density-depth plot of the model and its histogram

(Fig. 24).

The spatial distribution of the mean model den-

sities was inspected by separating its parameters into

three groups of prismatic bodies with densities related

to the lithology expected to be found at the site: the

first group, hereafter referred to as the sediment

volume, was constructed by prisms with densities

between 2000 and 2150 kg/m3, the second group,

hereafter referred to as the salt core volume, by

prisms with densities between 2180 and 2200 kg/m3

and the third group, hereafter referred to as the cap

Figure 22
Gravity gradient gridded data of the Vinton dome cap rock. a XX component, b XY component, c XZ component, d YY component, e YZ

component and f ZZ component
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rock volume, by prisms with densities between 2500

and 2700 kg/m3. Visualizing these groups in 3D

showed that their general geometric arrangement

resembles that of a salt core covered by the cap rock,

with sediments present mainly on the flanks and

filling shallow discontinuities, shown in Fig. 25.

In addition, we configured a 3D model with the

estimated uncertainty values of the mean density

model to analyze its spatial distribution, which is

shown in Fig. 24. We found that the highest uncer-

tainty, given by mean deviation values ranging from

160 to 190 kg/m3, corresponds to the prisms located

Figure 23
a Lateral extent of the Vinton dome cap rock interpreted from edge enhancement methods. b Topography of the Vinton dome cap rock

interpreted from its lateral extent interpreted, 3D Euler deconvolution and the I2 invariant grid

Table 4

Characteristics of the 3D computational domain of the Vinton

dome cap rock

Model size Ensemble

discretization

Density contrast

range

X direction: 1875

m

X direction: � 75

prisms

693.82–849.03 kg/

m3

Y direction: 1525

m

Y direction: � 61

prisms

Z direction: 450 m Z direction: � 18

prisms

Total number of prisms: 41,459

Individual prism size: 25 m � 25 m � 25 m (X, Y, and Z

directions)

Table 5

Global performance of the SA algorithm applied to the inversion of

Vinton dome gravity gradient data

Number of inverted parameters 41,459

Number of observed data for each component 10,201

Energy of the final model (final misfit) 0.524069

Maximum number of TRS 1000

T0 parameter 0.0001

RT parameter 0.98

VM parameter 25%

NT parameter 10

Total number of evaluated models 414,590,000

Number of accepted models 142,060,331

Number of rejected models 272,529,669

Total memory occupied by the sensitivity matrices 18.906 GB

Total computing time 13.830 h
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Figure 24
Density distribution of the mean model resulting from the inversion of the Vinton dome data. a Density-depth pairs of the mean model

represented by dots. The lower (sediment) and upper (cap rock) limits set for the inversion algorithm are shown in solid black line and the salt

density in dashed black line. b Relative frequency histogram of the mean model densities

Figure 25
3D visualization of the mean density model resulting from the inversion of the Vinton dome data. a Perspective view of the mean model, b

perspective view of the cap rock volume, c perspective view of the salt core volume and d perspective view of the sediment volume. The

azimuth and elevation angles of all perspective views are 225� and 45�, respectively
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at the contacts between the sediment, salt core and

cap rock volumes. Intermediate uncertainty values,

with mean deviation ranging from 55 to 150 kg/m3,

correspond to the internal prisms of each of the vol-

umes and the lowest uncertainty, with mean deviation

values ranging from 20 to 50 kg/m3, corresponding to

the sediment volume at the west and northeast edges

of the model (Fig. 26).

The cap rock volume has an elliptical shape ori-

ented in the northeast-southwest direction that

extends from a depth of 160 to 500 m. It has an

irregular base that is deeper in its central section,

where it reaches its maximum depth, than at the

edges, where it reaches depths ranging from 250 m, at

the southeast edge, to 350 m at the northwestern

edge. The cap rock volume also appears to have two

discontinuities with rounded cavity shape in its

northwest section and a discontinuity with a detached

block shape in the southeast section. In addition, it

presents two shallow irregularities in its southern

section that look like straight channels communicated

with different orientations: one that interrupts the

continuity of the volume to the south and other that

communicates with it and with one of the disconti-

nuities with rounded cavity shape. Finally, a zone of

low relative density (2530–2600 kg/m3) can also be

distinguished in the northeast section of the cap rock

volume with a linear aspect.

The discontinuities in the northeast sector of the

cap rock volume, the detachment plane to the

southeast and the shallow channel-shaped surface

irregularity in the south, are aligned in a northeast-

southwest direction, parallel to the orientation of the

cap rock volume. In contrast, the shallow irregularity

connecting with one of the discontinuities with

rounded cavity shape to the southwest and the low

density zone to the northeast are aligned in a north-

west-southeast direction, shown in Fig. 27.

The cavity-shaped discontinuities in the northwest

sector of the cap rock volume have a high value of

uncertainty associated with their calculated density,

reaching mean deviation values between 160 and 190

kg/m3, while the channel-shaped irregularities in the

south and the low density zone to the northeast have

intermediate values of uncertainty with mean devia-

tions between 90 and 150 kg/m3. Despite the

uncertainty that these features may have, their pres-

ence cannot be discarded because their orientations

are consistent with fracture patterns reported by

Coker et al. (2007), related to the salt core at depths[
1000 m.

Finally, the grids of the gravity-gradient data

calculated for the mean model are shown in Fig. 28.

To evaluate their fitness with respect to the observed

data, histograms of their residuals were calculated.

They are shown in Fig. 29 with their corresponding

means and standard deviations.

The shape of the histograms of all the residuals

suggests that they follow a Gaussian distribution. The

mean values for the residuals of all gravity-gradient

components are close to zero, ranging in absolute

value from a minimum of 0:000 E €otv€os for the Txy
and Txz components to a maximum of 0:272 E €otv€os

for the Tzz component, and their standard deviations

vary from a minimum of 1:293 E €otv€os for the Txy

Figure 26
3D visualization of the uncertainty model resulting from the

inversion of the Vinton dome data. a Perspective view of the

uncertainty model, and b perspective view of the uncertainty model

with two diagonal slices and a depth slice at Z = 0.55 km. The

azimuth angles of the perspective views (a) and (b) are 225� and

180�, respectively. The elevation angle of all perspective views is

45�
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component, to a maximum of 3:649 E €otv€os for the Tzz
component. On the other hand, the maximum point-

to-point misfits in absolute value between the calcu-

lated and observed data range from a minimum of

6:578 E €otv€os for the Txy component to a maximum of

15:983 E €otv€os for the Txx component. This indicates

that the gravity-gradient data grids calculated for the

mean density model adequately fit the observed data

grids.

6. Conclusions

We have presented a 3D high-resolution modeling

methodology for gravity gradient data that consists of

estimating the target geometry with an irregular

ensemble of identical prisms, constraining its shape

and location with information derived from the

application of different interpretation methods and

estimating its density distribution by joint inversion

with a numerically optimized SA algorithm.

The optimized matrix-vector product included in

our inversion algorithm allowed us to extensively

explore the cost function associated with the inverse

problem, proving to be 7–8 orders of magnitude

faster than the evaluation of the forward problem

with numerical solutions. Also, the parametric scan-

based analysis we conducted on the SA tuning

parameters allowed us to examine the relationships

between them and to propose criteria to select them

properly.

The identification of the low-misfit region of the

cost function through the inversion convergence

curve allowed us to identify the models that sample it

and use them to obtain the mean model and its mean

deviation as estimates of the most likely model in that

Figure 27
3D visualization of the cap rock volume of the mean model resulting from the inversion of the Vinton dome data. a XY plan view with the

alignment directions of the irregularities and discontinuities marked in dashed black lines (northeast-southwest direction) and dashed blue

lines (northwest-southeast direction), b perspective view with azimuth angle of 225� and elevation angle of 45�, c XZ lateral view and d YZ

lateral view
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region and its uncertainty, respectively, which proved

to be useful in the interpretation when applyed our

methodology on synthetic and real data.

By applying our methodology to the gravity gra-

dient data of the Vinton dome, we obtained a high-

resolution model with a density distribution that

resembles a salt core covered by the cap rock, with

sediments on the flanks and filling shallow disconti-

nuities. The facts that the resulting model revealed

volumetric units with densities and geometries

associated with materials and structures reported

from the study area, its general characteristics such as

size and depth are compatible with previous models

and the calculated data adequately fit the observed

data indicate that the methodology used to built it, as

well as its quality and interpretative utility, is valid

and could be employed in other exploration areas

with the gravity gradiometry method.

Figure 28
Gravity-gradient data calculated for the mean density model resulting from the inversion of the Vinton dome data. a XX component, b XY

component, c XZ component, d YY component, e YZ component and f ZZ component
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Pallero, J. L. G., Fernández-Muñiz, M. Z., Cernea, A., Álvarez-
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