Skip to main content
Log in

Spectral Analysis of Gravity Data Using Spectral Analysis with Piecewise Regression (SAPR): Application to the Lake Turkana Rift, Northern Kenya and Southern Ethiopia

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Geophysical methods are instrumental in characterizing lithospheric-scale heterogeneity beneath continental rifts and collisional zones. Seismic imaging techniques, in particular have played a significant role in imaging lithospheric discontinuities within the crust as well as its Moho boundary with the underlying sub-continental lithospheric mantle (SCLM). However, in geodynamic settings where there have been significant mafic magmatic underplating, the seismic Moho and the petrological Moho become distinct, making gravity methods more effective to image the compositional variation between the crust and the SCLM. Our work assesses one of the gravity modeling methods that can be applied to image the petrological Moho by introducing a new approach, which is referred to as the spectral analysis with piecewise regression (SAPR). To test the effectiveness of SAPR, we used the World Gravity Model 2012 (WGM 2012) to calculate the depth to the petrological Moho and the depth to the top of the Precambrian crystalline basement beneath the Lake Turkana rift within the East African Rift System in southern Ethiopia and northern Kenya. Subsequently, the results of the Moho depths from the SAPR were compared with previous Moho depth estimates using other gravity methods as well as controlled-source seismic techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

The gravity data used in this paper can be obtained from the corresponding author.

References

  • Alemu, T., Abdelsalam, M. G., Dawit, E. L., Atnafu, B., & Mickus, K. L. (2018). The Paleozoic–Mesozoic Mekele sedimentary basin in Ethiopia: An example of an exhumed IntraCONtinental Sag (ICONS) basin. Journal of African Earth Sciences, 143, 40–58.

    Article  Google Scholar 

  • Alldredge, L., Van Voorhis, G., & Davis, T. (1963). A magnetic profile around the world. Journal of Geophysical Research, 68, 3679–3692.

    Article  Google Scholar 

  • Balmino, G., Vales, N., Bonvalot, S., & Briais, A. (2012). Spherical harmonic modelling to ultra-high degree of Bouguer and isostatic anomalies. Journal of Geodesy, 86, 499–520.

    Article  Google Scholar 

  • Barbosa, V. C., & Silva, J. B. (2011). Reconstruction of geologic bodies in depth associated with a sedimentary basin using gravity and magnetic data. Geophysical Prospecting, 59(Advances in Electromagnetic, Gravity and Magnetic Methods for Exploration), 1021–1034.

    Article  Google Scholar 

  • Benoit, M., Nyblade, A., & Pasyanos, M. (2006). Crustal thinning between the Ethiopian and East African plateaus from modeling Rayleigh wave dispersion. Geophysical Research Letters, 33, 13.

    Article  Google Scholar 

  • Bhattacharyya, B. K. (1966). Continuous spectrum of the total-magnetic-field anomaly due to a rectangular prismatic body. Geophysics, 31, 97–121.

    Article  Google Scholar 

  • Blakely, R. J. (1988). Curie temperature isotherm analysis and tectonic implications of aeromagnetic data from Nevada. Journal of Geophysical Research, 93, 11817–11832.

    Article  Google Scholar 

  • Bonini, M., Corti, G., Innocenti, F., Manetti, P., Mazzarini, F., Abebe, T., & Pecskay, Z. (2005). Evolution of the Main Ethiopian Rift in the frame of Afar and Kenya rifts propagation. Tectonics, 24, TC1007.

    Article  Google Scholar 

  • Braitenberg, C., Wienecke, S., Ebbing, J., Born, W., & Redfield, T. (2007). Joint gravity and isostatic analysis for basement studies—A novel tool. In EGM 2007 International workshop, innovation in EM, gravity and magnetic methods: A new perspective for exploration, Villa Orlandi, Capri–Italy (pp. 15–18).

  • Bruinsma, S., Abrykosov, O., & Lemoine, J. M. (2014). The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse (EIGEN 6C4). In 5th GOCE user workshop, Paris (pp. 25–28).

  • Cassano, E., & Rocca, F. (1975). Interpretation of magnetic anomalies using spectral estimation techniques. Geophysical Prospecting, 23, 663–681.

    Article  Google Scholar 

  • Choubert, A., & Faure-Muret, A. (1990). International geological map of Africa. Commission of the Geological Map of the World.

    Google Scholar 

  • Chowdary, M. (1978). Spectral analysis of total magnetic anomalies of step model. Geophysics, 43, 634–636.

    Article  Google Scholar 

  • Cohen, A. S. (1989). Facies relationships and sedimentation in large rift lakes and implications for hydrocarbon exploration: Examples from Lakes Turkana and Tanganyika. Palaeogeography, Palaeoclimatology, Palaeoecology, 70, 65–80.

    Article  Google Scholar 

  • Corti, G., Cioni, R., Franceschini, Z., Sani, F., Scaillet, S., Molin, P., Isola, I., Mazzarini, F., Brune, S., Keir, D., Erbello, A., Muluneh, A., Illsley-Kemp, F., & Glerum, A. (2019). Aborted propagation of the Ethiopian rift caused by linkage with the Kenyan rift. Nature Communication. https://doi.org/10.1038/s41467-019-09335-2

    Article  Google Scholar 

  • Dimitriadis, K., Tselentis, G., & Thanassoulas, K. (1987). A BASIC program for 2-D spectral analysis of gravity data and source-depth estimation. Computers and Geosciences, 13, 549–560.

    Article  Google Scholar 

  • Dorman, L. M., & Lewis, B. (1970). Experimental isostasy: 1. Theory of the determination of the Earth’s isostatic response to a concentrated load. Journal of Geophysical Research, 75, 3357–3365.

    Article  Google Scholar 

  • Dunkelman, T. J., Rosendahl, B., & Karson, J. (1989). Structure and stratigraphy of the Turkana rift from seismic reflection data. Journal of African Earth Sciences, 8, 489–510.

    Article  Google Scholar 

  • Ebinger, C. J., Yemane, T., Harding, D., Tesfaye, S., Kelley, S., & Rex, D. (2000). Rift deflection, migration, and propagation: Linkage of the Ethiopian and Eastern rifts, Africa. Geological Society of America Bulletin, 112, 163–176.

    Article  Google Scholar 

  • Emishaw, L., & Abdelsalam, M. G. (2019). Development of late Jurassic–early Paleogene and Neogene-Quaternary rifts within the Turkana Depression, East Africa from satellite gravity data. Tectonics, 38, 2358–2377. https://doi.org/10.1029/2018TC005389

    Article  Google Scholar 

  • Emishaw, L., Laó-Dávila, D., Abdelsalam, M. G., Atekwana, E., & Gao, S. (2017). Evolution of the broadly rifted zone in southern Ethiopia through gravitational collapse and extension of dynamic topography. Tectonophysics, 699, 213–226.

    Article  Google Scholar 

  • Fletcher, A. W., Abdelsalam, M., Emishaw, L., Atekwana, E., Laó-Dávila, D., & Ismail, A. (2018). Lithospheric controls on the rifting of the Tanzanian craton at the Eyasi Basin, eastern branch of the East African Rift System. Tectonics, 37, 2818–2832.

    Article  Google Scholar 

  • Förste, C., Bruinsma, S. L., Abrikosov, O., Lemoine, J. M., Schaller, T., Götze, H. J. J. E., Marty, J. C., Flechtner, F., Balmino, G., & Biancale, R. (2015). EIGEN-6C4—The latest combined global gravity field model including GOCE data up to degree and order 2190. In GFZ Potsdam and GRGS Toulouse, 5th GOCE user workshop 25–28 November 2014, Paris (pp. 29–29).

  • Furlong, K. P., & Fountain, D. M. (1986). Continental crustal underplating: Thermal considerations and seismic-petrologic consequences. Journal of Geophysical Research: Solid Earth, 91(B8), 8285–8294.

    Article  Google Scholar 

  • Gajewski, D., Schulte, A., Riaroh, D., & Thybo, H. (1994). Deep seismic sounding in the Turkana depression, northern Kenya rift. Tectonophysics, 236, 165–178.

    Article  Google Scholar 

  • Gomez-Ortiz, D., & Agarwal, B. (2005). 3DINVER. M: a MATLAB program to invert the gravity anomaly over a 3D horizontal density interface by Parker-Oldenburg’s algorithm. Computers and Geosciences, 31, 513–520.

    Article  Google Scholar 

  • Green, W., Achauer, U., & Meyer, R. (1991). A three-dimensional image of the crust and upper mantle beneath the Kenya rift. Nature, 354, 199–203.

    Article  Google Scholar 

  • Horton, C. W., Hempkins, W., & Hoffman, A. (1964). A statistical analysis of some aeromagnetic maps from the northwestern Canadian Shield. Geophysics, 29, 582–601.

    Article  Google Scholar 

  • Hrubcová, P., Geissler, W. H., Bräuer, K., Vavryčuk, V., Tomek, Č, & Kämpf, H. (2017). Active magmatic underplating in western Eger Rift, central Europe. Tectonics, 36(12), 2846–2862.

    Article  Google Scholar 

  • Keller, G. R., Mechie, J., Braile, L., Mooney, W., & Prodehl, C. (1994). Seismic structure of the uppermost mantle beneath the Kenya rift. Tectonophysics, 236, 201–216.

    Article  Google Scholar 

  • Keranen, K., & Klemperer, S. L. (2008). Discontinuous and diachronous evolution of the Main Ethiopian Rift: Implications for development of continental rifts. Earth and Planetary Science Letters, 265, 96–111.

    Article  Google Scholar 

  • Leseane, K., Atekwana, E., Mickus, K., Abdelsalam, M., Shemang, E., & Atekwana, E. (2015). Thermal perturbations beneath the incipient Okavango Rift Zone, northwest Botswana. Journal of Geophysical Research, 120, 1210–1228.

    Article  Google Scholar 

  • McZgee, V. E., & Carleton, W. (1970). Piecewise regression. Journal of the American Statistical Association, 65, 1109–1124.

    Article  Google Scholar 

  • Mechie, J., Keller, G., Prodehl, C., Gaciri, S., Braile, L., Mooney, W., & Sandmeier, K. (1994). Crustal structure beneath the Kenya Rift from axial profile data. Tectonophysics, 236, 179–200.

    Article  Google Scholar 

  • Mengel, K., & Kern, H. (1992). Evolution of the petrological and seismic Moho-implications for the continental crust-mantle boundary. Terra Nova, 4, 109–116.

    Article  Google Scholar 

  • Mickus, K., & Hussein, M. (2016). Curie depth analysis of the Salton Sea region, southern California. Pure and Applied Geophysics, 173, 537–554.

    Article  Google Scholar 

  • Muggeo, V. M., & Muggeo, M. (2017). Package ‘segmented.’ Biometrika, 58, 516.

    Google Scholar 

  • Muggeo, V. M. R. (2015). Regression models with breakpoints/changepoints estimation, R package version 0.5-1.4.

  • O’Reilly, S. Y., & Griffin, W. L. (2013). Mantle metasomatism. In D. E. Harlov & H. Austrheim (Eds.), Metasomatism and the chemical transformation of rock (pp. 471–533). Springer.

    Chapter  Google Scholar 

  • Odegard, M. E., & Berg, J. (1965). Gravity interpretation using the Fourier integral. Geophysics, 30, 424–438.

    Article  Google Scholar 

  • Pal, P. C., Khurana, K., & Unnikrishnan, P. (1978). Two examples of spectral approach to source depth estimation in gravity and magnetics. Pure and Applied Geophysics, 117, 772–783.

    Article  Google Scholar 

  • Pignatelli, A., Nicolosi, I., Carluccio, R., Chiappini, M., & Von Frese, R. (2011). Graphical interactive generation of gravity and magnetic fields. Computers & Geosciences, 37(4), 567–572.

    Article  Google Scholar 

  • Prodehl, C., Jacob, A., Thybo, H., Dindi, E., & Stangl, R. (1994). Crustal structure on the northeastern flank of the Kenya rift. Tectonophysics, 236, 271–290.

    Article  Google Scholar 

  • Prodehl, C., Kennett, B., Artemieva, I. M., & Thybo, H. (2013). 100 years of seismic research on the Moho. Tectonophysics, 609, 9–44.

    Article  Google Scholar 

  • Ravat, D., Pignatelli, A., Nicolosi, J., & Chiappini, M. (2007). A study of spectral methods of estimating the depth to the bottom of magnetic sources from near-surface magnetic anomaly data. Geophysical Journal International, 169, 421–434.

    Article  Google Scholar 

  • Regan, R. D., & Hinze, W. (1977). Fourier transforms of finite length theoretical gravity anomalies. Geophysics, 42, 1450–1457.

    Article  Google Scholar 

  • Rosendahl, B. R., Kilembe, E., & Kaczmarick, K. (1992). Comparison of the Tanganyika, Malawi, Rukwa and Turkana rift zones from analyses of seismic reflection data. Tectonophysics, 213, 235–256.

    Article  Google Scholar 

  • Russo, R. M., & Speed, E. (1994). Spectral analysis of gravity anomalies and the architecture of tectonic wedging, NE Venezuela and Trinidad. Tectonics, 13, 613–622.

    Article  Google Scholar 

  • Ryan, S. E., & Porth, L. (2007). A tutorial on the piecewise regression approach applied to bedload transport data. General Technical Reports RMRS-GTR-189. US Department of Agriculture, Forest Service, Rocky Mountain Research Station, 189 (p. 41).

  • Sadek, H. S., Rashad, S., & Blank, H. (1984). Spectral analysis of aeromagnetic profiles for depth estimation principles, software, and practical application (No. 84-849). US Geological Survey.

    Google Scholar 

  • Serson, P. H., & Hannaford, W. (1957). A statistical analysis of magnetic profiles. Journal of Geophysical Research, 62, 1–18.

    Article  Google Scholar 

  • Shuey, R. T., Schellinger, D., Tripp, A., & Alley, L. (1977). Curie depth determination from aeromagnetic spectra. Geophysical Journal International, 50, 75–101.

    Article  Google Scholar 

  • Sippel, J., Meeßen, M., Cacace, M., Mechie, J., Fishwick, S., Heine, C., Scheck-Wenderoth, S., & Strecker, M. (2017). The Kenya rift revisited: Insights into lithospheric strength through data-driven 3-D gravity and thermal modeling. Solid Earth, 8, 45–81.

    Article  Google Scholar 

  • Spector, A., & Bhattacharyya, B. (1966). Energy density spectrum and autocorrelation function of anomalies due to simple magnetic models. Geophysical Prospecting, 14, 242–272.

    Article  Google Scholar 

  • Spector, A., & Grant, F. S. (1970). Statistical models for interpreting aeromagnetic data. Geophysics, 35, 293–302.

    Article  Google Scholar 

  • Stern, R. J. (1994). Arc assembly and continental collision in the Neoproterozoic East African Orogen: Implications for the consolidation of Gondwanaland. Annual Review of Earth and Planetary Sciences, 22, 319–351.

    Article  Google Scholar 

  • Tanaka, A., Okubo, Y., & Matsubayashi, O. (1999). Curie point depth based on spectrum analysis of the magnetic anomaly data in East and Southeast Asia. Tectonophysics, 306, 461–470.

    Article  Google Scholar 

  • Thybo, H., & Artemieva, I. M. (2013). Moho and magmatic underplating in continental lithosphere. Tectonophysics, 609, 605–619.

    Article  Google Scholar 

  • Thybo, H., Maguire, P., Birt, C., & Perchuć, E. (2000). Seismic reflectivity and magmatic underplating beneath the Kenya Rift. Geophysical Research Letters, 27, 2745–2748.

    Article  Google Scholar 

  • Tomé, A. R., & Miranda, P. (2004). Piecewise linear fitting and trend changing points of climate parameters. Geophysical Research Letters, 31, L02207. https://doi.org/10.1029/2003GL019100

    Article  Google Scholar 

  • Treital, S., Clement, W., & Kaul, R., (1971). The spectral determination of depths to buried magnetic basement rocks. Geophysical Journal International, 24, 415–428.

  • Tselentis, G. A., Drakopoulos, J., & Dimitriadis, K. (1988). A spectral approach to Moho depths estimation from gravity measurements in Epirus (NW Greece). Journal of Physics of the Earth, 36, 255–266.

    Article  Google Scholar 

  • Vetel, W., & Le Gall, B. (2006). Dynamics of prolonged continental extension in magmatic rifts: The Turkana Rift case study (North Kenya). Geological Society, London, Special Publications, 259(1), 209–233.

    Article  Google Scholar 

  • Vetel, W., Le Gall, B., & Johnson, T. C. (2004). Recent tectonics in the Turkana Rift (North Kenya): An integrated approach from drainage network, satellite imagery and reflection seismic analyses. Basin Research, 16, 165–181.

    Article  Google Scholar 

  • Wang, Q., Bagdassarov, N., & Ji, S. (2013). The Moho as a transition zone: A revisit from seismic and electrical properties of minerals and rocks. Tectonophysics, 609, 395–422.

    Article  Google Scholar 

Download references

Acknowledgements

The WGM 2012 data can be obtained from the Bureau Gravimetrique International (BGI; bgi.omp.obs.mip.fr). We would like to thank editor Carla Braitenberg, and two anonymous reviewers for comments that greatly improved the paper. This is Oklahoma State University Boone Pickens School of Geology contribution number 2019-XXX.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design, read and approved the final manuscript. Material preparation, data collection and analysis were performed by LE. The first draft of the manuscript was written by LE and all authors commented on previous versions of the manuscript.

Corresponding author

Correspondence to Kevin Mickus.

Ethics declarations

Conflict of interest

The authors declare that they have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emishaw, L., Mickus, K. & Abdelsalem, M. Spectral Analysis of Gravity Data Using Spectral Analysis with Piecewise Regression (SAPR): Application to the Lake Turkana Rift, Northern Kenya and Southern Ethiopia. Pure Appl. Geophys. 180, 187–204 (2023). https://doi.org/10.1007/s00024-022-03210-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-022-03210-w

Keywords

Navigation