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Abstract—Fault surfaces are characterized by an inhomoge-

neous friction distribution, that can be represented with asperity

models. Fault mechanics is dominated by asperities, so that a

fruitful approach is to use discrete models, where asperities are the

basic elements and the state of the fault is described by the average

values of stress, friction and slip on each asperity. Under reason-

able assumptions, the equations of motion can be solved

analytically, with a deeper understanding of the behavior of the

system. Fault dynamics has a sticking mode, where asperities are

stationary, and a number of slipping modes, corresponding to the

separate or simultaneous motion of asperities. Any seismic event is

a sequence of slipping modes and a large variety of source func-

tions is possible. Many large earthquakes are observed to be the

consequence of the failure of two asperities: a discrete two-asperity

model shows a rich dynamics and allows a detailed study of

interaction between asperities. In this framework, fault evolution

during coseismic and interseismic intervals can be calculated in

terms of fault slip, stress state, energy release and seismic spec-

trum, including viscoelastic relaxation, fault creep and stress

perturbations from other faults. Discrete models may include

interaction between neighboring faults, allowing to assess condi-

tions for the occurrence of seismic sequences in a fault system. A

review of recent work on this subject is presented with applications

to real earthquakes.

Keywords: Fault mechanics, asperity models, viscoelastic

relaxation, fault creep, fault interaction.

1. Introduction

Fault surfaces usually present a strongly nonuni-

form friction distribution, producing a remarkable

complication in fault mechanics. An important

achievement of seismic source theory is that friction

distribution can be represented by asperity models

(Lay et al., 1982; Ruff, 1983; Ruff & Kanamori 1983;

Scholz, 1990). Such models assume that earthquakes

result from slip of a small number of fault patches,

characterized by high static friction and velocity-

weakening dynamic friction.

An inhomogeneous friction distribution entails a

nonuniform distribution of coseismic slip. Seismic

source functions retrieved from seismometric data

show that fault slip usually takes place irregularly and

suggest a complex interaction between different fault

patches, resulting from a continuous stress transfer

between them. One of the first events for which this

behavior was observed is the 1992 Landers, Califor-

nia, earthquake (Kanamori et al., 1992; Wald &

Heaton, 1994).

Heterogeneous fault models have been proposed

by many authors. Models with nonuniform friction

distributions under a uniform shear stress were con-

sidered by Mikumo and Miyatake (1978, 1995) and

Beroza and Mikumo (1996). Somerville et al. (1999)

showed that in most cases the slip distribution can be

represented in terms of a small number of asperities.

Pisarenko (2002) suggested that velocity weakening

friction is a consequence of the dynamical failure of

asperities. A stochastic model of fault slip complexity

was developed by Mai and Beroza (2002). The case

of nonuniform initial stress was considered by

Cochard and Madariaga (1994), Ripperger et al.

(2007) and Bizzarri et al. (2010). A multiple-asperity

model was considered by Johnson (2010). Zielke

et al. (2017) considered friction deriving from geo-

metrical roughness of the fault surface. Numerical

solutions were obtained in most of these studies.

A different approach is suggested by the evidence

that asperities play a crucial role in fault mechanics.

Processes controlling fault mechanics are stress

accumulation on asperities, asperity strength and slip,

as well as stress transfer between asperities. There-

fore, the fault can be considered as a discrete

dynamical system where asperities are the basic
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elements (Ruff, 1992; Rice 1993; Turcotte, 1997).

Fault dynamics coincides with asperity dynamics and

the state of the fault can be described by a finite

number of variables characterizing asperities.

In fact, fault mechanics is controlled by a small

number of asperities, so that models with a small

number of degrees of freedom can be employed.

Discrete fault models reproduce the essential features

of the seismic source, but avoid the more complicated

description based on continuum mechanics. The

small number of degrees of freedom allows visual-

ization of the state of the fault and of its evolution by

inspection of orbits of the representative point in the

phase space.

It should be noticed that discrete models consid-

ered here are different from models made of a large

number of blocks discretizing the fault, such as those

originally proposed by Burridge and Knopoff (1967).

Those models approximate a continuous system with

a system made of a finite, but very large number of

degrees of freedom. On the contrary, models con-

sidered here are devised to study those aspects of

fault mechanics resulting from a structure made of

few strong patches, i.e. asperities. Average values of

stress, friction and slip on each asperity are

considered.

Early papers adopting this approach were Nuss-

baum and Ruina (1987), Huang and Turcotte (1990)

and Ruff (1992). The instability properties of discrete

fault models and their possible chaotic behavior were

investigated by McCloskey and Bean (1992), de

Sousa Vieira (1995), Turcotte (1997), Wang (2000),

He (2003) and Galvanetto (2004). Wang (2008) gave

a review of previous studies.

Originally, these models were conceived as low-

order analogues of real faults, with asperities descri-

bed as blocks sliding on a rough plane. However,

equations governing these systems can be viewed as

approximations of continuum mechanical equations,

with a correspondence between model parameters

and continuum mechanical quantities (Dragoni &

Santini, 2012). In this formulation, an asperity is

assumed to be a compact and simply connected

subset of the fault surface and asperity failure can

reproduce any kind of source mechanism.

In this framework, a fault with n asperities is a

nonlinear, dissipative, piecewise smooth dynamical

system with n degrees of freedom (di Bernardo et al.,

2008). The evolution of such systems in the phase

space is characterized by smooth intervals separated

by rapid transitions, that can be considered as

instantaneous events. Smooth intervals are the

dynamic modes of the system and each mode is

associated with a different set of differential equa-

tions. Such systems are named Filippov systems

(Filippov, 1988).

A fault with n asperities has 2n dynamic modes: a

sticking mode, corresponding to stationary asperities,

and 2n � 1 slipping modes, corresponding to indi-

vidual or simultaneous asperity motion. If asperities

are labeled with integers from 1 to n, each mode can

be indicated by a string of n digits i1i2. . .in, that may

assume values 0 or 1, where 0 denotes that the

asperity is stationary and 1 that the asperity is slip-

ping. A seismic event generated by the fault is a

sequence of slipping modes.

Seismological data show that several large earth-

quakes occurred in the last decades can be ascribed to

the failure of two asperities, from the 1964 Great

Alaska Earthquake (Christensen & Beck, 1994) to the

2010 Maule earthquake (Delouis et al., 2010). A

discrete fault model with two asperities has two

degrees of freedom and four dynamic modes, and

exhibits a very rich dynamics. Its evolution can be

studied in detail during coseismic slip and interseis-

mic intervals. Complex seismic events, that are

sequences of several slipping modes, can be gener-

ated and initial conditions producing such events can

be determined. Slip rates and shear stresses on

asperities can be calculated as functions of time and

their relationships can be investigated. Energy

release, seismic moments and seismic wave spectra

can be also calculated as functions of initial

conditions.

The present paper summarizes the results obtained

in a number of papers published on this subject in the

last decade. Section 2 presents the model: a plane

fault with two asperities subject to uniform strain rate

from the motion of tectonic plates. The system vari-

ables and parameters are defined and the dynamic

modes of the system are introduced. The general

formulae for slip rates, moment rates, shear stress,

seismic efficiency, seismic moments and spectra are

given.
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Section 3 illustrates the dynamics of the two-

asperity fault, starting from the simplest case of

identical asperities. The properties of long-term

behavior and the conditions for the occurrence of

large earthquakes are investigated. The case of two

asperities with equal areas, but different strengths is

then considered and the variety of possible source

functions that it can generate is illustrated. Effects of

wave radiation are highlighted by calculation of

seismic energy and spectrum as functions of model

parameters. The more general case of asperities with

different areas and strengths is then considered and

the role of stress perturbations in controlling fault

evolution is examined. Finally, the effect of vis-

coelastic relaxation of the lithosphere during

interseismic intervals is treated. Section 4 considers

particular aspects of fault mechanics, such as the

effect of variable strain rate, fault creep and afterslip,

fault interaction and the occurrence of seismic

sequences in a fault system. Section 5 gives a sum-

mary of the main results.

2. The Asperity Model

A plane fault with two asperities is considered.

The asperities are named 1 and 2 respectively: they

are disjoint subsets of the fault surface, with areas A1

and A2 (Fig. 1). It is assumed that the fault lies in a

shear zone that is a homogeneous and isotropic

Poisson solid with rigidity l. The shear zone has

thickness d and is subject to a uniform strain rate _e

imposed by the motion of two tectonic plates at

constant relative velocity v.

2.1. The Dynamical System

The state of an asperity at any time t is described

by its slip deficit, defined as the slip that the asperity

should undergo in order to recover the relative plate

displacement occurred up to that time (Dragoni &

Santini, 2015). The reason for using slip deficit is that

it changes continuously even during interseismic

intervals, when asperities are stationary. Accordingly,

the state of the fault is described by slip deficits x(t)

and y(t) of asperities 1 and 2, respectively. The model

assumes the no-overshooting conditions

x� 0; y� 0 ð1Þ

implying that asperity slip does not exceed the plate

displacement accumulated up to that time.

Since it is assumed that asperities move as rigid

surfaces, their dynamics can be described by forces

instead of tractions. Asperity slip is induced by forces

exerted by the surrounding medium and is controlled

by friction. Let f1 and f2 be the tangential forces

applied to asperities in the slip direction. They can be

written as (Lorenzano & Dragoni, 2018a)

f1 ¼ �K1x � Kcðx � yÞ � i1 _x ð2Þ

f2 ¼ �K2y � Kcðy � xÞ � i2 _y ð3Þ

where terms �K1x and �K2y are the effect of tectonic

loading, with

K1 ¼
2l _eA1

v
; K2 ¼

2l _eA2

v
ð4Þ

Terms �Kcðx � yÞ are contributions of stress transfer
between asperities, with a coupling constant

Kc ¼ lA1A2s ð5Þ

where s is the shear traction (per unit seismic

moment) that the slip of one asperity imposes to the

other, calculated at the asperity centroid (Lorenzano

& Dragoni, 2018a).

Let a be the distance between the asperity

centroids. At distances a[ 1:5
ffiffiffi

A
p

, the traction

produced by a finite dislocation source of area A is

indistinguishable from that of a point-like double-

couple source (Dragoni & Lorenzano, 2016). Accord-

ingly, shear tractions are

Figure 1
The two-asperity fault model. A rectangular fault surface with two

asperities of areas A1 and A2 is shown. Asperities may have

different strengths. The fault is subject to uniform strain rate, but

shear stress is typically nonuniform on the fault. Adapted from

Lorenzano and Dragoni (2018a)
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s ¼ 5

12pa3
ð6Þ

for a strike-slip mechanism and

s ¼ 1

6pa3
ð7Þ

for a dip-slip mechanism (Love, 1944). Finally, terms

�i1 _x and �i2 _y in (2) and (3) are due to radiation

damping, where i1 and i2 are impedances, and con-

tribute only during fault slip (Rice, 1993).

It is assumed that asperities obey a velocity-

weakening frictional law, with static frictions fs1 and

fs2 and dynamic frictions fd1 and fd2 (Dragoni &

Santini, 2012), that can be considered a simplified

version of the more general rate and state-dependent

law (Ruina, 1983; Dieterich, 1994; Scholz, 1998).

Accordingly, conditions for failure of asperities 1 and

2 are, respectively

f1 ¼ �fs1; f2 ¼ �fs2 ð8Þ

The fault has four dynamic modes: a sticking mode

(indicated by the string 00), where asperities are

stationary, and three slipping modes, corresponding

to slip of asperity 1 (10), slip of asperity 2 (01) and

simultaneous slip (11). Each mode is described by a

system of two differential equations. Equations for

the sticking mode are

€x ¼ 0 ð9Þ

€y ¼ 0 ð10Þ

and equations for the slipping modes are

m1 €x þ i1 _x þ K1x þ Kcðx � yÞ � fd1 ¼ 0 ð11Þ

m2 €y þ i1 _y þ K2y þ Kcðy � xÞ � fd2 ¼ 0 ð12Þ

where m1 and m2 are masses associated with the

asperities (Lorenzano & Dragoni, 2018a). Hence, the

evolution of the system is described by (9) and (10) in

mode 00, by (11) and (10) in mode 10, by (9) and

(12) in mode 01 and by (11) and (12) in mode 11.

2.2. Nondimensional Formulation

It is useful to express the model variables and

parameters in nondimensional form. To this aim,

nondimensional variables and time are introduced

(Lorenzano & Dragoni, 2018a):

X ¼ K1x

fs1
; Y ¼ K1y

fs1
; T ¼

ffiffiffiffiffiffi

K1

m1

r

t ð13Þ

Accordingly, the state of the fault is described by

nondimensional slip deficits X(T) and Y(T). The fol-

lowing nondimensional parameters are also

introduced:

a ¼ Kc

K1

; b ¼ fs2A1

fs1A2

¼ fd2A1

fd1A2

; c ¼ i1
ffiffiffiffiffiffiffiffiffiffiffi

K1m1

p ð14Þ

� ¼ fd1

fs1
¼ fd2

fs2
; n ¼ A2

A1

; V ¼
ffiffiffiffiffiffiffiffiffiffiffi

K1m1

p

fs1
v ð15Þ

where a is a coupling parameter for asperities; b is

the ratio between the frictional stresses of asperity 2

and the same quantities of asperity 1; c is a measure

of impedance associated with asperity 1; � is the ratio

between dynamic and static friction for both asperi-

ties; n is the ratio between asperity areas; V is the

nondimensional velocity of tectonic plates.

It is assumed that masses m1 and m2 are propor-

tional to the respective asperity areas and that the

impedance per unit area is the same for both

asperities, so that

n ¼ m2

m1

¼ i2
i1

ð16Þ

Nondimensional forces are defined as

F1 ¼
f1
fs1

; F2 ¼
f2
fs1

ð17Þ

Thanks to (2), (3) and (14), they can be written in

terms of slip deficits as

F1 ¼ �X � aðX � YÞ � c _X;

F2 ¼ �Y � aðY � XÞ � c _Y
ð18Þ

where dots indicate differentiation with respect to

time T. Therefore, the evolution equations for the

sticking mode become

€X ¼ 0 ð19Þ

€Y ¼ 0 ð20Þ

and those for the slipping modes become

3100 M. Dragoni Pure Appl. Geophys.



€X þ c _X þ ð1þ aÞX � aY � � ¼ 0 ð21Þ

€Y þ c _Y þ ð1þ a0ÞY � aX � b� ¼ 0 ð22Þ

where

a0 ¼ a
n

ð23Þ

Since the system has two degrees of freedom, its

phase space is a 4-manifold S. The evolution of the

system can be described by the orbit of its repre-

sentative point (X, Y, _X, _Y) in S.

The effect of radiation on fault dynamics is

expressed by parameters (Dragoni & Santini, 2015;

Lorenzano & Dragoni, 2018a)

j1 ¼
1

2

�

1þ e
� pc

2x1

�

; j2 ¼
1

2

�

1þ e
� pc

2x2

�

ð24Þ

where

x1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a� c2

4

r

; x2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a0 � c2

4

r

ð25Þ

If m(t) is the seismic moment produced in a seismic

event as a function of time, the nondimensional

moment is

M ¼ K1m

f 2s1
ð26Þ

Let w(t) be the energy of the system at time t and r(t)

be the radiation produced by asperity slip after a time

t from the beginning of the event. The corresponding

nondimensional quantities are

W ¼ K1w

f 2s1
; R ¼ K1r

f 2s1
ð27Þ

Finally, if x is the angular frequency of seismic

waves, the nondimensional frequency is

X ¼
ffiffiffiffiffiffi

m1

K1

r

x ð28Þ

2.3. Initial Conditions

For most time, the system is in the sticking mode

00, where _X and _Y are equal to the velocity V of

tectonic plates, hence extremely small with respect to

the values they assume in slipping modes. Therefore,

the representative point of the system in mode 00 can

be assumed as belonging to the plane XY. The onset

of seismic events is controlled by forces

F1 ¼ �X � aðX � YÞ; F2 ¼ �Y � aðY � XÞ
ð29Þ

that are applied to asperities in mode 00. The no-

overshooting condition (1) implies that both F1 and

F2 are in the direction of velocity v, or

F1 � 0; F2 � 0 ð30Þ

From (8), the conditions for failure of asperities 1 and

2 are respectively

F1 ¼ �1; F2 ¼ �bn ð31Þ

Therefore, the state of the system in mode 00 is

constrained to a subset of the plane XY, whose bor-

ders are defined by conditions

F1 ¼ 0; F2 ¼ 0; F1 ¼ �1; F2 ¼ �bn ð32Þ

In terms of slip deficits, Eq. (32) can be written as

Y ¼ 1þ a
a

X; Y ¼ a
aþ n

X ð33Þ

Y ¼ 1þ a
a

X � 1

a
; Y ¼ a

aþ n
X þ bn

aþ n
ð34Þ

that are the equations of four lines defining a

Figure 2
The sticking region Q of the system in the plane XY. The sides of Q

are defined by conditions on the forces F1 and F2 acting on

asperities. The dashed line is Y ¼ X þ p0, separating initial

conditions leading to failure of asperity 1 or 2 respectively. The

region is drawn for a ¼ 1, b ¼ 0:5, c ¼ 0:5, � ¼ 0:7, n ¼ 1.

Adapted from Dragoni and Tallarico (2016)
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parallelogram Q (Fig. 2). The subset Q, correspond-

ing to stationary asperities, is called the sticking

region (di Bernardo et al., 2008). Vertices of Q are

the origin O and points Pa, Pb and P with coordinates

(Lorenzano & Dragoni, 2018a)

Xa ¼ aþ n
aþ anþ n

; Ya ¼ a
aþ anþ n

ð35Þ

Xb ¼ abn
aþ anþ n

; Yb ¼ ð1þ aÞbn
aþ anþ n

ð36Þ

XP ¼ Xa þ Xb; YP ¼ Ya þ Yb ð37Þ

If we consider an initial point P0 ¼ ðX0; Y0Þ 2 Q, the

evolution of the system from P0 is given by solutions

of (19) and (20), or

XðTÞ ¼ X0 þ VT ð38Þ

YðTÞ ¼ Y0 þ VT ð39Þ

These are the parametric equations of a line

Y ¼ X þ p ð40Þ

where

p ¼ Y0 � X0 ð41Þ

If one calculates the difference F1 � F2 at P0 from

(29), one obtains

F1 � F2 ¼ ð1þ 2aÞp ð42Þ

so that p is proportional to the difference between

forces acting on asperities: hence it expresses the

degree of stress inhomogeneity on the fault (Dragoni

& Santini, 2010).

A seismic event occurs when the representative

point of the system, moving along line (40), intersects

one of lines (34). The subsequent evolution depends

on the value of p, expressing the initial condition for

the seismic event. Values of p range in the interval

½pa; pb�, where

pa ¼ Ya � Xa; pb ¼ Yb � Xb ð43Þ

Different initial conditions may produce very differ-

ent seismic events. In particular, an event begins with

mode 10 when p\p0 and with mode 01 when p[ p0,

where

p0 ¼ YP � XP ð44Þ

In many cases, a 1-mode seismic event, involving

motion of a single asperity, is produced. More com-

plex events are generated if p belongs to the narrower

interval ½p1; p2�, where (Lorenzano & Dragoni,

2018a)

p1 ¼ p0 �
aj1U

aþ anþ n
; p2 ¼ p0 þ

abnj2U0

aþ anþ n

ð45Þ

where

U ¼ 2
1� �

1þ a
; U0 ¼ 2

1� �

1þ a0
ð46Þ

In this case, the motion of an asperity triggers the

motion of the other one, originating a stress inter-

change between them: events that are sequences of

three or more slipping modes are produced. In the

particular case p ¼ p0, a 2-mode event 11-01 takes

place: this is the largest event produced by the

2-asperity fault.

2.4. Seismic Events

During a seismic event, a continuous change in

slip deficits X and Y, as well as in slip rates _X and _Y ,

takes place. Therefore, the event is represented by an

orbit in the 4-manifold S. However, a seismic event

can be more easily characterized by drawing the

projection of its orbit on the plane XY, where the

system dwells for most of its lifetime.

Each event is a sequence of m slipping modes and

a segment of curve in the plane XY is associated with

each mode. The functions X(T) and Y(T) relative to

that mode are the parametric equations of the

segment. If one introduces normal coordinates

H1 ¼
Y þ X

ffiffiffi

2
p ; H2 ¼

Y � X
ffiffiffi

2
p ð47Þ

the solution for a generic mode starting at T ¼ 0 can

be written as (Dragoni & Tallarico, 2016)

H1ðTÞ ¼ h1 þ ða1 sinX1T þ b1 cosX1TÞ e�
c
2
T ð48Þ

H2ðTÞ ¼ h2 þ ða2 sinX2T þ b2 cosX2TÞ e�
c
2
T ð49Þ
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where h1, h2, a1, a2, b1 and b2 are constants

depending on the particular mode and on initial

conditions, while X1 and X2 depend on model

parameters. These are the parametric equations of a

damped Lissajous curve (Lawrence, 1972). The orbit

representing an m-mode event is the union of m seg-

ments of such curves, separated by singular points.

The sequence of modes in the event and the associ-

ated slip amplitudes are evident from inspection of

orbits in the plane XY.

Let Ti (i ¼ 1; 2; . . .m) be the instant of time when

the system enters the i-th mode and Tmþ1 be the end

time of the event. The duration of an m-mode seismic

event is then

DT ¼ Tmþ1 � T1 ð50Þ

The duration of each mode, as well as the total

duration of the event, may vary sensibly from one

event to the other (Dragoni & Tallarico, 2016).

Let Xi and Yi be the slip deficits at time Ti. The

slip amplitudes in the i-th mode are then

DXi ¼ Xi � Xiþ1; DYi ¼ Yi � Yiþ1 ð51Þ

and the total slip amplitudes are respectively

U1 ¼ X1 � Xmþ1; U2 ¼ Y1 � Ymþ1 ð52Þ

The dynamics of a seismic event is evident if we

consider the slip rates of asperities and the moment

rate of the event. In each slipping mode, slip rates are

given by different functions for each asperity. Let

XiðTÞ and YiðTÞ be the slip deficits in the i-th mode.

The slip rates of asperities are

D _XiðTÞ ¼ � _XiðTÞ ð53Þ

D _YiðTÞ ¼ � _YiðTÞ ð54Þ

The slip rates in an m-mode seismic event are then

D _XðTÞ ¼
X

m

i¼1

D _XiðTÞ ½HðT � TiÞ � HðT � Tiþ1Þ�

ð55Þ

D _YðTÞ ¼
X

m

i¼1

D _YiðTÞ ½HðT � TiÞ � HðT � Tiþ1Þ�

ð56Þ

where H(T) is the Heaviside function. For each event,

the moment rate can be calculated from (55) and (56).

Let M1 be the seismic moment of a 1-mode event 10

in the absence of radiation (c ¼ 0), corresponding to

the slip amplitude U defined in (46). The moment rate

of a generic m-mode event is then

_MðTÞ ¼ M1

U

X

m

i¼1

ðD _Xi þ D _YiÞ½HðT � TiÞ � HðT � Tiþ1Þ�

ð57Þ

or

_MðTÞ ¼ M1

D _X þ D _Y

U
ð58Þ

Very different moment rates result depending on

initial conditions (Dragoni & Tallarico, 2016). The

total seismic moment of an m-mode event is

M0 ¼ M1

U1 þ U2

U
ð59Þ

The moment rate spectrum S of a seismic event is

defined as the magnitude of the Fourier transform of
_MðTÞ:

SðXÞ ¼
Z Tmþ1

Ti

_MðTÞ e�iXT dT

�

�

�

�

�

�

�

�

ð60Þ

The energy of the system at a point ðX; YÞ 2 Q is

(Dragoni & Santini, 2015)

EðX; YÞ ¼ 1

2
ðX2 þ Y2Þ þ 1

2
aðX � YÞ2 ð61Þ

Let Ei be the energy at the beginning of the ith mode.

The energy change in the ith mode is then

DEi ¼ Eiþ1 � Ei ð62Þ

and the total energy change is

DE ¼ Emþ1 � E1 ð63Þ

or, thanks to (52),

DE ¼ EðX1 � U1; Y1 � U2Þ � EðX1; Y1Þ ð64Þ

In the ith mode, seismic energy is released at a rate

(Dragoni & Santini, 2015)

_Ri ¼ �cð _X2
i þ _Y2

i Þ ð65Þ

and the energy released in the ith mode is
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DRi ¼
Z Tiþ1

Ti

_RiðTÞ dT ð66Þ

The total seismic energy released in the event is

DR ¼
X

m

i¼1

DRi ð67Þ

Finally, the seismic efficiency can be defined as

g ¼ DR

DE
ð68Þ

3. Dynamics of a Two-Asperity Fault

The dynamics of a two-asperity fault can be

highlighted by considering a number of cases of

increasing complexity. In all cases, analytical solu-

tions for the dynamic modes of the system can be

obtained.

According to Turcotte (1997), chaotic behavior is

attained for higher values of the coupling parameter

a. From (14), (4), (5) and (6) or (7), it results that a is

proportional to the ratio A=a3, where A ¼ A1 or A2.

Since asperities are disjoint subsets of the fault sur-

face, larger areas imply larger values of distance a.

Therefore the high values of a required for chaotic

behavior are hardly attained and this kind of behavior

is not considered here. Analysis of seismological data

is not conclusive in this regard (e.g. Marzocchi et al.,

1997).

3.1. Identical Asperities

The simplest case is a fault with two identical

asperities (Dragoni & Santini, 2010). In this case

A1 ¼ A2, fs1 ¼ fs2 and fd1 ¼ fd2. Then the parameters

b and n are equal to 1. For the sake of simplicity,

wave radiation is neglected, a reasonable assumption

in view of the low seismic efficiency of faults

(Kanamori, 2001): hence c ¼ 0. Therefore, Eqs. (21)

and (22) reduce to

€X þ ð1þ aÞX � aY � � ¼ 0 ð69Þ

€Y þ ð1þ aÞY � aX � � ¼ 0 ð70Þ

The system has a rich variety of behaviors even in

this simpler case. An analysis of orbits in the phase

space shows that the system has an infinite number of

limit cycles, each one characterized by the variable p

defined in (41). An initial value p þ U gives rise to

the same cycle, but run in the opposite way (Fig. 3).

An interesting aspect is that the recurrence pattern of

seismic events depends on the initial stress distribu-

tion on the fault (Dragoni & Santini, 2010).

Each cycle is made of two 1-mode events 10 and

01, separated by interseismic periods of variable

duration. The slip amplitude U given in (46) is

associated with each event. From (59) with U1 ¼ U

and U2 ¼ 0 or U1 ¼ 0 and U2 ¼ U, the seismic

moment of each event is

M0 ¼ M1 ð71Þ

In the particular case when one interseismic period is

equal to zero, a single 2-mode event 10-01 or 01-10,

with seismic moment 2M1 takes place in the cycle.

There is no simultaneous slip of asperities.

Orbits reach a limit cycle only after entering a

particular subset L of the sticking region Q. This

means that only a subset of initial stress distributions

on the fault allows the system to enter a limit cycle.

Figure 3
A limit cycle of the two-asperity fault, projected on the plane XY.

Segments P1P2 and P3P4 represent 1-mode seismic events 10 and

01 respectively. Segments P2P3 and P4P1 represent interseismic

intervals of different durations. The cycle can be run in both senses

depending on the initial value of the variable p (�0:17 or 0.13),

expressing stress distribution on the fault. Model parameters are

a ¼ 1, b ¼ 1, c ¼ 0, � ¼ 0:7, n ¼ 1. Adapted from Dragoni and

Santini (2010)
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In this case, the behavior is periodic, with alternate

asperity slip.

When the representative point of the system is

outside L, the motion of one asperity can trigger the

motion of the other one and simultaneous motion

takes place (mode 11). This happens because, while

an asperity is slipping, the condition for slip of the

other asperity is attained. In this case, (69) and (70)

must be solved simultaneously (Dragoni & Santini

2011). When simultaneous slip takes place, asperity 1

may trigger the failure of asperity 2 or vice versa: the

two cases produce earthquakes with similar seismic

moments, but different epicentres. The seismic

moment of events including mode 11 is always

larger than the maximum value 2M1 produced in a

limit cycle. Events including simultaneous slip of

asperities are the largest earthquakes that can be

generated by the fault.

In the long term, the representative point reaches

in any case the subset L and enters a limit cycle, with

periodic behavior. Of course, this contrasts with

observation, showing that the seismic activity of a

fault is aperiodic and produces earthquakes of

different magnitudes. This behavior can easily result

from the model if one assumes that the fault is not

isolated, but may receive stress transfers from the

seismic activity of neighboring faults.

The system is sensitive to small perturbations,

because the sticking region Q can be divided into

narrow stripes leading to different evolutions (Drag-

oni & Santini, 2011). If the system is in L, a small

stress perturbation can shift the system from one limit

cycle to another having a different recurrence pattern.

The system may also be shifted outside L: in this

case, one or more larger events, with simultaneous

asperity motion, will be produced, until a stress

distribution leading to periodic behavior is restored.

Therefore periodicity could not be observed.

3.2. Asperities with Different Strengths

In the case of a fault with two asperities with

equal areas, but different strengths, we have still n ¼
1 but b 6¼ 1. The equations for slipping modes are

€X þ ð1þ aÞX � aY � � ¼ 0 ð72Þ

€Y þ ð1þ aÞY � aX � b� ¼ 0 ð73Þ

Solution of these equations shows that the system has

a greater range of possible behaviors (Dragoni &

Santini 2012). As in the case of equal strengths, the

fault can produce earthquakes from the failure of one

asperity or may involve failure of both asperities, but

the symmetry of section 3.1 is lost. When one

asperity is involved in a seismic event, the following

event is originated in most cases by the failure of the

other asperity, but in some cases failure of the same

asperity may occur. In particular cases (Fig. 4), an

earthquake may be due to slip of one asperity fol-

lowed by slip of the other one and again by slip of the

first one (Dragoni & Santini, 2012).

At any instant of time, the evolution of the fault

depends on the variable p, that is proportional to the

difference between forces F1 and F2 according to

(42). For the largest part of the interval ½pa; pb�, the
difference is remarkable. It is concluded that the

initial stress distribution on the fault is not uniform in

most cases.

As an example, Dragoni and Santini (2012)

considered the 1964 Great Alaska Earthquake, one

of the largest events in the last century, with

Figure 4
An example of orbit for a 3-mode seismic event 01-11-01,

projected on the plane XY. Initial condition is p ¼ �0:15. In this

case p 2 ½p1; p2�, so that the event includes mode 11. Each segment

of the orbit is labeled with the string indicating the slipping mode.

The dashed line is Y ¼ X þ p0, where p0 ’ �0:17. Model param-

eters are a ¼ 1, b ¼ 0:5, c ¼ 0:5, � ¼ 0:7, n ¼ 1. Adapted from

Dragoni and Tallarico (2016)

Vol. 179, (2022) Discrete Fault Models 3105



magnitude 9.2. Seismological, geodetic and tsunami

data show that the earthquake was due to the failure

of two large asperities (Christensen & Beck, 1994;

Holdahl & Sauber 1994; Johnson et al., 1996; Santini

et al. 2003; Zweck et al., 2002). On the basis of data,

a coupling parameter a ¼ 0:1 was assumed. Friction

distribution was estimated from the ratio of maxi-

mum slip amplitudes for the two asperities, yielding

b ¼ 0:75. With an appropriate value of p, the event

can be modelled as a mode sequence 10-01.

If one assumes that after an earthquake the state of

stress is controlled only by tectonic loading, the

model predicts that next earthquakes will involve

only one asperity: hence they will be smaller than the

1964 one, until conditions for a new large event are

attained. This prediction leans on simplifying

assumptions and approximate data, but it shows that

discrete fault models, focusing on large-scale prop-

erties, may disclose mechanisms controlling the long-

term evolution of faults (Dragoni & Santini, 2012).

The source function of a seismic event is usually

expressed by the moment rate _M as a function of

time. A study of the moment rate of events produced

by a two-asperity fault shows how the moment rate

changes as a function of initial conditions and model

parameters (Dragoni & Santini, 2014). For given

values of parameters, the moment rate function

depends on the sequence of slipping modes in the

event, which is controlled by the value of p. The

graph of moment rate appears as a sequence of

humps, each one corresponding to a slipping mode,

that may partially overlap in connection with simul-

taneous slip (Fig. 5).

A seismic event including simultaneous asperity

slip was the 2010 Maule earthquake, a magnitude 8.8

thrust event occurred in central Chile (Delouis et al.,

2010; Lay et al., 2010a; Vigny et al., 2010). Slip

concentrated on two main asperities located south

and north of the epicentre. According to observations,

the event can be modeled as a mode sequence 10-11-

01, involving asperities with similar strengths

(b ¼ 1). The model provides a good fit of the

observed moment rate and an estimate of stress

distribution on the fault before and after the earth-

quake (Dragoni & Santini, 2014).

A consequence of friction heterogeneity on faults

is that complex events can be produced (Dragoni &

Tallarico, 2016). With the exception of the case

p ¼ p0, all events start with the motion of one

asperity. The initial mode is 10 or 01 according to

whether p is smaller or greater than the value p0 given

in (44). After some time, the asperity motion triggers

the motion of the other asperity and the system passes

to mode 11. When asperities slip simultaneously, they

never stop at the same time, so that mode 11 is

followed by mode 10 or 01.

When p has the smallest values in the interval

½pa; pb�, the mode sequence is 10-11-01. As p in-

creases, mode 11 becomes prevailing over modes 10

and 01, until an inversion in the order of arrest takes

Figure 5
Moment rate _M of the 3-mode seismic event 01-11-01 represented

in Fig. 4. Moment rate is normalized to the nondimensional seismic

moment M1 of a 1-mode event 10 in the absence of radiation.

Nondimensional event duration is DT ¼ 4:47. Adapted from

Dragoni and Tallarico (2016)

Figure 6
Evolution of forces on asperities during the 3-mode seismic event

01-11-01 represented in Fig. 4. The magnitudes of forces F1 (upper

curve) and F2 (lower curve) are shown as functions of time,

ranging from T1 ¼ 0 to T4 ¼ 4:47. Nondimensional frictional

strengths of asperity 1 and 2 are 1 and b, respectively. Adapted

from Dragoni and Tallarico (2016)
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place in mode 11: asperity 2 stops earlier than

asperity 1, so that the sequence is 10-11-10.

When p ¼ p0, the initial mode 10 disappears and

asperities slip simultaneously from the onset of the

event. Asperity 1 stops earlier, so that a 2-mode

sequence 11-01 results. For p[ p0, the event starts

with mode 01 and the sequence is 01-11-01. A greater

complication results for the largest values of p, such

as a 5-mode sequence 01-11-10-11-01. Different

sequences are possible depending on the values of

model parameters (Dragoni & Tallarico 2016).

The evolution of stress on the fault is described by

forces F1 and F2 on asperities, given in (18). They

increase with time on both asperities in the sticking

mode, but oscillate in the slipping modes, owing to

two processes: stress drops on asperities and stress

transfers between them (Fig. 6). These processes

determine the state of stress at the end of the event.

Depending on the initial stress distribution and on the

mode sequence, the final stress can be more or less

heterogeneous than the initial one.

An example of complex event is 1992 Landers,

California, earthquake, a magnitude 7.3 event orig-

inated by strike-slip faulting (Kanamori et al., 1992;

Olsen et al., 1997; Peyrat et al., 2001; Wald &

Heaton, 1994). The observed slip distribution is very

heterogeneous, but can be modelled in terms of a

friction distribution made of two asperities with

different strengths (b ¼ 0:5). The model shows that

the initial stress distribution was strongly heteroge-

neous, with a reduced heterogeneity at the end. With

an appropriate choice of model parameters, the

moment rate for a 2-mode event fits the observed

function (Dragoni & Tallarico, 2016).

3.3. Seismic Energy and Spectrum

Consideration of wave radiation introduces fur-

ther effects. Radiation during slipping modes can be

taken into account by addition of a term proportional

to slip rate (Rice, 1993). If asperities are assumed to

have the same area (n ¼ 1), equations for slipping

modes are

€X þ c _X þ ð1þ aÞX � aY � � ¼ 0 ð74Þ

€Y þ c _Y þ ð1þ aÞY � aX � b� ¼ 0 ð75Þ

In the presence of radiation, fault dynamics changes

both in the sticking and in the slipping modes, in a

measure that depends on the impedance c (Dragoni &
Santini, 2015). Emission of radiation changes the

evolution of the system from a given state, because it

shifts the boundaries between different subsets of the

sticking region Q. In particular, the presence of

radiation changes the width of the interval ½p1; p2�
leading to simultaneous asperity slip. In the presence

of radiation, slip amplitude is smaller, while slip

duration is longer. The moment rate depends on

seismic efficiency g and has its maximum in the first

half of source duration DT .

The smaller value of slip implies a smaller

seismic moment M0, that decreases with increasing

g, at constant radiated energy. It is found that

(Dragoni & Tallarico, 2016)

M0 ¼ j1M1 ð76Þ

for a 1-mode event 10 and

M0 ¼ bj1M1 ð77Þ

for a 1-mode event 01, where j1 is given in (24).

Events including mode 11 have a moment

M0 ¼ M1f ðpÞ; p1 � p� p2 ð78Þ

where f(p) must be evaluated numerically (Fig. 7).

The greatest values of M0 are achieved by these

events, with a maximum at p ¼ p0.

Figure 7
Seismic moment M0 as a function of the variable p expressing

initial conditions of the event. Allowed values of p are in the

interval ½pa; pb�. Values in the interval ½p1; p2� produce simultane-

ous asperity slip. Moment is normalized to the seismic moment M1

produced by a 1-mode event 10 in the absence of radiation. Values

of model parameters are as in Fig. 4. Adapted from Dragoni and

Tallarico (2016)
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The seismic spectrum SðXÞ defined in (60)

exhibits the classical Brune (1970) shape (Fig. 8). It

has an infinite number of relative minima, their

positions and values depending on b. They are zeroes

only in the case of homogeneous friction (b ¼ 1).

The corner frequency is (Dragoni & Santini, 2015)

Xc ¼
ffiffiffiffiffiffiffiffiffiffiffi

1þ a
p p

x1DT
ð79Þ

where x1 is defined in (25) and DT is the source

duration. It depends on parameters a, b and c and can

sensibly change as a function of initial conditions.

If one considers again the 1964 Great Alaska

Earthquake, mode durations, slip distribution,

moment rate and seismic moment can be calculated

in the presence of radiation (Dragoni & Santini

2015): they are consistent with observed values

(Ichinose et al., 2007) provided an appropriate value

of p is chosen. The state of the fault after the

earthquake is different from that obtained in the

absence of radiation, implying that the long-term

evolution is different.

During fault slip, elastic strain energy is partly

dissipated into heat and partly radiated in the

surrounding medium (Kanamori & Heaton 2000;

Kanamori & Rivera 2006; Rudnicki & Freund, 1981).

The model shows that the energy release DE

decreases, while the radiated energy DR increases

with increasing impedance c. Accordingly, seismic

efficiency g given by (68) increases with increasing c,
its maximum value depending only on the ratio �

between dynamic and static friction (Dragoni &

Santini, 2015).

The effect of friction heterogeneity on seismic

energy and spectrum can be studied by considering

events produced by the failure of asperities with

different strengths (Dragoni & Santini 2017). As

underlined above, the stress distribution on the fault,

expressed by b, is in general strongly heterogeneous

at the onset of a seismic event. Seismic energy DR

decreases with increasing b, while seismic efficiency

g is constant. An equation relating g to the parameters

of the friction law can be obtained, showing that g is

maximum for smaller values of �. The model

provides a relation between DR and the seismic

moment M0, that is consistent with the empirical

relation between the two quantities (Kanamori,

2001). It results that heterogeneity introduces a

correction to the value of energy radiated by a

homogeneous fault (Dragoni & Santini, 2017).

As an example, the 1965 Rat Islands, Alaska,

earthquake, was considered, a magnitude 8.7 event

occurred at the Alaska-Aleutinian Trench (Beck &

Christensen 1991; Johnson & Satake, 1996; Wu &

Kanamori, 1973). The event can be modeled as due to

the separate failure of two asperities with different

strengths, with b ¼ 0:67. For this event, moment rate,

stress evolution, radiated energy and seismic spec-

trum can be calculated on the basis of the model,

showing how friction heterogeneity controls the

characteristics of a seismic event (Dragoni & Santini,

2017).

3.4. Asperities with Different Areas and Strengths

In the case of a fault with two asperities of

different areas and strengths, the equations for

slipping modes have the general forms given in

(21) and (22). There are remarkable differences with

the case of asperities with equal areas (Lorenzano &

Dragoni, 2018a).

Force rates on asperities are not equal to each

other and their difference is not constant during

interseismic intervals. The sticking region Q grows

with the total asperity area, while the probability that

the fault produces events involving simultaneous

Figure 8
Moment rate spectrum S as a function of angular frequency X for

the 3-mode seismic event 01-11-01 represented in Fig. 4. The

spectrum is normalized to the nondimensional seismic moment M0

produced by the event. Nondimensional corner frequency is

Xc ¼ 1:01. Adapted from Dragoni and Tallarico (2016)
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asperity slip decreases. If one considers events

produced by the failure of a single asperity, slip

duration and amplitude increase with asperity size,

while corner frequency decreases. In 2-mode events

involving consecutive failure of asperities, seismic

efficiency g depends on the total asperity area.

As an application of the model, Lorenzano and

Dragoni (2018a) considered the 2007 Pisco, Peru,

earthquake, a magnitude 8.0 event at the border

between the Nazca and South American plates (Lay

et al., 2010b). Seismological and geodetic data

indicate the presence of two asperities (Sladen

et al., 2010). By an appropriate choice of initial

conditions, the event can be modelled as a 2-mode

sequence 01-10, starting with slip of the weaker

asperity and followed by slip of the stronger one, with

b ¼ 0:5 and n ¼ 0:6. The moment rate fits reasonably

well the observed function.

The case of simultaneous asperity motion was

considered by Santini and Dragoni (2020). The aim

was to model the observed moment rate and seismic

moment of the 2018 Gulf of Alaska earthquake, a

magnitude 7.9 event originated by strike-slip faulting

(Krabbenhoeft et al., 2018; Lay et al., 2018; Ruppert

et al., 2018). Observations indicate that the earth-

quake was due to the failure of two main asperities

and suggest an intermediate phase of simultaneous

slip. Accordingly, the earthquake can be ascribed to a

3-mode sequence 10-11-01. Asperity sizes are very

different from each other, with n ¼ 0:25. An estimate

of frictional strengths yields b ¼ 0:45. The moment

rate calculated from the model fits observations

reasonably well.

3.5. Effects of Stress Perturbations

In a fault system, any fault is subject to stress

perturbations due to earthquakes generated by neigh-

boring faults. The stress redistribution produced by

each earthquake affects occurrence times and mag-

nitudes of following earthquakes. Therefore, stress

transfer between faults plays an important role in

fault systems (Stein et al., 1992; Harris, 1998; Stein,

1999; Steacy et al., 2005; Tallarico et al., 2005).

Belardinelli et al. (2003) discussed the effects of

stress perturbations in the case of a homogeneous

fault. Dragoni and Piombo (2015) considered the case

of a fault containing two asperities. Fault hetero-

geneity produces effects that are not present in the

case of a homogeneous fault. This occurs because the

stress field of a dislocation is inhomogeneous, so that

asperities belonging to a fault are subject to different

stress changes. As a consequence, a stress perturba-

tion may not only advance or delay the next

earthquake, but it may change the sequence of

dynamic modes in the event, thus changing the

hypocentre position, source duration and seismic

moment.

The proximity of a fault to failure can be

expressed by its Coulomb stress. If rt is shear stress

in the direction of fault slip and ss is static friction on

the fault surface, the Coulomb stress is (Gomberg

et al., 2000; Stein, 1999)

rC ¼ rt � ss ð80Þ

Accordingly, rC is negative during interseismic

intervals and seismic events occur when rC vanishes.

Since there are two asperities, a value of Coulomb

stress must be assigned to each of them. If forces are

used instead of stresses, nondimensional Coulomb

forces on the two asperities are

FC
1 ¼ �F1 � 1; FC

2 ¼ �F2 � b ð81Þ

where F1 and F2 are given by (2) and (3) and n ¼ 1 is

assumed for the sake of simplicity. While FC
1 and FC

2

measure the proximity of asperities to the respective

failure conditions, the difference FC
2 � FC

1 indicates

the proximity to the condition of simultaneous slip.

When the fault is subject to a stress perturbation,

the changes DFC
1 and DFC

2 in Coulomb forces are

different from each other, so that the evolution of the

fault is controlled by the difference

DFC ¼ DFC
2 � DFC

1 ð82Þ

expressing the change in the asymmetry degree of

stress and friction on the fault.

These results explain why earthquakes generated

by a fault are not only aperiodic, but are different

from each other as to hypocenter position, slip

amplitude and involved area. Differences are con-

nected with the kind of stress perturbations occurring

during interseismic intervals (Dragoni & Piombo,

2015).
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The model has been applied to the fault of the

2010 Maule earthquake, that was considered in

Sect. 3.2, in order to investigate the effect of the

perturbation produced by the 1960 Great Chilean

Earthquake (Dragoni & Piombo, 2015). As noted

above, the stresses imposed on the asperities of the

Maule fault were necessarily different from each

other: this altered the stress distribution on the fault,

with important consequences for its evolution.

The model predicts that, in the absence of the

1960 earthquake, the Maule earthquake would have

occurred several decades later, with a different

sequence of dynamic modes and a different seismic

moment. The 1960 earthquake increased stress inho-

mogeneity on the Maule fault, preparing the

conditions for the 2010 earthquake.

3.6. Effects of Viscoelasticity

An important role in seismic activity is played by

rheological properties of the lithosphere. Due to

anelasticity of lithospheric rocks (Carter, 1976;

Kirby, 1983; Kirby & Kronenberg, 1987; Nishimura

& Thatcher, 2003), stress fields produced by fault slip

are partially relaxed during interseismic intervals

(Chen & Molnar, 1983; Dragoni et al., 1986; Kusznir,

1991). In the long term, this changes the stress

distribution on faults, controlling the occurrence

times of seismic events (Lynch et al., 2003; Piombo

et al., 2007; Smith & Sandwell, 2006).

The effects of viscoelastic relaxation on a two-

asperity fault were considered by Amendola and

Dragoni (2013) in the case of identical asperities and

by Dragoni and Lorenzano (2015) in the case of

asperities with different strengths. As reported in

Sect. 3.1, in the case of purely elastic coupling the

long-term behavior of the system is a limit cycle with

a recurrence pattern of earthquakes depending on the

degree of stress inhomogeneity on the fault. In the

presence of viscoelastic relaxation, this simple

behavior is modified, because stress transferred from

one asperity to the other partially relaxes during

interseismic intervals.

In order to take into account viscoelasticity, a

third variable z, expressing viscoelastic deformation,

is introduced in the model. In nondimensional form

Z ¼ K1z

fs1
ð83Þ

Hence the system has three degrees of freedom and

phase space S is 6-dimensional. In the sticking mode,

tangential forces on asperities are

F1 ¼ �X þ aZ F2 ¼ �Y � aZ ð84Þ

where terms �aZ are contributions of stress transfer

between asperities in the presence of viscoelastic

deformation. If asperities with equal areas are con-

sidered for the sake of simplicity (n ¼ 1), conditions

for the onset of slip are from (31)

F1 ¼ �1; F2 ¼ �b ð85Þ

or, thanks to (84),

X � aZ � 1 ¼ 0; Y þ aZ � b ¼ 0 ð86Þ

that are the equations of two planes in the space XYZ.

If one considers the no-overshooting condition (30),

the sticking region is defined from the six inequations

0�X � 1; 0� Y � 1;
X � 1

a
� Z � b� Y

a
ð87Þ

that define a convex tetrahedron T (Fig. 9). A seismic

event takes place when the representative point of the

system reaches face ACD or BCD, entering mode 10

Figure 9
The sticking region T of the two-asperity fault in the presence of

viscoelastic relaxation. T is a tetrahedron ABCD in the space XYZ.

Seismic events take place when the representative point of the

system reaches face ACD or BCD. Model parameters are a ¼ 1,

b ¼ 1, c ¼ 0, n ¼ 1. Adapted from Dragoni and Lorenzano (2015)
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or 01. If it reaches the edge CD, the system enters

mode 11.

The simplest viscoelastic model describing long-

term behavior of lithospheric rocks is the Maxwell

body (e.g. Ranalli, 1995), characterized by a relax-

ation time s, that is expressed in nondimensional

form as

H ¼
ffiffiffiffiffiffi

K1

m1

r

s ð88Þ

The evolution equations in mode 00 are then

€X ¼ 0; €Y ¼ 0; €Z ¼ Z

H2
ð89Þ

where Z is determined by the Maxwell constitutive

equation. Hence

XðTÞ ¼ X0 þ VT ; YðTÞ ¼ Y0 þ VT ; ZðTÞ ¼ Z0e�T=H

ð90Þ

where X0, Y0 and Z0 are the coordinates of the system

at T ¼ 0. From (86) and (90), the time T1 required for

the fault to reach the condition for slip of asperity 1 is

T1 ¼ HWðc1Þ þ
1� X0

V
ð91Þ

where W is the Lambert function with argument

c1 ¼
aZ0

VH
e�

1�X0
VH ð92Þ

An analogous formula holds for asperity 2, with

T2 ¼ HWðc2Þ þ
b� Y0

V
ð93Þ

where

c2 ¼ � aZ0

VH
e�

b�Y0
VH ð94Þ

From (91) and (93), it is easy to find that initial states

belonging to T lead to mode 10 or to mode 01

according to whether they are below or above the

surface

VH ½Wðc1Þ � Wðc2Þ� þ Y � X þ 1� b ¼ 0 ð95Þ

From (84) and (90), forces applied to asperities in

mode 00 are

F1ðTÞ ¼ �X0 � VT þ aZ0e
�T=H ð96Þ

F2ðTÞ ¼ �Y0 � VT � aZ0e
�T=H ð97Þ

A comparison with the purely elastic case shows that

there are additional nonlinear terms, so that forces

change non-monotonically during the interseismic

interval. Additionally, the difference F1 � F2 chan-

ges in time, entailing a change in stress distribution

on asperities. In summary, seismic events are antici-

pated or delayed with respect to the elastic case, the

importance of viscoelastic relaxation being controlled

by the product VH (Dragoni & Lorenzano, 2015).

In order to illustrate this effect, the fault that

originated the 1964 Great Alaska Earthquake can be

considered again. Being a large-size event, the

earthquake was followed by a remarkable post-

seismic deformation (Zweck et al., 2002). As

reported in Sect. 3.2, the earthquake source can be

represented as a 2-mode event 10-01. Consideration

of viscoelastic effects shows that stress relaxation

controls the occurrence times of earthquakes pro-

duced by that fault (Amendola & Dragoni, 2013).

Fault evolution depends on the state from which

the 1964 event originated, that is inferred from the

observed moment rate. This constrains the evolution

of the system to a subset of phase space. Knowledge

of the moment rate of the next earthquake would

further constrain the orbit, and so on (Dragoni &

Lorenzano, 2015).

There is a complex interplay between stress

perturbations and viscoelastic relaxation. Following

a stress perturbation, the change in Coulomb stress on

a given asperity determines the anticipation or delay

of slip of that asperity, if a purely elastic behavior is

assumed. This property no longer holds in the

presence of viscoelastic relaxation (Lorenzano &

Dragoni 2018b). In the latter case, from (81) and (84),

Coulomb forces on asperities are

FC
1 ¼ X � aZ � 1; FC

2 ¼ X þ aZ � b ð98Þ

Following a perturbation in normal stress, static

frictions on asperities are modified. If f 0s1 and f 0s2 are

the new static frictions on asperity 1 and 2, respec-

tively, the following parameters are defined

Vol. 179, (2022) Discrete Fault Models 3111



b1 ¼
f 0s1
fs1

; b2 ¼
f 0s2
fs1

ð99Þ

Changes in static friction imply that conditions (85)

for the onset of asperity slip become

F1 ¼ �b1; F2 ¼ �b2 ð100Þ

meaning that changes in normal stress change the

sticking region. Then the changes in frictions can be

written as

Db1 ¼ b1 � 1; Db2 ¼ b2 � b ð101Þ

If DF1 and DF2 are the changes in tangential forces

due to the perturbation, the changes in Coulomb

forces are

DFC
1 ¼ DF1 � Db1; DFC

2 ¼ DF2 � Db2 ð102Þ

The signs of DFC
1 and DFC

1 determine whether the

perturbation takes an asperity closer to or farther

from failure conditions. However, there is not a direct

connection between the signs of the two quantities

and the anticipation or delay. The effect depends on

the state of the fault immediately before and after the

stress perturbation (Lorenzano & Dragoni 2018b).

An interesting case is the stress perturbation

produced by the 1999 Hector Mine, California,

earthquake on the fault originating the 1992 Landers

earthquake, the latter being followed by a remarkable

viscoelastic relaxation (Lorenzano & Dragoni

2018b). The 1999 Hector Mine earthquake was a

magnitude 7.1 event generated by strike-slip faulting

located about 20 km from the Landers fault (Jónsson

et al. 2002; Salichon et al., 2004). As reported in

Sect. 3.2, the Landers earthquake source can be

modelled as a 2-mode 01-10 event. The stress transfer

produced by the 1999 Hector Mine earthquake can be

calculated and the complex effects of the stress

perturbation on the future activity of the Landers fault

can be explored.

4. Other Aspects of Fault Mechanics

The model developed in previous sections can be

adjusted in order to investigate other aspects of fault

mechanics, such as the effects of variable strain rate,

the presence of fault creep and the occurrence of

seismic sequences in fault systems.

4.1. Variable Strain Rate

In the study of fault behavior it is generally

assumed that faults are subject to a constant strain

rate. However, velocities of tectonic plates may

change in the very long term, probably due to

changes in the rate of mantle convection (e.g.

Iaffaldano & Bunge, 2009; King et al., 2002).

Therefore strain rates controlling seismic activity

are also bound to change in the long term.

Studies of long-term correlations of earthquakes

have been based on different approaches: addition of

Brownian perturbations to steady tectonic motion

(Matthews et al., 2002; Zöller & Hainzl, 2007), use of

the concept of self-organized criticality (Abaimov

et al., 2007; Baiesi, 2009) or study of stress evolution

in discrete fault models (Ben-Zion et al., 2003; Zöller

et al., 2007).

Dragoni and Piombo (2011) considered the effect

of a slowly variable strain rate on the activity of a

fault with a single asperity. The state of the fault is

described by slip deficit X(T) and can assume two

dynamic modes, denoted by 0 and 1 respectively.

Two cases were considered: a sinusoidal oscillation

in velocity of tectonic plates and a slow transition

between two velocity values. It was assumed that

such oscillations or transitions have small amplitudes

with respect to the average velocity and longer

periods and durations than recurrence times of

earthquakes.

In the case of constant plate velocity V, equations

governing fault dynamics in the two modes are

respectively (19) and (69) with a ¼ 0 (radiation is

neglected):

€X ¼ 0; €X þ X � � ¼ 0 ð103Þ

In this case, the fault produces seismic events with a

recurrence period

DT0 ¼
U

V
ð104Þ

where

U ¼ 2ð1� �Þ ð105Þ
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In the case of variable plate velocity, slip deficit

changes with a variable rate _XðTÞ in mode 0. Since

interest is focused on the interseismic intervals,

seismic events can be considered as instantaneous.

In the case of sinusoidal oscillation with fre-

quency X, fault activity is made of cycles including

several seismic events and repeating periodically

with a period that is a multiple of 2p=X (Dragoni &

Piombo, 2011). Within each cycle, recurrence times

of events oscillate about an average value equal to

DT0 and the oscillation amplitude is proportional to

that of strain rate oscillations. The number of events

in a cycle depends on the ratio between X and

2p=DT0. In the case of monotonic transition between

different values of strain rate, recurrence times

change gradually from an initial to a final value.

If the fault is subject to stress perturbations, the

subsequent earthquake is anticipated or delayed. In

the case of sinusoidal oscillations in strain rate, the

perturbation will interrupt the current seismic cycle

and will start a new one. Hence the pattern of seismic

cycles determined by strain rate oscillations is

destroyed by frequent stress perturbations, as may

occur in systems made of several faults. In the case of

a monotonic transition in strain rate, perturbations

similarly alter the pattern of recurrence times and the

number of events occurring during the transition

(Dragoni & Piombo, 2011).

Therefore, even though slow variations in strain

rate are difficult to observe in seismicity records, they

significantly contribute to the aperiodicity of seismic

events in the long term.

4.2. Fault Creep and Afterslip

It is often observed that fault slip continues for

some time after an earthquake, although at a

decreasing rate, a phenomenon called afterslip.

Afterslip is interpreted as aseismic slip of a veloc-

ity-strengthening region of the fault (Belardinelli &

Bonafede, 1995; Marone et al., 1991; Scholz, 1990).

This is confirmed by seismic and geodetic observa-

tions, indicating that faults can accommodate tectonic

motion with stable, quasi-static slip or with fast slip

and production of seismic waves. Such observations

can be accounted for if one considers two kinds of

regions on the fault surface: stable regions, which

mostly creep, and unstable regions, producing earth-

quakes (Johnson, 2010).

The time dependence of aseismic slip has been

mostly described by empirical relationships. An

exponential function approaching a constant value

was proposed by Nason and Weertman (1973). Later,

observations and theoretical considerations suggested

a logarithmic function (Marone et al., 1991). A

review of different time functions was given by

Barbot et al. (2004).

The interaction between two fault segments due to

aseismic slip was studied by Dragoni and Tallarico

(1992) and Tallarico et al. (2002) in the framework of

continuum mechanics. A discrete fault model with

two mechanically different regions was considered in

Dragoni and Lorenzano (2017). The two regions are

an asperity and a weak region and the state of the

fault is described by their slip deficits x and y.

In this section, quantities referring to the asperity

and to the weak region are denoted by indices 1 and

2, respectively. Let f 01 and f 02 be the frictional

resistances of the two regions. For the asperity, a

velocity-weakening law is assumed as above, char-

acterized by a static friction fs and a dynamic friction

fd. For the weak region, a velocity-strengthening law

is assumed

f 02 ¼ f0 þ K _y ð106Þ

where f0 is the steady-state dynamic friction and K is

a constant. Nondimensional slip deficits are

X ¼ K1x

fs
; Y ¼ K1y

fs
ð107Þ

where K1 is defined as in (24). Nondimensional

parameters are defined as

a ¼ Kc

K1

; b ¼ f0
fs
; c ¼ i1

ffiffiffiffiffiffiffiffiffiffiffi

K1m1

p ; � ¼ fd
fs

ð108Þ

k ¼ K
ffiffiffiffiffiffiffiffiffiffiffi

K1m1

p ; n ¼ A2

A1

; V ¼
ffiffiffiffiffiffiffiffiffiffiffi

K1m1

p

fs
v ð109Þ

where a new parameter k has been intoduced and the

others have the same meaning as in two-asperity

models. The evolution equations in the interseismic

intervals are
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€X ¼ 0 ð110Þ

ðaþ nÞY � aX ¼ 0 ð111Þ

When the two regions slip, the evolution equations

are respectively

€X þ c _X þ ð1þ aÞX � aY � � ¼ 0 ð112Þ

€Y þ k _Y þ ðaþ nÞY � aX � b� ¼ 0 ð113Þ

The equations are solved analytically for interseismic

intervals, asperity slip and afterslip in the weak

region (Fig. 10). During interseismic intervals, the

asperity is stationary, while the weak region is

creeping. Stress accumulates on the asperity, until it

is released when frictional threshold fs is exceeded.

Asperity slip transfers stress to the weak region and

afterslip takes place. In turn, afterslip transfers stress

back to the asperity, determining the conditions for

the next earthquake (Dragoni & Lorenzano, 2017).

According to the model, afterslip is a dynamic

mode of the fault and its time dependence can be

approximated by a function

DYðTÞ ¼ Uað1� e�kTÞ ð114Þ

where k is a function of a, k and n. In the long term,

afterslip approaches an asymptotic value Ua and may

have any duration, depending on the intensity of

velocity strengthening. The amount of afterslip Ua is

proportional to seismic slip of the asperity, in

agreement with observations (Dragoni & Lorenzano,

2017).

The model was applied to the fault of the 2011

Tohoku-Oki earthquake (Ide et al., 2011; Maercklin

et al., 2012; Simons et al., 2011), that was followed

by a prolonged afterslip episode (Ozawa et al., 2011).

According to observations, seismic slip concentrated

at shallow depth, while afterslip took place downdip

(Lay et al., 2012; Silverii et al., 2014; Wei et al.,

2012).

On these grounds, a fault with a single shallow

asperity and a downdip weak region was considered

(Dragoni & Lorenzano, 2017). With a suitable choice

of model parameters, a good fit of the seismic

moment rate is obtained. The model suggests that

afterslip dominated the first months after the event,

while later postseismic deformation was due to bulk

viscoelastic relaxation (Sun et al., 2014; Yamagiwa

et al., 2015).

4.3. Seismic Sequences

A typical manifestation of seismic activity is the

occurrence of seismic sequences. This term is used to

mean a series of earthquakes produced by sources

located in a relatively small region and occurring in a

time interval much shorter than the intervals between

sequences (Dragoni & Lorenzano, 2016). Sequences

take place in fault systems producing earthquakes

with similar mechanisms and magnitudes. A

sequence is typically made of a small number of

larger events having medium magnitudes, accompa-

nied by a greater number of smaller events.

Since the faults of the system are close to each

other, fault interaction plays a major role, concen-

trating the events in a shorter time interval. The

distribution in time of seismic sequences has been

investigated by multifractal analysis (e.g. Telesca

et al., 2004; Telesca & Lapenna, 2006).

If we consider a system made of n faults, the state

of the system can be described by n variables that are

P1

P2

P3

X

Y

Us

Ua

Figure 10
Representation of the cycle made of seismic slip, afterslip and

interseismic creep in the space XY. The dashed and dotted lines

represent conditions for asperity failure and fault creep, respec-

tively. Points P1, P2 and P3 represent the state of the fault at the

beginning of the seismic event, at the end of the event and at the

end of afterslip, respectively. Segments P1P2 and P2P3 give the

amplitudes Us and Ua of seismic slip and afterslip, respectively.

From P3 to P1, the fault is subject to creep. Adapted from Dragoni

and Lorenzano (2017)
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the Coulomb stresses of the faults (Dragoni &

Lorenzano, 2016). If faults are ordered according to

the magnitude of their Coulomb stresses, each state of

the system can be expressed by a permutation of the

first n integers, such as

h ¼
1 2 . . . n

i1 i2 . . . in

� �

ð115Þ

where fault i1 has the maximum value of Coulomb

stress and fault in has the minimum. This permutation

changes whenever a fault produces a seismic event,

so that the evolution of the system can be described

as a sequence of permutations.

When a seismic sequence of n events takes place,

the order of fault activation is a consequence of initial

stress state of the fault system and of fault interaction.

One may conceive an order implicit in the initial

state, that is modified due to changes in Coulomb

stresses occurring whenever an event takes place.

There are n! possible sequences, differing for the

order of fault activation, and a sequence itself can be

expressed as permutation

h� ¼
1 2 . . . n

i1 j1 . . . k1

� �

ð116Þ

where faults i1, j1...k1 are in the order of activation

(Dragoni & Lorenzano, 2016).

Thanks to the model, the stress state of a fault

system as a function of time can be retrieved from

observation of the order of fault activation in a

seismic sequence. It results that consecutive seismic

sequences originated by a fault system are necessarily

different from each other, because the state of the

system at the end of a sequence is always different

from the initial one.

The model has been applied to the 2012 Emilia

(Italy) seismic sequence, that was made of seven

events with magnitudes between 5 and 6 (Castro

et al., 2013; Pezzo et al., 2013; Scognamiglio et al.,

2012). According to the model, stress evolution in the

fault system was conditioned by the first and fourth

events, that were greater than the others, and

produced a greater stress heterogeneity at the end of

the sequence. The model predicts that, in the absence

of external perturbations, the next sequence will take

place after a few centuries and will be different from

the 2012 one (Dragoni & Lorenzano, 2016).

5. Conclusions

Discrete fault models based on the concept of

asperity have proven to be a useful tool in the study

of fault mechanics. In such models, the state of the

fault is described by few variables expressing the

state of asperities, so that the dynamical system is

characterized by few degrees of freedom.

The present review has focused on the dynamics

of a fault surface with two asperities. This is a

common case, because many large earthquakes can

be interpreted as due to the failure of two asperities.

A two-asperity model is apparently simple, but

reveals an unexpected richness of complicated

behaviors.

Due to the presence of friction, the system is

nonlinear and evolves as a sequence of dynamic

modes, where each mode is described by a different

set of differential equations. Analytical solutions can

be obtained and the evolution of the system can be

visualized in a low-dimensional phase space.

The main conclusions are:

1. The fault can produce very different seismic

events according to initial conditions, expressed

by the stress distribution on the fault. Events are

sequences of slipping modes, involving the

separate or simultaneous slip of asperities, with

durations ranging over a wide time interval.

2. The system is sensitive to small changes in initial

conditions and to small stress perturbations.

Hence its evolution is unpredictable in the long

term, even if there is no chaotic behavior.

3. Most initial conditions of seismic events corre-

spond to strongly nonuniform stress distributions

on the fault. This should be considered the

typical case in fault activity.

4. The moment rate of seismic events may have

very different shapes, according to initial condi-

tions. Observation of the moment rate of a real

event allows to constrain initial conditions to a

subset of the larger set of possible conditions.

5. Interaction between asperities plays a crucial

role during fault slip: continuous stress transfer

between asperities controls the sequence of

dynamic modes in a seismic event.

6. The stress distribution on the fault after a seismic

event is always different from that before the
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event: hence the next event will be different from

the previous one.

7. Radiation of seismic waves has an influence on

fault dynamics and the frequency spectrum of

emitted waves exhibits remarkable variations as

a function of initial conditions.

8. Viscoelastic stress relaxation occurring during

interseismic intervals plays an important role,

because it changes the stress distribution on the

fault and may lead to a completely different

evolution.

9. If one of the asperities is replaced with a velocity

strengthening region, the latter is subject to

afterslip as a consequence of coseismic slip of

the asperity. Afterslip is a possible dynamic

mode of the fault.

10. Generalization of the model to a fault system

shows that the order of events in a seismic

sequence is a consequence of initial stress state

and of interaction between faults. The stress

states of the system can be retrieved from

observation of the order of fault activation in

the sequence.

Discrete models are of course a simplification of real

faults. Their strength is to catch the essential features

of fault dynamics and to provide analytical solutions,

enlightening the details of processes occurring both in

coseismic and interseismic intervals. The possibility

of visualizing the evolution in the phase space adds a

long-term overview that is precluded to models based

on continuum mechanics.
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Madariaga, R., et al. (2010). The 2010 Mw 8.8 Maule megathrust

earthquake of Central Chile, monitored by GPS. Science, 332,

1417–1421.

Wald, D. J., & Heaton, T. H. (1994). Spatial and temporal distri-

bution of slip for the 1992 Landers, California, earthquake.

Bulletin of the Seismological Society of America, 84, 668–691.

Wang, J. H. (2000). Instability of a two-dimensional dynamical

spring-slider model of an earthquake fault. Geophysical Journal

International, 143, 389–394.

Wang, J. H. (2008). One-dimensional dynamical modeling of

earthquakes: A review. Terrestrial, Atmospheric and Oceanic

Sciences, 19, 183–203.

Wei, S., Graves, R., Helmberger, D., Avouac, J.-P., & Jiang, J.

(2012). Sources of shaking and flooding during the Tohoku-Oki

earthquake: A mixture of rupture styles. Earth and Planetary

Science Letters, 333–334, 91–100. https://doi.org/10.1016/j.epsl.

2012.04.006.

Wu, F. T., & Kanamori, H. (1973). Source mechanism of February

4, 1965, Rat Islands earthquake. Journal of Geophysical

Research, 78, 6082–6092.

Yamagiwa, S., Miyazaki, S., Hirahara, K., & Fukahata, Y. (2015).

Afterslip and viscoelastic relaxation following the 2011 Tohoku-

Oki earthquake (Mw 9.0) inferred from inland GPS and seafloor

GPS/acoustic data. Geophysical Research Letters, 42, 66–73.

https://doi.org/10.1002/2014GL061735.

Zielke, O., Galis, M., & Mai, P. M. (2017). Fault roughness and

strength heterogeneity control earthquake size and stress drop.

Geophysical Research Letters, 44, 777–783. https://doi.org/10.

1002/2016GL071700.
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