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Abstract—This study aims to investigate the standardized

precipitation evapotranspiration index (SPEI) using the monthly

observed and gridded Climate Research Unit (CRU) dataset across

13 stations in Ethiopia during the period 1970–2005. SPEI is

computed at a 4-month timescale to represent drought during the

Belg (February–May) and Kirmet (June–September) seasons sep-

arately, and at an 8-month timescale to represent the drought during

these two seasons together (February–September). The results

show that there are extremely strong correlations (R C 0.8)

between the estimated precipitation values from CRU and the

observed values, with root mean square error (RMSE) of 4–99 mm

and mean percentage error (MPE%) of -30 to 73% at most sta-

tions. For temperature and SPEI, the CRU shows almost strong

correlations (0.6 B R\ 0.8), while the dominant values of RMSE

and MPE are 0.7–5 �C and -22 to 26%, respectively, for tem-

perature and 0.28–0.96 and -49 to 55%, respectively, for SPEI

during the three seasons. It is also found that each of the SPEI

clusters (dry, normal, and wet) estimated from CRU has a high

success percentage (C 60%) at more than 50% of the stations,

while the general accuracy exceeds 60% for the three SPEI clusters

together at more than 75% of the stations. Finally, the correct hits

for the estimated SPEI clusters from CRU are often within the

corresponding observed cluster but may shift into another category

(extreme, severe, and moderate) except for a few events.

Keywords: SPEI drought index, SPEI clusters, SPEI cate-

gories, robust statistical procedures, CRU dataset, Ethiopia.

1. Introduction

Drought is a complex phenomenon (Van Loon,

2015) and as a result of water shortage has more

direct and significant impacts on environmental,

social, and economic aspects than any other major

natural disasters (Dai, 2013; Erian et al., 2010, 2021;

Liu et al., 2020a; Vogt et al., 2018; Zabihi et al.,

2017). Droughts can arise either from climate

extremes (e.g., advection of hot and dry air masses or

prevailing anticyclonic conditions) or from the com-

plex interaction of natural processes and high levels

of human activity that affect the water balance (Erian

et al., 2021; Van Loon et al., 2016). There are dif-

ferent types of drought, which may be related to

(i) precipitation (meteorological drought), (ii)

streamflow (hydrological drought), (iii) soil moisture

(agricultural drought), or (iv) any combination of

these three drought types (Dracup et al., 1980).

Drought occurs when the seasonal precipitation drops

below normal or long-term average (Wilhite, 2005).

Drought in Ethiopia occurs during different seasons

that occur in different regions of the country, and it

exists when seasonal rainfall drops below normal by

almost 30–50% (Mera, 2018).

Global warming has played a very important role

in shortening the recurrence frequency of droughts in

Ethiopia, and it is believed to have increased the

severity of the drought impact (Wilhite & Buchanan-

Smith, 2005). This explains the occurrence of

droughts in Ethiopia on average once per decade

from 1950 to the 1980s, while it recently occurred

once every 3 years (Block, 2008). In addition, some

drought events that occurred in Ethiopia have been

linked to the El Nino event that commonly occurs in

the equatorial pacific (Ewbank et al., 2019). Several

studies have been performed in Ethiopia to assess

drought during the Belg and Kirmet seasons (Alemu

et al., 2021; El Kenawy et al., 2016; Mohammed

et al., 2018; Nasir et al., 2021). Such studies showed

an increase in the intensity and frequency of drought

during the Belg season and a decrease in the Kirmet
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season due to the complex variations in temperature

and precipitation.

Several drought monitoring indices have been

introduced and employed by researchers in different

hydrological, meteorological, and agricultural fields

over Ethiopia, including the standardized precipita-

tion index (SPI) (McKee, 1995; Mekonen et al.,

2020), standardized precipitation evapotranspiration

index (SPEI) (Beguerı́a et al., 2014; Haile et al.,

2020), reconnaissance drought index (RDI)

(Mohammed & Yimam, 2021), drought severity

index (DSI) (Kenea et al., 2020), standardized runoff

index (SRI) (Pathak & Dodamani, 2016; Yisehak &

Zenebe, 2021), Palmer drought severity index (PDSI)

(Ayugi et al., 2020; Palmer, 1965), streamflow

drought index (SDI) (Mabrouk et al., 2020), and

others (Guo et al., 2016; Esfahanian et al., 2017). The

choice of drought monitoring indices depends on the

quantity and quality of the available climate data,

aims or objectives of the study, computational sim-

plicity, and the ability of the index to detect the

spatiotemporal distributions and variations in drought

events (Morid et al., 2006). SPI and SPEI are the

most widely used meteorological drought indices,

where only precipitation values are used for SPI

computation, while the SPEI calculation considers

the effects of both evapotranspiration and precipita-

tion together (Singh & Dhanya, 2019). Accordingly,

global warming is poorly considered or represented in

the SPI because it does not take into account the

effect of the temperature element (Venkataraman

et al., 2016). Bai et al. (2020) presented a comparison

between the SPEI and the self-calibrating Palmer

Drought Severity Index (scPDSI), in which both

indices consider global warming but with different

mechanisms. Their findings revealed that SPEI

should be the first choice for use in drought moni-

toring, mainly because of the high uncertainty and

instability of the scPDSI.

However, most studies of drought in Ethiopia

have limitations such as relying on precipitation only,

without temperature, to assess the drought index or

covering a small area or a short record period.

Moreover, despite extensive studies of drought in

Ethiopia, very few studies have attempted to inves-

tigate the performance of gridded datasets against

corresponding observations and how they simulate

the drought events over Ethiopia. However, the

assessment of the climatic parameters from the

gridded datasets could be useful to identify their

accuracy for drought estimation and their reliability

in drought monitoring in the study area. Reda et al.

(2021) illustrated the reliability of nine gridded pre-

cipitation and temperature datasets, including the

Climatic Research Unit (CRU) TS v4.03, compared

to ground-based observations, used to estimate the

drought index (SPI) over the upper Tekeze River

basin in Ethiopia from 1982 to 2016. This study

demonstrated that the CRU shows good agreement

with the observed values, with an extremely strong

correlation coefficient of 0.85 at the monthly time-

scale. In addition, the different drought indices (SPI,

SPEI, etc.) in all drought studies over Ethiopia are

mostly computed at timescales of 1, 3, 6, 9, 12, 24,

and 48 months, except for the study by Mekonen

et al. (2020), which used timescales of 1, 4, and 8

months.

Therefore, this study aims to (1) evaluate the

performance of the CRU gridded dataset to explain

both temperature and rainfall against observations

over Ethiopia during the period 1970–2005, (2) assess

the suitability and the robustness of the used gridded

dataset to estimate the SPEI drought index across

Ethiopia, (3) computing the SPEI at 4-month time-

scale to represent drought events during the two rainy

seasons of Belg (February–May) and Kirmet (June–

September) separately, (4) computing the SPEI at

8-month timescale to represent drought events during

these two rainy seasons together (February–Septem-

ber), and (5) interpret and analyzing of the estimated

SPEI based on the observed and CRU at 13 stations

across Ethiopia during the Belg (B), Kirmet (K), and

Belg–Kirmet (B–K) seasons. Moreover, only the two

rainy seasons of Belg and Kirmet are considered in

this study, because the third season of Bega (Octo-

ber–January) represents the dry season in Ethiopia.

2. The Study Area

Ethiopia is located in the northeastern part of the

African continent within 3–15�N and 33–48�E and

forms the main part of the Horn of Africa region. The

country occupies an area of approximately 1.14
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million km2, and it is rich in geographical diversity,

with high, rugged plateaus and outlying lowlands. As

indicated in Fig. 1, the elevation in the country ran-

ges from 160 m below sea level at the northern end of

the Rift Valley to more than 4600 m above sea level

in northern mountainous regions (Teshome & Zhang,

2019). Several factors affect the climate of Ethiopia,

and one of these factors is the regular movement of

the Intertropical Convergence Zone (ITCZ), which

moves to the north between March and September

and to the south between October and January

(Lashkari & Jafari, 2021).

The wide variety of topography in Ethiopia and

the observed contrast in elevation, where the central

plateau descends in the mid-range between 1800 and

2500 m and the lowlands have an elevation below

1500 m, result in a variety of climates, from very arid

to very humid, typical of equatorial mountains. Pre-

cipitation also varies with latitude, decreasing from

south to north, and the distribution of annual pre-

cipitation ranges from less than 250 mm—and as low

as 50 mm in the Danakil depression—to 2000 mm in

the highland (Fazzini et al., 2015). Also, the tem-

perature is much cooler in high areas, ranging

between 6 �C and 26 �C, whereas in the lowlands it

ranges from 25 �C to 30 �C (Mera, 2018). In winter,

the presence of trade winds, cool but dry, blowing

from the northeast to southwest control the dry period

(Bega). In spring, the impact of southwesterly winds

from the Congo basin is responsible for the season of

little rainfall (Belg), which can bring relatively

plentiful precipitation in the southern part of the

country. In summer, the Guinean monsoon, consist-

ing of equatorial warm and humid winds, leads to

abundant rains (Kiremt) (Fazzini et al., 2015); in

addition, Ethiopian agriculture is highly reliant on

rainfall, with low percentages of less than 3% of

irrigated land for cereals (Mann & Warner, 2017).

Accordingly, the short rainfall Belg season (Febru-

ary–May) in the south and southeast is caused by the

‘‘monsoon winds’’ from the southern Indian Ocean,

while the heavy rainfall Kirmet season (June–

September) comes from the Atlantic Ocean and is

related to southwesterly winds. Several parts of the

central, northern, and eastern highlands have short-

season rain from March to April (Mera, 2018; Seleshi

& Zanke, 2004).

3. Data Collection

The spatial distribution and geographical charac-

teristics of the selected 13 in situ meteorological

stations that cover the different parts of Ethiopia are

Figure 1
The geographical distribution and characteristics of the chosen 13 stations in Ethiopia
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illustrated in Fig. 1. The selection of these 13 stations

is based on the highest amount of received annual

average rainfall ([ 600 mm) during the period

1970–2005 as shown in Table 1. The accumulated

monthly rainfall (mm) from rain gauges and mean

monthly of both maximum and minimum tempera-

tures (�C) data at the selected 13 stations are obtained

from the Ethiopian National Meteorological Agency

(ENMA) during the period from 1970 to 2005.

Additionally, the chosen stations are coded and

ranked descending according to the observed annual

rainfall amount as indicated in Table 1. There are

different sensors, instruments, and platforms for

measuring various meteorological elements summa-

rized in detail in Gultepe et al. (2019).

Moreover, the gridded (0.5� 9 0.5�) monthly

dataset for accumulated precipitation (mm) and mean

maximum and minimum temperatures (�C) during

the period from 1970 to 2005 is obtained from the

Climatic Research Unit (CRU) TS version 4 (Harris

et al., 2020). The CRU TS, which is produced by the

National Centre for Atmospheric Science (NCAS) at

the University of East Anglia’s CRU, is one of the

most widely used gridded climate datasets.

4. Methods

To ensure precision, the CRU dataset is interpo-

lated at the specific geographical locations of the 13

chosen stations using the nearest neighbor remapping

(remapnn) operator in Climate Data Operator (CDO)

software. To validate the values of precipitation and

temperature obtained from the CRU gridded dataset

and investigate its accuracy against the observed data,

some of the most robust statistical procedures are

applied. The main goal of this validation is to eval-

uate the CRU accuracy for these two parameters for

use in SPEI estimation during the period from 1970

to 2005. The estimated SPEI values from the CRU

and observation are compared during the Belg (B),

Kirmet (K), and Belg–Kirmet (B–K) seasons. The

statistical procedures performed are root mean square

error (RMSE), mean percentage error (MPE%), and

Pearson correlation coefficient (R). The RMSE as in

Eq. (1) accounts for the scatter of the error distribu-

tion (Lara-Fanego et al., 2012), while the MPE% as

in Eq. (2) tells us the accuracy of the CRU data

(Gong et al., 2020), where small values mean that

CRU values are close to the observed values. Also, R

as shown in Eq. (3) is used to evaluate the linear

correlation between the observed and CRU values,

which range from ? 1 to -1, where ± 1 indicates a

perfect correlation and zero indicates no relationship

at all. The range of R can be categorized according to

Liu et al. (2020b) as: (i) an extremely strong corre-

lation (R C 0.8); (ii) strong correlation

(0.6 B R\ 0.8); and (iii) weak correlation (R\ 0.6).

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

X

n

i¼1

ðeiÞ2

s

ð1Þ

MPE% ¼ 100

n

X

n

i¼1

ð ei

xoð Þi

Þ ð2Þ

R ¼
Pn

i¼1ððxoÞi � xoÞððxcÞi � xcÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1ððxoÞi � xoÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1ððxcÞi � xcÞ2

q ð3Þ

where ei ¼ ððxcÞi � ðxoÞiÞ is the residual or dif-

ference between CRU (xc) and the observed (xo)

values, n is the number of the given values or times,

i = (1, 2, 3, 4 …. n) is the iteration time (monthly),

and xo and xc are the climate average of the observed

and CRU data respectively.

Furthermore, the C?? program developed by the

Spanish Scientific Research Council (CSIC) is used

to estimate the SPEI either from the observed or the

Table 1

Station geoinformation, codes, and descending rank according to

the annual rainfall

Station name Code Lon. �E Lat. �N Annual rainfall (mm)

Nekemte St1 36.45 9.08 2141

Gore St2 35.53 8.15 1978

Jima St3 36.43 7.47 1533

Bahardar St4 37.42 11.06 1480

Depre Markos St5 37.67 10.33 1349

Addis Ababa St6 38.7 9.03 1228

Kombolcha St7 39.73 11.12 1050

Assosa St8 34.52 10.07 1024

Awassa St9 39.48 7.08 959

Arbaminch St10 37.55 6.05 909

Negele St11 39.57 5.33 767

Jijija St12 42.47 9.02 668

Mekele St13 39.05 13.05 648
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CRU dataset. This program requires a text data file

(.txt) containing monthly time series of precipitation

and mean temperature during the study period, and

the station latitude in decimal degree. The program

manual, source, and examples are available at http://

digital.csic.es/handle/10261/10002. The sequential

steps of calculating SPEI are described in detail by

Vicente-Serrano et al. (2010), where it depends on the

monthly difference between precipitation and poten-

tial evapotranspiration for each month.

In this study, the SPEI is computed at two time-

scales: (i) at 4 months, the value of the SPEI in May

is chosen to represent the aggregated value during the

Belg season, and the value of the SPEI in September

is chosen to represent the aggregated value during the

Kirmet season; (ii) at 8 months, the SPEI value in

September is chosen to represent the aggregated

value during both the Belg and Kirmet seasons

together. The SPEI values are categorized according

to Hayes et al. (1999) and grouped into wet, normal,

and dry events, as shown in Table 2.

The success percentage for dry (SPD%), normal

(SPN%), and wet (SPW%) events and the general

accuracy (GA%) of occurrence (Sankaranarayanan

et al., 2020; Sayad et al., 2021) are used to assess and

measure the compatibility and process the count of

correctness between the estimated SPEI cluster

events from CRU and observed data, as shown in

Eqs. 4 and 5, respectively.

SPD% ¼ NCD

NOD

� �

� 100& SPN%

¼ NCN

NON

� �

� 100 &SPW%

¼ NCW

NOW

� �

� 100 ð4Þ

GA% ¼ NCD þ NCN þ NCW

NOD þ NON þ NOW

� �

� 100 ð5Þ

where NCD, NCN, and NCW are the number of

dry, normal, and wet events from CRU that are dry,

normal, and wet events from observations, while

Table 2

SPEI categories and event clustering

Category Extremely wet Very wet Moderately wet Normal Moderately dry Severely dry Extremely dry

Range

From 2.00 1.50 1.00 -0.99 -1.00 -1.50 -2.00

To [ 2.00 1.99 1.49 0.99 -1.49 -1.99 \-2.00

Cluster Wet events Normal Dry events

Table 3

Correlation coefficient (R) between observed and CRU for precipitation, temperature, and SPEI

R St1 St2 St3 St4 St5 St6 St7 St8 St9 St10 St11 St12 St13

Precipitation

B 0.96 0.98 0.94 0.97 0.99 0.98 0.98 0.96 0.79 0.87 0.99 0.97 0.97

K 0.76 0.79 0.9 0.91 0.99 0.97 0.99 0.53 0.55 0.71 0.98 0.92 0.98

B–K 0.94 0.98 0.97 0.97 0.99 0.98 0.99 0.91 0.73 0.79 0.99 0.96 0.99

Temperature

B 0.58 0.66 0.65 0.67 0.69 0.69 0.79 0.07 0.48 0.54 0.68 0.63 0.7

K 0.7 0.8 0.51 0.65 0.7 0.7 0.8 0.48 0.49 0.5 0.63 0.28 0.71

B–K 0.86 0.87 0.68 0.72 0.92 0.78 0.81 0.83 0.62 0.65 0.79 0.57 0.71

SPEI

B 0.67 0.94 0.8 0.8 0.74 0.91 0.84 0.73 0.62 0.68 0.95 0.87 0.78

K 0.61 0.8 0.8 0.81 0.88 0.71 0.95 0.51 0.54 0.6 0.63 0.8 0.8

B–K 0.62 0.43 0.6 0.8 0.83 0.83 0.85 0.6 0.53 0.62 0.97 0.9 0.89
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NOD, NON, and NOW are the number of dry, nor-

mal, and wet events from observed data.

5. Results and Discussion

5.1. Statistical Evaluation of CRU

The correlation coefficient (R) is calculated to

assess the strength of the relationship between the

observed and CRU data for precipitation,

temperature, and SPEI at the 13 selected stations

during the B, K, and B–K seasons over the study

period (1970–2005) as shown in Table 3. The

strength of the relationship is classified as extremely

strong (R C 0.8), strong (0.6 B R\ 0.8), or weak

(R\ 0.6) correlation according to Liu et al. (2020b).

Extremely strong and strong correlations for precip-

itation are detected at 92% (12) and 85% (11) of the

stations during the B and B–K seasons, respectively,

whereas the other stations have strong correlations in

both B and B–K. The K season showed extremely

strong and strong correlations at most stations, except

a weak correlation at St8 (0.53) and St9 (0.55). A

strong correlation was dominant for temperature

during the B, K, and B–K seasons. Moreover, an

extremely strong correlation for SPEI was found at

seven stations (54%) during the three seasons,

followed by a strong correlation at six (46%), four

(31%), and four (31%) stations during the B, K, B–K

seasons, respectively. A weak correlation appeared at

only two (15%) stations during the K and B–K

seasons. The extremely strong correlation is the

dominant correlation at most stations for both

precipitation and SPEI, while a strong correlation is
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Figure 2
Percentage (%) of the stations based on the correlation strength

during B, K, and B–K for the three variables

Table 4

The RMSE and the MPE% for precipitation, temperature, and SPEI

Season St1 St2 St3 St4 St5 St6 St7 St8 St9 St10 St11 St12 St13

Precipitation (mm)

RMSE B 30 29 12 19 4 7 7 12 29 41 9 12 5

K 99 64 20 46 10 17 7 71 51 47 4 22 17

B–K 63 48 16 35 7 12 7 36 38 39 6 15 11

MPE% B -22 -19 -2 57 13 0.3 -3 44 51 31 1 8 15

K -30 -21 -2 -5 2 2 -1 37 36 73 26 33 27

B–K -29 -20 -1 36 9 8 -1 42 46 52 14 19 26

Temperature (�C)

RMSE B 3 1.5 1.5 3 0.7 1.3 1 1 1 5 1 1.5 3

K 4 2 0.9 4 1 0.8 1 0.8 0.8 4 0.9 1 3

B–K 1 1 1 4 0.9 1 1 1 1 4 1 1 1

MPE% B 17 6 -6 -15 2 -6 -2 -4 -5 -19 -0.7 4 15

K 26 12 -4 -22 6 -3 -3 -2.5 -3 -17 -0.6 5 15

B–K 22 9 -4.5 -19 4 -4 -4 -4 -4 -18 -4 4.5 4

SPEI

RMSE B 0.96 0.32 0.66 0.67 0.71 0.42 0.60 0.80 0.88 0.76 0.32 0.51 0.72

K 0.88 0.53 0.69 0.71 0.48 0.82 0.35 0.84 0.92 0.84 0.87 0.80 0.68

B–K 0.76 0.75 0.92 0.70 0.53 0.61 0.54 0.93 0.90 0.81 0.28 0.44 0.48

MPE% B -28 -7 55 11 -5 -3 15 -42 -36 -15 9 -29 -14

K -38 -35 -18 -7 -36 -48 44 9 -26 -10 -15 -18 -16

B–K -49 -17 -47 8 18 12 -7 -26 -25 -28 3 -15 -10
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the dominant correlation at most stations for

temperature.

The percentage (%) of the stations that have

extremely strong, strong, and weak correlations for

the three variables (precipitation, temperature, and

SPEI) during the B, K, and B–K seasons are

illustrated in Fig. 2. During the three seasons (B, K,

and B–K), the extremely strong correlation has the

highest station percentage, followed by a strong

correlation for precipitation. Also, the strong corre-

lation has the highest station percentage followed by

a weak correlation in the B and K seasons and

extremely strong in the B–K season for temperature.

For SPEI, the extremely strong correlation is the

dominant percentage followed by the strong correla-

tion and weak correlation in the three seasons.

According to Table 4, the statistical parameters

(RMSE and MPE%) that are used to evaluate the

accuracy of the CRU dataset against observations

showed that the CRU has an MPE ranging from -30

to 73% and RMSE from 4 to 99 mm during the B, K,

and B–K seasons. The largest MPE (73%), corre-

sponding to an RMSE of 47 mm, occurred at St10 in

the K season, while the smallest MPE (-30%),

corresponding to an RMSE of 99 mm, is found at St1

in the K season. The CRU underestimates the

precipitation values at St1, St2, St3, and St7 during

all seasons, while it overestimates the precipitation

values at the other stations (St4–St6 and St8–St13)

during all seasons except at St4 in the K season.

The results also showed that the CRU overesti-

mates the temperature at St1, St2, St5, St12, and St13,

with MPE ranging from 2 to 26% with RMSE

ranging from 0.7 to 4 �C during all seasons except at

St13 in the B–K season (MPE = -4% and RMSE =

1 �C), whereas CRU underestimates the temperature

at the rest of the stations, with MPE ranging from

-0.7 to -22% and RMSE ranging from 0.8 to 5 �C
during all seasons except overestimation at St3 in the

B season, with MPE = 6% and RMSE = 1.5 �C and

St11 in the K season with MPE = 0.6% and RMSE =

0.9 �C. The largest MPE is 26% and RMSE is 4 �C
at St4 in the K season, while the smallest MPE is

-0.7% and RMSE is 1 �C at St11 in the B season.

Furthermore, the computed SPEI from CRU is less

than that estimated from observations in most

seasons, with MPE ranging from -3 to -49% and

RMSE ranging from 0.32 to 0.96 during all seasons

Table 5

Frequency of SPEI categories at all stations during the B, K, and B–K seasons over the period 1970–2005

Cluster Category St1 St2 St3 St4 St5 St6 St7 St8 St9 St10 St11 St12 St13

Belg (B) Wet Extremely wet 0 0 1 1 0 1 1 0 0 0 1 0 2

Very wet 3 0 1 1 3 2 2 2 2 4 0 2 2

Moderately wet 4 4 3 3 4 3 4 5 6 2 4 3 4

Normal Normal 21 24 24 23 21 22 23 23 21 24 24 25 21

Dry Moderately dry 5 6 4 6 6 6 4 4 4 2 4 3 4

Severely dry 1 1 2 1 2 2 1 2 2 4 2 2 3

Extremely dry 1 1 1 1 0 0 1 0 0 0 1 1 0

Kirmet (K) Wet Extremely wet 0 0 1 0 0 2 0 1 1 1 0 1 1

Very wet 3 0 1 3 1 1 2 1 1 1 3 1 2

Moderately wet 2 1 4 2 4 3 6 2 3 5 5 3 4

Normal Normal 25 30 24 26 24 26 23 24 24 21 22 24 24

Dry Moderately dry 3 2 4 2 5 2 3 4 5 5 2 5 3

Severely dry 1 2 1 3 1 1 0 4 1 3 4 2 1

Extremely dry 1 1 1 0 1 1 2 0 0 0 0 0 1

Belg-Kirmet (B–K) Wet Extremely wet 1 0 1 1 0 1 0 1 0 0 1 1 0

Very wet 1 0 1 2 2 3 2 2 3 2 0 3 4

Moderately wet 4 2 6 2 3 3 5 1 4 4 4 2 4

Normal Normal 23 28 21 25 23 24 22 25 22 23 23 22 22

Dry Moderately dry 3 4 6 4 6 2 5 2 4 5 5 5 5

Severely dry 3 1 0 1 2 2 2 5 1 2 3 2 0

Extremely dry 0 1 1 1 0 1 0 0 1 0 0 1 1
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Figure 3
Frequency of each SPEI cluster during a B, b K, and c B–K seasons over the period from 1970 to 2005
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except for some overestimations during the B (St3,

St4, St7, and St11), K (St7 and St8) and B–K (St4,

St5, St6, and St11). The largest MPE for SPEI is 55%

at St3 and RMSE is 0.96 at St1 in the B season, while

the smallest MPE and RMSE are -49% and 0.28 at

St1 and St11, respectively, in the B-K season.

5.2. SPEI Frequency Analysis

The total number of occurrences (frequency) for

each SPEI category at the selected 13 stations during

the three seasons (B, K, and B–K) over the period

1970–2005 based on observed data is shown in

Table 5, while the frequency of the three SPEI

clusters (wet, normal, and dry) is shown in Fig. 3.

The SPEI in the normal cluster has the largest

frequency (60–80%) during the three seasons at all

stations, while the extremely wet and extremely dry

categories have the smallest frequency (3–6%). The

moderately wet, moderately dry, very wet, and

severely dry categories have moderate frequency

between normal and extreme events.

Furthermore, the frequency of SPEI dry cluster

(17–22%) in the B season is greater than the wet

cluster (11–17%) at 69% (St2–St6, St11, and St12) of

the stations, while the frequency of SPEI wet cluster

(BW) at St7, St8, St9, and St13 is more than the SPEI

dry cluster (BD). The frequency of SPEI dry cluster

in the K season (KD) is higher than the SPEI wet

cluster (KW) at St2, St5, St8, St9, St10, and St12, and

vice versa at St6, St7, St11, and St13, while they are

identical at St1, St3, and St4. Also, the frequency of

the SPEI dry cluster in the B–K season ([B–K] D) is

higher than the SPEI wet cluster ([B–K] W) at St2,

St4, St5, St8, St10, St11, and St12, and vice versa at

St3, St6, St9, and St13, while they are identical at St1

and St7. During the three seasons, the SPEI dry

cluster has high frequency at St2, St5, St10, St11, and

St12, while the SPEI wet cluster has high frequency

at St7 and St13.

5.3. CRU Reliability for SPEI Estimation

The long-term ranges of the estimated SPEI from

CRU and observed data for each season during the

period 1970–2005 at all stations are demonstrated in

Table 6. It can be seen that the range of the estimated

SPEI values from CRU is nearly equal to that from

observed data, with small differences (within -1 to

?1) at all stations. This small difference indicates

that the SPEI estimated from CRU remains in the

same SPEI cluster event (wet, normal, or drought) as

from observation. This difference across all stations

implies that the estimated SPEI from CRU may be in

the other SPEI category (extreme, severe, or moder-

ate) but often still within the same SPEI cluster.

The largest difference (1.62) in the top positive

SPEI values between CRU (1.59, very wet) and

Table 6

SPEI long-term ranges from CRU and observation during the period from 1970 to 2005

Season SPEI range from CRU SPEI range from observed

B K B–K B K B–K

St1 -2.04 to 2.01 -1.47 to 1.65 -1.88 to 1.02 -2.17 to 1.78 -2.21 to 1.86 -1.76 to 2.04

St2 -2.11 to 1.44 -1.83 to 1.07 -1.63 to 1.07 -2.06 to 1.25 -2.02 to 1.03 -2.38 to 1.15

St3 -1.86 to 2.22 -2.15 to 2.29 -2.39 to 2.48 -2.16 to 2.18 -2.044 to 2.11 -2.16 to 2.37

St4 -1.78 to 2.34 -2.15 to 2.18 -1.75 to 2.39 -2.37 to 2.63 -1.95 to 1.95 -2.04 to 2.12

St5 -1.89 to 2.27 -2.3 to 1.84 -1.97 to 2.30 -1.77 to 1.73 -2.14 to 1.62 -1.96 to 1.48

St6 -1.78 to 2.18 -3.03 to 2.25 -2.29 to 1.99 -1.86 to 2.02 -2.34 to 2.08 -2.09 to 2.02

St7 -1.98 to 2.3 -2.44 to 1.81 -1.82 to 2.52 -2.30 to 2.12 -2.27 to 1.83 -1.81 to 1.73

St8 -1.48 to 1.47 -2.24 to 1.59 -2.01 to 1.71 -1.83 to 1.95 -1.81 to 3.21 -1.88 to 2.33

St9 -1.84 to 2.01 -2.53 to 1.84 -2.57 to 1.56 -1.84 to 1.83 -1.89 to 2.12 -2.06 to 1.80

St10 -2.03 to 1.64 -1.99 to 2.11 -2.25 to 1.68 -1.69 to 1.79 -1.61 to 2.15 -1.72 to 1.85

St11 -1.90 to 2.34 -1.84 to 1.90 -2.20 to 2.40 -2.14 to 2.34 -1.76 to 1.72 -1.84 to 2.41

St12 -1.79 to 2.29 -2.49 to 2.08 -2.13 to 2.34 -2.07 to 1.78 -1.81 to 2.22 -2.07 to 1.78

St13 -2.28 to 2.21 -2.46 to 2.01 -2.34 to 1.98 -1.71 to 2.08 -2.07 to 2.04 -2.23 to 1.98
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observation (3.21, extremely wet) occurred at St8 in

the K season, which is still in the same SPEI cluster

(wet events). Also, at St1 in the B–K season, the top

positive value of CRU is 1.02 (moderately wet), and

from observation it is 2.04 (extremely wet), with a

difference (1.02) in the category only but still in the

same SPEI wet cluster. This confirms the accuracy of

the CRU data in estimating SPEI values that are

within the same SPEI cluster but may differ in the

category. Figures 4, 5, and 6 show the estimated

SPEI and its clusters across the study period

(1970–2005) for the B, K, and B–K seasons,

respectively.

Although these three figures confirm the robust

performance and reliability of the CRU dataset for

estimating SPEI clusters, CRU records a few SPEI

cluster events outside the observed cluster (miss or

false alarm). Such false alarms appear at St6 during

1972, which is recorded as a wet cluster in B, K, and

B–K from CRU, while it is a normal cluster in B and

a dry cluster in K and B–K from observations. Also,

at St10 from observed wet cluster to CRU dry cluster

during 2001 in the B season and 1996 in the K season

and 2001 in the B–K season. Furthermore, there are

some observed dry clusters detected as CRU wet

clusters such as St8 during 1985 and 1994 in the K

and B–K seasons, respectively, and at St10 during

1987 in the B–K season. However, the observed dry

clusters are detected as CRU wet clusters during 1988

at St11 and 2001 at St12 in the K season, and at St13

during 1989 in the B season and 2000 in the B–K

season. Additionally, there are some observed wet

clusters detected as CRU normal clusters like in the

Belg for 2000 at St1, 1989 at St6, 2000 at St7, 1978 at

St8, 2001 at St9, 1971, 1976, 1979, 1983, 1987, and

1988 at St10, and 1980 at St13.

The success percentages of the three SPEI clusters

(dry [SPD%], normal [SPN%], and wet [SPW%])

between CRU and observation during the three

seasons at all stations are illustrated in Table 7. In

the B season, the CRU extremely strongly estimates

(C 80%) the corresponding observed dry events at

St3, St6, and St7, normal events at St2, St4–St7, St11,

and St12, and wet events at St1, St11, and St12. It

also strongly estimates the dry events at St2, St4, St5,

and St12, the normal events at St1, St3, St10, and

St13, and the wet events at St2, St5, St7, and St13,

while it weakly estimates the events at the rest of the

stations.

In the K season, the CRU extremely strongly

estimates the number of dry events at St1–St5 and

St7, normal events at St2, St5, St6, St7, and St12, and

wet events at St2 and St7, while it strongly estimates

the number of dry events at St6 and St13, normal

events at St1, St3, St4, St8–St11, and St13, and wet

events at St6, St11, and St12. In the B–K season, the

CRU extremely strongly estimates the number of dry

events at St5, normal events at St5 and St11–St13,

and wet events at St5, St11, and St12, while it

strongly estimates the number of dry events at St6,

St11, and St12, normal events at St1–St4, St6, St7,

St9, and St10, and wet events at St4 and St6.

Furthermore, the general accuracy of the CRU in

estimating the number of all (dry, normal, and wet)

events as compared with observations at all stations

during the three seasons over the study period is

shown in Table 8. In the B season, the general

accuracy of all events for CRU shows an extremely

strong estimation at St2, St5–St7, and St12, with GA

ranging from 81 to 92%, while it strongly estimates

all events at St1, St3, St4, St11, and St13, with GA

ranging from 69 to 78%, and weakly estimates all

events at St8, St9, and St10, with GA ranging from 50

to 56%. In the K season, the CRU extremely strongly

estimates all events at St2 and St5–St7, with GA

ranging from 81 to 97%, while it has strong general

accuracy at St1, St3, St4, St9, St12, and St13, with

GA ranging from 63 to 75% and has a weak general

accuracy at St8, St10, and St11, with GA ranging

from 53 to 58%. In the B–K season, the CRU has

extremely strong general accuracy at St5, St11, and

St12, with GA ranging from 83 to 86%, while strong

general accuracy appears at St2, St4, St6, St7, St9,

St10, and St13, with GA ranging from 61 to 75%, and

bFigure 4

The estimated SPEI clusters from observations (blue line) and CRU

(red line) in the Belg (B) season during the period from 1970 to

2005
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weak general accuracy at St1, St3, and St8, with GA

ranging from 46 to 53%.

The contingency table is implemented to assess

the interaction of statistics between the estimated

SPEI cluster events (dry, normal, and wet) from CRU

and observation and displays their frequency or

joined distribution as indicated in Table 9. This

contingency table also indicates the joined distribu-

tion of the three SPEI clusters their correspondence

from CRU within the three SPEI clusters from

observation. The diagonal cells in Table 9 for the

three clusters in the same season and station represent

the correct hits (results) of the cluster from CRU

within the same cluster from the observation, while

the other cells show false-alarm clusters.

The correct hits for the three clusters from the

CRU within the observation occupy the largest

percentage compared with the false clusters alarm

at all stations during the three seasons, except for wet

in the K season and wet and dry in the B–K season. In

the B season, the CRU hits all observed wet events

(100%) at St11 and St12 and hits most (60–85%) of

observed wet events at St1, St2, St5, St7, and St13,

while it hits from 38 to 50% of observed wet events at

the rest of the stations except false hits for all

observed wet events at St10. The CRU hits most

(55–100%) of the observed normal events at all

stations, while it hits from 63 to 88% of the observed

dry events at St2, St3, St4, St5, St6, St7, and St12 and

from 43 to 57% at St8, St9, St10, St11, and St13

during the B season. In the K season, the CRU hits all

observed wet events at St2 and St7, and hits from 63

to 67% at St6, St11 and, St12 and from 20 to 57% at

St3, St4, St5, St8, St9, St10, and St13, while it did not

hit any of the observed wet events at St1. The CRU

hits more than 67% of the normal observed wet

events at all stations, while it hits all (100%) of the

observed dry events at St1, St2, St5, and St7 and hits

from 60 to 83% at St3, St4, St6, and St13, but it hits

from 17 to 57% at St8, St9, St10, St11, and St12

during the K season. In the B–K season, the CRU hits

all observed wet events at St11 and from 63 to 83% at

St4, St5, St6, and St12, while it hits only from 25 to

57% at St3, St7, St8, St9, St10, and St13 and did not

hit any of the observed wet events at St1 and St2. The

CRU hits about 57% to 95 of the normal observed

wet events at all stations, and hits from 63 to 88% of

the observed dry events at St5, St6, St11, and St12

and from 17 to 50% at St2, St3, St4, St7, St8, St9, and

St10, while it did not hit any of the observed dry

events at St1 during the B–K season.

6. Conclusions

Drought is a major natural disaster that has direct

and significant impacts on the environmental, social,

and economic sectors due to the shortage of precip-

itation or water resources. In Ethiopia, drought occurs

during the different rainy seasons, particularly the

Belg (February–May) and Kirmet (June–September),

in the different country regions because the rainfall

drops below the normal climate by about 30% to

50%. In this study, the SPEI is utilized to monitor the

drought and wet events over Ethiopia at 4- and

8-month timescales during the period from 1970 to

2005 based on both observations and Climatic

Research Unit (CRU) datasets.

The estimation of SPEI is performed at a 4-month

timescale to represent each of the Belg (B) and Kir-

met (K) seasons separately, and at an 8-month

timescale to represent both the Belg and Kirmet (B–

K) seasons together. The evaluation of both temper-

ature and rainfall from the CRU dataset is

accomplished at 13 in situ meteorological stations in

the different geographical Ethiopian regions, to

assess the CRU accuracy and its reliability for SPEI

estimation across Ethiopia. The correlation coeffi-

cient (R), RMSE, and MPE% statistical procedures

are used for evaluating CRU against observation

during the B, K, and B–K over the study period

(1970–2005). An extremely strong correlation (R

C 0.8) is found at most stations, followed by a strong

correlation (0.6 B R\ 0.8) for precipitation, and a

strong correlation at most stations followed by an

bFigure 5

The estimated SPEI clusters from observations (blue line) and CRU

(red line) in the Kirmet (K) season during the period from 1970 to

2005
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extremely strong correlation for temperature. For

SPEI, the extremely strong correlation is dominant at

most stations in the B season, and the strong corre-

lation is dominant in the K season, while during the

B–K season the weak correlation (R\ 0.6) occurs at

about 46% of the stations as compared with strong

(31%) and extremely strong (23%). Moreover, the

CRU overestimates the precipitation values at the

stations from St3 to St13, with MPE ranging from 0.1

to 123% and RMSE from 34 to 39 mm during the

three seasons (B, K, and B–K), while it underesti-

mates the precipitation at St1 and St2, with MPE

ranging from -6.5 to -35% and RMSE from 39 to

163 mm during the three seasons.

The results also show that the CRU overestimates

the temperature at St1, St2, St5, St12, and St13, while

it underestimates the temperature at the rest of the

stations. Furthermore, the computed SPEI from CRU

is greater than that estimated from observations at

St3, St4, St7, St8, St9, St10, and St12, with RMSE

ranging from 0.5 to 0.8 during the three seasons,

except some underestimations during B and B–K.

Additionally, CRU demonstrates a high success per-

centage (SP) in the estimation of SPEI clusters (dry,

normal, and wet) as well as high general accuracy

(GA) in the estimation of dry and wet clusters toge-

ther. It is concluded that the CRU is almost extremely

strong (SP C 80%) in estimating the number of dry,

normal, and wet events, with some slight overesti-

mations up to about 50% greater than the estimated

events from the observed data during the three sea-

sons. Also, the GA of the CRU for estimating the

total number of both dry and wet events together at

most stations during the three seasons is almost

extremely strong (GA C 80%), with some overesti-

mations reaching 30% over the estimated events from

the observed data. It is also concluded that the range

of the estimated SPEI values from CRU are nearly

equal to those from observed data, with little differ-

ence (within -1 to ?1) at all stations, implying that

the estimated SPEI from CRU may represent a dif-

ferent category (extreme, severe, moderate) but is

still within the same SPEI cluster (wet, normal, or

dry), except for a few events. Finally, the contingency

table reveals that the correct hits for the three SPEI

clusters from CRU within the observation are mostly

bFigure 6

The estimated SPEI clusters from observations (blue line) and CRU

(red line) in the Belg-Kirmet (B–K) season during the period from

1970 to 2005

Table 7

Success percentage (%) of the estimated cluster events from CRU against observation in the same month

Season St1 St2 St3 St4 St5 St6 St7 St8 St9 St10 St11 St12 St13

SPD% B 57 75 86 75 63 88 80 50 50 50 43 67 57

K 100 100 83 80 100 75 100 25 50 38 17 57 60

B–K 0 17 43 50 88 60 43 29 33 29 63 63 33

SPN% B 76 100 75 83 90 91 87 55 57 71 83 88 76

K 68 97 79 73 83 92 87 67 71 76 68 83 79

B–K 70 75 67 72 83 79 73 58 77 78 87 95 91

SPW% B 86 75 40 40 71 50 75 38 38 0 100 100 63

K 0 100 33 40 50 67 100 25 20 29 63 67 57

B–K 0 0 25 60 80 71 57 20 43 33 100 83 50

Table 8

General accuracy (%) of the estimated cluster events from CRU against observation in the same month

Season St1 St2 St3 St4 St5 St6 St7 St8 St9 St10 St11 St12 St13

B 74 92 72 75 81 83 83 50 51 56 78 86 69

K 63 97 72 69 81 86 92 53 60 58 58 75 72

B–K 46 61 53 67 83 75 64 47 63 61 83 86 72
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larger than the false-alarm clusters at all stations

during the three seasons except for wet in the K

season and wet and dry in the B–K season.
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Dry 0 3 6 0 3 5 0 4 3

St4 Wet 2 2 0 2 2 0 3 2 0

Normal 3 19 2 3 19 1 2 18 3

Dry 0 2 6 0 5 4 0 5 3

St5 Wet 5 0 1 3 3 0 4 2 0

Normal 2 19 2 3 19 0 1 19 1

Dry 0 2 5 0 1 7 0 2 7

St6 Wet 3 2 0 4 1 1 5 1 1

Normal 3 20 1 2 24 0 2 19 1

Dry 0 0 7 0 1 3 0 4 3

St7 Wet 6 1 0 8 1 0 4 3 0

Normal 2 20 1 0 20 0 3 16 4

Dry 0 2 4 0 2 5 0 3 3

St8 Wet 3 4 0 1 3 2 1 3 2

Normal 5 12 3 3 16 4 4 14 3

Dry 0 6 3 0 5 2 0 7 2

St9 Wet 3 5 0 1 3 0 3 3 0

Normal 5 12 3 4 17 3 3 17 4

Dry 0 4 3 0 4 3 1 2 2

St10 Wet 0 4 0 2 2 0 2 3 1
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Dry 1 3 3 1 3 3 1 2 2

St11 Wet 5 2 0 5 2 1 5 1 0

Normal 0 20 4 3 15 4 0 20 3

Dry 0 2 3 0 5 1 0 2 5

St12 Wet 5 0 0 4 1 1 5 0 0

Normal 0 22 2 2 19 2 1 21 3

Dry 0 3 4 0 3 4 0 1 5

St13 Wet 5 2 1 4 4 0 4 0 1

Normal 3 16 2 2 19 2 3 20 3
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