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Abstract—The viscoelasticity of the subsurface media varies

spatially, and such viscoelasticity can be represented concisely by a

wave equation in the form of fractional temporal derivative (FTD).

We have developed a strategy for simulating seismic waves

propagating through a heterogeneous viscoelastic model. The FTD

is transferred to fractional spatial derivatives (FSDs), and the FSDs

are implemented through the fast Fourier transform (FFT), for

improving the computational efficiency. However, the FFT

implementation is not rigorously applicable to the heterogeneous

model. In this paper, we have reformulated the FSD wave equation

by introducing a spatial-position dependent filter. This spatial filter

corrects the errors that are caused by the assumption of non-

heterogeneity in the FFT implementation. This formulation

appropriately represents the viscoelastic effect in seismic wave

propagation, leading to the improvement on the accuracy of

numerical simulation.

Keywords: Viscoelasticity, computational seismology, nu-

merical solutions, seismic attenuation, wave propagation.

1. Introduction

The anelasticity of subsurface media causes seis-

mic dissipation effect including the energy absorption

and velocity dispersion, and has a significant impact

on field seismic records and subsequent seismic

images (Wang, 2008). Conventional models for

describing viscoelasticity include Kjartansson’s con-

stant-Q model (Kjartansson, 1979), the Kosky model

(Kolsky, 1953), the Kelvin-Voigt model, the standard

linear solid model (Zener, 1948), the Cole–Cole

model (Cole & Cole, 1941) etc. These models can

lead to viscoelastic wave equations in the form of

fractional temporal derivative (FTD).

The FTD was introduced to describe the vis-

coelasticity of the Earth media by Caputo (1967). The

FTD form was used also for the fractional Zener

model to describe the mechanic combination of the

viscoelasticity (Liu & Greenhalgh, 2019). However,

directly solving the FTD wave equation presents a

numerical challenge in seismic wave simulation. The

FTD might be solved in the frequency domain, but

the computation is extremely intensive because it

requires to solve numerous Helmholtz equations

(Vasilyeva et al., 2019). An alternative, but still

expensive, method is to solve a convolution equation

in the time domain (Carcione et al., 2002). The

Grünwald-Letnikov expansion can also be used to

calculate the FTD, but this expansion requires large

computational memory to store the wavefield history,

even the expansion is truncated (Podlubny, 1999).

A practical way to reduce the computational cost

of the FTD wave equation is that, when the attenua-

tion is weak, one can transfer the FTD to fractional

spatial derivatives (FSDs), and then solve FSDs by

Fourier pseudo-spectral method, which greatly lowers

the computation memory threshold (Carcione, 2010;

Chen & Holm, 2004; Treeby & Cox, 2010). The

FSDs in the wave equation can also be decoupled into

velocity dispersion and energy dissipation, respec-

tively (Zhu & Harris, 2014), and this decoupled wave

equation can be further expanded to viscoelastic and

tilted transversely isotropic (TTI) media (Qiao et al.,

2019; Zhu & Bai, 2019; Zhu & Carcione, 2014). The

accuracy of the FSDs for wave simulation in high-

attenuation media can further be improved by Taylor

series expansion (Mu et al., 2021).

When using the pseudo-spectral method to solve

the FSDs in the wave equation, it requires that the

viscoelastic parameter bðxÞ is a constant in the space.
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In practice, the viscoelastic parameter bðxÞ is aver-

aged over the space x, to generate a constant b for the

purpose of spatial Fourier transform. This averaging

process will cause errors in numerical calculation.

Based on the locality principle, Zhu and Harris

(2014) propose to interpolate the solutions generated

with every single constant parameter for whole

model. The spatially varying order of FSD is a

function of bðxÞ. Chen et al. (2016) and Xing and Zhu
(2019) use either the Taylor expansion or a polyno-

mial approximation to transfer the spatial-varying

order FSD into the constant order FSDs, and then

implement the pseudo-spectral method directly. Yao

et al. (2017) apply the Hermite distributed approxi-

mation to transfer the spatial-varying FSD to an

integral of the fractional derivative of delta function,

and this fractional derivative can be solved locally.

But all these schemes aforementioned scarify the

efficiency for accuracy to some extent. For example,

when using the polynomial approximation to derive

the constant-order wave equation (Xing & Zhu,

2019), the resultant wave equation includes six frac-

tional Laplacian operators. This scheme greatly

lowers the efficiency, if compared with the original

two-operator equation.

In this paper, we propose a strategy to solve the

FSDs for wave simulation in heterogeneous media,

that would be straightforward in philosophy and

simpler in realization. The strategy is to build a

spatially varying correction function, and to insert

this spatial filter directly into the averaging scheme.

Because this spatial filter is frequency-independent, it

is efficiently implemented as a coefficient multiplied

to the wave equation. Therefore, this filter improves

the accuracy and maintains the high efficiency of FFT

implementation.

2. The Equation Formed with Fractional Spatial

Derivatives

The wave equation presented in terms of FTD

may be transferred to a wave equation formed with

FSDs. The ultimate purpose of this paper is to have

an efficient implementation of wave equation with

FSDs.

We consider the FTD wave equation (Wang,

2016), as the following

o2u

ot2
¼ c2ðbÞr2 1þ b

xb
0

db

dtb

 !
u; ð1Þ

where u is the scalar wavefield, x0 is the reference

frequency, b is the viscoelastic parameter, and cðbÞ is
the viscoelastic velocity, which means the phase

velocity at zero frequency. Assuming the medium

parameters to be spatially invariant, we can rewrite it

in the frequency-wavenumber domain as

x2

c2
� k2 1þ b

x
x0

� �b

cos
bp
2

þ ib
x
x0

� �b

sin
bp
2

 !" #
û

¼ 0;

ð2Þ

where k is the wavenumber, and û is the frequency-

wavenumber domain wavefield. Now, making an

approximation based on weak attenuation assumption

(Zhu & Harris, 2014)

x
c0

� k; ð3Þ

where c0 is the reference velocity, Eq. (2) is

approximated to

x2

c2
� k2 � k2þbC1ðbÞ � ixk1þbC2ðbÞ

� �
û ¼ 0; ð4Þ

C1ðbÞ ¼ b
c0
x0

� �b

cos
bp
2
;

C2ðbÞ ¼
b
x0

c0
x0

� �b�1

sin
bp
2
:

ð5Þ

Applying an inverse Fourier transform to Eq. (4), the

generalized wave equation in the temporal-spatial

domain may be presented as FSDs:

1

c2
o2u

ot2
þ ð�r2Þ þ C1ðbÞð�r2Þ1þb=2
�

þC2ðbÞð�r2Þð1þbÞ=2 o

ot

�
u ¼ 0;

ð6Þ

where u is the time–space domain wavefield. Equa-

tion (6) decouples the dissipation effect, as the C1

term is from the real part of FTD, which represents

the velocity dispersion and the C2 term is from the

imaginary part of the FTD, which represents the
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amplitude absorption (Zhu & Harris, 2014). In this

equation, C1ðbÞ and C2ðbÞ are assumed to be spa-

tially independent. However, when forming the FSDs

for a general viscoelastic case, both terms are spa-

tially variable, because bðxÞ is a spatial function.

For the derivation above, the approximation

Eq. (3) is a key condition, so that the complex

wavenumber ~k could be replaced with the real

wavenumber k ¼ ~kRe. This approximation to the

complex wavenumber is made based on the weak-

attenuation assumption. For the complex wavenum-

ber ~k, the real and imaginary part may be written

analytically as (Wang, 2019)

~kRe ¼
x

vðb; xÞ ¼
xj jffiffiffi
2

p
cðbÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
Aþ B

p

A
; ð7Þ

~kIm ¼ aðb; xÞ ¼ xj jffiffiffi
2

p
cðbÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
A� B

p

A
; ð8Þ

where vðb;xÞ is the phase velocity, aðb;xÞ is the

attenuation coefficient, and the absolute value is for

satisfying the anti-Hermitian property of the complex

wavenumber. The factors A and B were given by

Wang (2019).

Figure 1 illustrates the accuracy of this weak-at-

tenuation assumption with the ratio R ¼ k=j ~kj. The
reference frequency x0 is set as 500 Hz, which is the

highest possible frequency of exploration seismology

(Wang & Guo, 2004), and then x=x0 � 1. Figure 1

shows that the ratio R is close to 1, for b� 0:75, and

the relative error is less than 0.5%. When b� 0:351,

the ratio R is approaching to 1 with decreasing b. But
when b[ 0:351, the ratio R is increasing with an

increasing b. Therefore, the weak-attenuation

assumption is valid for b� 0:351, to the most areas

interested by seismic application (Kolsky, 1953;

Futterman, 1962; Mason, 1956; Wang, 2019).

To evaluate the accuracy of FSDs of Eq. (6), the

wavenumber domain Eq. (4) is treated as a non-linear

equation f ðkÞ ¼ 0. The numerically solved

wavenumber is compared to the exact wavenumber of

FTD presented analytically in Eqs. (7) and (8).

Figure 2 demonstrates the accuracy evaluation

using an arbitrarily designed pure acoustic velocity

c0 ¼ 2500 m/s, and considering cases of weak,

median, and strong attenuation with b ¼(0.010,

0.183, 0.351). The accuracy of the phase velocity is

high in general, as the root-mean-square (RMS) error

in three cases together is 4.169 m/s. The accuracy of

the attenuation depends on the b value. The RMS

errors in the attenuation coefficient are 0:0501�
10�3m�1 for b ¼ 0:010 and 0:3405� 10�3m�1 for

b ¼ 0:190. However, the RMS error in the attenua-

tion coefficient is 6:769� 10�3m�1 for the extreme

case with b ¼ 0:351. This error existed in the most

attenuating case is caused by the approximation

x=c0 � k (Eq. 3) used in the transformation from

FTD to FSDs.

To investigate the reliability of the FSDs, we

compare the analytical solutions of two types of wave

equations presented as FTD and FSDs, respectively.

Considering a homogeneous case with constant b, the
one-dimensional analytical solution for FTD in fre-

quency domain is derived as

ûðx; xÞ ¼ � ieixX1 x�x0k k

2x
X1 f̂ ðxÞ; ð9Þ

with

X1 ¼
1

cðbÞ 1þ b
ix
x0

� �b
 !�1=2

; ð10Þ

where ûðx; xÞ is the wavefield in the frequency

domain, and f̂ ðxÞ is the source signature in the fre-

quency domain. For FSDs, the corresponding

analytical solution is formed using the Green’s

function Gðt; k; sÞ as

Figure 1
Variation of the weak-attenuation assumption, illustrated by the

ratio R ¼ kRe=j ~kj versus the viscoelastic parameter b. The upper

side of the yellow square represent R ¼ 1:0
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ûðt; kÞ ¼
Z t

0

Gðt; k; sÞf ðsÞds; ð11Þ

where ûðt; kÞ is the wavefield in the wavenumber

domain. The Green’s function is

Gðt; k; sÞ ¼ Hðt � sÞ sin t � sð ÞX2½ �
X2

e�
1
2
ðt�sÞc2ðbÞk1þbC2 ;

ð12Þ

where Hðt � sÞ is the Heaviside step function, and

X2 ¼ cðbÞk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ kbC1 �

1

4
c2ðbÞk2bC2

2

r
: ð13Þ

An inverse Fourier transform of ûðt; kÞ with respect to
the wavenumber k produces the time–space domain

wavefield uðt; xÞ. Note that the Green’s function in

Eq. (12) is presented in terms of a sinc function.

We set a model with the velocity of 2500 m/s, and

assume the source signature be a Ricker wavelet with

the peak frequency of 20 Hz (Wang, 2015). Figure 3

displays the waveform at travel distance 200 m, and

demonstrates that two equations match well in gen-

eral, and only a minor discrepancy exists in the strong

attenuation case. The RMS differences corresponding

to the cases with b = (0.010, 0.144, 0.190, 0.351) are

(5:276� 10�2, 6:538� 10�2, 7:295� 10�2,

22:878� 10�2), respectively. This observation is

consistent with that shown in Fig. 2.

Noted that the above equation with FSDs (Eq. 6)

is derived based on homogeneous media where the

viscoelastic parameter b is constant. When forming

the FSDs for a general viscoelastic case, bðxÞ is a

spatial function. Based on the small perturbation

assumption, FSDs is still approximated valid for a

general viscoelastic case (Xing & Zhu, 2019; Zhu &

Harris, 2014).

3. The Spatial Filter for the Heterogeneous Media

For the numerical calculation of Eq. (6), we use a

pseudo-spectral method to solve the FSD. In practice,

the viscoelastic parameter bðxÞ in the heterogeneous

media is assumed to be smoothly varied and then the

average parameter b is adopted for calculating the

FSD:

ð�r2Þb=2uðxÞ ¼ F�1
x kbFx½uðxÞ�
n o

; ð14Þ

where Fx is the Fourier transform with respect to

vector x, and F�1
x is the inverse of Fx. The wavefield

in the space domain and in the wavenumber domain

are listed in pairs as the following:

uðxÞ $ Fx½uðxÞ�;
�r2uðxÞ $ k2Fx½uðxÞ�;

ð�r2Þb=2uðxÞ $ kbFx½uðxÞ�:
ð15Þ

The pseudo-spectral method has been used widely in

the wave simulation (Carcione, 2010). Therefore, the

numerical advantage of the FSD is to overcome the

Figure 2
Comparison between the wave equations formed with FTD (solid

black curves) and with FSDs (dashed red curves). a The attenuation

aðxÞ. b The phase velocity vðxÞ
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memory issue related to the numerical calculation of

the FTD in the original wave equation.

In order to correct the errors caused by the aver-

aging scheme of the FFT implementation, we

introduce a correction function f ðbðxÞÞ as a spatial

filter to correct the wavenumber as

kbðxÞ ¼ kbf ðbðxÞÞ: ð16Þ

Multiplying either k or k2 to both sides, we have

k1þbðxÞ ¼ f ðbðxÞÞk1þb and k2þbðxÞ ¼ f ðbðxÞÞk2þb.

Therefore, a corrected wave equation which corre-

sponds to Eq. (6) is

1

c2
o2u

ot2
þ ð�r2Þ þ ð�r2Þ1þb=2C1ðbðxÞÞf ðbðxÞÞ
�

þð�r2Þð1þbÞ=2C2ðbðxÞÞf ðbðxÞÞ
o

ot

�
u ¼ 0:

ð17Þ

For constructing the spatial filter, we assume the

case of weak attenuation with kIm=j ~kj � 1 and make

approximation ~k � kRe. The real wavenumber kRe in

Eq. (7) can be expanded to the first order as

kRe �
x
c

1þ bðxÞ
8

cos
pbðxÞ
2

� �� �
: ð18Þ

Then, the spatial filter f ðbðxÞÞ is evaluated at each

grid by

f ðbðxÞÞ � k
bðxÞ�b
Re

¼ x
c

� �bðxÞ�b
1þ bðxÞ

8
cos

pbðxÞ
2

� �� �bðxÞ�b

� xm

c

� �bðxÞ�b
1þ bðxÞ

8
cos

pbðxÞ
2

� �� �bðxÞ�b

;

ð19Þ

where xm is the mean frequency. The central-fre-

quency approximation in the last line is made based

on an assumption bðxÞ � b
�� ��� 1, so that the spatial

filter f ðbðxÞÞ is frequency independent and avoids

any extra Fourier transform. Thus, this spatial filter

does not affect the efficiency of the algorithm, but

greatly improve the accuracy in heterogeneous

media.Figure 3
Comparison between the wave equation formed with the FTD

(solid black curves) and one with FSDs (dashed red curves). The

travel distance is 200 m. The Q value and the corresponding RMS

differences are listed in the plots
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4. Numerical Examples

In this paper, we present two numerical examples.

The first example is for validating the effectiveness of

the spatial filter.

We set the constant velocity to be 2500 m/s, and

consider a model with the viscoelastic parameter

values b ¼(0.351, 0.190, 0.131). We use the same

source signature of 20-Hz Ricker wavelet (Wang,

2015a, b), and calculate the waveforms at distances

of 500 m and 2000 m. These two accurate waveforms

are plotted in a single trace in Fig. 4 (black solid

curves).

To mimic the approximation in the viscoelastic

wave equation, we assume a ‘‘heterogeneous’’ model

with the average value of b ¼(0.237, 0.152, 0.112).

The approximated solutions (in red dots) are overlaid

with the accurate trace, as shown in Fig. 4a. Three

cases have RMS differences of 23.95 �10�2, 9.09

�10�2, and 4.74 �10�2. These differences are caused

mainly due to the phase discrepancy but is also due to

the amplitude difference at large b value case.

Adopting the correction with the spatial filter,

calculated waveforms (in blue dots) are close to the

accurate waveforms, as shown in Fig. 4b. The RMS

differences are (2.85 �10�2, 1.05 �10�2, 0.52

�10�2) for the three cases, respectively. Both the

phase and the amplitude are corrected remarkably.

This example shows that the correction function can

improve the accuracy of waveform simulation in the

heterogeneous media, especially in a high-attenuation

area.

Next, we validate our scheme in a two-layer

model. The model is shown in Fig. 5a. A reference is

set by directly solving Eq. (1) using Grünwald-Let-

nikov expansion (Podlubny, 1999) as follows:

dbu

dtb
� 1

Dtb
Xt=Dt
m¼0

ð�1Þm b
m

� �
uðt � mDtÞ ð20Þ

where Dt is the time interval. A 20-Hz Ricker wavelet

is emitted the centre of the model. The model is dis-

cretized into 801 9 801 grids with grid spacings of

2.5 m. This fine spacing is equivalent to 16 nodes per

wavelength (kmin ¼ vmin=ð2:5fpÞ = 40 m). The time

step is set as Dt = 0.25 ms, which is also finer than the

numerical requirement Dt\Dx=ð
ffiffiffi
2

p
vmaxÞ ¼ 0:59.

Setting fine intervals in spatial and temporal axes is for

minimizing discrepancy between Grünwald-Letnikov

expansion and the pseudo-spectral method.

Figure 5 also displays the wavefield snapshots at

0.35 s of the layered model. The result without cor-

rection by the spatial filter (Fig. 5b) shows significant

discrepancy from the reference, which proves that the

Figure 4
The correction function of wave equation for heterogeneous media.

a Comparison between the averaging scheme without correction

(red dots) and the accurate solution (black solid curves). b Com-

parison between the averaging plus correction scheme (blue dots)

and the accurate solution
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conventional averaging scheme causes errors. How-

ever, after correction (Fig. 5c), the accuracy is

significantly improved. This example further

demonstrates the importance of spatial filter for

seismic sim ulation in heterogeneous media. Any

remaining weak residual in Fig. 5c is attributed to the

transformation from FTD to FSDs.

In the second example, we apply FSDs of Eq. (17)

to simulate the wavefield of the Marmousi model.

Figure 6 displays the acoustic velocity of the Mar-

mousi model, and the b model. The b model is built

based on an analysis of the attenuation versus

velocity from a field 3D seismic data in Tarim basin.

The model is discretized into 751 9 301 grid points

with regular vertical and horizontal grid spacings of

10 m. The source signature is a 20-Hz Ricker wavelet

and is emitted at (3800, 150) m. The receivers are

located at a depth of 150 m and in a spatial range of

0–7500 m with 10 m spacing. The time step is 1 ms.

Figure 7 shows snapshots of the wavefield with-

out attenuation and the wavefield with attenuation at

0.6 s, 0.8 s and 1.0 s, respectively. There are no free-

surface reflections from the top boundary and other

three boundaries, since a convolutional perfectly

matched layer (CPML) absorbing condition is adop-

ted in numerical calculation. However, there are clear

reflections from the interfaces within the model, for

both cases; this observation indicates the high quality

of the simulation with ignorable numerical disper-

sion. More importantly, these snapshots demonstrate

that the attenuating wavefields have a clearly delayed

wavefront and reduced amplitude, if compared to its

non-attenuation counterparts.

Comparison between the non-attenuating and

attenuating shot gathers (Fig. 8a and b) demonstrates

the accumulative effect of attenuation. Moreover,

comparison between residuals of the conventional

averaging scheme and the corrected scheme with the

proposed spatial filter (Fig. 9a and b) demonstrates

the significance of the spatial filter. The residual

shown in Fig. 9 is the discrepancy from the Grün-

wald-Letnikov expansion. Whereas the proposed

wave equation is applicable to complex geological
Figure 5

A layered model and wavefield snapshots at 0.35 s. a The model

parameter and reference wavefield; b the wavefield without

correction and its residual to reference; c the wavefield with

correction and its residual to reference

Figure 6
The Marmousi model. a The P-wave velocity model. b The b

model, generated through an empirical formula
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models, the reflection events from the interior inter-

faces are very weak in amplitude. The accurate wave

simulation will lead to correct subsurface image from

seismic migration, as it leads to correct compensation

to the viscoelasticity of the subsurface media.

5. Conclusions

When transferring the wave equation in the FTD

form to the FSDs form, the wave simulation can be

implemented in the wavenumber domain. In this

paper, we have proposed to insert a frequency-inde-

pendent correction function into the wave equation as

Figure 7
Seismic wave simulation. a Snapshots of non-attenuating wavefield at 0.6 s, 0.8 s and 1.0 s. b Snapshots of attenuating wavefield at 0.6 s,

0.8 s and 1.0 s

Figure 8
The effect of attenuation in seismic wavefield. a The non-

attenuating shot gather. b The attenuating shot gather, generated

by the corrected scheme

Figure 9
The significance of the correction function. a The residual of the

conventional averaging scheme. b The residual of the corrected

averaging scheme. The reference is the solution of Grünwald-

Letnikov expansion
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a spatial filter to correct the error caused by the

heterogeneity of the model. This spatial filter can be

easily implemented and an equation including the

correction improves the accuracy of the simulation.

Numerical examples have demonstrated that this

strategy may properly represent the dissipation effect

of the viscoelasticity on waveforms and improve

accuracy and maintains the high efficiency of FFT

implementation.
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