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Abstract—In this paper, we present a semi-coupled theory to

compute the temperature variation due to the tide-generating force.

The tidal volume strain is first derived in a pure elastic homoge-

neous sphere, in terms of the classic Love’s solution. Then the

temperature variation is obtained by solving the inhomogeneous

heat conduction equation by considering both the isothermal and

adiabatic conditions on the surface. The results show that the

magnitude of the tidal temperature variation can be more than 1

mK, which is detectable by the current precision thermometer.

Keywords: Tide-generating force, volume strain, temperature

variation, heat conduction.

1. Introduction

It is well known that a solid medium will expand

when it is heated and contract when cooled. This is

due to the combined effects of the heat conduction in

the medium and the related elastic deformation, i.e.

expansion or compaction. Likewise, if a medium

expands or contracts by an external force, the tem-

perature will change accordingly.

With regard to the Earth, there are many studies

on its deformation from different sources. A typical

source origin is due to both the attraction from the

Moon and the Sun, as well as from other planets, and

the relative movements of these bodies, which is

called the tide-generating force. It was Love (1911)

who systematically investigated the Earth’s

deformation and derived the regular solution for a

homogeneous Earth. This solution has been actively

used in Earth science (e.g. Takagi & Okubo, 2017;

Tang & Sun, 2017), including the tide phenomenon

(e.g. Melchior, 1978), as tide affects the observations,

for example, of displacement, gravity, tilt and strain,

on and in the Earth.

Since significant deformation of the Earth occurs

under the tide-generating force, there must be heat

transport within it. As such, the temperature within

the Earth will change. Actually, this temperature

variation phenomenon was recently observed by the

high-precision thermometer LogBox microT, whose

resolution is 0.2 mK (10–3 K) (Jahr et al., 2020).

Obvious tidal modulation was detected in the tem-

perature recordings, which showed temperature

variation up to a magnitude of milli-Kelvins. While a

correlation between the temperature variation and the

Earth’s tides has been observed (van Ruymbeke et al.,

1991), no investigation has concentrated on the

mechanism, i.e., how the Earth’s tide affects the

temperature. This motivates the present study.

The coupling deformation and heat conduction

problems are mostly studied in material and engi-

neering sciences, which have small spatial scale (e.g.,

Vattre & Pan, 2021; Vattre et al., 2021), based on the

theory of thermoelasticity (Biot, 1956). In Earth sci-

ence, Fang et al. (2014) proposed a theory on surface

heat loading for a homogeneous Earth. That model

was advanced to a layered and anisotropic sphere

(Zhou et al., 2021). However, these solutions cannot

be applied to compute the temperature variation due

to tides because the volume-change-induced temper-

ature was neglected. Therefore, in this paper we

propose a new theory to consider this effect. For

simplicity, we start with a homogeneous sphere.
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2. Theory

In this section, to simplify the problem, we apply

a simple semi-coupled theory involving temperature

and elastic deformation: namely, we consider the

temperature variation due to tidal deformation while

neglecting the deformation due to the tide-induced

temperature variation, since the latter effect is of one

order smaller. Furthermore, we use a uniform and

isotropic Earth model to conserve the qualitative

description of tidal temperature variation. In so

doing, we can first compute the tidal deformation and

then the temperature change.

2.1. Tidal Deformation

We consider the problem in the spherical coordi-

nate system, as shown in Fig. 1. We denote the radius

of the sphere by a, density by q, and Lamé’s

constants by k and l. The general solutions of the

deformation induced by any internal or external force

in a homogeneous, self-gravitating, compressible and

isotropic sphere were derived by Love (1911).

Therefore, the tidal deformation can be presented in

terms of these three general solutions (e.g. Okubo,

1988).
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and c is an unknown constant vector to be deter-

mined. In Eq. (4), a and b are respectively the P- and

S-wave velocities which are related to Lame’s con-

stants and mass density, and jn(x) is the spherical

Bessel function of the first kind of order n.Figure 1
Sketch map of a spherical system [the location of a point P inside

the sphere is denoted by (r, h, u)]
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The coefficient vector c is determined from the

following conditions on the surface (e.g. Sun &

Dong, 2013)
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Finally, the tidal deformation of the entire sphere

is determined by Eq. (1).
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2.2. Temperature Variation in Frequency Domain

The temperature variation T, relative to the

uniform reference temperature T0, satisfies the heat

conduction equation (Biot, 1956),
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where cp is the specific heat in J/(kg K), q is again the

mass density in kg/m3, B = (3k ? 2l)ac, where ac is
the thermal expansion coefficient in K-1, j is the

thermal conductivity in W/(m K), and t is the time in

seconds. The dimensionless strains in the spherical

coordinates are related to the displacement u = (ur,

uh, uu) as
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For tidal deformation, the static theory is com-

monly applied since the effect of the frequency is

negligible. However, when the temperature, i.e. heat

issue, is involved, the frequency effect is significant

and, in general, cannot be neglected.

For a specific tidal constituent, the temperature

change will depend on time in the form of eixt, with i

being the imaginary number and x the angular

frequency. Therefore, we can apply the Fourier

transform to Eq. (8) to arrive at
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in which the transformed variables are denoted by the

same symbols for conciseness.

We also apply the spherical harmonic expansion

to the variables, which leads us to the following

identity in terms of the spherical harmonic expansion

coefficients of the temperature and elastic

displacements

d2s
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in which s is the expansion coefficient of the tem-

perature T.

Substituting the tidal displacements obtained from

Eqs. (1) to (6), we have, after some algebra,
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It should be noted that the inhomogeneous term

has two components with superscripts ? and -, i.e.

the sum of both. We find that the third regular

solution, determined by the coefficient C in Eq. (6),

contributes nothing to the inhomogeneous part of

Eq. (11). Thereafter, terms with the super-

scripts ? and – mean summation of these two terms.

The general solution to Eq. (12) can be easily

obtained because the solution is the spherical Bessel

function. It should be noted that there is no heat

source in the Earth’s centre so the following condi-

tion should be satisfied:

ds r ¼ 0ð Þ
dr

¼ 0: ð13Þ

Thus, the spherical Bessel function of the second

kind should be omitted from the general solution.

Then the general solution is

sg rð Þ ¼ Djn prð Þ ð14Þ

in which the superscript g denotes the general solu-

tion, D is an unknown constant to be determined, jn is

the spherical Bessel function of the first kind of order

n, and

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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j

r
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The particular solution can be derived as

sp ¼ ixBT0C�f� k�ð Þ2

j k�ð Þ2þixqcp
jn k�r
� �
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We consider here two commonly used thermal

conditions on the surface of the Earth, i.e. isothermal

and adiabatic conditions.

2.2.1 Isothermal Case

In this case, the following boundary condition is

satisfied

s r ¼ að Þ ¼ 0: ð17Þ

Therefore, the unknown constant D is determined

to be

D ¼ � ixBT0C�f� k�ð Þ2
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Then, temperature variation is
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It should be noted that the brackets on the right-

hand side in Eq. (19) have two terms.

2.2.2 Adiabatic Case

In this case, the following boundary condition is

satisfied

ds r ¼ að Þ
dr

¼ 0: ð20Þ

Then the unknown constant is

D ¼ � ixBT0C�f� k�ð Þ2
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j
0
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Consequently, the final solution is

s ¼ � ixBT0C�f� k�ð Þ2j0n k�að Þ
j k�ð Þ2þixqcp

" #
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j0n pað Þ
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in which the prime means derivative with respect to

r. Again, two terms in the brackets on the right-hand

side of Eq. (22) should be noted. Also note that the

coefficients C? and C- are given by Eq. (6).

2.3. Temperature Variation in Time Domain

The boundary condition in Eq. (5) implies that the

deformation is a response to the unit tide-generating

potential. Therefore, the temperature variation for

one tidal constituent is the product of s derived in

Sect. 2.2 and the tide-generating potential of this

constituent. The latter is expressed by
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(
ð23Þ

in which Ax is the frequency-dependent relative

coefficient of each constituent, which can be obtained

from the potential table (e.g. Xi, 1989), and Gnm (n

and m are respectively the harmonic degree and

order) represents the geodetic coefficient which can

be written as
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for degree 2, in which D2 is the degree 2 Doodson

number for the Moon,
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for degree 4. Notice that v0 is the initial astronomical

argument, which is in terms of the Doodson code and

longitude of interest. The selection of cosine or sine

function depends on the potential table, as in Xi

(1989).

The temperature variation due to a unit tidal

potential in the frequency domain is a complex

number, and can be represented by

s xð Þ ¼ s xð Þj jeiq ð25Þ

in which |s(x)| means absolute value of s(x), and q is

the principle argument of complex s(x). This means

that the temperature variation precedes the tidal

deformation by q in the phase.

Therefore, by multiplying s(x) by the tidal

potential, the tidal temperature variation is repre-

sented by

T r; h;u; tð Þ ¼
X
x

s xð Þj jAxGnm r; hð Þ
cos xt þ v0 þ qð Þ
sin xt þ v0 þ qð Þ

(
:

ð26Þ

3. Results and Discussion

In this section, we set the parameters of the

homogeneous sphere as follows. The density is set as

5517 kg/m3, Lamé’s constants are

k = 3.5288 9 1011 N/m2, and l = 1.4519 9 1011 N/

m2 according to Wu and Peltier (1982), which are the

averaged values of the Earth. The thermal parameters

are set as T0 = 300 K, Cp = 500 J/(kg K), j = 10 W/

(m K), ac = 1.0 9 10–5 K-1. To compare with the

observation in Jahr et al. (2020), i.e. their fig. 3, we

also compute the temperature variation at Göttingen

University (the location is about h = 51.541�,
u = 9.936�) in the same time band.

Figure 2a shows the temperature change. It is

observed that the magnitude is smaller than 0.1 mK,

which is below the accuracy of the thermometer.

Moreover, we find that the results for isothermal and

adiabatic cases are nearly the same. This is because

the general solution contributes almost nothing to the

final result, and it is the particular solution that

dominates the result. Because the particular solutions

of the two cases are the same, the results of the two

cases are also the same.

Since the temperature variation is directly due to

the volume strain, here for comparison, we also show

the volume strain at 60 m depth in Fig. 1b. The

temperature variation and volume strain are almost

anti-phase. This can be derived from the particular

solutions in Eq. (16). In the denominator, there are

two terms: The first term is negligible compared to

the second, according to the values of the parameters.
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This means that the temperature variation is exactly

BT0/qCp times that of the volume strain but has an

opposite sign. This also shows that the choice of the

thermal conductivity value will not affect the results.

One may argue that the computed temperature is

so small compared to the observed one that the

observed temperature variation (about 1–2 mK) is not

due to the tide-generating force. However, one should

keep in mind the following facts:

(1) First, a homogeneous sphere is used. The Love

numbers on the surface computed from this

model are h2 = 0.5223 and l2 = 0.1424, respec-

tively. For the realistic PREM model

(Dziewonski & Anderson, 1981), they are about

0.6 and 0.3, respectively. Therefore, the

Figure 2
Temperature variation and volume strain at 60 m depth due to the tide-generating force

Figure 3
Similar to Fig. 2a, but in terms of realistic thermal parameters
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computed volume strain will be smaller than that

in the more realistic Earth, so does the temper-

ature variation.

(2) Second, we used the averaged density of the

Earth, 5517 kg/m3, in the heat conduction equa-

tion. However, near the surface the density is

smaller, around 2600 kg/m3 in the PREM model

(Dziewonski & Anderson, 1981). This also

makes the temperature variation smaller.

(3) Finally, we used the thermal parameters of rock.

However, the soil in the ground of the observa-

tory contains clay and silt besides claystone,

sandstone, maristone, etc. (Jahr et al., 2020).

Meanwhile, the soil is porous, containing water

in general. The thermal expansion coefficients of

clay and water are both larger than that of rock,

1 9 10–5 K-1, as we set. It is 3.4 9 10–5 K-1 for

clay (McTigue, 1986) and 27 9 10–5 K-1 for

water (Delage, 2013).

In the following new example, we set the porosity

at 10% and weight the thermal expansion coefficients

of clay and water, which gives us a weighted value of

5.76 9 10–5 K-1. Similarly, we obtained the weigh-

ted density at 2440 kg/m3. In terms of these updated

parameters, the new temperature variation is shown

in Fig. 3.

From Fig. 3, we find that the amplitude of the

temperature variation is about 1 mK, which is now

comparable to that observed by Jahr et al. (2020). The

volume strain is the same as that shown in Fig. 2b,

since we still use the averaged parameters of the

Earth, as the model parameters in the uppermost layer

do not affect the low-degree Love numbers. Again,

the temperature and volume strain are in opposite

phase.

It should be noted that the volume strain com-

puted based on a homogeneous sphere will differ

from that based on a realistic Earth model, such as the

PREM. This may be why our volume strain is not

exactly the same as that in Jahr et al. (2020). Fur-

thermore, although we take the porous medium into

account in setting the thermal parameters, the fluid is

not coupled in the boundary-value problem. It is well

known that the tide-generating force causes under-

ground fluid flow. The typical phenomenon is tidal

well level change. Even a low flow rate transfers

more heat than the rock does. Hence, the flow in the

porous earth due to the tide-generating force will

induce temperature variation, and it should be con-

sidered in the future.

4. Conclusions

We have proposed a simple approach to evaluate

the tidal temperature variation by considering the

deformation-induced temperature change while

neglecting the resulting temperature-induced defor-

mation. This treatment causes one-order smaller

magnitude uncertainty in the result.

The numerical results show that the temperature

variation caused by the tide-generating force is

detectable at the locations where the thermal

parameters are specific. The magnitude of the tidal

temperature variation can be up to 1 mK under both

isothermal and adiabatic boundary conditions. Our

results show that the volume strain, i.e. the inhomo-

geneous part in the heat conduction equation,

dominates the final results. This is why the results

under the two boundary conditions are nearly the

same.

Fluid flow may cause significant temperature

variation. Therefore, the fluid-coupled thermoelastic

deformation theory is required to obtain a more

accurate solution, which will be investigated in future

work.
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