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Abstract—This paper is concerned with the creep properties of

fractured rock in a shear zone. We consider a cube rock model

which consists of the rock matrix and cracks. A finite element

method with discontinuous deformation analysis (DDA) is used to

simulate the creep response of the fractured rock sample. The DDA

is used to describe the interactions among the contacting blocks at

their interfaces (cracks). In all numerical simulations of the creep

test, the strain rates are those typical values corresponding to

effective viscosities of 1017–1019 Pa s, similar to that obtained

from geophysical observations in a shear zone. The effects of

temperature, confining pressure, crack length and tilt on the creep

responses are examined using the simulation results. The numerical

results indicate that our method is a useful tool for simulating creep

deformation of fractured rock. The present study represents an

effort to use a numerical method to simulate the rheological

properties of fractured rock in the field of micro-geodynamics.

Keywords: Fractured rock, rheological properties, numerical

simulation, shear zone.

1. Introduction

In the last decade, a new geophysical theory has

been proposed. It is assumed in the theory that closely

spaced stress-aligned microcracks pervade the crust

and uppermost * 400 km of the mantle of the Earth;

in situ rocks are close to failure by fracturing; a series

of shear zones with low viscosity are formed, and

hence they produce critical systems that possess new

properties on conventional subcritical geophysics

(Crampin, 2011, 2012; Crampin & Gao, 2018; Jordan

& Jones, 2011). These new properties have confirmed

that the new geophysical theory is a novel under-

standing of fluid/rock deformation with important

implications and applications, for example, causing

the formation of seismic anisotropy, as an explana-

tion for earthquake behavior and oceanic spreading,

and so on.

The rheological properties of perfect rock and

mineral crystals under mantle conditions have been

widely studied using both experimental and theoret-

ical methods. Applications of the new geophysical

theory require knowledge of the rheological proper-

ties of fractured rocks after strain localization, which

are still not well understood. Grain boundary sliding

(GBS) has recently been identified as an important

deformation mechanism during creep of rock aggre-

gation (Hansen et al., 2011; Hirth & Kohlstedt, 1995;

Karato et al., 1986). Extensive experimental work has

been conducted on the GBS of rock, and a GBS flow

law has been presented through these experiments

(Hirth & Kohlstedt, 2003). It indicates that GBS is a

dominant deformation mechanism at high stresses

and low temperatures under which fine-grained shear

zones are often observed (Warren & Hirth, 2006).

GBS is also considered to be a major cause of strain

localization in the Earth’s lithosphere and a mecha-

nism for weakening of the subcontinental mantle

(Précigout et al., 2007).

Several physical mechanisms may be responsible

for GBS, for example, dislocation motion and diffu-

sion. When the deformation of rock is localized

inside a shear zone, sliding and rotation on the grain

boundary during creep deformation will be a domi-

nant deformation mechanism. This work is concerned

with numerical simulation of the rheological proper-

ties of fractured rock inside a shear zone. We first

briefly introduce our proposed numerical method. We
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then apply the numerical technique to simulate creep

response using a physical model to estimate the

rheological properties of fractured rock. Finally, we

discuss the numerical results and the validity of our

numerical method, and provide conclusions.

2. The Numerical Method

Grain boundary sliding and rotation involve

interactions among all of the grains in contact. At the

end of the previous century, considerable effort was

invested in understanding contact problems with

friction (Peric & Owen, 1992). Ghahremani (1980)

presented a numerical method to deal with GBS. In

this paper, we present a different numerical technique

to simulate GBS. We have developed a three-di-

mensional discontinuous deformation analysis–finite

element method (3D DDA?FEM) program under

some simplified assumptions based on previous

research (Chen et al., 2011). The DDA is used to deal

with the interactions among contacting blocks at their

interfaces, and FEM is used to determine the defor-

mation inside the blocks, as schematically shown in

Fig. 1. In this work, the 3D DDA?FEM program

(Chen et al., 2011) has been upgraded so that it can be

used to simulate GBS of rock aggregation and ana-

lyze its effect during creep deformation. In our

program, it is assumed that the displacement is small

and the points of contact among the grains are known.

The constitutive behavior of the contact surfaces

between the blocks is described by springs and vis-

cous dampers in series as shown in Fig. 1a. A brief

introduction of the computational method is descri-

bed as follows.

We assume that the rock consists of many grains

and that each grain is divided into some finite ele-

ments as shown in Fig. 1. We use isoparametric

hexahedron elements with eight nodes in the

numerical program because accurate results can be

obtained with the element. The isoparametric ele-

ments also can be adapted to the geometries of rock

samples. The nodal coordinates are denoted by xi (xi,

yi and zi) (i = 1,2,…,8), and the nodal displacements

are ui.(ui, vi and wi) (i = 1,2,…,8). Their shape

functions are denoted by Ni (n, g, f) (i = 1,2,…,8),

where n, g, and f are the local coordinates with the

element surfaces described by n = ± 1, g = ± 1,

and f = ± 1 as shown in Fig. 1b. The shape func-

tions for the 8-node isoparametric element are given

by

Ni ¼
1

8
1þ ninð Þ 1þ gigð Þ 1þ fifð Þ

ð�1� n; g; f� 1; ni; gi; fi ¼ �1Þ
ð1Þ

The displacement within the element is

Figure 1
a A schematic of the elements and the interface in the numerical

method, b the local coordinates of the six surfaces of a hexahedron

element (n = ± 1, g = ± 1, and f = ± 1)
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where I is a 3 9 3 unit matrix, N is a 3 9 24 matrix

which consists of Ni (i = 1,2…8) and ae is a 24 9 1

matrix which consists of ui (i = 1,2…8). The rela-

tionship between the strain and nodal displacements

of the element is

e ¼ B1 B2 B3 B4 B5 B6 B7 B8½ � ae

¼ Bae ð3Þ

where B is the strain matrix. The stress in the element

undergoing elastic deformation is given by the gen-

eralized Hooke’s law:

r ¼ De ¼ DBae ð4Þ

where D is the elasticity matrix containing the

specific material properties.

The total potential energy in the minimum

potential energy principle is

Y
u

¼
Z

V

1

2
eT Dedxdydz �

Z

V

uTf dxdydz �
Z

sr

uT TdS

ð5Þ

where f is the body force, T is the traction, V is the

volume and Sr is part of the boundary on which the

traction is applied.

For the finite element model, the potential energy

of the system is the sum of the potential energies of

all elements, i.e.,
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We assume that point P on the surface of block A

is in contact with point Q of block B, as shown in

Fig. 2. The coordinates and displacements of the

contact points are respectively denoted by xP, uP, xQ
and uQ. The relationship between the coordinates and

displacements of xQ/P and uQ/P and the eight nodes of

the finite element to which point Q/P belongs is as

follows:

xQ=P ¼
X8
i¼1

NiðnQ=P; gQ=P; 1Q=PÞxi ð7Þ

uQ=P ¼
X8
i¼1

NiðnQ=P; gQ=P; 1Q=PÞui ð8Þ

The displacement of points P and Q in the local

coordinates on the contact surface are expressed by

uA and uB, respectively.

The total strains on the contact surface contain

two parts

ef ¼
uA � uB

w
¼ uA

e � uB
e

w
þ uA

c � uB
c

w
¼ uA

e � uB
e

w
þ ecf

ð9Þ

where subscript e represents elasticity, and super-

script c represents creep. In Eq. (9), w is a length

parameter between the two contact surfaces.

Figure 2
A schematic of the elements and contact points on the interface
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When the two blocks are bonded at the contact

points, the contact stresses are related to the separa-

tion displacements by the following spring relations

for the normal and tangential components:

rfn ¼ k1
uA
n � uB

n

w

� �
; rft ¼ k2

uA
te � uB

te

w

� �
ð10Þ

where k1 and k2 are a type of virtual spring constants

that are generally taken to be very large so that

penetration between the contact points is prevented.

We note that k1 and k2 are not the traditional spring

constants but have the unit of stress. In Eq. (10),

subscript n and t represent the normal and tangential

components on the contact surface.

For the creep problem, the total strain is the sum

of the elastic strain and the creep strain

e ¼ ee þ ec ð11Þ

The stress in an element is related to total and

creep strains as follows:

r ¼ Dðe� ecÞ; Dr ¼ DðDe� DecÞ ð12Þ

where D represents the increment.

Inside the block (i.e., the grain), the creep strain

follows a power law (Karato, 2008), i.e.,

Dec ¼ Arn exp �E þ PV

RT

� �
Dt ; ð13Þ

where A is a pre-exponential material constant, n is

the power law creep index, E is the activation energy,

V is the activation volume, R is the universal gas

constant. r, P and T are, respectively, the differential

stress, pressure and temperature. The material

parameters in Eq. (13) can be determined by rheo-

logical tests on mineral under high temperatures and

high pressures (Karato, 2008).

On the boundary of the block (grain), we assume

that only relative sliding deformation occurs, i.e., the

normal strain is zero and the tangential strain follows

the relation

ecfn ¼ 0; ecft ¼
rft
g
Dt ð14Þ

where g describes the viscosity for the contact sur-

face, and friction between the contact surfaces is

neglected.

Then total potential energy is now expressed as

Y
u

¼
Z

V

ðrþ DrÞ � edxdydz

�
Z

V

uT fdxdydz �
Z

sr

uT TdS

ð15Þ

With regard to contact, we will use the penalty

function algorithm to introduce additional constraint

conditions into the function to find the solution.

Therefore, the potential energy functional is expres-

sed as follows:
Y

¼
Y

u

þ
Y
CP

ð16Þ

where
Q

CP is the additional functional of the definite

solution condition that was introduced using the

penalty function (Zienkiwicz et al., 2005). The pen-

alty function method belongs to a kind of generalized

variational method. For surfaces in contact, this

functional is given by (Zienkiwicz et al., 2005)

Y
CP

¼
Z

Sc

1

2w
½k1ðuA

N � uB
NÞ

2 þ k2ðuA
1e � uB

1eÞ
2

þ k2ðuA
2e � uB

2eÞ
2�dS ð17Þ

where Sc is the contact surface, ki

w ði ¼ 1; 2Þ are two

penalty numbers and ki, w have physical meanings as

shown in Eqs. (9) and (10). The larger the value of
ki

w ði ¼ 1; 2Þ, the better the constraints that will be

achieved. The equation for the solution of the finite

element of the penalty function algorithm is

ðtKL þ KcaÞu ¼ tþDtQc þ tþDtQfc � tF ð18Þ

where tKL is the stiffness matrix of the ordinary finite

element, Kca is the contribution of the contact surface

to the stiffness matrix,

tþDtQc ¼
X

e

Z

ve

BTDDecdV

tþDtQfc ¼
X

se

Z

se

NTkDecf dS

tF ¼ �
X

e

Z

ve

NTf fdV þ
Z

Sre

NTTdS

� �

þ
X

e

Z

Ve

BTrdV

ð19Þ

t?DtQc is the additional load caused by creep inside

the grains, tþDtQfc is the additional load caused by the
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slippage of the contact surface, and tF is the equiv-

alent nodal force of the ordinary additional load.

Equation (18) can be solved by an iteration method.

3. The Model of Fractured Rock and Numerical

Simulation of Its Creep Process

This paper is concerned with the rheological

properties of fractured rock in a shear zone after

strain localization. In the numerical simulation, we

consider a cuboid rock model which contains nine

parallel oblique cracks and the two crack faces are in

close contact as shown in Fig. 3. The fractured rock

sample has dimensions of 4 cm x 8 cm x 8 cm which

are typical in experimental creep tests. The model

contains 640 elements with 935 nodes. A uniformly

distributed load is applied on the six surfaces of the

model to simulate a triaxial laboratory creep test. We

consider several loading cases in which the confining

pressure is 300 MPa along the x-axis and y-axis;

differential stresses are 50, 100 and 150 MPa, and

temperatures are 1073, 1173 and 1373 K, respec-

tively. The rheological constitutive relation inside the

grains is assumed as follows:

_ec ¼ Agr
ng

1

dm
exp �Eg þ VgP

RT

� �
ð20Þ

In the numerical simulations, our conditions of

pressure and temperature are similar to those used in

the experimental study of Hansen et al. (2011) on

olivine. According to the experimental analysis of

Hansen et al. (2011), diffusion is responsible for the

creep deformation in the olivine grains. The param-

eters in Eq. (20) are thus selected as follows:

Ag ¼ 107:6 lm3=ðMPa1:1 sÞ; d ¼ 30 lm; m ¼ 3;

Eg ¼ 375 kJ mol�1; Vg ¼ 0; ng ¼ 1:1:

Our simulations using the above parameters pro-

duce a viscosity on the order of 1020–1024 Pa s inside

the grains.

Consistent with Eq. (14), the rheological consti-

tutive relation on the crack surface is assumed as

follows:

_ecf ¼ rt=g ð21Þ

where the material parameter is selected as follows:

g=w ¼ 1014 MPa s=cm

g describes the viscosity of the contact surface. In

general, the tangential creep strain rate may be a

nonlinear function of the tangential contact stress.

Here we assume a linear relation for numerical con-

venience that can also capture the creep behavior of

the contact surface. Here we are mainly concerned

with sliding between the two contacting surfaces, and

thus the normal stress is neglected in the relationship

in Eq. (21).

We can see from Eq. (21) that the time increment

is confined by g/w in the calculation. Because of lack

of experimental data, we chose g=w using multiple

numerical tests.

Figure 4 shows all creep curves calculated from

the numerical model under various temperature and

pressure conditions. The two penalty numbers

ki=w ði ¼ 1; 2Þ are taken as 107 MPa/cm. The time

step is selected as 3.6 9 108 s, which guarantees that

stresses are constant during the creep process. We

found in the numerical simulations that time steps

larger than 3.6 9 108 s resulted in decreasing stresses

with time, which is not a creep process we studied

(we study creep under constant stresses). The strains

in these figures represent the average strain of the

whole sample. The axial strain is along the direction

of the maximum principle stress (z-axis direction).

The creep deformation is steady (constant creep

strain rate). Table 1 lists the strain rate during the

steady creep process under all loading and tempera-

ture conditions.

We consider the case in which the crack length is

2.828 cm and crack direction is 45�. We will perform

a parametric study on the effects of crack length and

orientation in Sect. 4.6. The constitutive relation of

the fractured rock is thus assumed as
Figure 3

Schematic illustration of model

Vol. 179, (2022) A Method for Estimating the Rheological Properties 1847



_e ¼ A0r
nf exp �Ef þ pVf

RT

� �
ð22Þ

The parameters in the above constitutive relation

(22) can be determined by the numerical results. We

obtain that A0 = 5.3128 9 10-11 MPa-0.26/s,

Ef = 6.687 kJ mol-1, Vf = -17.0cm3mol-1, and

nf = 0.26. These parameters are for the fractured rock

and can be different from those in Eq. (20) for the

grain.

Figure 5a shows the relationship between the

strain rate and differential stress. According to the

Figure 4
Creep curves of numerical tests under various conditions of pressure and temperature (a, b, c)
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equation on the effective viscosity g ¼ r= _e, we

obtain the effective viscosity as a function of the

differential stress as shown in Fig. 5b. The order of

the calculated viscosity is in agreement with the

geophysical observation in a fracture zone (Craig &

Mckenzie, 1986).

4. Discussion

We have carried out numerical calculations to

simulate creep test of fractured rock in a shear zone

using the 3D DDA?FEM technique described in

Sect. 2. The strain rates are similar in all cases

corresponding to viscosities of 1017–1019 Pa s, in

accord with geophysical observation in a fracture

zone (Warren & Hirth, 2006). Our numerical result of

the effective viscosity (blue line) at a total strain rate

of 10–10–10–11 s-1 is in agreement with the geo-

physical observations. Some special characteristics

can be found from the numerical results as follows.

4.1. Temperature Effect

Our numerical results reveal that temperature has

the same effect on strain rate and viscosity as

diffusion creep of rock grains. Temperature has little

effect on crack surface sliding without diffusion or

Table 1

The results of strain rate obtained from the numerical model at different pressures and temperatures

Confining pressure (MPa) Differential stress (MPa) Temperature (K) Crack length (cm)

Crack direction

Strain rate (/s)

300 100 1073 2.828, 45� 1.1512 9 10–10

300 100 1173 2.828,45� 1.1688 9 10–10

300 100 1273 2.828,45� 1.1931 9 10–9

600 100 1073 2.828,45� 2.1775 9 10–10

1000 100 1073 2.828,45� 3.8361 9 10–10

300 50 1173 2.828,45� 1.095 9 10–10

300 150 1173 2.828,45� 1.3246 9 10–10

Figure 5
a Relationship between strain rate and differential stress under confining pressure = 300 MPa and temperature = 1073 K; b Relationship

between viscosity and differential stress under confining pressure = 300 MPa and temperature = 1073 K

Vol. 179, (2022) A Method for Estimating the Rheological Properties 1849



dislocation in our model. Also, the activation energy

E is much smaller than that for perfect defect-free

rock. The rheology of sliding cracks leads to an

effective rheological law similar to the one corre-

sponding to grain creep.

4.2. Differential Stress Effect

The differential stress does not change the order

of magnitude for the strain rate or viscosity. The

strain rate obtained from our numerical calculations

is on the order of 10–10/s–10–11/s, which corresponds

to the value in the shear zone. The viscosity is on the

order of 1017–10-19 Pa s. It is seen from Fig. 4 that

both the strain rate and viscosity increase with

increasing differential stress. This is probably

because the normal force on the crack surface

increases with increasing differential stress. As a

result, the viscosity of fractured rock is increased.

Figure 6
a The tilt is 45� in all three cases; the crack lengths are 2.828 cm for No. 1, 2.121 cm for No. 2 and 1.414 cm for No. 3, respectively. b The

crack length in three cases is 2.121 cm; the tilts are 75� for No. 1, 45� for No. 2 and 35� for No. 3, respectively

Figure 7
The displacement field map on y–z plane

Figure 8
A second model of fractured rock sample and finite element

meshing and five quadrangle grains are divided by eight boundary

plans (black lines) which simulate cracks in the fractured rock

1850 Z. Chen et al. Pure Appl. Geophys.



4.3. Confining Pressure Effect

Our numerical results indicate that higher confin-

ing pressure causes larger strain. This is because our

model is not isotropic in geometric structure, and

higher confining pressure produces larger deforma-

tion. We will use more complex rock models to

obtain more accurate results in a future study.

4.4. Selection of Viscosity for Crack Surface Sliding

Numerous numerical tests have shown that it is

suitable for the viscosity describing crack surface

creep sliding (g=w) to be taken as 1020 Pa s or

greater. Numerical simulations may become unsta-

ble if the order of g=w is smaller than 1020 Pa s. From

Eq. (21), we can see that if g=w is taken to be smaller

than 1020 Pa s, the time step also needs to be reduced.

From our calculations, we find that the creep

strain rate in the fractured rock sample increases with

a decrease in the rheological parameter g for the

tangential strain rate between the crack surfaces. For

the case of a liquid-filled crack, the parameter g will

become smaller due to the presence of the liquid

phase. Thus, the viscosity of the fractured rock will

also become smaller.

4.5. Effect of Crack Length and Direction

In order to examine the effect of crack density and

direction, we carry out two group simulations as

shown in Fig. 6: (1) different crack lengths with the

same orientation; (2) different orientations with the

same crack length. The results show that under the

same conditions of stress, temperature and tilt, the

longer the crack, the larger the strain rate. This is in

agreement with our knowledge (Yang et al., 2004).

The strain rate is 1.08 9 10–10/s, 8.8 9 10–11/s, and

2.1 9 10–11/s, when the tilt is 35�, 45�, 75�, respec-
tively: the larger the tilt, the smaller the strain rate.

4.6. Displacement Field Inside the Sample

Figure 7 shows the displacement field on the y–

z plane in the sample during the creep deformation

process. It is seen that the displacement direction

experiences larger variations due to the existence of

cracks, which is in agreement with our experience.

4.7. Influence of Initial Crack Model

Two species of microcracks in the crust and in the

subcritical system were introduced by Crampin and

Gao (2014). One is the closely spaced stress-aligned

microcracks as shown as Fig. 3 in this paper, and the

other is stress-aligned vertical fluid-saturated micro-

cracks which pervade almost all rocks throughout the

Earth’s upper crust, lower crust, and upper-

most * 400 km of the mantle. We construct a

second model of fractured rock as shown in Fig. 8,

and carry out numerical calculation under the same

conditions of temperature and pressure as in Fig. 3.

The results indicate that the strain rates are similar,

corresponding to viscosities of 1017–1019 Pa s, values

in good agreement with geophysical observation in a

fracture zone (Warren & Hirth, 2006). But the size of

grain influences the value of creep strain rate. The

larger the grain size, the smaller the creep strain rate.

For the elastic properties, the axial strain of the

sample shown in Fig. 3 is larger than that of the

sample shown in Fig. 8.

5. Conclusion

In this paper, we simulate the rheological prop-

erties of fractured rock inside a shear zone using a 3D

FEM?DDA model. Creep curves under various

temperature and pressure conditions are obtained

using a cuboid rock model which contains nine par-

allel oblique cracks, and the two crack faces are in

close contact. In all the numerical simulations of the

creep test, the strain rates are similar, corresponding

to viscosities of 1017–1019 Pa s, values in good

agreement with geophysical observation in a fracture

zone. Moreover, our numerical results show that

(i) temperature has less effect on strain rate or vis-

cosity, (ii) the differential stress does not change the

order of magnitude for the strain rate or viscosity, and

(iii) higher confining pressure causes larger strain.

Moreover, longer cracks lead to larger strain rates,

and larger crack tilts lead to lower strain rates. The

Vol. 179, (2022) A Method for Estimating the Rheological Properties 1851



numerical results indicate that our method is a useful

tool to simulate creep deformation of fractured rock.

The evolution of the stress field inside the sample

also supports this conclusion. The present study

represents an effort to use a numerical method to

study the rheological properties of fractured rock in

the field of micro-geodynamics. We will develop

more complex rock models to further study the

effectiveness of our numerical method.
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