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Abstract—The geometric properties of fractures influence

whether they propagate, arrest, or coalesce with other fractures.

Thus, quantifying the relationship between fracture network char-

acteristics may help predict fracture network development, and

perhaps precursors to catastrophic failure. To constrain the rela-

tionship and predictability of fracture characteristics, we deform

eight one centimeter tall rock cores under triaxial compression

while acquiring in situ X-ray tomograms. The tomograms reveal

precise measurements of the fracture network characteristics above

the spatial resolution of 6.5 lm. We develop machine learning

models to predict the value of each characteristic using the other

characteristics, and excluding the macroscopic stress or strain

imposed on the rock. The models predict fracture development

more accurately in the experiments performed on granite and

monzonite, than the experiments on marble. Fracture network

development may be more predictable in these igneous rocks

because their microstructure is more mechanically homogeneous

than the marble, producing more systematic fracture development

that is not strongly impeded by grain contacts and cleavage planes.

The varying performance of the models suggest that fracture vol-

ume, length, and aperture are the most predictable of the

characteristics, while fracture orientation is the least predictable.

Orientation does not correlate with length, as suggested by the idea

that the orientation evolves with increasing differential stress and

thus fracture length. This difference between the observed and

expected relationship between orientation and length highlights the

influence of mechanical heterogeneities and local stress perturba-

tions on fracture growth as fractures propagate, link, and coalesce.

Keywords: Fracture, machine learning, X-ray tomography,

triaxial compression, granite, marble.

1. Introduction

Mechanical weaknesses, such as fractures, control

the macroscopic strength of brittle solids (Griffith,

1924). Increasing differential stress may cause some

of these preexisting weaknesses to propagate, pro-

ducing an evolving fracture network that may further

weaken the material. Depending on how the fractures

propagate, arrest, coalesce, and localize, the evolving

fracture network may lead to catastrophic, system-

size failure. Constraining the criteria that determine

how a fracture network evolves toward macroscopic

failure is a fundamental goal in geoscience and

engineering. Following linear elastic fracture

mechanics, whether a fracture propagates depends on

the applied loading and the geometric properties of

the fracture that determine the stress intensity factor,

such as the fracture length and aperture (Isida, 1971).

Whether a fracture arrests its growth depends on the

loading as well as the microstructure of the rock,

including the mechanical heterogeneity produced by,

for example, interlocking minerals with varying

elastic moduli or cemented granular aggregates (e.g.,

Fredrich & Wong, 1986; Howarth, 1987; Moore &

Lockner, 1995; Tapponnier & Brace, 1976). Whether

a fault system coalesces and develops a distributed or

localized spatial distribution depends on the boundary

conditions of the system (constant stress vs. dis-

placement), material healing rate, loading rate, and

conditions that determine the rheology, such as

temperature, pressure, presence of fluids, and rock

type (e.g., Ben-Zion, 2008; Lyakhovsky et al., 2001).

Machine learning analyses of data from laboratory

experiments on crystalline rocks under triaxial com-

pression indicate that whether a fracture propagates

or closes depends on the factors that control the stress

intensity factor (fracture volume, length, aperture,

orientation), as well as the distance to its nearest
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neighbor (McBeck et al., 2019). These factors, along

with the shape anisotropy of the fracture (one minus

aperture/length), also control the timing of catas-

trophic failure (McBeck et al., 2020).

The ability of these fracture network characteris-

tics to predict the likelihood of individual fracture

growth (McBeck et al., 2019) and the timing of

catastrophic failure (McBeck et al., 2020) during

triaxial compression suggest that examining the

relationship between fracture network characteristics

could be a valuable effort in our attempts to predict

the timing of earthquakes. For example, we may not

be able to measure the shape anisotropy of a fracture

or fault in the field, but if we can derive relationships

between the length and anisotropy using experimental

data, we could better constrain this geometric prop-

erty, which is important for predicting catastrophic

failure. Moreover, predicting and quantifying the

relationships between fracture characteristics may

help to evaluate the applicability of our idealized

conceptualizations of fracture growth that are

grounded in linear elastic fracture mechanics.

Here, we focus on using the relationships between

several fracture characteristics to identify the preex-

isting conceptualizations of fracture growth that do

not agree with the experimental observations. In

particular, we use machine learning techniques to

identify the fracture characteristics that help predict

the quantities of other fracture characteristics in tri-

axial compression deformation experiments on

marble, granite, and monzonite under the confining

stress conditions of the upper crust. This analysis

reveals the varying predictability of fracture charac-

teristics in the marble and igneous (monzonite and

granite) rocks. The fracture networks in the igneous

rocks are more predictable, and thus systematic, than

the networks in the marble rocks. This result suggests

that fault development that occurs in crust dominated

by igneous rocks may be more predictable than fault

development in crust dominated by marble. The

analysis indicates that the fracture characteristics that

are the most predictable, with the highest agreement

between the predicted and observed characteristic,

include the fracture volume, length and aperture. The

characteristic that is the least predictable of the

characteristics is the fracture orientation relative to

the maximum compression direction. Although

several criteria use the orientation of fractures and

faults to assess the likelihood of failure and slip (e.g.,

Coulomb, 1776), the results prompt reexamination of

the idea that the orientation of fractures evolves

systematically with increasing differential stress from

parallel to the maximum compression direction, to

oblique to it (e.g., Cartwright-Taylor et al., 2020;

McBeck et al., 2019; Renard et al., 2018, 2019).

2. Background

Laboratory triaxial compression experiments on

crustal rocks have provided unparalleled access to the

evolving characteristics of fracture networks

deformed under upper crustal stress conditions (e.g.,

Paterson & Wong, 2005). For example, in experi-

ments on granite with in situ acquisition of X-ray

tomograms during deformation (e.g., Cartwright-

Taylor et al., 2020; McBeck et al., 2020), the fracture

networks develop from small, isolated fractures to

system-spanning, connected networks (Fig. 1). In

these experiments, increasing differential stress, rD,

localizes fracture development first toward the top

portion of the core (Fig. 1). New fractures nucleate

and preexisting fractures propagate downward and

towards the center of the core with increasing dif-

ferential stress. Preceding macroscopic failure

(rightmost core in Fig. 1), the connected fracture

network appears to trend at 30� from the maximum

compression direction, r1. The fractures appear to

grow longer and thicker with increasing rD. We

Figure 1
Example of fracture network development in an X-ray synchrotron

triaxial compression experiment on granite (experiment granite #4).

Fractures are shown in blue and the host rock is shown in gray. The

applied differential stress, rD, increases from left to right. The

rightmost image shows the core immediately preceding macro-

scopic failure
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observed similar behavior in monzonite, another

crystalline rock (Renard et al., 2018). Identifying the

individual fractures within these networks enables

quantifying these observations, and testing if the

fracture orientations, lengths and apertures indeed

develop with these ostensible evolutions. This

approach thereby allows assessing the applicability of

existing conceptualizations of fracture network

development (Fig. 2).

The central aim of the present study is to use data

acquired from in situ X-ray experiments to assess the

correctness of preexisting ideas about fracture net-

work development. Here, we describe the concepts

that we will test with the evolving fracture networks

revealed in X-ray tomography. Abundant experi-

mental evidence indicates that under upper crustal

stress and temperature conditions, new fractures

nucleate and preexisting fractures grow with

increasing differential stress (Tapponier & Brace,

1976; Ayling et al., 1995; Moore & Lockner, 1995;

Popp et al., 2001; Stanchits et al., 2006; Bonamy &

Bouchaud, 2011; Renard et al., 2018, 2019; Kandula

et al., 2019; Cartwright-Taylor et al., 2020). Fracture

nucleation and propagation is expected to increase

the total volume of fractures within some subvolumes

and decrease the distance between fractures (Fig. 2a).

While experiments have documented increasing

fracture volume with differential stress in rocks (e.g.,

Tapponier & Brace, 1976; Paterson & Wong, 2005;

Renard et al., 2018) and the importance of the initial

spacing between fractures (Vasseur et al., 2017), to

our knowledge none have yet reported the expected

decreasing distance between fractures.

Experimental observations support the idea from

linear elastic fracture mechanics that as fractures

grow under approximately constant stress loading,

their stress intensity factors increase, producing a

positive feedback loop that propels increasingly faster

and unstable fracture growth (Jaeger et al., 1979).

Tracking the length of fractures throughout X-ray

tomography experiments indicate that the fracture

length increases with differential stress in crystalline

rocks (e.g., Cartwright-Taylor et al., 2020; Renard

et al., 2018). Similarly, observing fracture develop-

ment on the surface of rocks and rock-analogs reveals

the variety of fracture network geometries that occur

when wing-cracks grow from the tips of preexisting

fractures, and multiple fractures coalesce (e.g., Ashby

& Hallam, 1986; Ashby & Sammis, 1990; Moore &

Lockner, 1995; Morgan et al., 2013; Park & Bobet,

2009; Wong et al., 2001). The propagation and the

coalescence of fractures increase the volume, length,

and perhaps anisotropy of fractures, and may

decrease the average aperture (Fig. 2b). As larger

fractures are likely associated with greater localiza-

tion, the fracture volume, length, and aperture are

closely linked to deformation localization. Localiza-

tion may be a key characteristic of the preparation

process leading to system-sized failure in the labo-

ratory and large earthquakes (Ben-Zion & Zaliapin,

2020; Kato & Ben-Zion, 2021; Lockner et al., 1991;

Renard et al., 2019; Stanchits et al., 2006).

Experimental observations support the idea that

heterogeneities can produce local dilatant zones in

rocks undergoing compressive macroscopic loading

(e.g., Moore & Lockner, 1995). Because such local

dilatant zones can develop, and rocks have lower

tensile strength than shear strength, we expect that the

first fractures that develop under triaxial compression

Figure 2
Expected development of fracture network characteristics in

triaxial compression experiments. Based on the processes listed

to the left of the figure, we expect the fracture network

characteristics to increase (red), or decrease (blue) with increasing

differential stress, rD. Fracture nucleation (a) may increase the

total fracture volume and decrease the distance between fractures.

Propagation and coalescence (b) may increase the volume, length

and anisotropy, and decrease the aperture. A transition in failure

mode (c) may decrease the aperture and orientation of the minor

axis relative to the maximum compression direction, and increase

the length. The three kinds of fracture development (a–c) may

occur simultaneously, but here we show them separately for clarity
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should be mode I, tensile fractures that open per-

pendicular to the maximum compression direction

and trend parallel to r1 (e.g., Tapponnier & Brace,

1976). Then with increasing differential stress, frac-

tures may propagate from the tips of the preexisting

fractures, producing fractures that trend oblique to r1,
such as wing cracks. Observations from X-ray

tomography experiments support the idea that the

preferred orientation of fractures evolves with

increasing differential stress towards failure (Cart-

wright-Taylor et al., 2020; McBeck et al., 2019;

Renard et al., 2018, 2019). Tracking the orientation

of the fractures identified in a tomogram at a given

differential stress indicates that the mean orientation

of the fractures evolves from parallel to more oblique

to r1 with increasing differential stress (Renard et al.,

2018).

However, some experimental observations indi-

cate that the apparent orientation oblique to r1 arises
from aligned arrays of mode I fractures that trend

parallel to r1 (e.g., Horii & Nemat-Nasser, 1985;

Nemat-Nasser & Horii, 1982; Peng & Johnson,

1972). Early experiments and Griffith theory indicate

that inclined cracks will propagate out of the plane of

the crack and then parallel to r1 because the maxi-

mum tensile stress does not occur exactly at the crack

tip, but on the fracture boundary near the tip (Brace &

Bombolakis, 1963; Hoek & Bieniawski, 1965). Thus,

an array of tensile fractures oriented parallel to r1
could grow inclined wing-cracks that will then

propagate out-of-plane and perhaps ultimately paral-

lel to r1. If the array of fractures become linked, the

resulting overall orientation may become oblique to

r1. Therefore, the overall transition from mode I to

mode II or III fracturing is expected to shift the ori-

entation from parallel to r1 to oblique to it, or

decrease it following our reference frame of mea-

suring the orientation (Fig. 2c). This transition may

decrease the aperture as fractures that predominantly

accommodate shear may have thinner apertures than

fractures that predominantly host tension.

Based on these expected relationships between

differential stress and the fracture network charac-

teristics, we hypothesize that we may accurately

predict some characteristics using others, without

knowledge of the macroscopic differential stress nor

macroscopic axial strain imposed on the rock core.

We attempt to do this prediction without using the

differential stress or axial strain because these prop-

erties are often inaccessible in the field or include

wide error ranges that may be larger than typical

precursory signals (Amoruso & Crescentini, 2010).

By comparing the ability of the models to predict

each characteristic, we may constrain the extent to

which each of the idealized processes of fracture

development occurs during triaxial compression of

crustal rocks under the stress conditions of the upper

crust.

3. Methods

3.1. Rock Samples

We examine fracture development in eight exper-

iments using three rock types. We perform two

experiments on Carrara marble, three on monzonite,

and three on granite. The three rock types have

crystalline microstructures with interlocking mineral

grains and low porosity (\ 1%). Two of them are

igneous rocks (granite, monzonite), and one is a

metamorphosed sedimentary rock (Carrara marble).

Monzonite and granite have similar mineralogy and

ranges of material properties. These igneous rocks

only differ in their mean grain size: granite has a

mean grain size of 100–200 lm, while monzonite has

a mean grain size of 300–400 lm (e.g., Aben et al.,

2016). Carrara marble has low initial porosity (0.2%)

and a grain size of 100–200 lm (e.g., Malaga-Starzec

et al., 2002; Rutter, 1972). These rocks were cored

from a block into 10 mm tall and 5 mm wide

cylinders.

3.2. X-ray Synchrotron Imaging During Triaxial

Deformation

We perform eight experiments at the X-ray

synchrotron tomography beamline ID19 at the Euro-

pean Synchrotron and Radiation Facility (ESRF)

using the Hades deformation apparatus (Renard et al.,

2016). The time series of X-ray tomograms from each

experiment are publicly available (Renard,

2018, 2019, 2021). Figure 3 shows the experimental

conditions. Previous studies describe the

278 J. McBeck et al. Pure Appl. Geophys.



experimental protocol (Kandula et al., 2019; Renard

et al., 2018), and we summarize it here. In each

experiment, we apply a constant confining stress

using oil applied to the jacket surrounding the

sample. Then, we increase the axial stress in steps

until the rock fails macroscopically. We reduce the

size of the stress step after yielding as the rock

approaches macroscopic failure in order to attain

higher temporal resolution closer to failure. We apply

the axial stress increase at rate between 5 MPa per

five minutes far from failure, to 1 MPa per five

minutes closer to failure. After each axial stress step,

we acquire a 3D X-ray tomogram when the rock core

is under load inside the deformation apparatus. Each

tomogram is acquired in less than 2 min with a

spatial sampling, and thus voxel side length of

6.5 lm, and a spatial resolution around 20 lm. The

imposed confining stresses range from 5 to 35 MPa

for each experiment (Fig. 3). We perform the exper-

iments at ambient temperature (23–25 �C). Each

experiment was performed without fluid pressure,

except for monzonite #4, which included 5 MPa of

deionized water as pore fluid pressure with drained

conditions at the sample boundaries. However, due to

the generally low permeability of the sample, the

fluid may have been drained or undrained inside the

sample during the experiment. Macroscopic failure

occurs in a sudden stress drop, typically within\
0.5 MPa of increased axial stress after the acquisi-

tion of the final scan.

3.3. Fracture Network Feature Extraction

We chose the features using concepts from linear

elastic fracture mechanics (Table S1). The X-ray

tomograms provide 3D distributions of local X-ray

adsorption, which is proportional to the local density.

We identify fractures from these adsorption fields by

segmenting the voxels dominated by air (i.e., pores

and fractures) from those dominated by solid using

the procedure described in Renard et al. (2018). We

first apply a non-local-mean filter (Buades et al.,

2005) to reduce noise in the tomography data. Then,

we separate the fractures from the solid by calculat-

ing a global threshold using the gray scale values of

the tomogram (e.g., Renard et al., 2018). The

histograms of the gray scale values contain two

peaks that correspond to the solid and air in the

tomogram, so we may identify the threshold from the

local minimum between the peaks. To identify this

Figure 3
Differential stress and axial strain relationships for eight experiments: a marble #1, b marble #2, c monzonite #3, dmonzonite #4, e monzonite

#5, f granite #1, g granite #2, and h granite #4. Each black circle shows the stress and strain conditions when an X-ray tomogram was

acquired. The applied confining stress, r2, of each experiment is shown in the corresponding plot. All of the experiments were performed

without pore fluid, except monzonite #4, which included 5 MPa of pore fluid pressure
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local minimum, we fit two overlapping Gaussian

distributions to the two peaks that correspond to the

solid- and air-dominated voxels. We then find the

summation of these curves and calculate the second

derivative of this curve. The minimum absolute value

of the second derivative of this curve indicates the

inflection point between the two populations of solid-

and air-dominated voxels. This method of identifying

fractures may misclassify some voxels at the tail ends

of the distributions of solid- and air-dominated voxels

(e.g., Fusseis et al., 2014). Although machine learn-

ing methods and local adaptive thresholding methods

can provide higher accuracy than global thresholding

methods (e.g., Fusseis et al., 2014), at low levels of

noise, global thresholding methods can perform with

similar accuracy as the other methods (Andrew,

2018; Wang et al., 2011). Without laboratory mea-

surements of the porosity of the rock cores at each

differential stress, it is difficult to assess the accuracy

of the calculated segmentation of the fractures and

pores. Ongoing work is assessing the accuracy of this

global thresholding method and other techniques,

such as machine learning.

After we segment the tomograms into a binary

field of solid and air, we identify unique pores and

fractures by finding connected groups of voxels

labelled as air. We find groups of voxels with the

most conservative connectivity in 3D (26-fold),

ensuring the highest level of connectivity. Next, we

apply a noise threshold to remove identified con-

nected voxel clusters below a certain threshold (3000

voxels) in order to remove noise from the data. After

we calculate the features of each fracture, we split the

volumes into subvolumes with a side length of 200

voxels, and thus a volume of 2003 voxels, from which

we calculate statistics of the fracture characteristic

populations (i.e., features). Previous machine learn-

ing analyses indicate that using this noise threshold

and subvolume size produces the most accurate

model predictions of the tested combinations of

parameters in these X-ray tomography experiments

(McBeck et al., 2020). We report the minimum, 25th

percentile, 50th percentile, 75th percentile and max-

imum value of each population of feature. We chose

to predict the statistics of populations of features,

rather than the characteristic for individual fractures,

because we aim to test whether accurate predictions

require classifying the complete fracture network

population, or only require measuring the extreme

values, such as the longest or most volumetric

fractures.

Table S1 lists all of the 41 features used in the

models. In addition to the features derived from the

fracture network, we also include a random number

as a feature in order to compare the importance of the

other features to this meaningless value. We selected

each feature derived from the fracture network

following formulations from linear elastic fracture

mechanics, and preexisting knowledge about fracture

development (i.e., Fig. 2). We calculate the features

using the number of voxels of each identified fracture

(fracture volume), center of mass or centroid of the

fracture (distance between fractures), or the eigen-

values and eigenvectors of the covariance matrix of

the connected voxels of each fracture (orientation

relative to the r1 direction, fracture length, fracture

aperture, shape anisotropy) (Fig. S1). In particular,

the distance between fractures is the distance between

the centroid of a fracture and all the other fracture

centroids. To calculate the orientation of the fractures

relative to the r1 direction, we find the orientation of

the smallest, h1, and largest, h3, eigenvectors of the

fracture relative to the r1 direction. We consider both

eigenvectors to account for fractures that are penny-

shaped (in which the intermediate axis has a similar

length to the maximum axis) or cigar-shaped (in

which the intermediate axis is closer in length to the

minimum axis). When the fractures are penny-

shaped, the smallest eigenvector provides a more

reliable indicator of orientation than the largest

eigenvector. In contrast, when the fractures are

cigar-shaped, the orientation of the largest eigenvec-

tor provides a more reliable indicator. The fracture

length and aperture are approximated by the maxi-

mum and minimum eigenvalues, respectively. The

shape anisotropy of a fracture is one minus the ratio

aperture/length.

3.4. Machine Learning Model Development

We develop XGBoost regression models to pre-

dict the fracture characteristics (Chen & Guestrin,

2016). These gradient boosted models depend on a

network of decision trees to predict an outcome.
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Unlike classification machine learning models which

predict discrete values, regression models can predict

a continuum of values.

Boosting is an iterative technique of solving

statistical models that first fits a model to data,

computes the residual errors of that model, fits a new

model to the residuals of the first model, then creates

a new model that combines the first and second

model (Friedman, 2001). This process may be

iterated until the total error is minimized. The

following equations formalize this process:

ŷ ¼ F0 þ
XM

m¼1

qmXFm Xð Þ ð1Þ

Fm Xð Þ ¼ Fm�1 Xð Þ þ qmhm Xð Þ ð2Þ

where ŷ is the outcome variable, F0 is the initialized

model (e.g., minimizing a loss function such as mean

squared error), Fm Xð Þ is the function being fit to data,

X, (e.g., a decision tree) and thus the linear combi-

nation of the model from the previous iteration and

the model trained on the residuals of this iteration, qm

is a weighting term that determines the effect of this

iteration on the overall model, hm Xð Þ is the function

being fit to the residuals of iteration m – 1, m is the

boosting iteration, and M is the total number of

boosting iterations.

This process allows the boosted model to learn

different areas of the overall space of available data

by correcting itself in the places where it was wrong

in previous iterations (Friedman, 2001). This process

enables boosted models to better fit data than models

solved using maximum likelihood methods (Bühl-

mann & Yu, 2003). Here, we use an implementation

of gradient boosting known as Extreme Gradient

Boosting or XGBoost (Chen & Guestrin, 2016).

XGBoost implements a number of additional opti-

mizations that reduces overfitting, and so has won

many machine learning competitions. XGBoost and

other gradient boosted tree methods have been used

in a number of recent machine learning analyses in

geoscience (e.g., Hulbert et al., 2019; Shreedharan

et al., 2021).

We develop models using data from the eight

experiments, and models from the two dominant rock

types: the marble and igneous rocks. We estimate the

influence of the features on the model predictions

using a widely used metric in the machine learning

community: Shapely Additive Explanations (SHAP)

(Lundberg & Lee, 2017; Pedregosa et al., 2011).

SHAP values may be calculated for the feature of

each sample (i.e., unique data point provided to the

model). Here, we report and compare the mean

absolute value of the SHAP (mean |SHAP|) of each

feature. We thus focus on the net influence of that

feature on the model prediction, and not on the

influence of that feature on particular samples. We

perform a grid search over the hyperparameter-space

to find the appropriate set of hyperparameters for

each model (Lundberg & Lee, 2017).

We separate the training (80%) and testing

(remaining 20%) datasets with no overlap between

these two sets. Each sample provided to the models

are distinct in time (stress step) and space. We split

the samples into training and testing datasets based

on time, such that a particular time (differential

stress) occurs in either the training or testing dataset.

This method of splitting by time reduces the potential

for autocorrelation in the results. We randomize the

times that occur in the training and testing datasets

such that times earlier and later in the experiment can

occur in either dataset.

For each model that predicts a given fracture

characteristic, we develop ten unique models that

differ only in the separation of the training and testing

datasets. We develop these models in order to reduce

the influence of random variations in the training and

testing dataset on the calculated model performance.

To assess the influence of autocorrelation with

this method of splitting the data, we also develop

models using testing datasets that are continuous in

time, and occur at the end of the experiment, close to

macroscopic failure (Fig. S2). This method of

splitting is expected to lower the model performance

because characteristics of fracture networks evolve

toward failure. Thus, the fracture characteristics near

failure may be outside the range of those character-

istics earlier in the experiment. Despite this natural

evolution, when we split the training and testing

datasets such that the testing dataset encompasses a

continuous interval of time with 20% of the data at

the end of the experiment, the R2 scores of the models

do not generally decrease in the models that predict

the characteristics using all of the rock types, and in
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the models that predict the characteristics in the

igneous rocks. In these cases, only the models that

predict the orientation perform with R2 scores that are

lower than 0.2 of the models that are developed with

the time random approach of splitting the training and

testing data. The time continuous method of splitting

the data produces greater decreases of performance in

the models developed with the marble data than the

other rocks. The mean decrease in the R2 scores

across the eight predictions of fracture characteristics

is 0.07, 0.06 and 0.17 for the three type of models

(Fig. S2). Regardless of the shift in some of the R2

scores, the general conclusions of the analysis remain

unchanged when we change the method of splitting

the data. We discuss these points in greater detail in

subsequent sections. Moreover, previous work

demonstrates that the distribution of SHAP values

does not change significantly when changing the

method of splitting the data (McBeck et al., 2020),

indicating that these results remain unchanged as

well.

4. Results

4.1. Success of Predicting Fracture Characteristics

We develop the models to predict one fracture

network characteristic at a given moment in time,

such as the fracture volume or length, using the other

characteristics as features. In particular, we predict

the median value of one characteristic using the full

suite of all the other characteristics. We assess the

model performance using the R2 score between the

observed and predicted values. Higher R2 scores

indicate more accurate models: R2 scores[ 0.8

indicate strong positive correlations between the

predicted and observed values.

The performance of the models depends on the

rock type used to develop the model, and the fracture

characteristic that the model predicts (Fig. 4). Fig-

ure 4 shows the R2 scores for the models that predict

each fracture characteristic, including the total frac-

ture volume, individual fracture volume, fracture

aperture, fracture length, shape anisotropy, distance

between fractures in a subvolume, and fracture

orientation. The models perform better when they

use data from the igneous rocks than the marble

(Fig. 4). The higher number of samples used in the

igneous rock models (1551) compared to the marble

models (730) may contribute to the higher R2 scores

of these models (Fig. S3). Alternatively, the fracture

characteristics may be more predictable and system-

atic in the igneous rocks than the marble. To test this

idea, we develop models with the same number of

samples for both rock type models (Fig. S4). When

the igneous and marble models have the same

number of samples, the igneous models continue to

perform better than the marble models (Fig. S4).

Thus, the fracture characteristics appear more pre-

dictable in the igneous rocks than the marble. When

we split the training and testing data using a time

continuous method, rather than the time random

method, this observation remains unchanged; the

models perform better when they are developed with

the igneous rock data than the marble data (Fig. S2).

The success of the models also depends on the

fracture characteristic that the model predicts. For all

of the characteristics that we predict except the total

Figure 4
Success of predicting each fracture network characteristic in all of

the examined rock types (dark blue), only the igneous rocks (light

blue) and only the marble rocks (orange), shown with the R2 score.

We train and test models ten times using different divisions of

training and testing data in order to account for random variations.

We report the mean � one standard deviation of the R2 scores of

the ten models with different training and testing data sets. Thus,

the orange symbol above the total volume label on the horizontal

axis shows the mean � one standard deviation of the scores for the

models that predict the total volume of fractures in a subvolume
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volume, we predict the median value of that charac-

teristic within a subvolume of the rock core. In

particular, we measure the lengths of all the fractures

within a subvolume. Then we provide as features to

the model the minimum, 25th percentile, 50th

percentile, 75th percentile and maximum value of

all of these lengths within that particular subvolume.

When we predict the length, we predict only the 50th

percentile (median) length, and exclude all of the

features that include information about the length

(i.e., minimum and maximum length, etc.). Thus, the

models predict one representative value of each

characteristic. When we predict either orientation

measure, h1 or h3, we exclude all of the features with
information about the orientation as these features are

closely related to each other. When we predict the

individual fracture volume or total number of frac-

tures in a subvolume, we exclude all of the features

with information about the fracture volume. The

number of features provided to the models can

influence the model success: we expect lower R2 with

lower numbers of features. However, the models

shown in Fig. 4 all have approximately the same

number of features as we calculate the same set of

statistics for each fracture characteristic.

The characteristics that are the most predictable,

with R2[ 0.8 for the igneous rocks and all rock types

models, include the total volume of fractures in a

subvolume, volume of individual fractures, fracture

aperture, fracture length, fracture anisotropy, and

distance between fractures. The characteristics that

are the least predictable, with the lowest R2, are the

orientations of the minimum eigenvector, h1, and

maximum eigenvector, h3. The scores for the marble

models that predict h1 are below 0.5, and thus not

visible on Fig. 4. This observed lower range of the

scores of models that predict the orientation remains

unchanged when we alter the method of splitting the

training and testing datasets (Fig. S2). The lower

range of the R2 scores for models that predict the

orientations suggest that the other fracture character-

istics behave more systematically and predictably

than the orientations. Although the R2 scores are

lower for the models that predict the orientations, the

models that predict the other characteristics could use

the orientations to make their predictions. In the next

section, we examine this question by comparing the

importance of features in each model.

4.2. Key Characteristics of Features Required

to Predict Fracture Characteristics

To compare the importance of each feature, and

thereby examine the degree to which the models rely

on the fracture orientations to make successful

predictions, we compare the mean |SHAP| value, s,

of each feature (Fig. 5). We report the mean |SHAP|

value across all the samples rather than for each

sample (Fig. 5a–c). Because we develop ten different

models that only differ in how their training and

testing data are split, we simplify the comparison by

calculating the normalized importance as s=maxðsÞ,
where s is the mean s from the ten models, and thus

the mean of the ten mean |SHAP| values (Fig. 5d–f).

The similarity of the distribution of s across the ten

models indicates that finding the features with the

highest normalized importance will yield the same

results as examining the s values. To further aid the

identification of the features that most strongly

influence the model predictions across all three rock

types, we calculate a cumulative feature importance

across all three rock type models as
P

R2ðs=maxðsÞÞ,
where R2 is the mean R2 score of the ten different

models of each rock type (Fig. 6). We weight the

normalized s by R2 so that more accurate models,

with higher R2, have a greater impact on the results

than less accurate models. We then identify the top

three features with the highest cumulative normalized

importance as the features that have the strongest

influence on the predictions of a particular fracture

network characteristic (Fig. 6).

The fracture characteristics identified as the most

important in predicting each fracture characteristic

are consistent with some of our previous knowledge

and intuition about the dependence of each charac-

teristic on others, following linear elastic fracture

mechanics (i.e., Fig. 2). The total volume of fractures

in a subvolume and the volume of individual

fractures both depend on the aperture and length,

but the total volume of fractures also depends on the

distance between fractures (Fig. 6a, b). Thus, the

spatial localization of the fracture network is also

critical to predict the overall fracture density.
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Similarly, predicting the distance between fractures

in a subvolume depends primarily on the total volume

of fractures in a subvolume (Fig. 6f), as well as the

individual fracture volume and aperture. Predicting

the aperture and length both depend on the aniso-

tropy, but the aperture depends on the fracture

volume as well (Fig. 6c, d). Similarly, the anisotropy

depends on the length and aperture, as expected from

the fixed relationship between them as a ¼ 1� A=L,

where a is the anisotropy, A is the aperture, and L is

the length. However, note that because the models

predict the median value of each fracture

characteristic, the relationship between the features

is not the equation listed above. Predicting the

orientations depend on the length and anisotropy,

but predicting the orientation of minimum eigenvec-

tor, h1, also depends on the aperture (Fig. 6g, h).

None of the top three identified most important

features for each of the eight predictions of the

fracture network characteristics include the fracture

orientation (Table 1, Fig. 6). Similarly, removing the

fracture orientations from the features provided to the

models does not reduce the R2 scores of the models

(Fig. S5). These results suggest that the fracture

Figure 5
Example distribution of mean |SHAP| values, s, for models designed to predict the fracture volume for all rock types (a, d), igneous rocks (b,

e) and marble (c, f). The first column (a–c) shows the results for each individual model and the corresponding R2 score. The second column

(d–f) shows the results as the normalized mean of each |SHAP| value returned for each feature, s=maxðsÞ, and the top three features with the

highest importance (triangles and text). The similarity of the distributions of s justifies reporting the mean s of each feature and normalizing

this distribution. The features listed in the top left corner of (d–f) are the top three identified from the s=maxðsÞ distribution. Table S1 lists all

of the features
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orientation is the least systematic of the characteris-

tics, and thus the least reliable in predicting each of

the characteristics.

Examination of the statistics used to calculate

each feature suggests that analyzing the complete

fracture network may produce the most accurate

predictions, rather than the extreme members of the

population (Fig. 6). The most important characteris-

tics used to make each prediction generally do not

depend on only the extreme values of the population,

such as the maximum or minimum, but require the

intermediate percentile statistics. This trend applies to

five of the predicted characteristics, including the

individual fracture volume, aperture, length, aniso-

tropy, and h3. However, the three remaining predicted

characteristics (the total fracture volume, distance

between fractures, and h1) primarily depend on the

extreme values. The high R2 scores of the models that

predict the total fracture volume and distance

between fractures indicate that we may only need to

classify the extreme values of the fracture network

characteristics in order to make successful predictions

of these characteristics.

4.3. Predicting Fracture Characteristics

with Limited Data

To further test the idea that the fracture orienta-

tion is one of the least predictable and systematic

Figure 6
Cumulative importance of features for each predicted fracture characteristic: a total volume of fractures in a subvolume, b individual fracture

volume, c fracture aperture, d fracture length, e fracture shape anisotropy, f) distance between fractures in a subvolume, and orientations of the

minimum eigenvector, h1 (g), and maximum eigenvector, h3 (h). Cumulative feature importance is shown as
P

R2ðs=maxðsÞÞ, where R2 is the

mean R2 score of the ten different models of each rock type. We weight the normalized s such that more accurate models, with higher R2, have

a greater impact on the results than less accurate models. The top three most important features are listed in the top left corner of each plot

Table 1

Fracture characteristics of the most important features identified in

models. None of the most important features rely on the orientation

of the fractures

Prediction Important characteristics

total Volume Aperture, length, distance

Volume Aperture, length

Aperture Volume, anisotropy

Length Anisotropy

Anisotropy Length, aperture

Distance Volume, aperture

h1 Length, aperture, anisotropy

h3 Length, anisotropy
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characteristics of fractures, we develop models that

use fewer and fewer features (Fig. 7). In particular,

we remove the fracture characteristics from the

features provided to the models that we identify as

the top three most important fracture characteristics

(Table 1, Fig. 6). When the models have less

information about the fracture network, they may

begin to use the orientation for their predictions.

As expected, the R2 scores decline after removing

the most important features for several of the fracture

characteristics. These declines are most rapid when

predicting the total volume, individual volume,

aperture, anisotropy and h1 (Fig. 7). This result

suggests that the other characteristics, the distance

between fractures and h3, can successfully use the

remaining fracture characteristics to make predictions

with similar success as the original models that have

access to all of the features. Excluding the most

important features reduces the R2 scores of the

marble models by larger magnitudes than the models

developed with the other rock types for all but one

prediction (h1) (Fig. 8). The R2 scores generally

decrease by 0.15–0.50 for the marble models, 0–0.35

for the igneous models, and 0–0.30 for the models

that include all of the rock types (Figs. 7, 8).

Removing the most important features for each

predicted characteristic causes the fracture orienta-

tion to become one of the most important features for

all of the predictions (Fig. 9, Table 2). However, only

removing one of the three identified most important

fracture characteristics does not promote the orienta-

tion to the class of highly important features for the

majority of the predicted characteristics (Fig. S6).

Only after removing all top three characteristics do

Figure 7
Success of predicting fracture network characteristics upon removal of the most important features (i.e., Table 1, Fig. 5). The horizontal axis

lists the features that were removed before developing each model that predicts the total volume, v, (a), individual fracture volume, v, (b),

aperture, A, (c), length, L, (d), anisotropy, a, (e), distance between fractures, d, (f), h1 (g), and h3 (h). For example, the scores listed in the

position marked v, A, L, d in (a) show the scores for models developed to predict the total volume without using features that include

information about the volume, v, aperture, A, length, L, and distance, d
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all of the models use the orientation to predict the

examined fracture characteristic. This result suggests

that the fracture orientation is systematic enough to

provide reasonable predictions about the other frac-

ture characteristics. However, the R2 scores of the

models that rely on the orientation are generally at

least 0.1 lower than the models that use all of the

characteristics (Fig. 8). For example, models that

predict the aperture for all the rock types and use all

of the characteristics as features have a mean R2

score of 0.95, and depend primarily on the anisotropy

and volume (Fig. 9c). This type of model, but

developed without the anisotropy and volume, pro-

duce a mean R2 score of 0.71, and depends primarily

on the length and h1. Furthermore, the models in

which the top three features only include information

about h1 and h3 (predicting the anisotropy, Fig. 9e)

have the lowest R2 scores (0.61, 0.65, 0.36 for all of

the rock types, igneous rocks, and marble, respec-

tively) of the models that exclude the identified most

important characteristics.

5. Discussion

This analysis assesses the accuracy of preexisting

conceptualizations of fracture network development,

derived from linear elastic fracture mechanics and

laboratory observations (Fig. 2). The varying success

with which the machine learning models predict the

selected fracture network characteristics, and the

features they use to make these predictions, help

constrain the processes of fracture network develop-

ment that occur during triaxial compression

deformation under the conditions of the upper crust.

Consistent with the idea that increasing differential

stress increases the total volume of fractures and

decreases the distance between fractures (Fig. 2a),

the models that predict the total fracture volume

depend on the distance between fractures, and the

models that predict the distance depend on the total

fracture volume (Fig. 6). Consistent with the idea that

fracture propagation and coalescence should increase

the fracture length and anisotropy (Fig. 2b), the

models that predict the fracture length depend on the

anisotropy, and the models that predict the anisotropy

depend on the length (Fig. 6). Consistent with the

idea that increasing differential stress should increase

the length of fractures and change the fracture ori-

entation (Fig. 2c), the models that predict the fracture

orientation depend on the length (Fig. 6).

Thus, the evolution of these fracture characteris-

tics matches our expectations. However, we note that

previous laboratory experiments that analyzed these

evolutions did not typically have access to the four

dimensional observations of fracture network char-

acteristics. The few other experiments that used

X-ray tomography to make such observations (e.g.,

Cartwright-Taylor et al., 2020) did not apply machine

learning to quantify the applicability of previous

conceptualizations of fracture network development.

Thus, this work is the first, to our knowledge, to

quantify the correctness of these fundamental ideas

about fracture network development.

In this discussion section, we examine why the

fracture network characteristics are more unpre-

dictable in the marble rocks than the igneous rocks.

Then, we discuss the observed relationship between

fracture length and orientation, and the associated

lower predictability of the orientation compare to the

other characteristics. Finally, we link these results to

observed precursors to some earthquakes. We note

that we did not explicitly test the ability of the frac-

ture characteristics to predict the timing of

catastrophic failure in the present analysis. However,

we suggest that the predictability of the

Figure 8
Difference in the mean R2 score for models that include all of the

features, Ra, and models that exclude all of the most important

features, Re, as DR2 ¼ Re � Ra for models developed with the three

groups of rock types. The decrease in R2 is the largest for the

marble models for all but one fracture characteristic, h1
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characteristics may help crustal monitoring efforts

that aim to forecast the timing of large earthquakes.

For example, machine learning analyses suggest that

the fracture shape anisotropy is a key characteristic

for predicting the timing of macroscopic failure in

triaxial compression experiments. However, it is

difficult to measure this property in the field. If we

can derive equations or relationships between the

measurable fault characteristics (such as length) and

the characteristics that are useful for predicting the

timing of failure (such as anisotropy), then we may

improve efforts to forecast the timing of large

earthquakes. This approach may also prove fruitful

Figure 9
Cumulative importance of features for each predicted fracture characteristic: a total volume of fractures in a subvolume, b individual fracture

volume, c fracture aperture, d fracture length, e fracture shape anisotropy, and f distance between fractures in a subvolume. Cumulative

feature importance is shown as
P

R2ðs=maxðsÞÞ, where R2 is the mean R2 score of the 10 different models of each rock type and s is the mean

|SHAP| value of a given feature. We weight the normalized feature importance s such that more accurate models, with higher R2, have a

greater impact on the results than less accurate models. Left columns show the results for models developed using all of the features (except

the one being predicted). Right columns show the results for models developed using a subset of the features that excludes the identified most

important features (listed in the left column)

Table 2

Most important characteristics identified in models with the listed

features excluded

Prediction Excluded features Important

characteristics

Total volume Aperture, length, distance h1, h3, anisotropy
Volume Aperture, length h1, anisotropy
Aperture Volume, anisotropy h1, length
Length Anisotropy, aperture h3, volume11

Anisotropy Length, aperture h1, h3
Distance Volume, aperture h3, length
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for processes that have the most documented, sys-

tematic precursors, such as volcanic eruptions and

avalanches.

5.1. Erratic Nature of Fracture Development

in Marble

Comparing the R2 scores of the models developed

using data from the experiments performed on

igneous rocks and those performed on marble suggest

that fracture development in marble is less pre-

dictable (with lower R2 scores) than in igneous rocks

(Fig. 4). Identifying the fracture characteristics that

produce the largest discrepancy in the R2 scores

between the rock types highlights the aspects of

fracture network development that are the least

predictable, and thus least systematic. The mean R2

scores of the marble and igneous rock models are

similar when the models predict the total volume of

fractures in a subvolume, the individual fracture

volume and fracture aperture. In contrast, the mean

R2 scores differ by more than 0.1 when the models

predict the fracture length, anisotropy, distance

between fractures, and orientation. Thus, these char-

acteristics are less systematic and thus less

predictable in marble than in the igneous rocks.

By examining the correlation between sets of

fracture characteristics in the marble and igneous

rock experiments, we may gain further insight into

the difference between fracture network development

in these rock types, and their varying degrees of

predictability. As mentioned above, the R2 scores are

similar in the marble and igneous rock models when

they predict the total volume of fractures (Fig. 4).

The top three most important features that determine

this model prediction are the maximum aperture,

maximum length and maximum distance. Because

the two rock type models perform similarly when

they predict the total volume, we expect that the three

most important features are correlated to the total

volume with similar strengths in both rock types. To

quantify potential correlations between the fracture

characteristics, we calculate the linear correlation

coefficient between these features and predictions.

Because the XGBoost machine learning model can

develop non-linear relationships between features and

predictions, the linear correlation coefficient may not

fully represent the strength of the function between

the feature and prediction in the model. However, the

linear correlation coefficients provide rough approx-

imations of the relationships between these fracture

characteristics, and are thus useful to examine.

As expected, calculating the linear correlation

coefficient between each set of features for both rock

types (Fig. 10a, b) indicates that both the marble and

igneous rocks have strong correlations between the

total volume and maximum aperture (0.73, 0.82), and

moderate correlations between the total volume and

maximum length (0.60, 0.61). The two rock types

differ in their strength of correlation of the total

volume and maximum distance; the marble experi-

ments have a correlation coefficient of 0.63, while the

igneous rock experiments have a correlation coeffi-

cient of 0.20. Although the third most important

feature (maximum distance) has a wider range of

correlations between the rock types, the similarity of

the R2 scores of the different rock type models

indicates that the strong correlations of the top two

features outweigh the influence of the lower correla-

tion strength of the third most important feature.

As a corollary to the idea that the correlation

coefficients help describe the differences in the model

performance of the different rock types, we expect

that models with lower R2 scores should have lower

correlations between the predicted fracture charac-

teristic and the most important features. When the

models predict the fracture length, the marble models

have R2 scores at least 0.10 lower than the igneous

rock models (Fig. 4). Thus, we expect stronger

correlations between the fracture length and the top

three important features in the igneous rocks than the

marble. Indeed, the correlation coefficients between

the length and the three percentile statistics of the

anisotropy range from 0.58 to 0.63 in the igneous

experiments and 0.49–0.57 in the marble experiments

(Fig. 10c, d). Although the ranges of these coeffi-

cients differ by only 0.01, the R2 scores of the models

vary significantly, highlighting that even apparently

small differences in the systematic nature of the

fracture characteristics produce large changes in the

predictability of these characteristics.

The observed difference in the predictability of

fracture network development in the marble and

igneous rocks likely arises from the varying
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microstructures that control fracture nucleation,

propagation, and arrest in both rocks. Marble is

composed of cemented and metamorphosed calcite

grains that contain weak cleavage planes, whereas

monzonite and granite are composed of stronger and

interconnected feldspar and granite minerals.

Figure 10
Relationship between fracture characteristics that the models predict (horizontal axes) and the top three most important features identified for

that model (vertical axes). The values at the top of each plot are the linear correlation coefficient, c, and the p-value, p, of the two fracture

characteristics shown in the plot. Coefficients with p\ 0.05 are considered significant. We present the data from the marble (a, c) and igneous

rocks (b, d) separately to better understand the varying predictability of the total volume (a, b) and fracture length (c, d) in these rock types.

The color of the symbols indicates the distance to failure, ðrF � rDÞ=rF, where rF is the differential stress at macroscopic failure, and rD is

the differential stress when the tomogram was acquired. Zero is at macroscopic failure. The marble and igneous rock models have similar R2

scores when they predict the total volume, but different R2 scores when they predict the fracture length. The differences in c between the

marble data and igneous rock data for each pair of characteristics agree with these differences. In particular, the correlations between the total

volume and the top three highly important features are similar in the igneous rocks and marble data, but differ between the fracture length and

top three highly important features
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Uniaxial compression experiments support the idea

that cleavage planes and grain boundaries have a

strong influence on fracture development in marble

(e.g., Fredrich et al., 1989; Kandula et al., 2019; Tal

et al., 2016). Fredrich et al. (1989) observed that

fractures often nucleate at sites of local stress

perturbations, such as twin boundaries, twin termi-

nations and the intersection of twin lamellae. Tal

et al. (2016) observed that fractures first develop near

grain boundaries in marble. With increasing differ-

ential stress, these fractures grow along grain

boundaries and then transect the boundaries near

peak stress. Calculation of the local strain during

fracture development suggests that the fractures that

form within grains could exploit the cleavage plans as

mechanical twins (Tal et al., 2016). Although mineral

boundaries can influence fracture propagation in

crystalline rock (e.g., Moore & Lockner, 1995;

Tapponnier & Brace, 1976), the mechanical hetero-

geneities in sedimentary and metamorphosed

sedimentary rock, including weak cleavage planes

within calcite (e.g., Fredrich & Wong, 1986;

Howarth, 1987; Tal et al., 2016), appear to exert a

stronger influence on fracture propagation and arrest

than the heterogeneities in crystalline rock. Thus,

fracture propagation in the igneous rocks may more

closely align with the idealized expectations of

fracture growth during brittle deformation outlined

in Fig. 2. In contrast, in marble the rock microstruc-

ture may prevent the idealized growth that would lead

to a systematic relationship between fracture charac-

teristics, such as fracture length and anisotropy, for

example.

The degree of fracture localization may also

contribute to the greater predictability of the fracture

network characteristics within the igneous rocks than

the marble rocks. At the confining stress

(20–25 MPa) and ambient (room) temperature con-

ditions of these experiments, ductile processes may

accommodate a non-negligible portion of the defor-

mation in the marble rocks (e.g., Griggs, 1960;

Turner et al., 1954; Walton et al., 2015). In contrast,

under these conditions, brittle processes dominate

deformation in the igneous rocks (e.g., Tullis &

Yund, 1977). Thus, ductile processes may prevent the

localization of the fracture network to a greater extent

in the marble rocks than the igneous rocks. Previous

work indicates that the localization of deformation is

a key characteristic of approaching system-scale

failure (e.g., Ben-Zion & Zaliapin, 2020; Kato &

Ben-Zion, 2021; Lockner et al., 1991; Renard et al.,

2019; Stanchits et al., 2006) that we may use to

accurately predict the timing of failure (McBeck

et al., 2020). Thus, fracture networks that localize

toward failure may be more predictable than fracture

networks that remain more distributed. The greater

predictability of the fracture networks in the igneous

rocks relative to the marble rocks may arise from the

dominance of brittle deformation that tends to

localize the fracture network in the igneous rocks.

These results thus suggest that fault network devel-

opment in crust dominated by igneous rocks may be

more predictable that fault network development in

crust dominated by marble.

5.2. Fracture Orientation as an Unreliable Predictor

Consistent with the idea that increasing differen-

tial stress should increase the length of fractures and

change the fracture orientation (Fig. 2c), the models

that predict the fracture orientation depend on the

length (Fig. 6). However, the models that predict the

fracture length do not depend on the orientation

(Fig. 6). Moreover, the models that predict the

fracture orientation are the least accurate of the

models, with the lowest R2 (Figs. 4, S1), and

removing the orientation from the available features

does not reduce the R2 scores (Fig. S5). In addition,

the top three highly important fracture characteristics

used to predict each fracture characteristic do not rely

on information about the orientation (Fig. 6, Table 1).

We must remove these top three characteristics from

the data used to develop the models in order for the

models to depend on the orientation (Fig. 9). Impor-

tantly, these models perform worse than the models

that do not depend on orientation, with at least 0.1

lower R2 scores (Figs. 7, 8).

The observed unpredictable nature of fracture

orientation suggests that the idealized view about the

transition from mode I failure to mode II/III failure

requires reexamination (Fig. 2). In this conceptual-

ization, under lower differential stress fractures first

open perpendicular to the maximum compression

direction, r1, in mode I failure. Then with increasing
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differential stress, as the fractures coalesce and grow

longer, wing cracks and other linking fractures may

propagate between the older fractures, producing an

overall fracture network that trends oblique to r1.

Qualitatively, we observe fracture network devel-

opment in X-ray synchrotron experiments that agree

with this conceptualization (e.g., Cartwright-Taylor

et al., 2020; Renard et al., 2018, 2019). For example,

in one of the granite experiments analyzed here,

visual inspection suggests that the fracture network

trends obliquely to r1 in the scans preceding macro-

scopic failure (Fig. 1). Moreover, tracking the

orientation of all the fractures identified in a tomo-

gram at a given differential stress indicates that the

mean orientation of these fractures evolves from

parallel to more oblique to r1 with increasing

differential stress (Renard et al., 2018, 2019). How-

ever, the mean fracture orientation is not a complete

representation of the distribution of fracture orienta-

tions present at a particular stress step. Rather than

the simplistic idea that the majority of the fractures

gain an oblique orientation with increasing differen-

tial stress, a more precise description of the fracture

network may be that while many fractures gain an

oblique orientation, some also continue to trend

parallel to r1, and thus maintain their original

orientation.

We may test the idea that fractures evolve to

different orientations with increasing differential

stress with our experimental data. If fractures develop

with the idealized conceptualization described above,

we expect that the length of fractures should correlate

with the orientation. Smaller fractures should tend to

trend parallel to r1 while longer fractures have more

oblique orientations. By calculating the linear corre-

lation coefficient between the fracture length and

orientation, we may quantify the degree to which the

observations match these expectations. (Fig. 11).

These coefficients indicate a weak or non-existent

relationship between the orientation and the fracture

length. This result holds for the orientation of the

smallest dimension of the fracture relative to the

maximum compression direction, h1 (Fig. 11), and

the longest dimension, h3 (Fig. S7). Thus, longer

fractures do not tend to have systematically different

orientations from shorter ones.

The difference between the observed and the

expected relationship of length and orientation may

arise from the influence of local stress perturbations

on fracture growth, and the resulting misapplication

of the Coulomb criterion to heterogeneous rocks at

the local scale. The Coulomb criterion, and corre-

sponding relationship between fault orientation,

principal stress directions, and friction coefficient,

was originally developed to describe the orientation

of faults within granular aggregates that behave

plastically (Coulomb, 1776). Unsurprisingly, the

predictions of this criterion for faults within granular

aggregates, and material with similar rheology,

closely match observations (e.g., Dahlen,

1984, 1990; Dahlen et al., 1984; Davis et al., 1983;

Huiqi et al., 1992; Lallemand et al., 1994; McBeck

et al., 2017; Mulugeta, 1988; Vermeer, 1990).

However, abundant experimental observations such

as decreasing seismic wave velocities and macro-

scopic radial dilation indicate that increasing

differential stress can open fractures. Fracture open-

ing changes the stress state around the fracture

(Inglis, 1913) and reduces or eliminates the relevance

of the coefficient of friction used in the Coulomb

criterion (Peng & Johnson, 1972). The influence of

opening may also explain the observed curvature of

the shear stress and normal stress relationship at less

compressive/more tensional stresses, and linearity of

this relationship at more compressive stresses. Thus,

the physical justification of applying the Coulomb

criterion to brittle materials with many similarly-

sized fractures, rather than one system-size fault, may

be unfounded (e.g., Peng & Johnson, 1972). This

apparent lack of physical justification agrees with our

experimental observations: we only observe a weak

or non-existent correlation between fracture length

and orientation (Figs. 11, S7), and the fracture

orientation is the least predictable of the fracture

characteristics (Fig. 4).

Examining the geometry of the fracture network

in the final tomogram captured immediately preced-

ing macroscopic failure provides further insight into

the lack of clear relationship between fracture length

and orientation (Fig. 12). In experiments on granite

and marble, we observe that the complete fracture

network appears to trend at the expected oblique

orientation to r1 (middle in Fig. 12). However, when

292 J. McBeck et al. Pure Appl. Geophys.



we examine the individual and largest fractures with

volumes[ 5000 voxels (right in Fig. 12), we observe

that few of the largest fractures trend at the expected

orientation. For example, although the dark blue

fracture that dominates the marble core hosts this

orientation (Fig. 12b), it is surrounded by many other

large fractures that do not trend at 30� from r1.

Moreover, examination of the 2D slice of the

tomogram (left in Fig. 12) indicates that the fracture

network that appears to have an overall orientation

near 30� from r1 is dominated by many smaller

fractures that are oriented near parallel to r1. This

observation agrees with previous experimental results

(e.g., Peng & Johnson, 1972).

These experimental observations suggest that the

behavior shown in Fig. 13 is closer to reality than the

idealized view of fracture development outlined in

Fig. 2. Under lower differential stress, mode I

fractures may first develop parallel to r1, as expected

from the lower tensile strength than shear strength of

brittle rocks (e.g., Tapponnier & Brace, 1976). With

increasing differential stress, these preexisting frac-

tures propagate, some coalesce, and new fractures

may nucleate. New fracture nucleation and preexist-

ing propagation increase the total fracture volume

and decrease the distance between fractures. Propa-

gation and coalescence increase the fracture length

and anisotropy while perhaps decreasing the aperture.

New fractures may nucleate at an oblique orientation

to r1 when the system is under higher differential

stress and the local stress perturbations favor this

formation. However, local stress perturbations may

cause the local orientation of r1 to deviate from the

macroscopic orientation. When the fractures are

small enough, these local perturbations may exert a

significant impact on the direction of their growth.

Thus, depending on the initial configuration of the

fractures, the preexisting fractures that formed in

tension parallel to r1 may maintain a similar

orientation (fractures on the left in Fig. 13) or may

form a fracture network that has a more oblique

orientation to r1 (fractures on the right). In other

Figure 11
Relationship between the fracture orientation, h1, and representative statistics of the fracture length for the a marble and b igneous rocks. The

values at the top of each plot are the linear correlation coefficient, c, and the p-value, p, of the two fracture characteristics shown in the plot.

Coefficients with p\ 0.05 are considered significant. The color of the symbols indicates the distance to failure, ðrF � rDÞ=rF, where rF is

the differential stress at macroscopic failure, and rD is the differential stress when the tomogram was acquired. Zero is at macroscopic failure.

There is no clear trend between the applied differential stress (i.e., distance to failure), and the fracture orientation. The low c between the

orientation and length indicate that longer fractures are not more likely to attain the expected orientation oblique to r1. Rather, long and short

fractures have a wide range of orientations. Figure S7 shows the relationship between these fracture length statistics and the orientation

relative to the maximum dimension of the fracture, h3
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words, fractures may coalesce with a geometry that

maintains their original orientation if they happen to

form with only a small offset from each other. In

contrast, fractures may coalesce with a geometry that

produces a connected fracture network that trends

oblique to r1 if they have a larger offset from each

other. The influence of local stress perturbations

likely contributes to the nonsystematic relationship

between fracture orientation and length observed in

our data. This conceptualization agrees with exper-

imental observations (e.g., Fig. 12) that indicate that

aligned arrays of mode I fractures that trend parallel

to r1 comprise the larger fracture networks that may

appear to trend oblique to r1 (e.g., Horii & Nemat-

Nasser, 1985; Nemat-Nasser & Horii, 1982; Peng &

Johnson, 1972). This idea also agrees with observa-

tions of acoustic emissions in laboratory experiments.

These analyses indicate a shift from tensile to shear-

dominated deformation with increasing differential

stress; however, both forms of deformation operate

throughout deformation (e.g., Graham et al., 2010).

Thus, the prevalence of both shear and tensile

deformation indicate that fractures may be aligned

with a range of orientations indicative of tensile to

shear dominated deformation, such as parallel to the

maximum compression direction, to oblique to it.

5.3. Fracture Volume as a Reliable Predictor

While the fracture orientation is the least pre-

dictable fracture network characteristic, the fracture

volume is one of the most predictable in our

experiments (Fig. 4). This result agrees with previous

machine learning analyses on the suite of experi-

ments analyzed here (McBeck et al., 2019, 2020). In

these analyses, the fracture volume is one of the most

important characteristics that determines whether a

fracture propagates (McBeck et al., 2019), and that

successfully predicts the timing of catastrophic

failure (McBeck et al., 2020). The importance of

the fracture volume in these three different predic-

tions agrees with the dilatancy diffusion hypothesis.

This idea builds from observations of changes in

hydrologic activity preceding some earthquakes (Nur,

1974). It proposes that as fractures propagate, open

and coalesce, the evolving fracture networks change

hydrologic activity, as well as the P- and S-wave

seismic velocities and effective moduli. Dilation of

the rock, through fracture network development, thus

produces the observed geophysical activity. Such

accelerations in geophysical activity have been

observed prior to some earthquakes, but certainly

not all earthquakes (e.g., Amoruso & Crescentini,

2010). The growing fractures, and increasing volume

of fractures increases the background damage that

Figure 12
Fracture network development in the final tomograms acquired

immediately preceding macroscopic failure in the granite #4

(a) and marble #2 (b) experiment. The columns show the 2D slice

of the tomogram (left), the complete fracture network (middle), and

the fractures with volumes[ 5000 voxels (right). Each of the large

fractures are colored differently from each other in order to

highlight their varying orientations

Figure 13
Conceptualization of fracture network development revealed by

machine learning models. The fracture orientations under higher

differential stress may not match the expected Coulomb criterion

due to the initial configuration of the fractures, and resulting local

stress perturbations
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weakens the rock volume and makes it more suscep-

tible for a large failure event (Kurzon et al., 2019;

Lyakhovsky et al., 2001). Such a process of increas-

ing background damage before large failure events

has also been observed before several M[ 7 earth-

quakes in southern and Baja California (Ben-Zion &

Zaliapin, 2019, 2020). Such an increase in fracture

volume may also enhance the hydrologic and related

geophysical activity, as reported before some large

earthquakes (e.g., Nur, 1974). In particular, the

opening and lengthening of fractures, and fracture

coalescence, increases the porosity, reduces the

effective moduli, and can alter hydrologic activity

in the volume of crust surrounding the main fault

preceding catastrophic failure. Thus, fracture network

development that produces dilation can trigger geo-

physical precursors. The results of the present study

indicate that the fracture network characteristics that

produce the dilation of the rock are among the best

predicted characteristics. This result thus provides

additional evidence that geophysical precursors

linked to dilation may be useful for predicting the

timing of catastrophic failure.

However, the success of using the dilation of the

crust to predict the timing of failure depends on the

repeatability of such signals. In the best case

scenario, such dilation would occur in the same

location along a fault, and with a magnitude required

to exceed some noise threshold. Given the heteroge-

neous nature of earthquake nucleation, and limited

resources for instrumenting active seismic fault

zones, using evolving fracture characteristics to

predict the timing of failure may not yet improve

our ability to predict earthquakes significantly beyond

existing methods. Future work should focus on

identifying the locations surrounding an active fault

that are most likely to predict the strongest signals of

precursory deformation. Identifying these locations

may help the ability of this approach to improve

crustal monitoring efforts.

6. Conclusions

We use X-ray tomography data and machine

learning to test several conceptualizations of fracture

network development in crystalline rock under

triaxial compression at the laboratory scale. We

develop the models to predict fracture network

characteristics using other characteristics, without

knowledge of the macroscopic stress or strain

imposed on the rock. We find that the models perform

worse when they predict the fracture characteristics

in the marble experiments, rather than the experi-

ments on granite and monzonite. The varying

mechanisms of fracture nucleation, growth and arrest

in marble and igneous rocks may produce this dif-

ference in the predictability of fracture network

development. Although the grain boundaries in

granite and monzonite can influence fracture devel-

opment, the grain boundaries and weak cleavage

planes within calcite in the marble appear to exert a

stronger influence on fracture development than the

grain boundaries in the igneous rocks. This stronger

mechanical heterogeneity may cause fracture devel-

opment to deviate from the idealized

conceptualizations of fracture growth (i.e., Fig. 2)

more in the marble rocks than the igneous rocks. The

varying dominance of brittle and ductile deformation

mechanisms in the marble and igneous rocks and the

corresponding influence on the degree of fracture

localization may also contribute to the greater pre-

dictability of the fracture networks in igneous rocks

than the marble rocks. These results indicate that fault

network development in rocks dominated by igneous

rocks may be more predictable than that development

in rocks dominated by marble.

We find that the fracture volume, length and

aperture are the most predictable of the examined

characteristics. This result supports the idea that the

geophysical signals indicative of dilation are critical

for accurate predictions of the timing of catastrophic

failure, such as earthquakes, avalanches, and volcanic

eruptions. The least predictable examined fracture

characteristic is the fracture orientation relative to the

maximum compression direction. The fracture char-

acteristics that are identified as the most important in

predicting each characteristic do not include the ori-

entation. Moreover, when we remove the orientation

from the available features, the performance of the

models does not decline. Some of the models depend

on the orientation only after we exclude the top three

most important characteristics used to make each

prediction from the available features. However,
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these models perform significantly worse than the

models that do not depend on the orientation. Thus, in

contrast to the idea that fractures transition from

mode I to mode II/III, the orientation of a fracture is

not a predictor of its length. Instead, there appears to

be no strong or moderate correlation between fracture

length and orientation in these experiments. The

influence of local stress perturbations and resulting

deviation from the fracture orientation expected from

the Coulomb criterion may explain this difference in

the observed and expected relationship between

length and orientation.
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