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Abstract—In this study, we present a new 2D numerical model,

UBO-Inter, able to simulate the motion of a body sliding down a

generic surface. Such a body is represented as a mechanical system

of a finite number of point masses, where the points can be viewed

as the projections on the sliding surface of the centers of mass of

the elements which the system is discretized into. The masses are

strictly adherent to the surface and interact with the neighbor

masses through internal forces. The entire system can be seen as a

2D irregular grid where the masses occupy the nodes of the grid,

and each grid side connects a pair of interacting masses. The

external forces acting on the masses are gravity, which is the

driving force, the reaction force of the sliding surface, the basal

friction and the drag exerted by the environmental fluid (typically

water, for a slide moving partially or totally underwater). The

system is governed by a set of differential equations that are solved

through a fourth-order Runge–Kutta scheme. After providing the

formulation of the problem and a simple example admitting an

exact solution that serves to illustrate the internal forces, we vali-

date the model on the 1783 Scilla (Calabria region, Italy) landslide,

that is a well-known catastrophic event that caused a lethal tsunami

killing more than 1500 people. This case has been already widely

studied and thus can be used as a benchmark for landslide models.

The outputs of the model UBO-Inter in terms of time-histories of

point-mass velocities, run-out and final deposit, are found to be in

agreement with observations and with results published in literature

and obtained through different numerical techniques.
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1. Introduction

Landslides are important natural phenomena that

reshape mountain and hill areas in subaerial and

subaqueous zones. These processes can occur in

several forms depending on numerous aspects such as

the environmental characteristics, the trigger mecha-

nism, the properties of the sliding material. Several

kinds of classifications have been proposed. The most

widely used is the one due to Varnes (1978), that,

basically, categorizes the slides according to the

material type (rock, debris, earth) and to the motion

characteristics. In this work, we will focus our

attention on rocks, without any constraints about the

kind of motion. Commonly, rocks motion is simu-

lated by means of block-based approaches where the

rock slides are portioned in a set of blocks that can

interact with each other according to various laws

(e.g. Hungr 1995; Grilli and Watts 1999; Tinti et al.

1999, 2006; Lucas et al. 2011; Efremidis et al. 2015;

Stamatopoulos and Di 2015).

In this paper, we introduce a new approach for

modeling the dynamics of sliding bodies. We

describe the motion of a mechanical system formed

by N[ 2 (with N 2 N) mutually interacting point

masses forming a 2D grid over analytical and real

surfaces. Material point masses have been used in the

description of a wide number of physical mecha-

nisms, including modeling of explosions (Hu and

Chen 2006) and landslides (Andersen and Andersen

2010; Liano-Serra et al. 2016). These applications

make use of extensions of the so-called Material

Point Method (Sulsky et al. 1994), employing a

mutual Lagrangian and Eulerian description in which

the landslide is divided into several discrete material

points at which specific physical properties are

evaluated. Particle conceptualization has been used

also in the so-called Particle Finite Element Method

where a combination of the standard finite element

analysis and the particle approach is adopted to solve

continuous problems like in fluid mechanics (Idel-

sohn et al. 2004) and, more recently, even in the

analysis of the landslides processes (see Wang et al.

2019 for a synthetic description of the method).1 Department of Physics and Astronomy, University of

Bologna, Bologna, Italy. E-mail: glauco.gallotti2@unibo.it
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The adoption we propose here to describe the

motion of rocks represents a novelty, since it merges

the traditional block approach with the material point

masses technique, resulting in an easy tool for the

general treatment of landslide processes. We make

use of the geometry of the points grid to evaluate the

internal forces acting on the system and we solve the

equations of motion consequentially. In this way, we

can estimate the inter-particles forces depending on

the structure of the grid. In the above-mentioned

particle techniques, this is not possible. The similarity

with the block approach relies on the connection

between the grid geometry and the general dynamics.

This is often used to evaluate the shape or volume of

the moving blocks (Tinti et al. 1997).

The main goals of this work are: (1) to introduce a

new approach in the description of sliding bodies; (2)

to prove that the basic principles of the particle-based

techniques and the block-based approach can be

synergistically applied resulting in a semi-rigid body

description; (3) to validate the model through the

simulation of the 1783 Scilla landslide, taken as a

benchmark case, since it has been already deeply

investigated in the literature.

The scheme of this paper is as follows. In the next

section, we introduce the basic assumptions and

governing equations. Section 3 serves to illustrate the

method through simple analytical examples. Sec-

tion 4 treats the landslide that occurred close to Scilla

on 6th February 1783 during the 1783–84 Calabria

seismic crisis. The landslide was triggered by an

earthquake and caused a catastrophic tsunami, killing

more than 1500 people. The discussion of the results

in Sect. 5 will close the paper.

2. Formulation of the Problem

We assume that a landslide can be represented as

a set of N point masses, whose total mass equals the

mass of the landslide body and that slide on a surface.

The point masses are the nodes of a grid and inter-

actions take place only between the pairs of masses

connected by grid sides, that are immaterial and are

introduced only to indicate the pairs of interacting

masses. Typically, each mass interacts only with

neighbours and this local form of interaction can be

accounted for by grids formed by triangles or

quadrilaterals. This, however, is not a limitation for

the model that can deal with any kind of grids. The

forces acting on the point masses are gravity, which is

the driving force, the reaction force exerted by the

sliding surface, the basal friction and the drag force

due to the action of the ambient fluid, the latter being

practically relevant only when the masses move

underwater. In addition, each mass interacts with the

neighbour masses through forces that can be seen as

internal forces for the N-mass system. As mentioned

before, these forces are assumed to act along the sides

of the grid. In a sense, each grid side is associated

with a pair of masses and to a corresponding pair of

mutual opposite forces, that is the forces exerted by

one mass of the pair on the other. We remark further

that in our model, the point masses move remaining

strictly adherent to the surface, i.e. they are allowed

to slide down the surface, but can neither leap nor

roll.

In this paper, we explore the dynamics of the N

point-masses mechanical system under the assump-

tion that the internal forces can be of two kinds, we

denote as rigid-body (RB) forces and elasto-plastic

(EP) forces, though the formulation is more general

and can cover also other interaction laws. As RB

forces we mean forces that act to keep the distance

between two interacting masses constant in time. The

reason for such denomination is that a rigid body

does not change shape while moving, which implies

that any two points of the body will remain at the

same distance at any time. However, we point out

that the systems dealt with by the model UBO-Inter

(where ‘‘UBO’’ stands for University of Bologna and

‘‘Inter’’ stands for Interaction) do deform while

sliding, since they adapt themselves to the geometry

of the sliding surface, and that this can occur even if

the masses interact only through forces of the RB

type. To better understand this issue, let us consider a

simple system formed by 4 point masses that lie on a

sliding surface and that are located at the vertices of a

quadrilateral. Let us further assume that interaction

takes place through RB forces only between pairs of

masses that lie on contiguous vertices, but not

between pairs at the ends of diagonals. As the effect

of the RB forces, the quadrilateral will conserve the

length of its four sides but could change shape since
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one of its diagonals might get shorter while the other

might become longer. In all the applications pre-

sented in this paper, we will consider systems of N

point masses that occupy the vertices of a grid formed

of quadrilaterals and we will assume that RB forces

are active along the sides of the quadrilaterals

whereas EP forces are active along the diagonals. As

we will see, the effect of the along-diagonal EP forces

is that of allowing the quadrilaterals to deform, but of

avoiding that they may degenerate to a single line.

We can refer to such systems as quasi-rigid bodies

and we believe that they provide a good representa-

tion of rockfalls dynamics.

Let us consider N[ 2 point masses that are set

over a surface R given by z ¼ f x; yð Þ. The mass

positions are given by the coordinates r~i, in a x; y; zð Þ
Cartesian reference system. We assume that the point

masses are virtually connected through a grid, form-

ing triangles or quadrilateral elements, and interact

with each other through forces acting along the sides

of the grid. Therefore, the masses occupy the nodes

of the grid, and the grid is immaterial. Nonetheless,

for convenience of illustration, we will refer to such a

system as an N-element grid-based body, or simply as

a body. The reason for this is that the N point masses

of our system can be viewed as the centers of mass

(CoMs) of N elements that altogether form a partition

of a continuous body. More precisely, since all points

lie on the surface R, then they can be seen as the

projection of the element CoMs on R. Consequently,
we assume that studying the dynamics of an N point-

mass system on R allows one to study the evolution

of the corresponding continuous body that moves on

that same surface. As mentioned in the previous

introductory section, we simplify the inter-element

interaction process by introducing RB and EP forces.

A sketch with the subdivision of a sliding body in

interacting elements, point masses, and grid sides is

shown in Fig. 1 for a generic body shape. Though our

approach is general, in this paper we consider virtual

immaterial grids formed by triangles or

quadrilaterals.

Let us start the formulation of the problem from

the equations of motion of the point mass i

(1� i�N), that can be expressed in the compact

form:

mi
€r~i ¼ F~i þ

X

j

h~ij þ
X

j

p~ij ð1Þ

where mi is the mass, €r~i is the acceleration and F~i is

the resultant of the external forces. The last two terms

represent respectively the contributions of the RB

forces that conserve the distance between pairs of

point masses i and j (h~ij) and of the EP forces that do

not conserve it (p~ij). The summations extend over the

subset of all point masses interacting with the point

mass i. Both internal types of forces, by assumption,

respect the reciprocity law, that is h~ij ¼ �h~ji and

p~ij ¼ �p~ji.

The external forces include gravity, which is the

driving force of the whole sliding process, the reac-

tion of the surface R, the surface friction, and, when

appropriate, the buoyancy force. They can be given

the form:

F~i ¼ mig~þ miN~i
€r~i � g~
� �

� n̂i ð2Þ

where n̂i represents the unit vector normal to R,
pointing upwards, and N~i ¼ n̂i � l

_r~i
_r~ij j is the normal

vector corrected for the effect of the basal friction (l
being the basal friction coefficient) acting against the

Figure 1
Planar view of a generic body. The thick solid line is the boundary

of the body formed by several irregular elements. The point masses

represent the CoMs of the elements, and the interaction forces act

along the dashed lines joining the CoMs. The resulting immaterial

grid is composed of triangular elements
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velocity ð _r~iÞ. Notice that, when buoyancy is active,

the expression (2) still holds, provided that the mass

mi is replaced by the reduced mass, as will be clear in

the application of the method later on. Further, the

dot represents a scalar product. The drag force due to

the ambient acting on the system will be introduced

later. Eq. (2) can be rewritten in the more convenient

form:

F~i ¼ �migk̂ þ mi gk̂ þ _r~i � _r~
� �

=Ri

� �
� N~i

h i
ð3Þ

where k̂ is the vertical unit vector pointing upward, g

is gravity, and Ri is the local radius of curvature of R.
The latter expression can be deduced employing

Eq. (2) by splitting the acceleration €r~i in its compo-

nents. Indeed, the normal acceleration and the

velocity of the point mass are linked together through

the surface derivatives:

€r~i � n~i ¼
_r~i � _r~i
Ri

¼ _r~i � _r~i � r
� �

n̂i

¼
v2ixfixx þ 2vixviyfixy þ v2iyfiyyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ f 2ix þ f 2iy

q ð4Þ

where r is the gradient operator. Here the velocity

components in the x and y directions are denoted by

vix and viy, respectively. fix and fiy represent the sur-

face first derivatives in the position of the point mass

i. Analogously, fixx, fixy and fiyy denote the second

derivatives.

In order to simplify the illustration of the problem,

let us consider that example shown in Fig. 2, where

the N ¼ 12 masses of the system are set in the nodes

of a grid formed of NQ ¼ 6 quadrilaterals. We further

assume that in each quadrilateral the side edges are

non-deformable (which means that the pair of masses

at the end of these edges do not change their initial

distance), while the diagonal edges can change length

according to an elasto-plastic law (which means that

the corresponding masses are allowed to come closer

or to move away from each other).

In general, if a grid like this is formed by Nx and

Ny point masses in the respective x and y directions, it

results that the total number of point masses is

N ¼ NxNy, the number of quadrilaterals is

NQ ¼ Nx � 1ð Þ Ny � 1
� �

, the number of side edges is

NE ¼ 3N � 2Nx � 2Ny þ 1, while the number of

diagonal edges is ND ¼ 2NQ, if one considers both

diagonals.

On the masses two kinds of interaction forces are

active. The RB forces denoted as h~ and acting along

the NE side edges are evaluated by imposing that the

3D Cartesian distance between the point masses

connected by side edges are constants of the motion.

It can be proven that these forces do not perform any

work on the system (Gallotti and Tinti 2019; Tinti

and Gallotti 2019). These forces change their mag-

nitude during the motion, and the algorithm to

evaluate them is strictly related to the solving pro-

cess, as we will show later on. The second type of

forces (EP), denoted as p~, act along the ND diagonal

edges and their magnitude can be expressed by:

pij ¼
mimj

mi þ mj

gk wð Þ ð5Þ

where k wð Þ is a function depending on the relative

lengthening (shortening) of the edge length joining

the point masses i and j. More precisely, w ¼
l� l0ð Þ=l0 where l is the instantaneous diagonal dis-

tance and l0 is its initial value. The function k wð Þ
expresses the rheological behavior of the system

material. In our present approach we assume it is

given in the form:

Figure 2
Sample of N ¼ 12 point masses placed at the nodes of a grid with

Nx points in the x direction and Ny in the y-direction. The RB forces

hj (j ¼ 1 : NEÞ are assumed to act on the side edges (solid lines),

while the EP forces pk(k ¼ 1 : NDÞ are assumed to act on the

diagonals (dashed lines) of the NQ quadrilaterals. Notice that

during the motion the structure changes shape to adapt itself to the

sliding surface but remains topologically invariant. This simple

semi-rigid structure is useful to understand the forces acting on the

system. Nonetheless, it is merely one of the possible configurations
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k ¼ max
aw

w� w1

; kmax

� �
if w\w1

k ¼ aw
w� w1

if w1 �w\0

k ¼ � kmin

w2

w if 0\w\w2

k ¼ � kmin

w3 � w2

w� w3ð Þ if w2 �w\w3

k ¼ 0 if w�w3

which corresponds to a simplified form of elasto-

plastic deformation. Here the values of kmax and kmin
are chosen properly to reduce or enhance the degree

of deformability. In Fig. 3 we show a plot of the

function k wð Þ for the sample values:

w1 ¼ �0:5;w2 ¼ 0:5;w3 ¼ 1; kmax ¼ 10; kmin ¼ 1:.

Observe that imposing a fixed-distance bound on all

the edges (sides and diagonals of the quadrilaterals)

generally would be impossible because it would lead

to an overdetermined problem, giving the system no

sufficient degrees of freedom. On the other hand, if

we consider the other extreme, that is if we impose

EP forces on all the edges of the grid, this would lead

to body conditions too far from rigidity.

To solve the system of Eq. (1), the RB interaction

forces hij must be determined in advance. This is one

of the key aspects of the model UBO-Inter. To this

purpose, we use the bound on the length of the side

edge linking the point masses i and j, that can be

written as:

l2ij ¼ r~i � r~j
� �

� r~i � r~j
� �

¼ const: ð6Þ

After time-deriving the expression (6) twice, we

get:

€r~i � €r~j

� �
� r~ij ¼ � _r~ij � _r~ij ð7Þ

The difference of accelerations in Eq. (7) can be

expressed in terms of the equations of motion (1)

related to the point masses i and j. After substitution

we obtain:

1

mi

F~i �
1

mj

F~j

� �
� r~ij þ

1

mi

X

n

h~in

X

n

p~in

 !
� r~ij

�þ 1

mj

X

q

h~jq þ
X

q

p~jq

 !
� r~ij

¼ � _r~ij � _r~ij

ð8Þ

Analogous equations hold for all pairs of point

masses interacting via RB forces and all together they

form a linear system of equations where the

unknowns are the magnitudes of such forces, i.e. hij.

Since these forces are as many as NE (that is one for

each side edge of the grid), one can redefine the

unknowns as hk with k (1� k�NE), and, after some

algebraic manipulations, provide the solution of the

system as:

H ¼ A�1C ð9Þ

where H ¼ h1; h2; . . .; hNE
½ � is the vector of the

unknown magnitudes of such forces, A is an NE � NE

matrix whose elements can be derived from Eq. (8),

and C is the vector containing all the terms in Eq. (8)

that do not depend on H. Indeed, every row of the

matrix A corresponds to a couple of masses in the

system that interact through forces of type RB and are

thus connected by a constant-length side of the grid.

For a more detailed explanation one can refer to

Gallotti and Tinti (2019), and Tinti and Gallotti

(2019), where the basic process leading to the linear

system with unknown H and to the above inversion is

explained in detail for couples of interacting masses.

Once the internal forces are known, one can solve

the equations of motion. In the model UBO-Inter,

Figure 3
Function k wð Þ for the sample values: w1 ¼ �0:5;w2 ¼ 0:5;w3 ¼
1; kmax ¼ 10; kmin ¼ 1: The function represents a simplified rheo-

logical behavior of the system material
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these are solved by means of an explicit fourth-order

Runge–Kutta scheme, implemented through a

MATLAB code. These equations imply first- and

second-order derivatives of the sliding surface (see

Eq. (5)), that are known analytically only in theo-

retical cases. In real applications where digital

topographic databases are available, the space

derivatives can be computed only by employing

discrete differential operators. Though this is not

explicitly treated in this paper, an optimised algo-

rithm to compute space derivatives is incorporated

within the code UBO-Inter, with the double aim of

reducing the computational time and of reducing

swift derivative variations along the point-mass tra-

jectories, since these might lead to occasional

instabilities.

3. An Analytical Example

In the aim of applying the model to landslide-like

processes, it is essential to understand the nature of

the internal forces acting on the system. Therefore,

we will address our attention to the interaction forces

hn. To this goal, we consider a simple-geometry

example formed by N ¼ 3 masses (a, b, c in Fig. 4)

set at the vertices of an equilateral triangle and that

interact through RB forces. The masses are located in

a sphere cup of radius Rs, whose bottom point is

denoted by the letter O, as shown in Fig. 4. All

masses are set at the same height z ¼ Rs 1� coshð Þ,
where h is the colatitude (i.e. the angle between the z-

axis and the line joining the sphere center with any

one of the masses). The distance between the masses

coincides with the sides of the triangle and is equal to

d ¼
ffiffiffi
3

p
R, with R ¼ Rs sin h. By considering an initial

horizontal velocity v~0 tangent to the sphere and

assuming a frictionless surface, the motion is forced

to occur on the circumference of radius R. In this

peculiar configuration, all masses are subject to a

reaction force with the same magnitude, and this

equality holds also for the gravity force and the

interaction forces. In the direction of R, the cen-

tripetal force has to balance the component of the

reaction force as well as the components of the

internal forces.

Considering that the interaction forces form an

angle of p=6 with the radius R, we can write the

following equation:

m
v20
R

¼ Fr sin h�
ffiffiffi
3

p
H ð10Þ

where the centripetal acceleration term is on the left

side member, H is the interaction force, m is the mass

and Fr is the reaction force exerted by the sliding

surface. While running on the horizontal circumfer-

ence, the mass runs also on the great circle of radius

Rs passing through the instantaneous position of the

Figure 4
Front (upper sketch) and side (bottom sketch) view of the 3-mass

system with masses posed at the vertices of an equilateral triangle

in a sphere cup of radius Rs. The masses are denoted by a, b, c. The

gravity force and the centripetal force Fr are represented by red

arrows and blue arrows respectively. We denote the radius of the

circle where the motion occurs with R and with h the colatitude.

For the sake of clarity, in the bottom figure, we just show the forces

acting on the two front masses a and b
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mass. Even on this circumference the centripetal

force Fr, directed towards the center of the sphere,

has to balance the sum of all active forces, including

gravity. It is thus possible to write the following

equation:

m
v20
Rs

¼ Fr � mg cos h�
ffiffiffi
3

p
H sin h ð11Þ

where g is the gravity acceleration.

The two equations together form a linear system

in the unknowns Fr and H, that has the solution:

Fr ¼
mg

cos#
0�#� p

2
ð12:1Þ

H ¼ mgffiffiffi
3

p tan#� v20
rg sin#

� �
ð12:2Þ

This basic formula can be easily extended to a gen-

eric number of equal masses set at an equal mutual

distance and spinning on the same horizontal circular

plane in a sphere cup. The expressions for the RB

forces differ only by a numerical coefficient. Indeed,

it is easy to show that for a system of N equal masses,

equally spaced, the above formula (12.2) generalizes

to:

H ¼ Mg=N

2sin p=Nð Þ tan#� v20
rg sin#

� �
ð13Þ

where M ¼ Nm is the total mass of the system. It’s

interesting to see that when the number of points

tends to infinity, the system can be seen as a con-

tinuous ring of mass M and negligible cross-section,

and the coefficient before the parenthesis tends to the

constant rg, where r ¼ M
2p can be considered the

linear density per radian of the ring. This example is

very useful to understand the repulsive/attractive

nature of the RB interaction force. Once the angle h is
set, the force H will be positive, and then repulsive,

for low values of the initial velocities. In this case, in

absence of interaction, the masses would normally

tend to fall towards the center O of the sphere cup,

that is towards the lowest admissible point and

therefore would tend to reduce their mutual distances.

On the contrary, for higher v0 the force H is attractive

(negative) because the masses would normally escape

the sphere cup and would tend to increment their

mutual distances. Formally H� 0, if

v20 � rg sin h tan h. In the special case where

v20 ¼ rg sin h tan h, which can be designated as the

escape velocity, the internal forces are all zero, and

the masses move as they were independent.

The analytical expression (12.2) can be used as a

benchmark for the interaction force computed by the

numerical code UBO-Inter. Pointedly, we computed a

300s simulation on a sphere of radius Rs, with the

point masses set at h ffi 64�. An initial purely hori-

zontal velocity v0 was imposed. The difference

between the computed interaction force and the

expression (12.2), properly normalized to the ana-

lytical value, resulted to be negligible, in the order of

10�13. The distance between the point masses are

similarly conserved during the motion showing rela-

tive errors as small as 10�13. The total numerical

energy is likewise conserved.

The same experiment was repeated with systems

with more point masses (up to N ¼ 6) and the

numerical results were equally good.

4. The 1783 Scilla Landslide

Through the model UBO-Inter, we have simulated

the 1783 Scilla landslide taken as a benchmark case.

The slide detached on 6 February 1783 from Mt. Pacı̀

some 20 min after a violent shock that was one of the

long sequence of earthquakes that shocked the Cal-

abria region, Italy, in the period 1783–1784 (Boschi

et al. 2000). The landslide triggered tsunami waves

that killed more than 1500 people on the close beach

of Marina Grande, where they had gathered far from

houses to escape the earthquake destructive shaking.

There are several detailed historical accounts of this

event (see e.g. the coeval sources such as Sarconi

1784; Minasi 1785; Vivenzio 1788, and the modern

reconstructions, such as Tinti et al. 2004; Graziani

et al. 2006; Gerardi et al. 2008). Recent geological

and geomarine investigations have identified the ini-

tial detachment niche of the landslide as well as the

final deposit offshore (Bosman et al. 2006; Mazzanti

and Bozzano 2011; Bozzano et al. 2011).

Owing to the relevance of the case in terms of life

toll and to the availability of historical observations

and of recent data, this case is a reasonable choice to

validate the model UBO-Inter. For the sake of com-

pleteness, following a strategy often used to validate
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simulation models (see for example Wang et al.

2019) we will compare the UBO-Inter simulation not

only with the experimental data but also with the

results of simulations carried out through a reliable

landslide model. In this work, we selected the model

UBO-Block 1D that was applied to the Scilla land-

slide case by Zaniboni et al. to investigate the

tsunami propagation in the source area near Scilla

(2016) and a larger area covering the Messina Straits

(2019). It is worth noting that the model UBO-Block

1D (together with the more sophisticated version 2D)

was validated through laboratory data and several

applications to real landslide events (e.g. Tinti et al.

2006; Zaniboni and Tinti 2014).

The zone of the landslide occurrence is repre-

sented in Fig. 5 through a topo-bathymetric grid that

covers an area of 4:0� 4:5 km2, including the Mt.

Pacı̀ slope, its surrounding, and the final deposit. It

was obtained from the SRTM database for land

topography and from the GEBCO database. The grids

were complemented by local nautical charts pub-

lished by the IIM (Istituto Idrografico Militare, the

Italian Navy hydrographic institute) for the shallow-

water and offshore bathymetry.

In the model UBO-Inter, where masses are con-

sidered dimensionless points, the thickness of the

slide body is accounted for by varying the point

masses, provided that the constraint of the total slide

mass is respected: larger masses are placed in points

where the slide is thicker. We assume that the rock

density is uniform, more precisely qr ¼ 2200 kg=m3,

and that the total volume of the landslide is

Figure 5
Present-day topo-bathymetry of the Scilla area. The initial sliding area is delimited by the green line. The initial thickness is shown through

the black-red palette. The final detected deposit is delimited by the red boundary. The sliding surface used in the simulation by Zaniboni et al.

(2016) is shown by black diagonal lines. Coordinates are in UTM-32 format
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V ¼ 6:4� 106m3. This volume is deduced by filling

the discovered detachment niche and reconstructing

the original morphology. Note that the final deposit

was seen to involve a volume slightly smaller than

the total reconstructed landslide volume, but the

discrepancy can be easily interpreted as the effect of

mass removal due to erosion processes (see Zaniboni

et al. 2016) that started to act soon after the landslide

emplacement.

In Fig. 5 we show the initial landslide thickness

distribution and the final deposit area. These can be

considered observation data. The area that was

assumed by Zaniboni et al. (2016, 2019) to be

potentially swept by the landslide is portrayed as

hatched in Fig. 5 and crosses the deposit. The model

UBO-Block 1D approximates the landslide as a chain

of 10 deformable blocks that are allowed to spread

laterally within the prescribed sliding surface and

whose CoMs run along a common prescribed tra-

jectory. Given these constraints, the code computes

accelerations and velocities of the blocks along the

CoMs trajectory from the stage when the slide starts

moving until the slide comes to rest.

In the model UBO-Inter, the N point-masses are

set at the nodes of a grid formed by quadrilaterals that

can deform during motion. We have tested several

kinds of initial mass distributions, all under the

additional constraint that the CoM of the entire sys-

tem be coincident with the CoM of the slide. To build

viable sets of point masses we have used the criterion

that the distance between the masses is larger than, or

in the order of, the resolution of the topo-bathymetric

dataset (50 m) since this ensures an efficient inter-

polation process when computing the first and second

derivatives of the sliding surface (see Eq. (4)). Taken

this into account, the initial sliding area determines

the maximum number of masses that can be accom-

modated within it. In our case, the initial landslide

footprint is 1:4 km2, which allowed us to vary N

between 9 and 42.

In the model UBO-Inter, when the point masses

move on land (i.e. when they are above the sea level)

we set the basal friction l ¼ 0:23, which represents

the friction coefficient in dry conditions. When the

slide enters the sea, the basal friction diminishes, and

we use the value lw ¼ 0:04. Underwater, the slide is

slowed down not only by the basal friction but also,

and mainly, by the drag exerted by the water. In the

model, this is accounted through an equivalent basal

friction coefficient that is added to the usual friction

lw through the following expression:

leq ¼ lw þ 0:5
qr
qw

Cd

glv
v2

Here qr ¼ 2200 kg/m3 is the rock density, qw ¼
1030 kg/m3 is the sea water density, Cd ¼ 1 is the

drag coefficient for a block with size given by lv, that

is the length of the edge connecting the point masses

in the motion direction and v is the relative velocity

of the water with respect to the point mass. This,

assuming that the slide moves in still water, identifies

with the velocity of the point mass. Further, under-

water one has to account for buoyancy, which is

simply implemented by introducing the factor a ¼
1� qw=qr and replacing the mass mi with the

reduced mass ami as soon as the point mass enters the

sea water. The simulation has been run until t ¼ 100s

with a time step dt ¼ 0:05s.

In Fig. 6, we compare the time histories of the

speed of the slide CoM of different mass configura-

tions computed by means of the code UBO-Inter

against the corresponding curve resulting from the

model UBO-Block 1D. The initial accelerating phase

of the motion is quite similar for all the tested con-

figurations. Discrepancies can be noticed in the

velocity peaks. Notably, the N ¼ 9 and N ¼ 16 sys-

tems share the same behavior and attain the same

peak as the reference model (32 m/s at t ¼ 20 s). For

N ¼ 20 and N ¼ 25 the velocity peak (37 m/s) is

reached at t ¼ 22 s. For the configurations with more

point masses, the velocity peaks are higher (about

42 m/s) and are reached later (at t ¼ 23 s). The

decelerating phase of the motion shows also some

dissimilarities. Slides represented by fewer mass

points show a quasi-linear negative speed slope

(corresponding to an almost constant deceleration).

Configurations with more nodes exhibit a first strong

deceleration stage followed by a lower decrease rate.

All the configurations come to rest at t ¼ 110 s,

matching the UBO-Block stopping time.

Judging from the results of Fig. 6, the UBO-Inter

speed curves can be divided into three groups. The

N ¼ 9 and N ¼ 16 systems behave similarly and

match the UBO-Inter result. Configurations with N ¼
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20 and N ¼ 25 show slightly higher maximum

velocity some seconds later. Eventually, the systems

with a larger density of point masses show similar

higher velocity maxima. In the following, we select

two configurations belonging to the most different

classes (namely, N ¼ 16 and N ¼ 42) to investigate

the landslide motion in more detail. We start with the

RB forces, focusing on the first 50 s of the motion

when the slide experiences the strongest deforma-

tions, due to the impact with the sea water. Figure 7

illustrates the mean of all the RB forces acting on the

point masses, normalized to the weight corresponding

to the average mass value, i.e. qrV=N. Both curves

show a narrow peak (7–8 s wide) and a following

descent, but the peak of the configuration with more

nodes is smaller (0:6 g against 0:7 g) and delayed

(21 s against 16 s). It is interesting to note that the RB

forces possess a considerable magnitude, being a

significant fraction of the mass weight and that they

can pass through large variations during the motion,

ranging from 0.2 to 1.75 times the initial value,

which means that the sliding mass is subjected to

very strong stress changes.

Bearing in mind the previous results, the slide

trajectory is shown in Fig. 8, for the N ¼ 16 (left

panel) and N ¼ 42 (right panel) configurations. The

system structure is shown at t ¼ 0; 30; 100½ �s.
Observe that at the 30 s picture, the landslide is fully

underwater. Notice that the initial shape is partially

lost during the motion in both cases, which makes

more manifest the deformation experienced by the

landslide. The N ¼ 16 slide spreads in the underwater

part of the motion with the effect that the deposit

covers an area wider than the initial area. For the

N ¼ 42 system, this effect is less evident, while more

evident is a slight overall clockwise rotation. For both

systems the final position is located in the central-

eastern part of the observed deposit.

Figure 6
Slide CoM velocity vs. time. UBO-Block 1D (10 blocks) speed (red) is compared against the results obtained through UBO-Inter for

configurations of different number of point masses (N ¼ 9, black; N ¼ 16, green; N ¼ 20, blue;N ¼ 25, gray; N ¼ 36, magenta, N ¼ 42,

cyan). Curves differ somewhat, but the time of arrest matches the UBO-Block result

Figure 7
Mean RB force for the N ¼ 16 and N ¼ 42 point-mass systems

(red and blue lines, respectively) in the first 50 s of the landslide

motion
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5. Discussion and Conclusions

In this study, we have presented a new approach

(the model UBO-Inter) to simulate the motion of

rockslides based on the dynamics of systems of

interacting point masses that are subjected to external

and internal forces. This model is suitable for mildly

deformable bodies and couples the system dynamics

with the structure geometry.

We consider two types of interaction forces

between pairs of point masses: the RB forces main-

tain constant the distance of the masses of the pair

like in a rigid body, while the EP forces contrast

distance changes through an elasto-plastic behavior.

The nature of the link (either RB or EP) for pairs of

interacting point masses has to be specified a priori.

This allows great flexibility in describing the behav-

ior of complex mechanical systems like landslides

since it influences the level of deformability of the

body. Some caution is needed, however, in assigning

the link type of interacting pairs. Indeed, if the

number of the RB links is too high, it follows that the

fixed-distance constraints exceed the degrees of

freedom of the N point-mass mechanical system,

which leads to the impossibility of any motion and

the inconsistency of the mathematical formulation.

On the other hand, if the EP links are too many then

large deformations can occur leading to the coales-

cence of point masses and other irregularities that do

not reflect the behavior of the sliding rock. A con-

venient and simple way to describe a semi-rigid body

and to avoid these problems is to set the point masses

at the nodes of a grid formed of quadrilaterals where

the side edges are fixed (RB), and the diagonal ele-

ments are elasto-plastic (EP). This is the structure we

have used in the application to the 1783 Scilla

landslide case.

The nature of the interaction forces of the RB type

has been clarified through a simple analytical exam-

ple dealt with in Sect. 3. We have set three point

masses at the vertices of an equilateral triangle inside

a sphere cup on the same horizontal plane. By

imposing the same initial horizontal velocity to each

mass, we describe a motion where the RB forces

acting along the edges of the triangle have exact

analytical expressions. Furthermore, due to the

specific balance between external and internal forces,

this example allows the reader to understand the

repulsive/attractive nature of the RB interaction. It

has been found that numerical and analytical results

show a perfect match.

In Sect. 4 we have simulated the Scilla 1783

event, a case widely studied in the literature. Among

the various investigations, we have selected the

Figure 8
Motion of the Scilla landslide, modelled with UBO-Inter. The landslide is represented by N ¼ 16 (left panel) and by N ¼ 42 (right panel)

point masses. The initial niche is colored in cyan, while the cyan dashed line delimits the observed final deposit. Positions of the point masses

(red dots) are given at times t ¼ 0; 30; 100 s. The 100 s configuration practically coincides with the end of the simulation and can be taken as

the final deposit. Altitude values are given in meters
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simulation performed via the block-based model

UBO-Block 1D in Zaniboni et al. (2016, 2019) as a

reference study to test the performance of the model

UBO-Inter. The reference model depicted the Scilla

landslide as a chain of 10 blocks with prescribed

lateral spreading and prescribed slide CoM trajectory.

The model UBO-Inter can compute at any time

step the kinematical quantities (position, velocity,

and acceleration) of all constitutive point masses as

well as the internal forces of type RB and EP linking

the interacting pairs. We remind that the EP forces

are computed through the simple formula (5), while

the computation of the RB forces involves the setting

up and inversion of a time-dependent matrix (see

Eq. (9), which is a more complex and time-consum-

ing process. It follows that the trajectories of the point

masses and, as a consequence, of the CoM of the

system are the result of the computations and are not

prescribed a priori by UBO-Inter.

In this study, we have used a number of N point-

mass configurations with 9�N � 42. The perfor-

mance of the UBO-Inter simulations is judged

considering two elements: the position of the final

deposit (that derives from observations) and the

comparison of the kinematics of the UBO-Inter

configurations against the result of the UBO-Block

1D. As regards the final deposit, we have found that

in all the cases we considered, the point masses end

their trajectories within the area that was identified as

the depositional area of the landslide. We remark that

this latter was only broadly defined by geomarine

surveys (see discussion in Zaniboni et al. 2016) and

therefore it has to be taken more as an indicative

rather than a strict constraint. Therefore, even if the

point masses do not cover uniformly the depositional

area, but only a part of it (see Fig. 8), the results are

quite satisfactory.

As regards the slide kinematics, we selected the

velocity curve of the CoM of the landslide as a term

of comparison, since it permits a very easy judge-

ment. The main result is that all curves have

approximately the same time length (about 110 s) as

the reference model and show similar behavior with a

quick velocity increase, a single velocity peak, and a

lower velocity decrease phase. Going in more detail,

we see that the configurations with fewer point

masses (N ¼ 9;N ¼ 16) have velocity curves

showing a better match with the UBO-Block 1D

simulation, especially in catching the height and

timing of the velocity peak. Instead, configurations

with more nodes (N � 20) overestimate the slide

velocity maximum and delay it by some seconds.

Noting that these slight dissimilarities occur after the

landslide enters the sea water, one can conclude that

they are related to the way the model UBO-Inter

computes the water drag, that is related to the system

geometry and is incorporated in the basal friction.

Though discrepancies are minor, nonetheless they

deserve attention and need to be taken into account in

the future implementations of the model. It is relevant

to underline that differences in the slide velocities do

not influence the trajectory of the landslides

considerably.

Indeed, from Fig. 8 one can see that the N ¼ 16

and N ¼ 42 systems show a similar path.

As regards the interaction forces, they are not

computed explicitly by the UBO-Block model, since

the lateral mass spreading is predefined geometrically

and the main utilization of that model is to provide a

reasonable output for tsunami computation (mostly

influenced by the velocity and the geometry of the

landslide underwater). Therefore, no comparison with

the UBO-Inter results is possible. Nevertheless, it is

relevant to stress that this code can compute the RB

and EF forces as a function of time. The example

shown in Fig. 7 serves only to show that they can

change remarkably during the sliding process and in a

sense, they influence the motion of each point mass

and are influenced by the motion itself.

To summarize, we conclude that: (1) the model

UBO-Inter solving in a Lagrangian way the equation

of motion of point masses interacting in pairs through

rigid-body-like (RB) and elastoplastic (EP) forces is

adequate to describe the dynamics of semi-rigid (i.e.

mildly deformable) landslides; (2) a simple analytical

example involving RB forces has proven that the

code computes these forces exactly; (3) the model

can simulate the Scilla 1783 landslide adequately

even with a small number of point masses (see the

good agreement obtained with N ¼ 9 and N ¼ 16

systems).

Further studies will refine the way the drag forces

are treated in the model, and great efforts will be

devoted to extending the systems from 2D to 3D,
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allowing one to handle cases of thick landslides with

point masses distributed into a volume, rather than a

surface.
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