Skip to main content
Log in

Analysis of Climate Extreme Indices in the MATOPIBA Region, Brazil

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The identification of the spatial and temporal variability of meteorological variables, as well as of climate extreme events, such as the duration of dry spells, duration of warm spells and rainfall intensity, is crucial for agrometeorological studies, since they can negatively impact yields through the exposure of the crop to critical conditions. Thus, this study analyzed trends in 23 rainfall and temperature climate extreme indices in the MATOPIBA region, currently a strategic area for investments in soybean cultivation, playing a major role in ensuring global food security. Daily time series of rainfall and temperature (maximum and minimum) data in the 1980–2013 period were used, arranged in a 0.25° × 0.25° grid, covering 963 points over the studied region. The data set was submitted to cluster analysis, the Mann–Kendall non-parametric test and extremes indices and their trends were estimated through the RClimdex software. Trends in rainfall rates and in mean, maximum and minimum temperatures were evaluated for each cluster and shifts from the climatological patterns of these variables were detected. Only some of the rainfall climate extreme indices presented significant increase and/or decrease in the CI and CII subregions. On the other hand, there was a significant increase in almost all temperature climate extreme indices in all clusters. The persistency of these trends may lead to impacts on soybean cultivation in the MATOPIBA region, and therefore these results are crucial for the elaboration of strategies for agricultural planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4 
Fig. 5

Similar content being viewed by others

References

  • Alexander, L. V., Zhang, X., Peterson, T. C., Caesar, J., Gleason, B., Klein Tank, A. M. G., et al. (2006). Global observed changes in daily climate extremes of temperature and precipitation. Journal of Geophysical Research, 111, D05109. https://doi.org/10.1029/2005JD006290.

    Article  Google Scholar 

  • Almeida, C. T., Oliveira-Júnior, J. F., Delgado, R. C., Cubo, P., & Ramos, M. C. (2017). Spatiotemporal rainfall and temperature trends throughout the Brazilian Legal Amazon, 1973–2013. International Journal of Climatology, 37(4), 2013–2026.

    Google Scholar 

  • Alvares, C. A., Stape, J. L., Sentelhas, P. C., de Moraes, G., Leonardo, J., & Sparovek, G. (2013). Köppens climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711–728.

    Google Scholar 

  • Anderson, M. C., Zolin, C. A., Sentelhas, P. C., Hain, C. R., Semmens, K., Yilmaz, M. T., et al. (2016). The Evaporative Stress Index as an indicator of agricultural drought in Brazil: An assessment based on crop yield imapcts. Remote Sensing of Environment, 174, 82–99.

    Google Scholar 

  • Araujo, F. R. C. D., Santos, C. A. C., & Nascimento, F. C. A. (2015). Estudo dos índices extremos de temperatura na bacia hidrográfica do baixo rio colorado—EUA. Revista Brasileira de Meteorologia, 30(1), 29–36.

    Google Scholar 

  • Araújo, M. L. S., Sano, E. E., Bolfe, É. L., Santos, J. R. N., Santos, J. L., & Silva, F. B. (2019). Spatiotemporal dynamics of soybean crop in the Matopiba region, Brazil (1990–2015). Land Use Policy., 80, 57–67.

    Google Scholar 

  • Arblaster, J., & Alexander, L. (2005). Extreme change: An analysis of past, present and future changes in global temperature and precipitation indices. Bulletin of the Australian Meteorological and Oceanographic Society, 18(6), 125–130.

    Google Scholar 

  • Assad, E. D., Marin, F. R., Evangelista, S. R., Pilau, F. G., Farias, J. R. B., Pinto, H. S., et al. (2007). Sistema de previsão da safra de soja para o Brasil. Pesquisa Agropecuária Brasileira, Brasília, 42(5), 615–625.

    Google Scholar 

  • Avila, L. F., Mello, C. R., Yanagi, S. N. M., & Sacramento Neto, O. B. (2014). Tendências de temperaturas mínimas e máximas do ar no Estado de Minas Gerais. Pesquisa Agropecuária Brasileira, 49(4), 247–256.

    Google Scholar 

  • Balbinot Junior, A. A., Hirakuri, M. H., Franchini, J. C., Debiasi, H., Ribeiro, R. H. (2017). Análise da área, produção e produtividade da soja no Brasil em duas décadas (1997–2016) [recurso eletrônico]. Londrina: Embrapa Soja, 21 p. https://www.embrapa.br/busca-depublicacoes//publicacao/1065512/analise-da-area-producao-eprodutividade-da-soja-no-brasil-em-duas-decadas-1997-2016. Accessed 20 June 2019.

  • Berlato, M. A., & Fontana, D. C. (2003). El Niño e La Niña: impactos no clima, na vegetação e na agricultura do Rio Grande do Sul; aplicações de previsões climáticas na agricultura (p. 110). Porto Alegre: UFRGS.

    Google Scholar 

  • Bezerra, B. G., da Silva, B. B., Bezerra, J. R. C., Sofiatti, V., & dos Santos, C. A. C. (2012). Evapotranspiration and crop coefficient for sprinkler-irrigated cotton crop in Apodi Plateau semiarid lands of Brazil. Agricultural Water Management, 107, 86–93.

    Google Scholar 

  • Bezerra, B. G., Silva, L., Santos e Silva, C. M., & Carvalho, G. G. (2019). Changes of precipitation extremes indices in São Francisco River Basin, Brazil from 1947 to 2012. Theoretical and Applied Climatology. https://doi.org/10.1007/s00704-018-2396-6.

    Article  Google Scholar 

  • Bhatia, V. S., Singh, P., Wani, S. P., Chauhan, G. S., Kesava Rao, A. V. R., Mishra, A. K., et al. (2008). Analysis of potential yields and yield gaps of rainfed soybean in India using CROPGRO-Soybean model. Agricultural and Forest Meteorology, 148, 1252–1265.

    Google Scholar 

  • Blain, G. C. (2010). Séries anuais de temperatura máxima média do ar no estado de São Paulo: Variações e tendências climáticas. Revista Brasileira de Meteorologia, 25(1), 114–124.

    Google Scholar 

  • Blain, G. C. (2011). Considerações estatísticas relativas a seis séries mensais de temperatura do ar da secretaria de agricultura e abastecimento do estado de São Paulo. Revista Brasileira de Meteorologia, 26(2), 279–296.

    Google Scholar 

  • Brasil, (2015). Decreto no 8.447, de 6 de maio de 2015. Dispõe sobre o Plano de Desenvolvimento Agropecuário do Matopiba e a criação de seu Comitê Gestor. Diário Oficial da União, 07 de maio de 2015. https://www.planalto.gov.br/ccivil_03/_Ato2015-2018/2015/Decreto/D8447.htm. Accessed 11 Jan 2019.

  • Butt, N., De Oliveira, P. A., & Costa, M. H. (2011). Evidence that deforestation affects the onset of the rainy season in Rondonia, Brazil. Journal of Geophysical Research: Atmospheres, 116, 2–9. https://doi.org/10.1029/2010JD015174.

    Article  Google Scholar 

  • Casaroli, D., Fagan, E. B., Simon, J., Medeiros, S. P., Manfron, P. A., Dourado Neto, D., et al. (2007). Radiação solar e aspectos fisiológicos na cultura de soja: uma revisão. Revista da FZVA, Uruguaiana, 14, 102–120.

    Google Scholar 

  • Cavalcanti, I. F. A. (2009). Tempo e clima no Brasil (p. 464). São Paulo: Oficina de textos.

    Google Scholar 

  • Cavalcanti, I. F. A. (2012). Large scale and synoptic features associated with extreme precipitation over South America: A review and case studies for the first decade of the 21st century. Atmospheric Research, 118, 27–40.

    Google Scholar 

  • Chaves, R. R., & Cavalcanti, I. F. A. (2001). Atmospheriuc Circulation Features Associated with Rainfall Variability over Saouthern Northeast Brazil. Monthly Weather Review, 129, 2614–2626.

    Google Scholar 

  • Conab—Companhia Nacional de Abastecimento (2019). Acompanhamento da Safra Brasileira de Grãos, Safra 2018/19—Oitavo Levantamento, p. 1–135. https://www.conab.gov.br/info-agro/safras/graos/boletim-da-safra-de-graos. Accessed 28 July 2019.

  • Correia, F. W. S., Alvalá, R. C. S., & Manzi, A. O. (2008). Modeling the impacts of land cover change in Amazonia: a regional climate model (RCM) simulation study. Theoretical and Applied Climatology, 93(3), 225–244.

    Google Scholar 

  • Correia Filho, W. L. F., Lucio, P. S., & Spyrides, M. H. C. (2016). Caracterização dos extremos de precipitação diária no nordeste do Brasil. Bol Goiano Geografia, 36(3), 539–554.

    Google Scholar 

  • Costa, M. H., & Pires, G. F. (2010). Effects of Amazon and Central Brazil deforestationscenarios on the duration of the dry season in the arc of deforestation. International Journal of Climatology, 30, 1970–1979. https://doi.org/10.1002/joc.2048.

    Article  Google Scholar 

  • Cunha, A. P. M. A., Tomasella, J., Ribeiro-Neto, G. G., Brown, M., Garcia, S. R., Brito, S. B., et al. (2018). Changes in the spatial–temporal patterns of droughts in the Brazilian Northeast. Atmospheric Science Letters, 19, e855.

    Google Scholar 

  • da Silva, P. E., Santos e Silva, C. M., Spyrides, M. H. C., & Andrade, L. M. B. (2019b). Análise de Índices de Extremos Climáticos no Nordeste e Amazônia Brasileira para o Período entre 1980 a 2013. Anuário do Instituto de Geociências, 42(2), 137–148.

    Google Scholar 

  • da Silva, P. E., Santos e Silva, C. M., Spyrides, M. H. C., Andrade, L. M. B. (2019). Precipitation and air temperature extremes in the Amazon and northeast Brazil. International Journal of Climatology. 1–17.

  • de Boeck, H. J., Dreesen, F. E., Janssens, I. A., & Nijs, I. (2011). Whole-system responses of experimental plant communities to climat eextremes imposed in different seasons. New Phytologist, 189(3), 806–817.

    Google Scholar 

  • Del Ponte, E. M., & Esker, P. D. (2008). Meteorological factors and Asian Soybean Rust epidemics - a systems approach and implications for risk assessment. Scientia Agricola, Piracicaba, 65, 88–97.

    Google Scholar 

  • Du, H., Alexander, L. V., Donat, M. G., Lippmann, T., Srivastava, A., Salinger, J., et al. (2019). Precipitation from persistent extremes is increasing in most regions and globally. Geophysical Research Letters, 46, 6041–6049. https://doi.org/10.1029/2019GL081898.

    Article  Google Scholar 

  • FAO—Food and Agriculture Organization of the United Nations (2016). OECD-FAO Agricultural Outlook 2016–2025, especial focus: Sub-Saharan Africa. [s.l.] OECD-FAO.

  • Farias, J. R. B., Neumaier, N., Nepomuceno, A. L. Soja. In: Monteiro, J. E. B. A. (2009). Agrometeorologia dos cultivos: o fator meteorológico na produção agrícola. Brasília: INMET, 261–278.

  • Ferreira, D. B., & Rao, V. B. (2011). Recent climate variability and its impacts on yields in Southern Brazil. Theoretical and Applied Climatology., 105, 83–97.

    Google Scholar 

  • Ferreira, N. J., Sanches, M., & Silva Dias, M. A. F. (2004). Composição da Zona de Convergência do Atlântico Sul em Períodos de El Niño e La Niña. Revista Brasileira de Meteorologia, 19(1), 89–98.

    Google Scholar 

  • Fu, R., Yin, L., Li, W., Arias, P., Dickinson, R. E., Huang, L., et al. (2013). Increased dry-season lengthover southern Amazonia in recent decades and its implication for futureclimate projection. Proceedings of the National Academy of Sciences USA, 110, 18110–18115. https://doi.org/10.1073/pnas.1302584110.

    Article  Google Scholar 

  • Gilbert, M. E., Holbrook, N. M., Zwieniecki, M. A., Sadok, W., & Sinclair, T. R. (2011). Field confirmation of genetic variation in soybean transpiration response to vapor pressure deficit and photosynthetic compensation. Field Crops Research, Amsterdam, 124, 85–92.

    Google Scholar 

  • Gilliland, J. M., & Keim, B. D. (2018). Position of the South Atlantic anticyclone and impact on surface conditions across Brazil. Journal of Applied Meteorology and Climatology, 57, 535–553. https://doi.org/10.1175/JAMC-D-17-0178.1.

    Article  Google Scholar 

  • Goossens, C., & Berger, A. (1986). Annual and seasonal climatic variations over the northern hemisphere and Europe during the last century. Annales Geophysicae, Berlin, 4(B-4), 385–400.

    Google Scholar 

  • Grimm, A. M. (2011). Interannual climate variability in South America: impacts on seasonal precipitation, extreme events and possible effects of climate change. Stochastic Environmental Research and Risk Assessment, 25(4), 537–554.

    Google Scholar 

  • Groisman, P. Y., Knight, R. W., Easterling, D. R., Karl, T. R., Hegerl, G. C., & Razuvaev, V. N. (2005). Trends in intense precipitation in the climate record. Journal of Climate, 18(9), 1326–1350.

    Google Scholar 

  • Hao, Z., AghaKouchak, A., & Phillips, T. J. (2013). Changes in concurrent monthly precipitation and temperature extremes. Environmental Research Letters, 8(3), 034014.

    Google Scholar 

  • Hastenrath, S. (1984). Interannual variability and annual cycle: mechanisms of circulation and climate in the tropical Atlantic. Monthly Weather Review, 112, 1097–1107.

    Google Scholar 

  • Hastenrath, S. (2012). Exploring the climate problems of Brazil’s Nordeste: a review. Climatic Change, 112(2), 243–251.

    Google Scholar 

  • IPCC. (2007). Climate change 2007: The physical science basis. Intergovernmental Panel on Climate Change, 446(7137), 727–728. https://doi.org/10.1038/446727a.

    Article  Google Scholar 

  • IPCC (2013). Climate Change 2013: a base da ciência física. In: Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K., Boschung, J., Boschung, J., Nauels, A., Xia, Y., Bix, V., Midgley, P.M. (Orgs), Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.

  • IPCC (2014) Central and South America. In: Barros V (Ed.) Climate change 2014: impacts, adaptation and vulnerability. Part B: Regional aspects, Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 1499–1566). Cambridge: Cambridge University Press.

  • Johnson, R. A., Wichern, D. W. (2007). Applied multivariate statistical analysis (6th ed). Pearson Prentice Hall.

  • Justino, F., Oliveira, E. C., Rodrigues, R. A., Gonc¸alves, P. H. L., Souza, P. J. O. P., Stordal, F., et al. (2013). Mean and Interannual Variability of maize and soybean in Brazil under globalwarming conditions. American Journal of Climate Change, 2, 237–253. https://doi.org/10.4236/ajcc.2013.24024.

    Article  Google Scholar 

  • Kao, W. Y., & Forseth, I. N. (1992). Responses of gas Exchange and phototropic leaf orientation in soybean to soil water availability, leaf water potential, air temperature, and photosynthetic photon flux. Environmental and Experimental Botany, Elmsford, 32, 153–161.

    Google Scholar 

  • Karmeshu, N. (2012). Trend Detectionin Annual Temperature & Precipitation using the Mann Kendall Test—A Case Study to Assess Climate Change on Select States in the Northeastern United States. Master of Environmental Studies Capstone Projects. Philadelphia: University of Pennslvania. Department of Earth and Environmental Science.

    Google Scholar 

  • Kayano, M. T., & Andreoli, R. V. (2007). Relations of South American summer rainfall interannual variations with the Pacific Decadal Oscillation. International Journal of Climatology., 27, 531–540.

    Google Scholar 

  • Kendall, M. G. (1975). Rank Correlation Methods. London: Charles Griffin.

    Google Scholar 

  • Kousky, V. E. (1979). Frontal influences on Northeast Brazil. Monthly Weather Review, 107, 1140–1153.

    Google Scholar 

  • Lacerda, F. F., Nobre, P., Sobral, M. C., Lopes, G. M. B., Chou, S. C., Assad, E. D., et al. (2015). Long-term temperature and rainfall trends over Northeast Brazil and Cape Verde. Earth Sci Clim Change, 6(8), 1–8. https://doi.org/10.4172/2157-7617.1000296.

    Article  Google Scholar 

  • Lawrence, D., & Vandecar, K. (2015). The impact of tropical deforestation on climate and links to agricultural productivity., 5, 27–36. https://doi.org/10.1038/nclimate2430.

    Article  Google Scholar 

  • Li, D., Li, H., Qiao, Y., Wang, Y., Cai, Z., Dong, B., et al. (2013). Effects of elevated CO2 on the growth, seed yield, and water use efficiency ofsoybean (Glycine max (L.) Merr.) under drought stress. Agricultural Water Management, 129, 105–112.

    Google Scholar 

  • Liou, K. N. (2002). An introduction to atmospheric radiation. International Geophysics Series, 84, New York, p. 583.

  • Lobell, D. B. (2007). Changes in diurnal temperature range and national cereal yields. Agricultural and Forest Meteorology, 145(3–4), 229–238.

    Google Scholar 

  • Lobell, D. B., Schlenker, W., & Costa-Roberts, J. (2011). Climate trends and global crop production since 1980. Science, 333(6042), 616–620.

    Google Scholar 

  • Lyra, G. B., Oliveira-Júnior, J. F., & Zeri, M. (2014). Cluster analysis applied to the spatial and temporal variability of monthly rainfall in Alagoas state, Northeast of Brazil. International Journal of Climatology, 34(13), 3546–3558. https://doi.org/10.1002/joc.3926.

    Article  Google Scholar 

  • Malhi, Y., & Wright, J. (2004). Spatial patterns and recent trends in the climate of tropical rainforest regions. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 359(1443), 311–329.

    Google Scholar 

  • Mann, H. B. (1945). Nonparametric tests against trend. Econometrica, 13(3), 245–259.

    Google Scholar 

  • Marengo, J. A., et al. (2011). Variabilidade e mudanças climáticas no semiárido brasileiro. Recursos hídricos em regiões áridas e semiáridas (pp. 383–422). Campina Grande: Instituto Nacional do Semiárido.

    Google Scholar 

  • Marengo, J. A., Alves, L. M., Alvala, R. C. S., Cunha, A. P., Brito, S., & Moraes, O. L. L. (2018). Climatic characteristics of the 2010–2016 drought in the semiarid Northeast Brazil region. Anais da Academia Brasileira de Ciências, 90, 1973–1985.

    Google Scholar 

  • Marengo, J. A., & Bernasconi, M. (2015). Regional differences in aridity/drought conditions over Northeast Brazil: present state and future projections. Climatic Change, 129, 103–115. https://doi.org/10.1007/s10584-014-1310-1.

    Article  Google Scholar 

  • Marengo, J. A., & Espinoza, J. C. (2016). Extreme seasonal droughts and floods in Amazonia: causes, trends and impacts. International Journal of Climatology, 36(3), 1033–1050.

    Google Scholar 

  • Marengo, J. A., Torres, R. R., & Alves, L. M. (2016). Drought in northeast Brazil—past, present, and future. Theoretical and Applied Climatology, 129(3–4), 1189–1200.

    Google Scholar 

  • Marengo, J., Torres, R. R., & Alves, L. M. (2017). Drought in Northeast Brazil— past, present, and future. Theoretical and Applied Climatology, 129(3–4), 1189–1200. https://doi.org/10.1007/s00704-016-1840-8.

    Article  Google Scholar 

  • Mattos, E. C., Atui, M. B., Silva, A. M., Ferreira, A. R., Nogueira, M. D., Soares, J. S., et al. (2015). Estudo da identidade histológica de subprodutos de soja (Glycine max L.). Rev Inst Adolfo Lutz, 74(2), 104–110.

    Google Scholar 

  • Mavi, H. S., & Tupper, G. J. (2004). Agrometeorology: principles and applications of climate studies in agriculture (p. 364p). New York: Food Products Press.

    Google Scholar 

  • Mazdiyasni, O., & AghaKouchak, A. (2015). Substantial increase in concurrent droughts and heatwaves in the United States. Proceedings of the National Academy of Sciences, 112(37), 11484–11489. https://doi.org/10.1073/pnas.1422945112.

    Article  Google Scholar 

  • Mingoti, S. A. (2005). Análise de dados através de métodos de estatística multivariada: Uma abordagem aplicada (p. 297p). Belo Horizonte: Editora UFMG.

    Google Scholar 

  • Minuzzi, R. B., & Caramori, P. H. (2011). Variabilidade climática sazonal e anual da chuva e veranicos no Estado do Paraná. Revista Ceres, Viçosa, 58(5), 593–602.

    Google Scholar 

  • Miranda, E. E., Magalhães, L.A., Carvalho, C. A. (2014). Proposta de delimitação territorial do Matopiba. Nota técnica 1. EMBRAPA. Grupo de Inteligência Territorial Estratégica (GITE). https://www.embrapa.br/gite/publicacoes/NT1_DelimitacaoMatopiba.pdf. Accessed 12 March 2019.

  • Mota, F. C. (1989). Meteorologia Agrícola (7th ed., p. 376p). São Paulo: Nobel.

    Google Scholar 

  • Mutti, P. R., Abreu, L. P., Andrade, L. M. B., Spyrides, M. H. C., Lima, C. K., de Oliveira, C. P., et al. (2019). A detailed framework for the characterization of rainfall climatology in semiarid watersheds. Theoretical and Applied Climatology. https://doi.org/10.1007/s00704-019-02963-0.

    Article  Google Scholar 

  • Nepstad, D. C., Stickler, C. M., Soares-Filho, B., & Merry, F. (2008). Interactions among Amazon land use, forests and climate: prospects for a near-term forest tipping point. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 363(1498), 1737–1746.

    Google Scholar 

  • Nobre, A., Malhi, Y., Araujo, A. C., Culf, A. D., Dolman, A. D., Elbers, J., et al. (2001). Amazônia: fonte ou sumidouro de carbon. Ministério do Meio Ambiente do Brasil (p. 436). Brasília: Causas e dinâmica do desmatamento na Amazônia.

    Google Scholar 

  • Obregón Párraga, G. O. (2003). Dinâmica da variabilidade climática da precipitação sobre a América do Sul. Tese (Doutorado em Meteorologia). São José dos Campos: INPE.

    Google Scholar 

  • Oliveira, L. J. C., Costa, M. H., Soares-Filho, B. S., & Coe, M. T. (2013). Large-scaleexpansion of agriculture in Amazonia may be a no-win scenario. Environmental Research Letters. https://doi.org/10.1088/1748-9326/8/2/024021.

    Article  Google Scholar 

  • Oliveira, P. T., Santos e Silva, C. M., & Lima, K. C. (2014). Linear trend of occurrence and intensity of heavy rainfall events on Northeast Brazil. Atmospheric Science Letters, 15, 172–177.

    Google Scholar 

  • OliveiraSantos e Silva, P. T. C. M., & Lima, K. C. (2017). Climatology and trend analysis of extreme precipitation in subregions of Northeast Brazil. Theoretical and Applied Climatology, 130(1–2), 77–90. https://doi.org/10.1007/s00704-016-1865-z.

    Article  Google Scholar 

  • Pinheiro, A., Graciano, R. L. G., & Severo, D. L. (2013). Tendência das séries temporais de precipitação da região Sul do Brasil. Revista Brasileira de Meteorologia, 28(3), 281–290.

    Google Scholar 

  • Pinto, H. S., Assad, E. D. (2008). Aquecimento global e a nova geografia da produção agrícola no Brasil. [Campinas]: Embrapa Informática Agropecuária: UNICAMP, 84 p.

  • Pires, G. F., Abrahão, G. M., Brumatti, L. M., Oliveira, L. J. C., Costa, M. H., Liddicoat, S., et al. (2016). Increased climate risk in Brazilian double cropping agriculture systems: implications for land use in Northern Brazil. Agricultural and Forest Meteorology, 228(229), 286–298.

    Google Scholar 

  • Rau, P., Bourrel, L., Labat, D., Melo, P., Dewitte, B., Frappart, F., et al. (2017). Regionalization of rainfall over the Peruvian Pacific slope and coast. International Journal of Climatology, 37, 143–158. https://doi.org/10.1002/joc.4693.

    Article  Google Scholar 

  • Ray, D. K., Gerber, J. S., MacDonald, G. K., & West, P. C. (2015). Climate variation explains a third of global crop yield variability. Nature Communications, 6, 1–9. https://doi.org/10.1038/ncomms6989.

    Article  Google Scholar 

  • Reis Santos e Silva, L. C. C. M., Spyrides, M. H. C., & Bezerra, B. G. (2017). Climate Trends in Bom Jesus, soybean production region in Piauí. Ciências Ambientais: Revista Geama.

    Google Scholar 

  • Rigo, A. A., Dahmer, A. M., Steffens, C., Steffens, J., & Carrão-Panizzi, M. C. (2015). Characterization of soybean cultivars genetically improved for human consumption. International Journal of Food Engineering, 1, 1–7.

    Google Scholar 

  • Rodrigues, R. Á., Pedrini, J. E., Fraisse, C. W., FernandesJustino, J. M. C. F. B., Heinemann, A. B., Costa, L. C., et al. (2012). Utilization of the cropgro-soybean model to estimate yield loss caused by Asian rust in cultivars with different cycle. Bragantia, Campinas, 71(2), 308–317.

    Google Scholar 

  • Rosenzweig, C., Elliott, J., Deryng, D., Ruane, A. C., Müller, C., Arneth, A., et al. (2014). Assessing agricultural risksof climate change in the 21st century in a global gridded crop modelintercomparison. Proceedings of the National Academy of Sciences USA, 111, 3268–3273. https://doi.org/10.1073/pnas.1222463110.

    Article  Google Scholar 

  • Rosenzweig, C., Iglesias, A., Yang, X. B., Epstein, P. R., & Chivian, E. (2001). Climate change and extreme weather events; implications for food production, plant diseases, and pests. Global Change & Human Health, 2(2), 90–104.

    Google Scholar 

  • Saath, K. C. O., & Fachinello, A. L. (2018). Crescimento da demanda mundial de alimentos e restrições do fator terra no Brasil. Revista de Economia e Sociologia Rural., 56, 2. https://doi.org/10.1590/1234-56781806-94790560201.

    Article  Google Scholar 

  • Salvador, M. A., & Brito, J. I. B. (2017). Trend of annual temperature and frequency of extreme events in the MATOPIBA region of Brazil. Theoretical and Applied Climatology. https://doi.org/10.1007/s00704-017-2179-5.

    Article  Google Scholar 

  • Sampaio, G., Nobre, C., Costa, M. H., Satyamurty, P., Soares Filho, B. S., & Cardoso, M. (2007). Regional climate change over eastern Amazonia caused by pasture and soybean cropland expansion. Geophysical Research Letters, 34(17), L17709.

    Google Scholar 

  • Santos, H. G., Jacomine, P. K. T., Anjos, L. H. C., Oliveira, V. A., Lumbreras, J. F., Coelho, M. R., Almeida, J. A., Araujo Filho, J. C., Oliveira, J. B., Cunha, T. J. F. (2018). Sistema Brasileiro de Classificação de Solos (SiBCS), Embrapa. https://www.embrapa.br/solos/busca-de-publicacoes/-/publicacao/1094003/sistema-brasileiro-de-classificacao-de-solos. Accessed 12 Aug 2018.

  • Schlenker, W., & Roberts, M. J. (2009). Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proceedings of the National Academy of Sciences, 106(37), 15594–15598.

    Google Scholar 

  • Schoffel, E. R., Saccol, A. V., Manfron, P. A., & Medeiros, S. L. P. (2001). Excesso hídrico sobre os componentes do rendimento da cultura da soja. Ciência Rural, 31, 7–12.

    Google Scholar 

  • Scott, C. E., Monks, S. A., Spracklen, D. V., Arnold, S. R., Forster, P. M., Rap, A., et al. (2018). Impact on short-lived climate forcers increases projected warming due to deforestation. Nature Communications, 9, 157. https://doi.org/10.1038/s41467-017-02412-4.

    Article  Google Scholar 

  • Seneviratne, S. I., Nicholls, N., Easterling, D., Goodess, C. M., Kanae, S., Kossin, J., et al. (2012). Changes in climate extremes and their impacts on the natural physical environment: An overview of the IPCC SREX report. EGU General Assembly Conference Abstracts, 14, 12566.

    Google Scholar 

  • Sentelhas, P. C., Battisti, R. (2015). Clima e produtividade da soja: efeitos nas produtividades potencial, atingível e real. In: Fundação MT (Org.). Boletim de pesquisa 2015/2016 (pp. 18–43). Rondonópolis: Fundação MT.

  • Sentelhas, P. C., Battisti, R., Câmara, G. M. S., Farias, J. R. B., Hampf, A., & Nendel, C. (2015). The soybean yield gap in Brazil—magnitude, causes and possible solutions for a sustainable production. Journal of Agricultural Science, 153, 1394–1411.

    Google Scholar 

  • Shrestha, A. B., Bajracharya, S. R., Sharma, A. R., Duo, C., & Kulkarni, A. (2017). Observed trends and changes in daily temperature and precipitation extremes over the Koshi river basin 1975–2010. International Journal of Climatology, 37(2), 1066–1083.

    Google Scholar 

  • Skansi, M. M., Brunet, M., Sigró, J., Aguilar, E., Groening, J. A. A., Bentancur, O. J., et al. (2013). Warming and wetting signals emerging from analysis of changes in climate extreme indices over South America. Global and Planetary Change, 100, 295307.

    Google Scholar 

  • Sneyers, R. (1975). Sur l’ analyse statistique des series d’ observations, (p. 192). Genève: Organisation Météorologique Mondial. (OMM Note Technique, 143).

  • Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., et al. (2007). Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (p. 996). Cambridge: Cambridge University Press.

    Google Scholar 

  • Souza, E. B., Kayano, M. T., & Ambrizzi, T. (2005). Intraseasonal and submonthly variability over the Eastern Amazon and Northeast Brazil during the autumn rainy season. Theoretical and Applied Climatology, 81, 177–191.

    Google Scholar 

  • Spera, S. A., Galford, G. L., Coe, M. T., Macedo, M. N., & Mustard, J. F. (2016). Land-use change affects water recycling in Brazil’s last agricultural frontier. Global Change Biology, 22, 3405–3413.

    Google Scholar 

  • Taherzadeh, O., & Caro, D. (2019). Drivers of water and land use embodied in international soybean trade. Journal of Cleaner Production, 223, 83–93.

    Google Scholar 

  • Timmermann, A., An, S. I., Kug, J. S., Jin, F. F., Cai, W., Capotondi, A., et al. (2018). El Niño—Southern Oscillation complexity. Nat Springer, US, 559, 535–545. https://doi.org/10.1038/s41586-0180252-6.

    Article  Google Scholar 

  • Tomasella, J., Borma, L. S., Marengo, J. A., Rodriguez, D. A., Cuartas, L. A., Nobre, A. C., et al. (2011). The droughts of 1996–1997 and 2004–2005 in Amazonia: hydrological response in the river main-stem. Hydrological Processes, 25(8), 1228–1242.

    Google Scholar 

  • Trenberth, K. E., Dai, A., Van Der Schrier, G., Jones, P. D., Barichivich, J., Briffa, K. R., et al. (2014). Global warming and changes in drought. Nature Climate Change, 4(1), 17–22.

    Google Scholar 

  • Tubiello, F. N., Soussana, J. F., & Howden, S. M. (2007). Crop and pasture response to climate change. Proceedings of the National Academy of Sciences, 104(50), 19686–19690.

    Google Scholar 

  • USDA - United States Department of Agriculture, (2017). World Agricultural Supply and Demand Estimates. Washington, D.C: WASDE-565. https://www.usda.gov/oce/commodity/wasde/latest.pdf. Accessed 8 June 2019

  • Utida, G., Cruz, F. W., Etourneau, J., Bouloubassi, I., Schefuß, E., Vuille, M., et al. (2019). Tropical South Atlantic influence on northeastern Brazil precipitation and ITCZ displacement during the past 2300 years. Scientific Reports, 9, 1698. https://doi.org/10.1038/s41598-018-38003-6.

    Article  Google Scholar 

  • Valadão, C. E. A., Carvalho, L. M. V., Lucio, P. S., & Chaves, R. R. (2017). Impacts of the madden-Julian oscillation on Intraseasonal precipitation over Northeast Brazil. International Journal of Climatology, 37, 1859–1884. https://doi.org/10.1002/joc.4818.

    Article  Google Scholar 

  • Vieira, R. M. S. P., Tomasella, J., Alvala, R. C. S., Sestini, M. F., Affonso, A. G., Rodriguez, D. A., et al. (2015). Identifying areas susceptible to desertification in the Brazilian northeast. Solid Earth, 6, 347–360. https://doi.org/10.5194/se-6-347-2015.

    Article  Google Scholar 

  • Wilks, D. S. (2006). Statistical methods in the atmospheric sciences (2nd ed., p. 627). Amsterdam: Elsevier Academic Press.

    Google Scholar 

  • Wu, H., & Qian, H. (1950s). Innovative trend analysis of annual and seasonal rainfall and extreme values in Shaanxi, China, since the 1950s. International Journal of Climatology, 37, 2582–2592. https://doi.org/10.1002/joc.4866.

    Article  Google Scholar 

  • Xavier, A. C., King, C. W., & Scanlon, B. R. (2015). Daily gridded meteorological variables in Brazil (1980–2013). International Journal of Climatology, 36(6), 2644–2659.

    Google Scholar 

  • Yu, P. S., Tao, T. C., & Chou, C. C. (2002). Effects of climate change on evapotranspiration from paddy fields in Southern Taiwan. Climatic Change, 54, 165–179.

    Google Scholar 

  • Zhang, X., Alexander, L., Hegerl, G. C., Jones, P., Tank, A. K., Peterson, T. C., et al. (2011). Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdisciplinary Reviews: Climate Change, 2(6), 851–870. https://doi.org/10.1002/wcc.147.

    Article  Google Scholar 

  • Zhang, X., & Yang, F. (2004). RClimDex (1.0) User Manual (p. 22). Ontario: Climate Research Branch, Environment Canada.

    Google Scholar 

  • Zhu, X., & Troy, T. J. (2018). Agriculturally Relevant Climate Extremes and Their Trends in the World’s Major Growing Regions. Earth’s Future, 6, 656–672. https://doi.org/10.1002/2017EF000687.

    Article  Google Scholar 

Download references

Acknowledgements

To the National Council for Scientific and Technological Development (CNPq) for the research productivity grant of second author (Processes no 303802/2017-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Layara Campelo dos Reis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Reis, L.C., Silva, C.M.S.e., Bezerra, B.G. et al. Analysis of Climate Extreme Indices in the MATOPIBA Region, Brazil. Pure Appl. Geophys. 177, 4457–4478 (2020). https://doi.org/10.1007/s00024-020-02474-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-020-02474-4

Keywords

Navigation