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Abstract—A methodology to optimize the design of an off-

shore tsunami network array is presented, allowing determination

of the placement of sensors to be used in a tsunami early warning

system framework. The method improves on previous sensor

location methods by integrating three commonly used tsunami

forecast performance indicators as a measure of the predictive

accuracy through a single cost function. The joint use of different

tsunami parameters allows for a network that is less subject to bias

found when using a single parameter. The resulting network per-

formance was tested using a set of synthetic target scenarios and

also verified against a model of the 2014 Pisagua event, suggesting

that having such a network in place could have provided mean-

ingful information for the hazard assessment. The small number of

sensors required (three spanning nearly 700 km of the Northern

Chile coast) may be useful in implementing such networks in

places where funding of denser arrays is difficult.
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1. Introduction

Over the last decade, several tsunami events, such

as those of Maule in 2010 and Tohoku in 2011, have

further demonstrated the catastrophic and widespread

potential for death and destruction inherent in tsu-

nami waves and, consequently, the need to improve

the reliability of tsunami early warning systems. The

2010 Maule earthquake (Mw8:8) generated a tsunami

that caused severe damage and loss of life in coastal

communities (e.g., Fritz et al. 2011) and highlighted

the consequences of an ineffective alert (Soulé 2014).

Events such as this have reaffirmed the importance of

improving timely evacuation warnings, which are

considered to be one of the most effective ways to

reduce loss of human life and damage to coastal

communities (Okal 2015).

The goal of a tsunami warning system is to deliver

a timely and meaningful evaluation of the hazard to

authorities and to the population at large, with the

main objective of triggering evacuation. While the

role of education is usually considered the corner-

stone for successful responses, the role of accurate

information regarding the actual hazard is also rele-

vant (Okal 2015; Bernard and Titov 2015). Over the

years, improving tsunami hazard assessment has

followed different approaches, all attempting to

maximize the lead time of the warning relative to

tsunami arrival.

For far-field tsunami forecasting, where the

coastal tsunami impact can be quantitatively evalu-

ated well in advance of tsunami arrival, the approach

is to combine monitoring of the actual tsunami along

its propagation path with numerical simulations, and

take advantage of this information to estimate the

hazard; For instance, the USA has a worldwide net-

work of offshore tsunami observatories, which are

located near several subduction zones at distances

equivalent to 30–60 min tsunami travel time from

expected tsunamigenic earthquake sources. Data are

used as input to inversion procedures to obtain an

estimate of the earthquake or tsunami source (Perci-

val et al. 2011), which allows forecasting a set of

tsunami hazard products (Bernard and Titov 2015).

For near-field tsunami forecasting, on the other

hand, the lapse between tsunami generation and

arrival may be too short to perform tsunami source

evaluations and forward simulations. Williamson and

Newman (2019) show that, in some places, first
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arrival can occur in as little as 5 min. In the field,

Aránguiz et al. (2016) reported arrivals in less than

8 min for the Mw 8:4 Illapel event, based on anec-

dotal evidence. A relevant aspect of the problem is

the finite time required to acquire enough data to

allow for source inversion. Owing to the significantly

different propagation speeds of tsunami and seismic

waves, the preferred approach is to rely on seismic

data alone. Although some seismic source solutions

can be obtained in relatively short time, they are

subject to uncertainties that can affect the accuracy of

tsunami estimates, hence limiting their applicability

for tsunami early warning purposes (Cienfuegos et al.

2018). In addition, computing tsunami propagation

and inundation has a high computational cost. Con-

sequently, to date, most operating tsunami early

warning systems use table look-up procedures on

datasets of simplified seismic scenarios previously

calculated and stored in a database (e.g. Gica et al.

2008; Kamigaichi et al. 2009). This approach is used

in countries such as Japan, Australia, and Indonesia,

and recently, in Chile. This approach is affected by

the limited accuracy of such assessments owing to the

likely mismatch between the simple stored scenarios

and the actual event (Behrens et al. 2010)

It has been noted that including tsunami data in

the inversion process usually leads to improved

results in estimating the tsunami hazard (e.g., Beh-

rens et al. 2010; Gusman et al. 2014; Cienfuegos

et al. 2018). Hence, it is highly desirable to incor-

porate tsunami data as early as possible. These

observations can be acquired from tide gage data

(Satake 1987; Satake and Kanamori 1991), satellite

altimetry (Arcas and Titov 2006; Hirata et al. 2006),

deep-ocean tsunameters (Titov 2009; Percival et al.

2011; Rabinovich and Eblé 2015), and cabled ocean-

bottom pressure sensors (Baba et al. 2004; Tsushima

et al. 2009, 2012). Among these, the use of coastal

stations (tide gages) is typically not considered for

early warning purposes, owing to the nil lead time

and possible influence of coastal bathymetry on the

hydrodynamics. Hence, offshore tsunami data from

tsunameters such as OBPSs seem to be most appro-

priate for tsunami early warning systems.

Williamson and Newman (2019) analyzed the

possible coastal locations where sensors can provide

a meaningful lead time for near-field tsunamis. These

locations concentrate along narrow bands that run

roughly parallel to subduction zones. In addition, one

of the most important factors for tsunami forecasting

based on offshore tsunami data is the configuration of

the array of tsunami stations. The accuracy of the

reconstruction of the tsunami source strongly depends

on the azimuthal coverage of observation stations

with respect to the source area, which is improved

when the sensors are located close to the main beam

of tsunami energy (e.g., Pires and Miranda 2001;

Piatanesi et al. 2001; Bernard et al. 2001). In addi-

tion, a large number of sensors enables better

resolution of the finer structure of the tsunami source.

For instance, Japan has a few submarine cabled sea-

floor observatory networks (e.g., the S-net, DONET1,

and DONET2 systems) that provide data in real time.

Tens of bottom pressure sensors have been installed

or are planned to be installed (e.g., Kaneda et al.

2015; Kawaguchi et al. 2015) at an estimated cost of

US$ 500M, according to Bernard and Titov (2015).

Maintenance and operational costs also need to be

accounted for, in addition to installation costs. This

high cost may pose a significant hurdle for develop-

ing countries along subduction zones, such as Chile

or other countries on the eastern Pacific seaboard,

where there is an extensive seismogenic zone. To

attempt to overcome this, it is valuable to study

whether arrays with fewer sensors could provide a

working solution at lower cost.

The number and placement of tsunameters have

been based on expert judgment, considering technical

aspects such as the variability and location of seismic

sources (Schindelé et al. 2008), travel time (Schin-

delé et al. 2008; Omira et al. 2009; Williamson and

Newman 2019), financial factors, for instance per-

taining to installation or operation costs (Araki et al.

2008), and legal aspects, such as geographic bound-

aries or legal jurisdictions (Abe and Imamura 2013),

among others. Regarding the construction of a sensor

array, prior research indicates that two to four

observation stations are capable of constraining the

source parameters quite well if the stations are opti-

mally located relative to the main tsunami energy

beam, whereas adding more data does not signifi-

cantly improve the inversion results (e.g., Percival

et al. 2011; An et al. 2018). For example, Bernard

et al. (2001) suggested that sensor spacing of about

1452 J. Meza et al. Pure Appl. Geophys.



175–700 km in the along-strike direction is required

to characterize the main energy beam of Mw � 8:0

events using just three sensors. On the other hand, the

relative distance between sensors and between sen-

sors and the source will be constrained by the tsunami

travel time and the duration of the tsunami record to

be used in the inversion (e.g., Bernard et al. 2001).

Hence, given an earthquake, it is possible to define an

area (henceforth termed the influence area Al) over

which the tsunami waves have already propagated

away from the source and allow for sufficient data to

be collected (e.g., Williamson and Newman 2019). A

minimum of two sensors must be considered inside

this area. This is equivalent to defining a data

observation time T0, if the tsunami propagation speed

is known. For the present application, T0 is user

defined, thereby limiting the areal coverage where

sensors can be placed and how much data is used in

the inversion.

Once possible locations of the sensors have been

established, evaluations of the best configuration

have adopted different approaches. Both Schindelé

et al. (2008) and Omira et al. (2009) took into

account local seismicity to identify possible sources,

and designed the optimal placement of sensors using

the travel time and a set of delays as the target

function. They differ in that Schindelé et al. (2008)

used 16 evenly spaced tsunami sources spanning a

long stretch of coast of the Western Mediterranean

Basin, which were used to test the efficacy of two

predefined arrays. Thirteen tsunameters spaced at

about 50–90 km yielded the best results. Instead,

Omira et al. (2009) used just a single scenario in

each of five tsunamigenic zones, though all were

encompassed within a small domain, resulting in a

common array of just three sensors. On the other

hand, Spillane et al. (2008) applied an optimization

approach to place Deep-ocean Assessment and

Reporting of Tsunami (DART) buoys in the Aleu-

tians Islands and Alaska regions. Results suggested

that arrival time is the main restriction on

tsunameter placement; it was found that adding

more than three sensors did not improve the results

significantly. Mulia et al. (2017) also used opti-

mization methods, specifically a dimensionality

reduction approach, to initiate the process. Unlike

the previous cases where the goal was to address the

performance for a wide range of sources, the goal of

Mulia et al. (2017a, 2017b) was to identify the best

placing of sensors to characterize a specific, large-

magnitude, target scenario. Their focus was to

resolve in great detail the characteristics of

nonuniform slip by maximizing the accuracy of

inverting a set of stochastic scenarios on a prede-

fined spatial domain. Inverted sources were

compared against each stochastic source, under the

assumption that the tsunami would be well deter-

mined if the earthquake source was well retrieved.

Hence, no evaluation of the tsunamis were per-

formed. An initial set of 30 sensors was obtained,

which was reduced to 23 sensors at specific loca-

tions after optimization. This highlights that, in

pursuing the detailed spatial distribution of slip, a

large number of sensors is required. Recently,

Saunders (2018) proposed an improvement in slip

characterization for the Cascadia Subduction Zone,

testing five different dense sensor arrays, which

coupled Global Navigation Satellite System (GNSS)

sensors with tsunameters. To assess accuracy, they

compared the root mean square of the difference

between the inverted and input fault slip, maximum

fault slip, tsunami amplitude at the coast, and per-

centage of coastline hit by high-amplitudes waves

between the results recovered from the inversion

and the input data.

Note that the performance of sensor networks has

typically been quantified by analyzing their accuracy

in predicting the arrival time (Bernard et al. 2001;

Schindelé et al. 2008; Omira et al. 2009), the source

slip (Mulia et al. 2017; Saunders 2018), or amplitude

at the coast (Mulia et al. 2017b; Saunders 2018),

among others. Typically, these parameters are ana-

lyzed independently. In this work, a methodology for

estimating the optimal placement of a small numbers

of sensors is used and tested. While similar in scope

to previous studies (e.g., Schindelé et al. 2008; Omira

et al. 2009), here other tsunami parameters are

included in the assessment and combined into a sin-

gle cost function to enable an objective comparison.

In particular, three different tsunami parameters are

considered in unison to find the optimal

configuration.
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2. Methodology

The overall objective of this work is to determine

an optimal array configuration of offshore tsunami

sensors for near-field tsunami forecasting, to be used

as a data source for a tsunami inversion technique. To

this end, a three-step process is applied. The first step

consists of the implementation of the inversion pro-

cedure. Next, a number of different sensor arrays are

used to invert a set of two target scenarios. Finally,

the results of these source inversion tests are objec-

tively compared by defining performance indicators.

The analysis focuses on maximizing the forecast

accuracy of three relevant tsunami parameters: arrival

time, maximum tsunami amplitude, and forecast skill.

2.1. Implementation of Inversion Algorithm

The method is built on the premise that, to

determine the tsunami source, an inversion procedure

must be implemented. Here, the tsunami Forecasting

based on Inversion for initial sea-Surface Height

(tFISH) method (see Tsushima et al. 2009 for details)

is used, by which tsunami waveform data are inverted

(in real time in an operational setting) to estimate the

initial distribution of sea-surface displacement. To

this end, a set of unit tsunami sources are propagated

to observation points to obtain their Green’s func-

tions, which are later used to perform the inversion

and forecast the tsunami time series at target

locations.

The initial sea surface model for each unit source

corresponds to a Gaussian function. Here, a set of

nearly 1000 unit sources is considered, each having

dimensions of 700 � 700 arcsec, with their centers

spaced by 0.15 arcdeg, thereby overlapping to allow

for smooth variation of the sea-surface displacement

using a finite number of discrete elements (Aida

1972). They cover an area spanning about 7� � 3�

(latitude, longitude, approximately 680 � 160 km)

that coincides with the Northern Chile Gap (Comte

and Pardo 1991; Metois et al. 2013), as shown in

Fig. 1a, b. In what follows, other data sources such as

DART buoys are not considered in the analysis,

under the premise that a completely new system is

being developed in the area of interest, even though

they may be of benefit to the inversion process.

Additionally, for the particular case of Chile, the

location of existing DART buoys in the area of

interest requires observation times longer than those

studied herein (Williamson and Newman 2019).

All Green’s functions were estimated in advance

considering a prescribed duration of the event, T,

using the tsunami model JAGURS (Baba et al. 2016).

This is a parallelized numerical model that can solve

the nonlinear Boussinesq dispersive equations in

spherical coordinates with a leapfrog staggered-grid,

finite-difference calculation scheme. However, for

the present case, nonlinear terms were not considered.

Bathymetry data were obtained from the

GEBCO_2014 grid (version 20150318, www.gebc-

o.net data) with spatial resolution of 30 arcsec

(Weatherall et al. 2015). Data were stored in a

database, from which appropriate tsunami free sur-

face time series, gðtÞ, were extracted and stored for

use in the inversion and forward calculations. These

were collected at 212 offshore observation points,

identified in Fig. 1a, b by black squares. Each of

these denotes the possible location of a single

observing station or sensor, and a collection of such

sensors is termed a sensor array. Time series were

also stored at seven coastal observation points located

close to existing tide gages operated by the National

Hydrographic and Oceanic Service of the Chilean

Navy (SHOA, from its acronym in Spanish). The

latter are used to evaluate the predictive performance

at the coast (identified in Fig. 1a, b by red triangles).

Typically, these are located at absolute depths greater

than 200 m such than nonlinear effects can be

neglected and linear superposition of tsunami time

series can be performed with minimal errors. It is

worth noting that tFISH considers the coseismic

displacement in the inversion procedure, thereby

allowing placement of sensors in the seismogenic

zone. More details about tFISH can be found in

Tsushima et al. (2009, 2012).

2.2. Numerical Experiments

For the purpose of testing and evaluating the

performance of different sensor arrays, the accuracy

of the inversion was evaluated using a set of

prescribed tsunami sources, termed design scenarios.

While it is possible to test a large set of sources over a

1454 J. Meza et al. Pure Appl. Geophys.
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large domain, as in Schindelé et al. (2008), here the

focus is on using sources located at the extremes of

the area of interest. The assumption is that these will

correspond to the most demanding configuration for

the sensor arrays owing to their relative location to

the main energy beam. A large number of sensor

arrays are compared to identify the array that

provides the best performance.

Two synthetic tsunamigenic earthquakes, with

magnitudes Mw 8.3 and 8.5, respectively, are con-

sidered as the design scenarios. These were

determined by Cienfuegos et al. (2014) as represen-

tative events for the Northern Chile Gap, based on the

interseismic coupling model of Chlieh et al. (2011),

information on interseismic slip rates, and conver-

gence models. The northernmost design scenario is

located just offshore of Arica, near the Chile–Peru

border; whereas the southern design scenario is

located just north of Mejillones Peninsula, as seen

in Fig. 1. It is expected that the resulting network will

be able to identify earthquakes spanning a section of

coast about 680 km long. For reference, these

scenarios flank the rupture area of the 2014 Pisagua

earthquake.

To carry out the analysis, each design scenario is

propagated forward to all forecast points, using the

linear shallow water equation model COMCOT

(Wang 2009) with the same grid as in JAGURS,

thus providing observed time series, gobsðtÞ. Those

recorded at offshore sensors are considered as target

time series to be used in the inversion process,

whereas coastal time series are used to assess the

performance of the solution. The use of a different

tsunami model in propagating the target scenario and

in preparing the database of Green’s functions is

implemented to reduce possible overfitting in the

inversion. In addition, it is assumed that other sources

of noise usually present in deep-ocean data, such as

tides and seismic noise such as the recording of

Rayleigh waves (e.g., Webb 1998), have been

removed during preprocessing using detiding, or

low- and high-pass filters, as described for instance

in Rabinovich and Eblé (2015); For example,

Tsushima et al. (2012) consider a 60-s moving

average to process data for tFISH. Here, since

synthetic time series are used, these effects are

considered to have been filtered out already, as also

done by Mulia et al. (2017). However, it is still

possible for spurious signals to contaminate the time

series and affect the inversion procedure. To simulate

this, Gaussian noise with a maximum amplitude of

10% of the variance of the noise-free target tsunami

time series is added (e.g., Romano et al. 2016; Mulia

et al. 2017).

The relative position of each sensor with respect

to the tsunami scenarios determines the tsunami

arrival time at the sensor but also the amount of data

usable in the inversion. In existing inversion proce-

dures, each sensor uses a different observation time,

sufficient to gather at least a quarter of the initial

tsunami waveform. Here, the observation time T0 is

defined so as to determine an area such that any

sensor located inside this area could record at least

half a tsunami wavelength. This defines the influence

area, Al. Note that the observation time is also

restricted by the tsunami arrival to the coast, in order

to provide sufficient lead time for an eventual

warning. As a starting point, T0 ¼ 10 min is used,

consistent with the observed tsunami arrival of the

2014 Pisagua tsunami (Catalán et al. 2015).

Considering the time restriction imposed, there is

a relatively small region where the influence areas Al

of both scenarios overlap. Hence, it is possible to

place a sensor that would serve both the northern and

southern sections, located in the outer rise offshore of

Iquique (see yellow triangle in Fig. 1). While the

selection of this sensor was arbitrary, the relatively

small number of alternatives led to no significant

sensitivity to its selection (not shown). To find the

location of the other sensors, the influence area for

each scenario was discretized every 0.25 arcdeg

(� 30 km) in both latitude and longitude to define a

grid of possible sensor locations. This spacing is

significantly smaller than the tsunami wavelength in

bFigure 1

a, b Sea surface deformation for the scenarios considered. Stars

indicate epicenters. Black squares show virtual observation points

offshore, red triangles indicate forecasting points, and the yellow

triangle represents the fixed sensor. a Mw 8.3 and b Mw 8.5

scenarios, located at the northern and southern end of the Northern

Chile Gap, respectively. c, d Corresponding maps of tsunami wave

height, considered a proxy for tsunami energy. c, d Final sensor

configuration shown by yellow triangles
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the area. In addition, these offshore observation

points are located at depths large enough for tsunami

nonlinear effects to be considered negligible, thereby

ensuring consistency with the assumptions of the

inversion algorithm. As a result, 99 and 113 possible

offshore observation points were defined in the

northern and southern parts, respectively. A sensor

array was defined by pairing the common sensor and

each of the possible observation points. Note that

potential observation points are located onshore and

offshore of the trench. While this placement could be

subject to further operational restrictions such as

deployment cost, these are not considered herein,

since the aim is to assess the methodology to select

the optimal array. The difference in the number of

observation points among the north and south regions

is due to the difference in the source dimensions, and

tsunami celerity arising from the bathymetry, which

control the extent of Al.

2.3. Performance Assessment

For each of the 212 sensor arrays (99 and 113, for

each scenario), the observed tsunami time series are

used to invert the tsunami source. Once a source is

determined, coastal tsunami time series are obtained

by linearly combining precomputed tsunami Green’s

functions weighted by the resulting initial distribu-

tion, and identified as forecasted data, gforðtÞ. The use

of Green’s functions is preferred over directly

modeling the inverted events (as done by Schindelé

et al. 2008, for instance) because it allows for testing

and comparing the solutions from a large number of

sensor array configurations at low computational

cost.

To assess the performance of each sensor array,

the observed (from the full tsunami simulations using

COMCOT) and the forecasted (from the linear

combination using inverted source solutions) data

are compared. Specifically, three tsunami parameters

are considered. The first is the tsunami arrival time

(e.g., Schindelé et al. 2008; Omira et al. 2009). This

is considered to be an essential parameter for tsunami

warning system frameworks to provide a timely

hazard assessment. However, the definition of arrival

time is relatively loose and could refer to different

stages of the tsunami, such as the first exceedance of

a threshold, the first local crest, first initial trough of

N-waves, and others (e.g., Hayashi et al. 2011). Here,

two different definitions are considered in order to

make the analysis more robust. The first defines

arrival time as the time T1 at which the free surface

first exceeds a certain arbitrary threshold, l1

T1ðgÞ ¼ minðt 2 ð0; TÞ j gðtÞ[ l1Þ: ð1Þ

This arrival time definition is also used by the Ger-

man–Indonesian Tsunami Early Warning System

(GITEWS, Rakowsky et al. 2013), and for the present

implementation a threshold of l1 ¼ 0:05 m is defined.

However, considering that in some cases the tsunami

time series might not exceed this prescribed thresh-

old, a second arrival time is defined as the time when

a proxy for the slope of the free surface exceeds the

threshold l2

T2ðgÞ ¼ min t 2 ð0; TÞ j og
ot

[ l2

� �
: ð2Þ

The aim is to establish a measure of the rate of

change of the tsunami signal as an early proxy for the

first local maximum. In this case, the value chosen

was l2 ¼ 0:002. In doing this, it is assumed that the

actual free surface slope is proportional to the rate of

change as per the long-wave approximation

og
ox

/ og
ot

: ð3Þ

The accuracy in predicting the possible impact and

magnitude of the tsunami is also relevant for a tsu-

nami warning system. Another relevant parameter is

the maximum tsunami amplitude (here denoted as H),

which is the parameter used to categorize the hazard

in most existing tsunami early warning systems. The

maximum tsunami amplitude is estimated as

H ¼ maxðgðtÞ � gð0Þ j t 2 ð0; TÞÞ: ð4Þ

Both the arrival time and amplitude are statistical

parameters that are estimated independently for

observed and forecasted free surface time series, then

compared. However, neither considers the accuracy

in retrieving the shape of the waveform. Hence, a

skill estimator (Sk) is computed, as this index is

commonly used to evaluate model accuracy (e.g.,

Hampson et al. 2011)
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Sk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 gfor � gobsð Þ2

Pn
i¼1 gobsð Þ2

s
; ð5Þ

where n corresponds to the number of time steps of

the time series.

In assessing the accuracy, the error between

observed and forecasted quantities is estimated for

arrival times and maximum tsunami amplitudes.

However, one possible difficulty in establishing a

standard metric is that each of these parameters has

its own scale with significantly different ranges of

values; For example, while an error in arrival time of

a few minutes can be considered acceptable (for

instance, less than 2 min), a variation in height of

more than 1 m can signify a large error and change

the hazard category. To provide a common basis of

comparison for all possible sensor configurations, the

error of each parameter is nondimensionalized by

dividing by the reference provided by the observed

data. In addition, it is possible that one parameter

having a large error could bias the combined

assessment to be implemented. Therefore, the error

estimated is capped under the assumption that errors

larger than the observed value will be treated as

equally significant. This is implemented as follows:

DTm ¼min
TmðgobsÞ � TmðgforÞ

TmðgobsÞ

����
����; 1

� �
; ð6Þ

DH ¼ min
HðgobsÞ � HðgforÞ
HðgobsÞ � gobsð0Þ

����
����; 1

� �
; ð7Þ

Sk ¼ min Sk; 1f g; ð8Þ

where m ¼ 1; 2 applies to the different time travel

parameters DT1 and DT2. In order to couple both

definitions of arrival times, the error estimator asso-

ciated with this parameter was considered as the

average of each percentage error, given by

DT ¼ DT1 þ DT2

2
: ð9Þ

By introducing the saturation value, errors DTm or

DH exceeding 100% are not penalized in excess and

do not bias the overall error, allowing identification

of the importance of the other parameters in the

comparison. In the case of the skill, Sk ¼ 1 indicates

that the magnitude of the error is comparable to or

greater than the observed values and zero values

mean a perfect fit for the indicator. In addition,

whether each quantity is under- or overestimated is

not considered relevant, and absolute values are used

instead.

It is proposed that, instead of analyzing these

metrics independently, it is desirable to identify the

sensor configuration that yields the minimum com-

bined error. However, it might be relevant for the

user to give preference to one of the metrics above

the others. Hence, to combine all estimators into a

single quantitative estimate, a forecasting accuracy

function is introduced

Fi;jðDT;DH; SkÞ ¼ aDTi;j þ bDHi;j þ cSki; j; ð10Þ

which quantifies the total error of the estimation at

any coastal forecasting point j given an offshore array

i. Here, a; b and c are weights that allow for user-

defined tuning of the relative importance of each

parameter. The sum of the weights should be 1, in

order to preserve the comparison basis. In this way, it

is possible to quantitatively compare the performance

of all sensor arrays at any given forecast point. A

conceptually similar approach was used by Behrens

et al. (2010), although their objective was to evaluate

the benefit of incorporating different sensors in an

inversion procedure, rather than finding the best

placement of them.

It is possible that comparisons at a single coastal

point might also be subject to bias. To assess the

overall predictive capability, the aggregated perfor-

mance is computed by adding up the individual

results at forecast points of interest, given a sensor

array i

EGi ¼
1

N

XN

j¼1

Fi;jðDT;DH; SkÞ; ð11Þ

where N is the number of forecast points chosen.

Upon calculating the global error by means of Eq. 11

considering all possible offshore arrays, the candidate

array is selected as that having the minimal global

error ðminðEGiÞÞ. As in the case of Eq. 10, it is

possible for Eq. 11 to be biased by a few forecast

points. To this end, is required that each forecasting

point j of the array should have an accuracy function

value smaller than a threshold (Fi;jðDT ;DH; SkÞ\
l; 8j). This filter is equivalent to ensuring a minimal
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forecast capacity at each forecasting point j, and is

applied after all sensor arrays have been compared.

3. Results

In Figs. 2 and 3, the accuracy of the estimation is

presented as a space map of the value of each of the

error estimates defined by Eqs. 6–10, presented as a

color scale, where smaller values (red colors) indicate

better accuracy. Each grid point corresponds to the

location of the second sensor of the array for each

scenario, which is defined as the ‘‘tested sensor,’’

while the first is kept fixed at the location of the

yellow triangle. The results shown correspond to the

assessment obtained when using the observed time

(a) (b)

(c) (d)

Figure 2
Spatial distribution of individual error estimates as a function of sensor arrays in the northern section. a DT (Eq. 9); b DH (Eq. 7); c Sk

(Eq. 8); and d total forecasting accuracy function, Fi;j (Eq. 10) estimated using as reference the coastal forecast point at Arica. Star indicates

the scenario epicenter, the thin black line is the location of the trench, the yellow triangle denotes the location of the fixed sensor, and each

grid point in the color map corresponds to a tested sensor
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series at Arica and Patache as the coastal forecast

point j of interest, respectively. For the purposes of

demonstration, the results analyzed correspond to the

case when a ¼ b ¼ 0:4 and c ¼ 0:2.

The errors in arrival time, DT (Figs. 2a, 3a), are

lower near the main energy beam, as shown by the

warmer colors. Sensor locations close to the coast and

the forecast point also show good performance. Arica

and Patache show a distinct behavior, where Arica is

more sensitive to the sensor location, with an error of

DT � 0:36 on average. Patache shows less sensitivity

and better accuracy overall, partly because it benefits

from the fixed sensor being located in front of it,

making the results less sensitive to the placement of

the secondary sensor.

The error in amplitude, DH, is shown in Figs. 2b

and 3b. Unlike the case of the arrival time, the per-

formance at Arica and Patache is similar, suggesting

that the tested sensor dominates over the fixed one.

The spatial distribution of the error DH is related to

the directivity of the tsunami energy radiation. When

the tsunami source has an aspect ratio (length to

(a) (b)

(c) (d)

Figure 3
Same key as Fig. 2, using as reference the coastal forecast point at Patache
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width) greater than 1, most of the tsunami energy is

radiated perpendicular to the major axis of the source

(Kajiura 1970, 1972). Consequently, errors smaller

than 20% are found in some cases where the sensor is

located close to the main energy beam (see Fig. 1c, d

for reference on the energy beams). In contrast, when

the sensor is located parallel to the major axis, where

weaker amplitudes are radiated, the observed tsunami

time series carries less information about the maxi-

mum tsunami energy, resulting in the initial sea

surface being underestimated. This also leads to

underestimation of the amplitude at forecast points.

Thus, when sensors are located outside the main

energy beam, accuracy decreases rapidly and reaches

the saturation limit. The location of the fixed sensor

does not allow for improved inversions, as it lies

outside the main energy beam, explaining the similar

performance at both sites. This marked difference in

performance between the amplitude and arrival time

errors highlights the need to also include the ampli-

tude as a relevant tsunami parameter.

Similar conclusions are obtained from the skill

indicator Sk (Figs. 2c, 3c), where higher forecasting

accuracy is obtained for sensor arrays with at least

one sensor located near the main energy beam. The

loss of accuracy is not as well defined as with the

amplitude, yet the minimum skill is close to Sk � 0:35

for Patache. Therefore, the skill is a more demanding

parameter overall, but does not lead to a clear dis-

tinction among sensor arrays. The combination of

these individual errors in the forecasting accuracy

function, Fi;j follows the same trend (Figs. 2d, 3d).

The minimum global error is found in the area off-

shore of Arica and is influenced by the amplitude

error. It aggregates the structure of the error in arrival

time, arguably owing to the choice of weights being

analyzed. On the other hand, at Patache, the global

error distribution shows less contrast between loca-

tions than at Arica. These results reinforce the idea

that a single error estimate such as arrival time does

not suffice to identify the best placement, but it also

shows that using a single forecast point as a reference

can be affected by local dependencies. It is important

to note that there is a smooth transition from lesser-

quality results (cool colors) to good-quality results

(warm colors) for all estimators, which means that the

spatial discretization used in the sensor placement

suffices to capture the error dependencies.

The aggregate of the forecasts at coastal points is

estimated using Eq. 11, considering four coastal

points (N ¼ 4 in Eq. 11), namely Arica, Pisagua,

Iquique, and Patache, for the northern design sce-

nario, and Patache, Tocopilla, Mejillones, and

Antofagasta for the southern case. The choice is due

to their proximity to either source and because they

have similar arrival times. Figure 4 shows the dis-

tribution of global error EGi for both events. As

before, the spatial maps show a relatively small area

of better accuracy near the epicenter of the earth-

quakes, but the variability is reduced owing to the

averaging effect of considering several forecast

coastal points in unison in the evaluation. Despite

this, it is still possible to identify locations where a

sensor could be deployed to yield the best overall

performance. Therefore, the final array configuration

is determined by identifying the configuration with

minimum global error EGi, independently for each

scenario, and for which the total error for each coastal

forecast point satisfies Fi;j � l ¼ 0:55, to ensure good

quality at each forecast point. The coordinates of the

selected sensor array are presented in Table 1. For

reference, array number 62 out of 99 is obtained for

the northern scenario, and array number 66 out of 113

for the southern one. In both cases, array configura-

tions are numbered in accordance with the grid

location, from west to east, then north to south.

4. Discussion

The methodology presented herein allows for

objective comparison among several array configu-

rations by using three relevant tsunami parameters.

The method was tested by defining a minimum of two

sensors to form a sensor array, under the premise that

this represents the least expensive implementation.

Testing for arrays comprising a larger number of

sensors, and/or tsunami parameters, could be imple-

mented in a similar manner, albeit at greater

computational cost, but is not considered further in

this work.

It is possible that, for actual implementations, the

selection of a sensor may be subject to additional
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restrictions. For example, the ability to transmit data

in real time constrains to line-of-sight placement, or

communications coverage; or deployment away from

the trench to reduce the effect of seismic noise and

coseismic signals, among many possible restrictions.

Such restrictions are not considered here as they can

be sensor specific, although they could be easily

incorporated into the method by simply restricting the

locations at which a sensor can be deployed.

The methodology expands on previous research

by quantitatively incorporating different tsunami

parameters into a cost function which can be mini-

mized. However, the weights (a; b, and c ) in the cost

function Fi;j (Eq. 10) were chosen based on the rel-

ative importance of each parameter in previous

studies and on the hazard categorization in tsunami

early warning systems. Hence, both arrival time and

tsunami amplitude were given a greater weight than

skill. To evaluate the influence of this selection of

weights in the assessment, a sensitivity analysis was

carried out. Each weight was modified by up to

� 0:10 in steps of 0.05. In addition, cases when only

one parameter is used were also considered, yielding

23 weight combinations as presented in Table 2.

This analysis is used to evaluate whether modi-

fying the weights induces a change in the selection of

the sensor array. In Fig. 5a–d, sample spatial maps of

the global error EGi are shown for some of the weight

combinations (baseline combination, and combina-

tions 10, 12, and 20; see Table 2 for details). It can be

seen that, although there is a variation of the value of

the global error, and also some variation of its spatial

distribution, the overall structure remains consistent.

The notable exception is combination 20, which only

considers a ¼ 1:0, i.e., only the error in arrival times.

(b)

Figure 4
Space maps of global error, EGi. Star indicates scenario epicenters, and yellow triangles show selected sensor array. a EGi for the northern

scenario, estimated using Arica, Pisagua, Iquique, and Patache. b EGi for the southern scenario, estimated using Patache, Tocopilla,

Mejillones, and Antofagasta

Table 1

Proposed sensor array configuration

Name Latitude Longitude

North 19:25� S 71:75� W

Fixed 20:25� S 71:50� W

South 22:25� S 71:00� W
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Figure 5e shows the value of the global error EGi for

each array configuration for the northern scenario, as

a function of the weight combination. For all com-

binations, the minimum error is obtained for array 62,

thereby showing no sensitivity to the distribution of

weights. This could be due to several factors. For

instance, perhaps the sensitivity range used in this test

was not large enough to alter the result. However,

Table 2

Parameter space of weight values used

Weights Combination number

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

a 0.4 0.45 0.45 0.5 0.5 0.5 0.35 0.35 0.3 0.3 0.3 0.4 0.35 0.4 0.45 0.4 0.45 0.5 0.4 0.35 1.0 0 0

b 0.4 0.35 0.4 0.35 0.3 0.4 0.45 0.4 0.45 0.5 0.4 0.45 0.5 0.5 0.3 0.3 0.45 0.4 0.35 0.35 0 1.0 0

c 0.2 0.2 0.15 0.15 0.2 0.1 0.2 0.25 0.25 0.2 0.3 0.15 0.15 0.1 0.25 0.3 0.1 0.1 0.25 0.3 0 0 1.0

(a) (b) (c) (d)

(e)

Figure 5
a–d Sample spatial maps of the global error, EG, as a function of the combination of weights. From left to right, combinations 1, 10, 12, and

20, respectively. e Matrix of the error EG (northern scenario) for each sensor array as a function of the combination of weights. Array

configurations are numbered in accordance with the grid location, from west to east, then north to south
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even when only one parameter is considered, the

solution remained unaltered. It could be argued that

the solution is controlled by only one parameter. For

instance, the error in amplitude DH yields the mini-

mum errors in several arrays (see red colors for

combination 21 in Fig. 5e). However, there are some

other instances where the arrival time is the param-

eter yielding the minimum error (see combination

20). It is concluded that the use of a cost function

combining both parameters maximizes the ability to

capture well the overall structure of the tsunami

signal. Moreover, the choice of weights initially

proposed (a ¼ b ¼ 0:4; c ¼ 0:2Þ appears to be a good

compromise among them.

The proposed methodology considers two char-

acteristic design scenarios located at the extremes of

the area of interest. Here, the capabilities of the

selected network are evaluated in other cases to

ensure that the proposed configurations offer good

performance not only for the design scenarios. To this

end, the southern event (Mw 8.5) was modeled with

different epicentral locations along the subduction

zone, every 0.5 arcdeg along strike (as shown in

Fig. 6). In addition, the observation time was chan-

ged (T0 ¼ 10, 15, and 20 min) to investigate the

effect of record length on the forecast.

Figure 7 shows the matrices of Fi;j at each fore-

cast point j as a function of the epicenter location,

considering the selected array configuration, for dif-

ferent observation times, T0. The aggregate error

decreases as T0 is increased, as expected. Aggregate

errors can reach values as low as Fi;j � 0:1 when

T0 ¼ 20 min (compare Fig. 7a and c). In the case of

Chile, where the seismic zone is located very close to

the coast, this long data acquisition time may exceed

the arrival time, thus preventing the use of this

information as a trigger for early warnings. However,

it could be considered in the later stages of the

emergency cycle. For instance, this information can

be used to refine initial hazard assessments derived by

other means, such as the existing database of pre-

computed scenarios.

It is possible to observe a decrease in performance

as the scenario approaches the reference forecast

point. This results in poor accuracy at the northern

forecast points (Arica, Pisagua, and Iquique) for

events with epicenters at latitudes �19:0� and �20�

(dark-blue data in upper-left corner of Fig. 7a), and a

worsening of the accuracy as the epicenters are

located further south (see the evolution of the error

for Tocopilla). This is due to the forecast points being

placed close to or inside the zone of the predicted

coseismic deformation for the actual event, which

prompts an inferred early arrival due to its displace-

ment. Moreover, owing to the short observation time,

the tsunami source solution results in a source with

small spatial dimensions (see, for example, Fig. 8b,

albeit for a different scenario). As a result of both

situations, the arrival time yields a large error,

Fi;j � 0:9–1.0. In the other cases, Fi;j averages 0.64.

As the observation time is increased, the error in the

prediction drops significantly and values as low as

Fi;j � 0:40 are obtained, which are considered to

indicate good performance of the selected array for a

wide range of locations.

As an additional test to evaluate the potential

performance of the sensor array, the Pisagua tsunami

on 1 April 2014 (Mw 8:1) was used as a source

(a) (b) (c) (d) (e)

Figure 6
Initial sea-surface displacements used in evaluating the chosen sensor array. Red and yellow triangles indicate forecasting points and sensors,

respectively. Epicenter is located at latitude a �19:5�; Parameter space of �20:0�, c �20:5�, d �21:0�, e �21:5�
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scenario. Note that this event has a smaller magnitude

than the scenarios used in designing the network, and

also that it has a nonuniform slip distribution, with

two main patches of slip. Synthetic tsunami wave-

forms at the location of the sensor array were

obtained by a numerical simulation with COMCOT

of the tsunami generated by the initial rupture model

proposed by Hayes et al. (2014). As before, the

accuracy of the assessment is evaluated using the

coastal forecast points and different observation

times. Gaussian noise with a maximum amplitude of

10% of the variance of the clean tsunami waveforms

was added in the numerical experiments.

The results are summarized in Table 3, the initial

surface solutions are shown in Fig. 8a–d, and

observed (black) and forecasted (blue) time series are

shown in Fig. 8e, f, for different observation times

T0. Within 10 min, the performance of the method is

Figure 7
Forecast accuracy function F62;j as a function of reference forecast point j (vertical axis) for the final array configuration, considering different

target scenario locations (horizontal axis) and observation time, T0 of a 10 min, b 15 min, and c 20 min

(a) (b) (c) (d)

(e) (f) (g)

Figure 8
Initial sea-surface displacement obtained from different observation times for the 2014 Pisagua tsunami. a Target result resulting from using

the slip distribution of Hayes et al. (2014) as source scenario. b–d Distribution of the initial sea-surface displacement estimated by tsunami

waveform inversion considering T0 ¼ 10, 15, and 20 min. e–g Comparison of observed (black), observed data filtered with a nine-point

moving average (red), and forecasted (blue) waveforms at the three sensors. Vertical light-blue lines in e, f, and g denote the observation time
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inadequate, with large errors and an inverted initial

surface that only detects a localized source. As the

observation time is increased, the errors decrease

significantly, especially when forecasted time series

are compared with observed data filtered using a

nine-point moving average (red lines). The recon-

structed sea surface condition now has an appropriate

spatial extent but smaller peak displacement. The

solution is improved for T0 ¼ 20 min, and includes

traces of the secondary peak northwest of the rupture.

However, as mentioned above, such a sensor array

would only have provided timely assessment for

locations outside the main rupture zone, since the

observed tsunami arrival at the tide gages at Iquique

and Pisagua was less than 15 min (An et al. 2014;

Catalán et al. 2015).

The effect of weighting was tested by comparing

the accuracy of the estimates for the Pisagua tsunami

for different combinations of weights. In general,

most forecast points have a relatively stable assess-

ment, typically varying by less than ±0.10 in the

error estimate (Fig. 9). However, the situation chan-

ges significantly if only one parameter is used. For

instance, if only time is considered (combination 20),

the assessment for some forecast points is worse, e.g.,

Iquique and Arica. On the other hand, Patache shows

a significant improvement, possibly influenced by its

proximity to the fixed sensor. The situation reverses

when only the skill is considered (combination 22);

Arica and Iquique shows improved estimation but

Patache worse. Therefore, the use of multiple

parameters and multiple forecast locations in unison

is essential for producing a more complete estimation

of the error for determining the optimal configuration.

This suggests that the proposed network is cap-

able of identifying smaller events with nonuniform

slip reasonably well, in reasonable time. It is of note

also that the location of this scenario does not coin-

cide with either of the scenarios used to design the

network. However, two of the sensors are located

close to, but not directly in, the main energy beam.

When considered in unison, these two tests suggest

that the sensor network considered would be appro-

priate for tsunamis generated by earthquakes of

magnitude similar and larger than that of the initial

design scenarios. It is possible that a different net-

work would be obtained if different design scenarios

were used. Nevertheless, the methodology provides a

means for identifying a suitable sensor array. This

stresses that one relevant step prior to the imple-

mentation of the methodology would be to determine

these design scenarios by other means. In the present

case, the choice was based on data available for the

Northern Chile Gap.

The above results suggest that the methodology is

capable of delivering a working tsunami observation

system comprising just three sensors. Although the

general rule that the spacing between sensors should

be in the range � 200–400 km (Bernard et al. 2001)

is somewhat preserved, the spacing between sensors

differs, between 110 and 225 km, approximately.

This yields a less dense network than the one pro-

posed by either Schindelé et al. (2008) or Omira

et al. (2009). The methodology also allows for the

optimal placement of the sensors in this range of

distances. On the other hand, the results show that,

similar to what is assumed by Gusman et al. (2014),

the optimal placement corresponds to the area where

the maximum displacement occurs. Considering the

inherent uncertainty in predicting the slip distribution

of a future earthquake, stochastic methods could be

incorporated into this methodology to further refine

the results. However, with the simulations performed

here, it is possible to see that just three sensors could

provide a baseline solution that would have been

appropriate for an event such as Pisagua 2014.

It must be noted, however, that several other

factors could be considered in the analysis. Financial

considerations such as implementation or operational

costs, or technical constraints on sensor placement

could be incorporated by limiting the placement of

Table 3

Summary of tsunami forecasting error Fi;j considering different

data observation times for 2014 Pisagua event

Forecasting point Observation time

10 min 15 min 20 min

Arica 0.98 0.91 0.71

Pisagua 0.99 0.49 0.20

Iquique 0.97 0.62 0.33

Patache 0.95 0.55 0.35

Tocopilla 0.95 0.15 0.07

Mejillones 0.91 0.61 0.08

Antofagasta 0.79 0.52 0.40
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the sensors during the definition of the possible sen-

sor locations. These technical constraints can arise

from a wide variety of situations that could affect the

accuracy of the sensors. For example, seismic noise

and Rayleigh waves can contaminate the signal for

sensors near the source. However, it is noted that, in

some cases, pressure sensors have been installed

successfully near the source, for example during the

2016 Mie-oki earthquake (Wallace et al. 2016). The

results shown herein are based on the assumption that

the sensors are capable of providing filtered free

surface data at sufficient temporal resolution, inde-

pendent of the type of sensor. While an inversion

algorithm can be subject to a wide range of errors and

uncertainties on its own, for the purpose of the pre-

sent work, it is hypothesized that using a common

inversion procedure will weigh equally those errors,

allowing comparison among different sensor config-

urations. The main goal of the presented procedure is

the objective assessment of the best configuration,

and it can be applied independently of the inversion

method or nature of the sensors.

The implementation of the procedure is compu-

tationally intensive in two of its steps. First,

establishing the database of Green’s functions can be

time consuming. The other aspect is the need to carry

out inversions for a large number of sensor configu-

rations. While in this case they were few (212 cases)

because only pairs of sensors were considered, if a

larger number of sensors is used, the processing cost

could increase significantly. In such cases, it would

be possible to apply optimization approaches to

reduce the computational burden. Finally, to reduce

the computational cost, forecasts at coastal stations

were obtained by linear superposition. The use of this

approach at shallow coastal points might be subject to

inaccuracies arising from neglecting nonlinear inter-

actions. Additionally, bathymetry-induced effects

Figure 9
Forecasting accuracy from Eq. 10 considering different weight combinations in Table 2 for the Pisagua 2014 tsunami
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such as resonance were reduced here by placing these

sensors at depths of about 200 m.

The use of tsunami data for the very first early

warning is constrained by the distance to the source.

At locations where arrival times are very short, it is

also important to consider the actual benefit of

incorporating such an evaluation for early warning.

The present results reaffirm that short observation

times yield less accurate results, highlighting the

trade-off problem between a quick assessment and

accuracy. The problem is further compounded by

inherent uncertainties in inverting both earthquake

and tsunami data (Cienfuegos et al. 2018). It seems

reasonable to propose that, for cases such as this,

higher-quality information obtained from inversion

methods should be used for hazard assessment at later

times in the emergency cycle, for instance to refine

fast hazard assessments estimated by other means,

and not necessarily as the method for first evaluation.

5. Conclusions

A methodology based on numerical simulations of

near-field tsunami forecasting is presented to deter-

mine an optimal array configuration of offshore

tsunami sensors. To provide an objective basis for the

comparison, three parameters are considered simul-

taneously to assess the accuracy, thus expanding on

previous methodologies that rely solely on a single

parameter (e.g., arrival time). The joint use of the

three estimators, viz. arrival time DT , tsunami

amplitude DH, and model skill Sk, was robust when

compared against a single parameter.

The methodology was tested in Northern Chile.

Results showed that a configuration comprising just

three sensors is capable of providing accurate esti-

mations of tsunami arrival time and peak amplitude

of the first wave. In this way, three sensors suffice to

cover a � 700 km stretch of coast when earthquakes

in the Mw 8.0 range are considered.

Results show that there is a strong dependence

between the location of the sensors and error estimators;

arrival times are accurately predicted with sensors

located offshore from coastal point of interest. In addi-

tion, better results for tsunami amplitude and skill are

obtained when sensors are located inside the uplifted

area or in front of it, near the main energy beam.

The proposed methodology shows potential for

use as an operational tool in defining the location of

possible tsunameters, especially for sparse configu-

rations in countries where the financial cost of

implementing and maintaining dense networks could

be a hurdle.
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