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Abstract—We implemented a novel multi-resolution grid

approach to direct current resistivity (DCR) modeling in 3-D. The

multi-resolution grid was initially developed to solve the electro-

magnetic forward problem and helped to improve the modeling

efficiency. In the DCR forward problem, the distribution of the

electric potentials in the subsurface is estimated. We consider

finite-difference staggered grid discretization, which requires fine

grid resolution to accurately model electric potentials around the

current electrodes and complex model geometries near the surface.

Since the potential variations attenuate with depth, the grid reso-

lution can be decreased correspondingly. The conventional

staggered grid fixes the horizontal grid resolution that extends to all

layers. This leads to over-discretization and therefore unnecessary

high computational costs (time and memory). The non-conformal

multi-resolution grid allows the refinement or roughening for the

grid’s horizontal resolution with depth, resulting in a substantial

reduction of the degrees of freedom, and subsequently, computa-

tional requirements. In our implementation, the coefficient matrix

maintains its symmetry, which is beneficial for using the iterative

solvers and solving the adjoint problem in inversion. Through

comparison with the staggered grid, we have found that the multi-

resolution grid can significantly improve the modeling efficiency

without compromising the accuracy. Therefore, the multi-resolu-

tion grid allows modeling with finer horizontal resolutions at lower

computational costs, which is essential for accurate representation

of the complex structures. Consequently, the inversion based on our

modeling approach will be more efficient and accurate.

Keywords: Multi-resolution grid, DCR, 3-D forward mod-

elling, finite-difference.

1. Introduction

The direct current resistivity (DCR) method is one

of the classical geophysical techniques, which is

nowadays widely used in the mineral exploration

(Oldenburg et al. 1997; Schoor 2005; Zhang et al.

2015), groundwater (Andrade 2011; Thompson et al.

2012), engineering (Chambers et al. 2014; Lysdahl

et al. 2017), and environmental problems (LaBrecque

et al. 1996; Rosales et al. 2012). The method is often

used both for ground measurements and in the

boreholes (Loke et al. 2013). Subsequently, the

measured electric potential data are inverted to obtain

a resistivity image of the subsurface to a depth

depending on the separation distance between

electrodes.

The forward modeling is an essential step of any

inversion algorithm. Over the past few decades, the

1-D (O’Neil and Merrick 1984; Das and Verma 1980)

and 2.5-D (Mundry 1984; Pidlisecky and Knight

2008) modeling of the DCR has been developed and

used routinely. The 3-D DCR surveying became

feasible with the development of the multi-electrode

and multi-channel systems (Dahlin 2016; Loke et al.

2013). Therefore, the data in 3-D case can only be

fully exploited using 3-D modeling and inversion

algorithms. There is a number of algorithms devel-

oped so far for 3-D DCR modeling based on the

integral equation method (Schulz 1985; Mendez-

Delgado et al. 1999), finite-element method (Li and

Spitzer 2002a; Rucker et al. 2006; Ren et al. 2018)

and finite-difference method (Dey and Morrison

1979; Scriba 1981; Spitzer 1995; Zhang et al. 1995;

Loke and Barker 1996; Zhao 1996; Wang et al. 2000;

Wu et al. 2003a; Śebastien Penz et al. 2013). The

integral equation approach is efficient to handle the

models with a few anomaly bodies. On the contrary,

the commonly used finite-element method (FEM) and

finite-difference method (FDM) are more suitable to

cope with models having an arbitrary number of

structures (Li and Spitzer 2002b; Wu et al. 2003b).

Despite the efforts to improve the efficiency,
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available 3-D modeling algorithms are still heavy in

terms of computational requirements. Since the

inversion requires numerous forward calculations,

optimized modeling algorithm naturally leads to an

efficient inversion.

The electrical field potentials induced by the

current electrodes create a singularity effect around

the source positions. In order to cope with it, the

secondary potentials’ formulation is often used

(Lowry 1989). However, for both of the total and

secondary field approaches, the simulated electric

field potentials generally attenuate with depth,

meaning that no significant variations can be expec-

ted at larger depth. Therefore, responses can be

modeled on a grid using coarser resolution (dis-

cretization) in the deeper regions, without loss of

accuracy.

The conventional staggered (SG) grid employs

rectangular cells to discretize the model, which sim-

plifies the gridding process. However, the conformal

SG grid fixes the horizontal resolution, which extends

to all depths. This may cause over-discretization of

the deeper regions, hence leading to redundant

computational requirements. The unstructured grid,

generally adopted by FEM, commonly employs the

tetrahedral cells to discretize the model, which allows

local refinement and roughening to avoid the over-

discretization condition.

We present a new 3-D DCR forward modeling

based on a finite-difference multi-resolution (MR)

grid approach. The MR grid was initially developed

for the electromagnetic forward problem and proved

to be an efficient alternative to the conventional

structured finite-difference approach (Cherevatova

et al. 2018). The MR grid is a simplified implemen-

tation of the non-conformal grid, it resembles the

approach suggested in the octree scheme of Haber

and Heldmann (2007), but limited to only the hori-

zontal resolution’s refinement. The MR grid can be

derived from a fundamental SG grid by horizontally

combining adjacent cells. Thus, MR grid represents a

vertical stack of several SG grids (sub-grids) with

different horizontal resolutions. In this way, the for-

ward modeling operators developed for SG grid are

readily applied for each sub-grid.

The main difficulty in MR modeling is the defi-

nition of the forward operators at common interfaces

between the adjacent sub-grids. Several approaches

to defining differential operators at the interfaces

were considered and tested in Cherevatova et al.

(2018). Generally, all grid nodes and edges are sep-

arated into two groups: ‘active’ and ‘inactive’.

Inactive elements are not evaluated in the solution,

but represented by their neighboring active elements

through interpolation. This allows defining differen-

tial operators in the physically correct way at the

common interfaces. The only difference between the

approaches to handle operators on the interfaces lies

in the definition of active and inactive grid elements

and the interpolation scheme. As a result, different

accuracy might be achieved, depending on the

selected approach. Following the conclusion of

Cherevatova et al. (2018), we selected the Coarse

Active (CA) approach, which is shown to be the most

efficient and accurate. Moreover, within the CA

approach the discrete divergence operator is the

adjoint of the discrete gradient operator, which leads

to the symmetry of the coefficients matrix. In this

case the linear equations set can be solved efficiently

using the Preconditioned Conjugate Gradient method.

As a result, the time required for solving the system

of equations is nearly linear with respect to the

degrees of freedom (DoF). The MR grid allows us to

substantially reduce the amount of DoF leading to a

significant speed-up of the forward modeling.

The paper is organized as follows. In the methods

part, we briefly describe the standard staggered grid

formulation of the DCR modeling problem, and its

modification to define the problem on the multi-res-

olution grid. In order to verify our newly developed

algorithm, in the following sections we present sev-

eral synthetic examples to examine the speed and

accuracy of the MR solution.

2. Methods

The DCR forward modeling problem can be

viewed in terms of solving the Poisson-type equations

for the electrical potentials u in a modeling domain

X. The corresponding partial differential equations

(PDEs) is:
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r � ½rðx; y; zÞruðx; y; zÞ� ¼ �Idðx � x0Þdðy � y0Þdðz � z0Þ;
ð1Þ

where rðx; y; zÞ is the electrical conductivity arbi-

trarily distributed in X; r� and r are the divergence

and gradient operators, respectively. The right-hand

side in Eq. (1) defines the source term, where I is the

current intensity, ðx0; y0; z0Þ denotes the current

electrode’s coordinate, and dð�Þ is the delta function.

In order to solve the PDEs, boundary conditions

are required on the boundaries confining X into a

finite space. In our approach, we implemented Neu-

mann boundary condition on the top boundary C0 to

prevent the electrical current from flowing out. For

the distant side boundaries C1, we simply employed

the Dirichlet boundary condition (Mufti 1976; Tripp

et al. 1984) in our tests.

Since the multi-resolution (MR) grid is based on

the conventional staggered (SG) grid, first we briefly

describe the DCR modeling on SG grid. Then we

explain the implementation of MR grid approach and

emphasize its differences.

2.1. Staggered Grid Approach

The modeling domain X on the SG is discretized

into Nx, Ny and Nz rectangular cells in the x, y and z

directions, respectively. The entire modeling domain

is divided into Nc cells (¼ Nx � Ny � Nz) in total, and

each cell holds a constant conductivity value r.
Nodes and edges are construction elements of the

primary-grid. Nn and Ne denote the number of nodes

and edges, respectively. Edge-lengths LE and cell-

volumes VC are metric elements of the primary-grid.

The dual-edges are defined as the lines between the

adjacent cell-center points and constitute the dual-

grid. Metric elements of the dual-grid include dual-

cell-volumes ~VC and dual-face areas ~AF , as shown in

Fig. 1.

Using conventional SG grid finite-difference

formulation, Eq. (1) can be represented in a discrete

form as:

½GydiagðrÞG�u ¼ J; ð2Þ

where J is the source elements vector (Nn � 1)

defined on the nodes. The injected current is assumed

to be distributed over ~VC of the dual-cell around the

‘lucky’ node where the current electrode is placed

(Scriba 1981; Pidlisecky et al. 2007). The elements of

J are:

J ¼
0 node 6¼ current electrode

� I
~VC

node ¼ current electrode:

(
ð3Þ

On the left-hand side of Eq. (2), u denotes a

vector (Nn � 1) of the unknown potential values

defined on the grid nodes. G is the discrete gradient

operator matrix (Ne � Nn), which maps from nodes to

edges and is derived as:

G ¼ diagðL�1
E ÞG; ð4Þ

where G is a sparse topology matrix (Ne � Nn) of the

first derivatives with �1 non-zero entries mapping

from nodes to edges; L�1
E is a vector (Ne � 1) with

elements of reciprocal of the edge-lengths. The dis-

crete divergence operator matrix Gy (Nn � Ne) is an

adjoint of G, which maps back from edges to nodes.

Gy can be derived using a topology matrix (Nn � Ne)

combined with the metric weighting as well. It is

readily verified that the transpose of �G works as a

reasonable approximation to the topology matrix of

Gy (Cherevatova et al. 2018), see the spatial illus-

trations and matrix forms of G and �G
T

in

Appendix. Thus, Gy is defined as:

Figure 1
Staggered grid discretization. Black points and solid lines are nodes

and edges of the primary-grid, respectively. Dashed lines are dual-

edges of the dual-grid. The abbreviations denote: LE , the edge-

length; VC , the cell volume (e.g. the blue region); ~AF , the dual-face

area (e.g. the yellow face); ~VC , the dual-cell-volume (e.g. the red

region)
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Gy ¼ �diag ~V�1
C

� �
G

T
diagð ~AFÞ; ð5Þ

where ~VC and ~AF are the dual-cell-volumes vector

(Nn � 1) and dual-face-areas vector (Ne � 1),

respectively.

The conductivity parameters, initially defined at

cell centers, need to be mapped to the cell edges to

evaluate current densities from the Ohm’s law.

Hence, we need to estimate r which represents the

averaged conductivity vector (Ne � 1) on the edges.

This can be done using the volume-weighted aver-

aging approach which maps from cells’ conductivity

to r as:

r ¼ diag ŴVC

� ��1
h i

Ŵdiag VCð Þr ¼ Wr; ð6Þ

where Ŵ is a sparse averaging topology matrix

(Ne � Nc) mapping cells to edges, see Appendix for

further details. VC and r are the cell volumes and cell

conductivity vectors (Nc � 1), respectively. Thus, the

derived W is regarded as a volume-weighted aver-

aging operator.

In short, Eq. (2) can be expressed as a system of

linear equations:

Au ¼ b; ð7Þ

where b (Nn � 1) represents the source term with

boundary conditions; A, i.e. the product of

GydiagðrÞG, denotes the derived non-symmetric

coefficients matrix (Nn � Nn). However, by multi-

plying both sides of Eq. (7) with �diagð ~VCÞ, i.e. the
corresponding dual-cell-volumes, we obtain a new

coefficient matrix eA, which is a symmetric and pos-

itive definite matrix, the source term is also changed

to eb ¼ �diagð ~VCÞb. Therefore the system of equa-

tions can be rewritten in the following form:

G
T
diagð ~AFÞdiag Wrð Þdiag L�1

E

� �
G

h i
u ¼ �diagð ~VCÞb:

ð8Þ

A natural choice for solving a large symmetric

system of linear equations would be one of the

Krylov subspace iterative methods. We choose to

solve Eq. (8) using the Preconditioned Conjugate

Gradient (PCG) method, which takes advantage of

the symmetry of eA and is superior to the generalized

solvers (Spitzer 1995). As a preconditioner, the

Symmetric Successive Over-Relaxation (SSOR)

method is employed. The combination (SSOR-PCG)

shows a fast and stable convergence in our tests.

Later we refer to the left and right-hand sides of

Eq. (8) as Au and b correspondingly omitting the

tilde.

2.2. Secondary Field Formulation

The most significant potential variations appear

around the current electrodes, causing the singular

solutions at those points. Local refinement of the grid

around the source region is one of the options to

alleviate the numerical errors, but it requires very fine

discretization around the current electrodes positions,

and therefore, inevitably increases the computational

costs. Alternatively, secondary field approach is

commonly applied (Lowry 1989) to tackle this

problem.

The total potential u can be decomposed into

primary potential up and secondary potential us.

Primary potential up is the response of the back-

ground model, including the source. We use the

homogeneous half-space as the background model,

therefore up can be calculated using the analytical

solution (Lowry 1989) as:

upðrÞ ¼
I

4prb

1

r � r0j j þ
1

r � r�0
�� ��

 !
; ð9Þ

where r0 and r�0 are the positions of the actual and

mirrored (against the surface) current electrodes,

respectively; rb represents the conductivity of the

background model.

Since up is generated from the same source as u,
meaning that the equations for the total potential and

primary potential have the same right-hand side, we

have:

Au ¼ A up þ us

� �
¼ Apup; ð10Þ

where Ap is the coefficient matrix of up that is

derived in a similar manner as A, but with rb. By

reorganizing Eq. (10), we obtain an expression for

the secondary potential:

Aus ¼ bs; ð11Þ

where bs ¼ Ap � A
� �

up is the source term of the

secondary potentials. Since, up is exactly evaluated

2806 J. Gao et al. Pure Appl. Geophys.



using the analytical solution of Eq. (9), the new right-

hand side could provide a correction effect to the us

solution.

2.3. Multi-resolution Grid Approach

In the following, we demonstrate the implemen-

tation of the MR grid for the DCR modeling. MR grid

can be represented as a vertical stack of several sub-

grids. Each sub-grid can be regarded as a standard SG

grid. An example of MR grid is shown in Fig. 2a. We

implemented the DCR modeling on both SG and MR

grids within the ModEMM framework (Cherevatova

et al. 2018), based on an object-oriented scheme (in

Matlab). Thus, it allows the operations of the SG grid

to be extended to the sub-grids in the MR grid.

The horizontal resolution of each sub-grid

(N
ðiÞ
x � N

ðiÞ
y ) is determined by the following rule:

NðiÞ
x ¼ Nf

x

2CsðiÞ
; NðiÞ

y ¼
Nf

y

2CsðiÞ
; ð12Þ

where i denotes the index of the sub-grid, Nf
x � Nf

y is

the finest horizontal resolution used in the whole MR

grid, CsðiÞ is the Coarseness parameter (a non-nega-

tive integer) of the ith sub-grid. N
ðiÞ
x and N

ðiÞ
y between

adjacent sub-grids can only change by a factor of two.

It is noteworthy that CsðiÞ is not only limited to

increase with depth but also allowed to decrease.

Thus, Nf
x � Nf

y is not fixed in the top sub-grid

(although, we commonly implement it in this way),

which could also be assigned to the lower sub-grids to

describe complex geometries.

Based on the above rule, the MR grid can be

derived from a fundamental SG grid with a dis-

cretization: Nf
x � Nf

y � Nf
z . First, one split the SG grid

into Nsg sub-grids, such as
PNsg

i¼1 NðiÞ
z ¼ Nf

z , where

NðiÞ
z is the vertical discretization of each sub-grid.

Second, for a sub-grid with CsðiÞ [ 0, horizontally

combine each set of 2CsðiÞ � 2CsðiÞ cells to form a

coarser cell. Following the above rule, the discretiza-

tion of the MR grid is only controlled by the

fundamental SG grid and the parameters:

CsðiÞ;NðiÞ
z ;

� ���
i¼1;Nsg

, which leads to a very simple

gridding process. For instance, the MR grid in Fig. 2a

with parameters: CsðiÞ;NðiÞ
z ;

� ���
i¼1;2

¼ ð0; 2; 1; 2Þ is

derived from a 4� 4� 4 SG grid. Alternatively, the

discretization can start from the coarsest SG grid by

refining the sub-grids, however, we always describe

sub-grids relative to the finest sub-grid.

(a) (b)
z

Figure 2
Multi-resolution grid with two sub-grids based on the CA approach (see 2.4). a Red interface denotes the common interface between upper

and lower sub-grids. Only the active nodes and edges are shown. b Classification of the nodes and edges on the common interface. Green

elements from the lower (coarser) sub-grid are active; red elements from the upper (finer) sub-grid are inactive
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2.4. Multi-resolution Grid Elements Classification

Since each sub-grid could be regarded as a

standard SG grid, at the interior of each sub-grid,

the spatial relations between the grid elements are the

same as the SG grid, therefore the forward operators

(Gy, G and W) have the same structure as Eqs. (4),

(5) and (6). However, the main challenge in the MR

grid implementation is the definition of the forward

operators on the overlapped interface between the

adjacent sub-grids, e.g. the red interface in Fig. 2a.

On a common interface, part of the grid elements

(nodes and edges) from the finer sub-grid overlap

with the grid elements from the coarser sub-grid,

which will lead to redundant elements. In addition,

due to the changing of horizontal resolution, the

remained grid elements from the finer sub-grid

without the corresponding partner from the coarser

sub-grid will be ‘hanging’ on the interface. See an

illustration of the interface in Fig. 2b.

The nodes and edges in the MR grid are classified

into two groups: active and inactive elements. The

active elements are involved in the calculation

explicitly, whilst the inactive elements are eliminated

from the solution. All the nodes and edges at the

interior of the sub-grids are classified as active, whilst

the choice at the common interface will affect the

overall solution accuracy. Three approaches were

considered and tested in Cherevatova et al. (2018).

(1) Face Active (FA) case classifies the nodes and

edges from the finer sub-grid as active and the

elements from the coarser sub-grid as inactive similar

to Haber and Heldmann (2007) results and provides

operators symmetry; (2) Ghost Faces (GF) case is

similar to FA, but it extends one ‘ghost’ interpolated

finer layer into the coarser sub-grid, resulting in a

second-order accuracy but lacks symmetry (Horesh

and Haber 2011); (3) Coarse Active case (CA) is a

reverse to FA that takes the nodes and edges from the

coarser sub-grid as active. It has accuracy similar to

GF but also maintains symmetry. Therefore, CA case

is a preferable approach, which we used to implement

the MR DCR modeling. Figure 2b shows the classi-

fication of CA case. Later we use Nactive
n and Nactive

e to

denote the number of the active nodes and edges on

MR grid, respectively.

2.5. Multi-resolution Grid Forward Modeling

Operators

In order to construct the coefficient matrix A, the

discrete gradient operator G on MR grid should be

defined. In a similar manner to SG grid, G is

represented by its topology matrix G mapping from

active nodes to active edges and corresponding

metric elements. As it was described before, inside

the sub-grids, G is the same as the gradient operator

on SG grid. However, we need to deal with the

inactive elements on the common interfaces as well,

this can be achieved by decomposing the topology

operator G into three matrices as:

G ¼ RcoarseGfullAcoarse: ð13Þ

Sparse matrix Acoarse (Nn � Nactive
n ) interpolates a

set of active nodes to a full set of nodes (both the

active and inactive nodes). At the common interfaces,

Acoarse has the different interpolation entries depend-

ing on the following conditions:

1. For an active node, Acoarse acts as a self-mapping

operator, therefore the corresponding interpolation

coefficient in Acoarse is 1.

2. For an inactive node from the finer sub-grid

overlapping with an active node from the coarser

sub-grid, e.g. the inactive and active nodes with

label i1 and a1 respectively in Fig. 2b, the

corresponding interpolation coefficient from a1

to i1 is 1 as well.

3. For an inactive node located on an active edge, the

entries are defined by the linear interpolation. In

Fig. 2b, the mapped inactive node i2 is interpo-

lated from the adjacent active nodes a2 and a3.

4. For a ‘hanging’ inactive node located on a face of

a coarser cell, it is linearly interpolated from four

surrounding active nodes. For example, the inac-

tive node with label i3 is interpolated by the active

nodes with label a4 to a7 in Fig. 2b.

In general horizontally non-uniform case, the

interpolation coefficients are derived by the corre-

sponding metric elements.

Full gradient topology matrix Gfull is represented

as a block diagonal matrix (Ne � Nn) with gradient

topology operators G
ðiÞ

of each sub-grid on the

diagonal:

2808 J. Gao et al. Pure Appl. Geophys.



Gfull ¼

G
ð1Þ

. .
.

G
ðiÞ

. .
.

G
ðNsgÞ

2
666666664

3
777777775
: ð14Þ

Thus, Gfull is the gradient topology matrix of the

full MR grid that maps from the full node set to the

full edge set, and the sparse selection matrix Rcoarse

(Nactive
e � Ne) picks out the rows corresponding to the

active edges only.

It is also readily verified that the transpose of �G

is a good approximation to the topology matrix of the

discrete divergence operator Gy on MR grid, even

around the common interface (Cherevatova et al.

2018), see the spatial illustrations and matrix forms of

G and �G
T
in Appendix. Thus, G and Gy on MR

grid can be derived in a similar manner as Eqs. (4)

and (5) for SG grid. However, ~VC (Nactive
n � 1)

includes only dual-cell-volumes around the active

nodes, LE and ~AF vectors (Nactive
e � 1) include only

edge-lengths and dual-face-areas elements of the

active edges, respectively.

r (Nactive
e � 1) is only evaluated on the active

edges and can be derived from Eq. (6) as well. The

topology matrix Ŵ maps from the cells set to the

active edges set. However, the rows of Ŵ, which

correspond to the active edges at the common

interfaces, include more nonzero coefficients related

to the extra cells from the adjacent finer sub-grid, see

Appendix for further details.

We take the advantage of CA symmetry, i.e. Gy is

well approximated by the adjoint of G similarly to

SG case, therefore, the derived coefficients matrix A

is also symmetric. In the MR case, the system of

equations can also be solved efficiently using SSOR-

PCG iterative solver, but the degree of freedom

Figure 3
2D slice (central region, y ¼ 0m) of the model from example 1.

Solid grid denotes the common discretization for both of SG and

MR grids; dashed lines represent the removed edges in MR grid,

which exist in SG grid; white lines highlight the common interfaces

between the adjacent sub-grids in MR grid

(a) (b)

Figure 4
a Apparent resistivity responses qa and b relative differences from example 1. The abbreviations denote: SG the staggered grid solution, MR

the multi-resolution grid solution, 1-D the linear filter method solution
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(DoF) of the system can be significantly decreased

compared to the original SG grid.

3. Results

In this section, several examples were presented

to verify the accuracy and efficiency of our algorithm.

All the modeling of the SG and MR grid approaches

were computed on a PC with 2.60 GHz CPU and

16GB memory.

3.1. Example 1

The first example, we considered a 1-D model

with three layers. The layers’ resistivity and thick-

ness were ðq;Dh; Þ ¼ ð100 Xm; 30 m; 300Xm; 30 m;

10 Xm; �Þ from top to bottom, as shown in Fig. 3.

We calculated vertical electrical sounding data for

Wenner-Schlumberger configuration. The electrodes

spacing adopted a ¼ 20m and n ¼ 1 to 8 levels

(separation between the current and potential elec-

trodes is n � a).

The model was discretized by an SG grid with

resolution 120� 120� 40 at first, the central region

was divided by 5 m uniform-cells, see Fig. 3. An MR

grid was derived from the SG grid and decomposed it

into three sub-grids with parameters: CsðiÞ;NðiÞ
z ;

� ���
i¼1;3

¼ ð0; 9; 1; 21; 2; 10Þ, i.e. the horizontal resolution was

gradually roughened downwards as 120� 120, 60�
60 and 30� 30. The common interfaces between

adjacent sub-grids were located inside layers, as

shown in Fig. 3.

The apparent resistivity responses (qa) of SG and

MR grid solutions as well as the linear filter method

solution (Ingeman-Nielsen and Baumgartner 2006)

are shown in Fig. 4a, they all represent the characters

of the layered model. Since the differences between

them are nearly indistinguishable, we calculated the

relative differences of the SG and MR grid solutions

against the linear filter method solution, as shown in

Fig. 4b. The maximum relative differences of the SG

and MR solutions are 0:165% and 0:176%, which are

nearly the same, meaning that the solutions are both

accurate. The relative difference of the MR grid

solution is slightly higher than the SG grid solution,

which could due to the coarser discretization of the

deeper regions, but it’s negligible.

3.2. Example 2

Next, we considered a 3-D case to demonstrate

the accuracy and speed of the MR grid approach

against the SG grid approach. The model with

100 Xm background included two anomalous blocks

with the same resistivity of 1Xm and size of

(a)

(b)

Figure 5
2D slices (central region, y ¼ 0m) of the model and Es vector

diagram from example 2. Insignificant regions are omitted to show.

a MR grid discretization. White lines highlight the common

interfaces between the adjacent sub-grids. b Es vector calculated on

SG grid generated by the positive current electrode at ðx; y; zÞ ¼
0m (red cone). Dashed lines show the outlines of the anomaly

blocks
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60m� 60m� 40m, where they were placed at

different depths of 20m and 80m, as shown in

Fig. 5a. The data were calculated for one 600m pole-

dipole profile with 30 m electrode distance (a) and

n ¼ 1 to 8 levels, which includes 21 electrodes in

total.

A larger SG grid 176� 176� 50 was created to

fit the longer electrode offsets, and its central part was

uniformly discretized with 5 m cells. Since the

electric field implies the intensity of the potential

variation (E ¼ Gu), the secondary electric fields (Es)

on SG grid generated by the current electrode at

ðx; y; zÞ ¼ 0m was calculated. The distribution of Es

is shown in Fig. 5b to demonstrate the behavior of us.

Based on the intensity of Es, the most significant us

variations are observed around the shallow block,

which is closer to the current electrode. On the

contrast, the perturbations around the deeper block

(with the same resistivity and shape) are much

weaker. Therefore, it demonstrates a general ten-

dency that us is gradually losing the sensitivity with

increasing the distance from the source. Since the

potential variations attenuate with depth, the grid

resolution can be decreased correspondingly.

An MR grid was designed subsequently based on

the SG grid, it consists of three sub-grids with the

parameters: CsðiÞ;NðiÞ
z ;

� ���
i¼1;3

¼ ð0; 14; 1; 26; 2; 10Þ.

The deeper block was placed in the middle sub-grid,

which is one step coarser, see Fig. 5a.

The qa pseudo-section of the MR grid solution is

shown in Fig. 6a. Due to the closer distance to the

source, the shallow block induced much stronger

anomaly than the deeper block. The MR and SG grid

responses were compared, and the relative difference

between them is shown in Fig. 6b. Larger differences

are mainly focused at the anomaly areas caused by

the coarser discretization of the deeper block (- 100

to - 50 m of the profile coordinate). However, the

maximum relative difference is merely 0:35%.

The us on MR grid generated by the same current

electrode at ðx; y; zÞ ¼ 0m was calculated, and its

distribution is shown in Fig. 7a. It is noteworthy that

the contour map of each sub-grid was plotted

separately without any interpolated connection

between them. The contour lines of us demonstrate

that the sub-grids are well-connected and there are no

artifices or interruptions due to the horizontal reso-

lution changing between sub-grids. It means that we

have sufficient accuracy at the common interfaces.

The relative difference of u between the MR and

SG solutions is shown in Fig. 7b. The higher relative

differences were induced by the deeper block with

coarser discretization, but does not exceed 1:52%.

(a) (b)

Figure 6
Pseudo-sections from example 2. a qa response of the MR grid solution. b Relative difference between the MR and SG grid responses
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Moreover, there are no obvious differences at the

surface where data were measured.

We compared the run-times and memory usage of

the forward modeling in the SG and MR approaches.

In order to avoid uncertainties, the modeling was

tested for 5 times, and the averaged values are

presented in Table 1.

The MR grid approach requires less time for

solving the system of equations (43.33% of the SG

grid), which is nearly linear with respect to the

reduction in the amount of DoF. As solving the

equations set is the most time-consuming part of the

forward modeling, the MR approach allows us to

greatly improve the efficiency of the forward mod-

eling. The memory usage is also reduced accordingly.

3.3. Example 3

The topography has a profound effect in the DCR

modeling. Hence, we present a 3-D model that

incorporates a 40 m deep valley with 11	 surface

slope. The background of the model was 100Xm,

and the air cells were assigned with 1010 Xm. Block

1 and 2 with the same size (40m� 40m� 30m) and

resistivity (500Xm) were placed at depths of 55m

and 65m, respectively. In addition, block 3 with a

bigger size (60m� 60m� 50m) and higher resis-

tivity (1000Xm) located at a deeper depth of 85m.

The data of two 400m dipole-dipole profiles along

x ¼ 0m and y ¼ 0m directions were calculated. Each

profile adopted the geometry factors of a ¼ 40m, n ¼
1 to 8 levels and included 11 electrodes. The

electrode arrays followed the topography and located

above the block anomalies. See the model and

measurement configurations in Fig. 8.

Fine grid discretization is required near the

surface to describe the topography. For the SG grid,

the 2:5m� 2:5m� 2m cells were employed in the

central region of the topography layers. In the deeper

layers (46m
 z
 225m), the cells’ thickness was

gradually extended to 5 m. It makes the total

discretization of the SG equal to 248� 248� 70.

The MR grid divided the SG grid into four sub-grids

with parameters: CsðiÞ;NðiÞ
z ;

� ���
i¼1;4

¼ ð0; 23; 1; 9;
2; 23; 3; 15Þ. The finest horizontal resolution

(248� 248) was only used in the topmost sub-grid

(0m
 z
 46m) to discretize the topography portion,

afterwards the horizontal resolution was gradually

reduced in the lower sub-grids. Block 1 and 3 located

(a)

(b)

Figure 7
2D slices (central region, y ¼ 0m) of the contour plots from

example 2, the potential is generated by the positive current

electrode at ðx; y; zÞ ¼ 0m (red cone). Dashed lines show the

outlines of the anomaly blocks. Thicker solid lines highlight the

common interfaces between the adjacent sub-grids. a us distribu-

tion, the contour map of each sub-grid was plotted by independent

sections without interpolated connection between them. b The

relative differences of u between the MR and SG solutions

Table 1

Comparison of the modeling efficiency between SG and MR grid

approaches from example 2

DoF tFwd teq RAM

SG 1,531,250 198.01 s 9.3 s 2348 Mb

MR 644,034 83.81 s 4.03 s 946 Mb

MR=SG� 100% 42.06% 42.33% 43.33% 40.29%

The abbreviations denote: DoF, the degrees of freedom; tFwd ,

averaged time of forward modeling; teq, averaged time for solving

the system of equations (one source); RAM, maximum memory

usage. The last row compares the ratio of the above parameters in

percent

2812 J. Gao et al. Pure Appl. Geophys.



in the second (horizontal resolution: 124� 124) and

third sub-grids (62� 62) respectively, and the com-

mon interface (z ¼ 85m) between them crossed

block 2. The bottom padding layers were discretized

with the coarsest horizontal resolution of 31� 31.

See the MR grid discretization in Fig. 9.

In order to avoid the influences from using an

improper background model in the secondary field

approach (e.g. using the flat half-space model for this

topography case), the total field approach was

employed. The qa pseudo-sections of the MR grid

response are shown in Fig. 10a, b. As it can be seen

from the figures, the high qa values caused by the

blocks can be observed, where the anomaly responses

of two shallow blocks are more obvious. The

topography caused perturbations in qa, which could

heavily disturb the anomaly responses, especially for

the response of block 3, which is hard to find out.

Therefore, the topography effect should be taken into

account when interpreting the data to avoid inade-

quate interpretations.

The MR and SG grid solutions were compared

with the finite-element method (FEM) solution,

which used unstructured grid (Ren et al. 2017). The

relative differences between the SG and MR grid

solutions against the FEM solution were calculated

and presented in Fig. 10c–f. As one can see, the

relative differences of the SG and MR grid solutions

against the FEM solution are generally less than 1%.

The deviations could mainly come from the

Figure 8
Central part of the model from example 3. Two perpendicular dipole–dipole profiles locate on the ground surface following the topography.

Black cones show the locations of the electrodes array

Block 3

Block 2

Figure 9
2D slice (y ¼ 0 m, central region) of the MR grid discretization

from example 3. White lines highlight the common interfaces

between the adjacent sub-grids in MR grid; black cones denote one

electrodes array along y ¼ 0 m direction
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discretization approaches with respect to the topog-

raphy. The topography was discretized by SG and

MR grids using a mass of fine rectangular cells to fit

the surface in a staircase approximation manner.

Contrarily, the tetrahedral cells used by FEM can

preferably fit the topography surface, which is more

(a) (b)

(c) (d)

(e) (f)
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suitable for coping with the topography case. Even

so, the overall solutions are comparable.

The maximum relative differences of SG and MR

grids are 0:99% and 1:13%, respectively. The slightly

larger differences occurred at n[ 5 part of MR grid

solution, which can be explained by using the coarser

discretization for the deeper regions of the MR grid

comparing with SG grid. However, the relative

differences of SG and MR grids generally resemble

each other, thus, the MR grid achieved a proximate

accuracy with the SG grid.

We present results of the speed-up test for

example 3 in a similar manner as example 2, see

Table 2. The fine horizontal resolution required to

handle the topography leads to a higher number of

DoF in the SG case and naturally caused higher

computational demands (Table 2). The MR grid

roughen horizontal resolution downwards to avoid

the over-discretization in the deep. Consequently, it

reduced the DoF significantly to only 38:37% of the

SG grid, and resulted in a smaller forward problem.

Comparing run-times and memory usage, the MR

grid reduced the computational costs to nearly one

third of SG grid case, but without loss of the

modeling accuracy. It means that the MR grid is

more suitable than the SG grid for solving large

modeling problem.

4. Conclusions

We implemented the multi-resolution (MR) grid

approach to 3-D Direct Current Resistivity (DCR)

modeling. The MR grid allows to adjust the hori-

zontal resolution with depth, which is more flexible

than the conventional staggered (SG) grid with

respect to description of the shallow geometries,

topography, and measurements configuration.

We applied a Coarse Active (CA) approach,

which was carefully studied in Cherevatova et al.

(2018), to handle the common interfaces between the

sub-grids. Beneficial from the definition of the dif-

ferential operators on the interface layers, the derived

coefficient matrix remains in symmetric form as in

the SG grid approach. Preconditioned conjugate

gradient method was used as the solver, which pro-

vides fast and stable convergence due to the

symmetry of the system of linear equations. We

presented three synthetic studies to verify the accu-

racy and efficiency of the MR DCR modeling. The

SG grid solution with fine discretization guarantees

the accurate response, but leads to higher computa-

tional demands. The MR grid allows us to reduce the

computational costs (CPU time and RAM usage)

substantially without loss of accuracy. This is

specifically important for inversion algorithms, which

require numerous modeling calculations. Taking into

account, that MR code can be parallelized to further

accelerate calculations, the MR solver opens per-

spectives for large inversions, which are in high

demand for geophysical problems.
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bFigure 10

Pseudo-sections from example 3. a, c, e, b, d, f Represent the

pseudo-sections of the profiles along y ¼ 0m and x ¼ 0m direc-

tions, respectively; a, b are the qa response of the MR grid solution;

c, d are the relative differences of the SG grid solution against the

FEM solution; e, f are the relative differences of the MR grid

solution against the FEM solution

Table 2

Comparison of the modeling efficiency between SG and MR grid

approaches from example 3. The abbreviations denote: DoF, the

degrees of freedom; tFwd, averaged time of forward modeling; teq,

averaged time for solving the system of equations (one source);

RAM, maximum memory usage. The last row compares the ratio of

the above parameters in percent

DoF tFwd teq RAM

SG 4,270,630 671 s 38.65 s 5441 Mb

MR 1,638,451 223.88 s 12.33 s 2430 Mb

MR=SG� 100% 38.37% 33.37% 31.9% 44.66%
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Appendix: Topology Matrices of Forward Operators

on SG and MR Grids

Three parts of an uniform SG grid are used to

present the spacial illustrations of G, �G
T
and Ŵ,

which are the topology matrices of the gradient,

divergence and volume-weighted averaging opera-

tors, respectively. Figure 11a shows a portion of G (z

component) mapping from two nodes to an edge,

Fig. 11c shows a portion of �G
T
mapping from six

edges to a node, and Fig. 11e shows a portion of Ŵ

mapping from four cells to an edge. The corre-

sponding coefficients in G, �G
T
and Ŵ matrices are:

G ¼
. .
.

� 1 1

. .
.

2
6664

3
7775; ð15Þ

�G
T ¼

. .
.

�1 1 � � � � 1 1 � � � � 1 1

. .
.

2
6664

3
7775;

ð16Þ

Ŵ ¼

. .
.

1
4

1
4

1
4

1
4

. .
.

2
6664

3
7775: ð17Þ

An MR grid was formed based on the above SG

grid. Three positions, where include common inter-

faces between adjacent sub-grids, are used to present

the spacial illustrations of G, �G
T
and Ŵ on MR

grid, which involve more complicated forms. Fig-

ure 11b shows a portion of G (z component) mapping

from five nodes to an edge, Fig. 11d shows a portion

of �G
T
mapping from fourteen edges to a node, and

Fig. 11f shows a portion of Ŵ mapping from ten cells

to an edge. The corresponding coefficients in G, �G
T

and Ŵ matrices are:

G ¼

. .
.

� 1 1
4

1
4

1
4

1
4

. .
.

2
6664

3
7775; ð18Þ

�G
T ¼

. .
.

�1 1 � � � � 1 1 � � � � 1
4

� 1
2

� 1
4

� 1
2

� 1 � 1
2

� 1
4

� 1
2

� 1
4

1

. .
.

2
6664

3
7775; ð19Þ

Ŵ ¼

. .
.

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

� � � 1
4

1
4

. .
.

2
6664

3
7775: ð20Þ
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(a) (b)

(c) (d)

(e) (f )

Figure 11
Spatial illustrations of the topology matrices: G (z component) mapping from nodes (blue points) to an edge (blue line), �G

T
mapping from

edges (blue lines) to a node (blue point) and Ŵ mapping from cells (blue volumes) to an edge (blue line). a, c, e G, �G
T
and Ŵ on SG grid,

respectively. b, d, f G, �G
T
and Ŵ on MR grid, respectively, the red interface denotes the common interface between two adjacent sub-grids

in MR grid
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