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Abstract—Probabilistic Tsunami Hazard Assessment (PTHA)

often proceeds by constructing a suite of hypothetical earthquake

scenarios, and modelling their tsunamis and occurrence-rates. Both

tsunami and occurrence-rate models are affected by the represen-

tation of earthquake slip and rigidity, but the overall importance of

these factors for far-field PTHA is unclear. We study the sensitivity

of an Australia-wide PTHA to six different far-field earthquake

scenario representations, including two rigidity models (constant

and depth-varying) combined with three slip models: fixed-area-

uniform-slip (with rupture area deterministically related to mag-

nitude); variable-area-uniform-slip; and spatially heterogeneous-

slip. Earthquake-tsunami scenarios are tested by comparison with

DART-buoy tsunami observations, demonstrating biases in some

slip models. Scenario occurrence-rates are modelled using Baye-

sian techniques to account for uncertainties in seismic coupling,

maximum-magnitudes and Gutenberg-Richter b-values. The

approach maintains reasonable consistency with the historical

earthquake record and spatially variable plate convergence rates for

all slip/rigidity model combinations, and facilitates partial correc-

tion of model-specific biases (identified via DART-buoy testing).

The modelled magnitude exceedance-rates are tested by compar-

ison with rates derived from long-term historical and paleoseismic

data and alternative moment-conservation techniques, demon-

strating the robustness of our approach. The tsunami hazard

offshore of Australia is found to be insensitive to the choice of

rigidity model, but significantly affected by the choice of slip

model. The fixed-area-uniform-slip model produces lower hazard

than the other slip models. Bias adjustment of the variable-area-

uniform-slip model produces a strong preference for ‘compact’

scenarios, which compensates for a lack of slip heterogeneity.

Thus, both heterogeneous-slip and variable-area-uniform-slip

models induce similar far-field tsunami hazard.

Key words: Probabilistic tsunami hazard assessment,

sensitivity analysis.

1. Introduction

Destructive tsunamis are most often generated by

large subduction zone earthquakes (Grezio et al.

2017). Although the highest runup usually occurs

near to the source, earthquake-generated tsunamis

show strong directivity and can remain hazardous at

trans-oceanic distances (Ben-Menahem and Rosen-

man 1972). This was illustrated by the far-field

impacts of the 2004 Sumatra-Andaman tsunami (300

deaths in Somalia), the 1960 Chile tsunami (203

deaths in Hawaii and Japan), and the 1946 Aleutian

tsunami (162 deaths in California, the Marquesas and

Hawaii) (Okal et al. 2002; Fritz and Borrero 2006;

Okal 2011). The latter sites range between 4000 and

17,000 km from the tsunami source. Probabilistic

Tsunami Hazard Assessments (PTHAs) suggest far-

field subduction earthquakes can contribute at first-

order to the hazard even for sites exposed to near-

field subduction sources, such as Crescent City (near

Cascadia) and Napier (near the Hikurangi trench)

(Gonzalez et al. 2009; Geist and Parsons 2016; Power

et al. 2017).

A key challenge for earthquake-generated tsunami

hazard assessments concerns representing earth-

quakes and their occurrence-rates given substantial

uncertainties in the underlying science (Selva et al.

2016; Davies et al. 2017; Power et al. 2017). Most

studies follow a computational approach which

requires specifying each earthquake scenario’s loca-

tion, moment magnitude Mw, focal mechanism,

rupture extent, rigidity and spatial distribution of slip,

and subsequently modelling the resulting tsunami

(Grezio et al. 2017). The plausible variation of

earthquake parameters and occurrence-rates is often

very large; e.g., on the Kermadec-Tonga trench
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Berryman et al. (2015) suggested the maximum

earthquake magnitude Mw;max could be anywhere

between [8.1–9.6], implying large uncertainty in

potential far-field tsunami impacts. The representa-

tion of rupture area, spatial slip variability and

rigidity is also not standardized, with different

approaches potentially leading to first-order differ-

ences in the modelled tsunami size when Mw is fixed

(Geist and Bilek 2001; Gica et al. 2007; Davies et al.

2015; Mueller et al. 2015; Li et al. 2016; Butler et al.

2017; Mori et al. 2017). Compared with scenario

based hazard assessments, Probabilistic Tsunami

Hazard Assessment (PTHA) methodologies have the

great advantage that such uncertainties can be

explicitly integrated into the analysis, but the hazard

calculations remain sensitive to choice of models and

representation of uncertainties (Grezio et al. 2017).

Competing models/parameters must be weighted

appropriately to ensure limited weight is placed on

unlikely models (which is often nontrivial to ensure

in practice, as for Probabilistic Seismic Hazard

Assessment, Bommer and Scherbaum 2008). Baye-

sian methods offer a useful approach to this problem,

as initial weights can be updated based on the mod-

el’s consistency with data (Parsons and Geist 2009;

Grezio et al. 2010, 2017; Selva et al. 2016; Davies

et al. 2017). However testing and sensitivity analyses

remain critical for informing PTHA modelling deci-

sions, by focussing attention on the most significant

model weaknesses and the most influential sources of

uncertainty (Li et al. 2016; Sepúlveda et al. 2019;

Volpe et al. 2019).

Currently there is no consensus regarding how

earthquake rupture complexity (i.e. variability of

fault dimensions and spatial slip distribution) should

be represented for PTHA. Often rupture complexity

is considered most important for near-field tsunamis

and of limited significance at far-field sites (e.g. Geist

2002; Okal and Synolakis 2008), whereas other

studies suggest it is important also for far-field tsu-

namis (i.e. more than 1000 km from the source, Gica

et al. 2007; Li et al. 2016; Butler et al. 2017). In the

near-field case, it is clear that if Mw and the rupture-

area are fixed then slip heterogeneity substantially

influences modelled tsunami wave heights and inun-

dation (Geist 2002; Mueller et al. 2015; Ruiz et al.

2015). However this does not necessarily imply that

near-field tsunami hazard assessments must use

heterogeneous-slip. An et al. (2018) found that if the

rupture area and location were calibrated, then opti-

mal uniform-slip scenarios matched near-field

tsunami observations nearly as well as optimal

heterogeneous-slip scenarios. Fewer studies have

focussed on the far-field case. Okal and Synolakis

(2008) compared the far-field tsunami radiation pat-

tern of a uniform-slip scenario with a weakly

heterogeneous scenario (slip within 80–120% of the

mean). The far-field tsunami radiation pattern was

similar in both cases; however, finite-fault inversions

suggest historical earthquakes have much more than

20% slip variation (e.g. Poisson et al. 2011; Lay

2018) which may induce greater far-field effects. Li

et al. (2016) compared PTHA calculations derived

from uniform and heterogeneous-slip earthquakes on

the Manila trench, finding slip heterogeneity sub-

stantially increased the peak nearshore tsunami

amplitude at both near-field and far-field sites (e.g.

’ 35% at 500 year average return interval (ARI)).

Butler et al. (2017) modelled tsunamis in Hawaii due

to a range of uniform-slip Mw8:6 Aleutian Island

earthquakes with varying length and width, finding a

factor ’ 2 variation in the modelled far-field tsunami

size. Butler et al. (2017) also found Mw9:25 Aleutian

earthquakes with higher near-trench slip (and reduced

deep slip) produced more inundation in Hawaii than

similar uniform-slip scenarios, with some locations

being more sensitive to shallow slip than others. Gica

et al. (2007) studied the sensitivity of tsunami wave

heights in Hawaii to variations in the dimensions of

uniform-slip earthquakes in Chile, Japan, and the

Aleutians. Their modelled wave heights varied by a

factor ’ 2 due to doubling/halving the rupture length,

width and slip (while preserving Mw). They also

report that, along the main beam of tsunami energy,

the sensitivity of the wave to the rupture dimensions

did not decrease with increasing distance from the

source, suggesting that rupture complexity influences

even the far-field tsunami behaviour.

In addition to rupture complexity, PTHAs may be

affected by the representation of the fault rigidity l.
The rigidity mediates the relationship between Mw

and slip (and thus the tsunami size); all else being

equal, lower l implies higher slip for fixed Mw and

produces a larger offshore tsunami. In practice the
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rigidity of subduction zones is not very well con-

strained (Bilek and Lay 1999; Geist and Bilek 2001),

but tsunami hazard studies often assume constant l ’
3� 6� 1010 Pa (e.g. Butler et al. 2017; Fukutani

et al. 2018; Kalligeris et al. 2017). Despite this

common practice, the use of depth-varying l (with

low near-trench values) appears necessary to simulate

the large tsunamis observed historically following

shallow ‘tsunami-earthquake’ events (e.g. Geist and

Bilek 2001; Newman et al. 2011b; Hébert et al.

2012), albeit not in every such case (Newman et al.

2011a). For example, low rigidity was used to sim-

ulate near-field runup of up to 10 m resulting from the

2006 Mw7:7 Java tsunami-earthquake (Hébert et al.

2012), an event which also produced the highest

historically observed tsunami runup in Australia [7.9

m at Steep Point ’ 1800 km from the source, Pren-

dergast and Brown (2012)].

Even though the rigidity model is highly signifi-

cant for interpreting such events, it remains unclear

whether the overall tsunami hazard is sensitive to the

choice of constant or depth-varying rigidity, assum-

ing the modelled earthquake occurrence-rates are

constrained with a combination of earthquake cata-

logue data and moment conservation methodologies

(e.g. as in Kagan and Jackson 2013; Rong et al. 2014;

Davies et al. 2017). The combination of these

methodologies is desirable because earthquake cata-

logue data alone has limited power to constrain high

Mw exceedance-rates (Zöller 2013, 2017). Impor-

tantly, moment conservation arguments imply the

time-integrated earthquake slip-rate should balance

the seismically coupled fraction of the tectonic con-

vergence-rate (e.g. Bird and Kagan 2004; Bird and

Liu 2007), suggesting that for fixed Mw, low-rigidity

high-slip earthquakes should occur less often than

those with higher-rigidity and lower-slip. This would

reduce the effect of low-rigidity tsunami-earthquake

type events on the overall hazard. Thus to understand

how the hazard is affected by the rigidity model, it is

necessary to apply moment-conservation approaches

in conjunction with both constant and depth-varying

rigidity models. Compared with the constant-rigidity

case, moment-conservation approaches are more

complex to apply with depth-varying rigidity because

there is no longer a one-to-one relation between the

scenario Mw and its spatially integrated slip.

This study considers the sensitivity of a PTHA to

the representation of far-field earthquake scenarios

and their occurrence-rates. The work was conducted

as part of the 2018 Australian PTHA and the broader

study is described in two detailed technical reports

(Davies and Griffin 2018; Griffin and Davies 2018).

In addition Davies (2019) tests the modelled tsunami

scenarios against DART-buoy observations without

consideration of scenario frequencies or hazard. The

current study focusses on the hazard calculation for

offshore sites, and its sensitivity to key modelling

assumptions. Inundation hazard assessments can be

developed on a site-by-site basis by combining an

offshore PTHA with high-resolution inundation

models (e.g. Lane et al. 2012), but for simplicity that

step is not undertaken herein. Because the importance

of earthquake rupture complexity for far-field tsu-

nami hazard is unclear, the tests feature three

alternative slip models with varying degrees of

complexity. For all slip models, the sensitivity of the

hazard to the rigidity representation is also examined

by re-interpreting the scenario Mw on the basis of

either constant or depth-varying rigidity. To enable

this the current study develops scenario occurrence-

rate models which are applicable to multiple slip and

rigidity representations. The approach generalises the

global-scale methodology of Davies et al. (2017)

which constrained scenario rates using earthquake

catalogues and plate convergence rates, but was

limited to scenarios with constant rigidity, uniform

slip and a deterministic Mw-vs-area relation. As well

as generalising to a range of slip and rigidity models,

the new occurrence-rate methodology makes more

efficient use of earthquake catalogue data, and leads

to a better match between the modelled long-term

earthquake-slip rates and spatial variations of tectonic

convergence.

2. Earthquake-Tsunami Scenario Database

Below we present key features of the 2018 Aus-

tralian PTHA earthquake-tsunami scenario database

used in this study. Further details are provided in

Davies and Griffin (2018).
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2.1. Source-Zone Discretization

The database includes major Pacific and Indian

Ocean earthquake source-zones, and minor sources

close to Australia (Fig. 1a). Fault geometries were

defined using SLAB 2.0 or SLAB 1.0 where possible

(Hayes et al. 2012, 2018), and elsewhere were

schematized using linear or parabolic profiles (Griffin

and Davies 2018). The fault geometries extend

between the trench and a maximum seismogenic

depth estimated from Berryman et al. (2015) and

Griffin and Davies (2018). Most source-zones were

modelled with only thrust earthquake scenarios,

which are by far the largest contributor to the

computed hazard in Australia, and for brevity the

treatment of non-thrust sources is not presented

herein.

Two alternative rigidity models are tested, fea-

turing constant-rigidity (l ¼ 30 GPa) and depth-

varying rigidity (Fig. 1b). The latter was fit to rigidity

estimates for subduction earthquakes by Bilek and

Lay (1999) (Fig. 1b). It exhibits low rigidities for

shallow earthquakes (but always � 10 GPa), and

transitions to the preliminary reference earth model

(PREM) at greater depths (Dziewonski and Anderson

1981; Geist and Bilek 2001).

Each source-zone was discretized into unit-

sources with dimensions of ’ 50� 50 km2, although

this varies to match the source-geometry (Fig. 1c–h).

To better represent non-planar fault geometries the

unit-sources were subdivided into a large number of

rectangular ‘sub-unit-sources’ (Davies et al. 2017).

The vertical co-seismic seabed deformation associ-

ated with 1 m of slip on each unit-source was

computed using the homogeneous elastic half-space

model (Okada 1985) integrated over sub-unit-

sources. The ocean surface deformation was derived

from this using a Kajiura filter (Kajiura 1963;

Figure 1
Overview of the earthquake-tsunami scenario database: a earthquake source-zones used in this study. Numbers show DART buoy locations.

Black points along large source-zones denote segment boundary locations based on Berryman et al. (2015), which are given 50% weight in

the scenario rate calculation (with 50% on an unsegmented model, Sect. 3.1); b Rigidity-vs-depth on subduction-zones using data from Bilek

and Lay (1999), with the depth-dependent and constant-rigidity (30 GPa) models used here for thrust scenarios. The preliminary reference

earth model (PREM) is also shown (Dziewonski and Anderson 1981); c, d example fixed-area-uniform-slip (FAUS) scenarios.; e, f example

variable-area-uniform-slip (VAUS) scenarios; g, h example heterogeneous-slip (HS) scenarios. All examples c–h are on the Kurils–Japan

source-zone
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Glimsdal et al. 2013). The resulting unit-source

tsunami was modelled for 36 h with the linear

shallow water equations on a 1-arc-min grid with

elevation based on GEBCO14 and GA250 (White-

way 2009; Weatherall et al. 2015). The tsunami

model domain includes global longitudes ½�40; 320�,
latitudes from ½�72; 65�, with boundary conditions

being periodic (east–west) and reflective (north–

south) (Davies and Griffin 2018).

2.2. Earthquake-tsunami scenarios

Earthquake scenarios consist of linear combina-

tions of unit-sources (Fig. 1c–h), with the associated

tsunami being a linear combination of the unit-source

tsunamis (Thio et al. 2007; Burbidge et al. 2008). On

each source-zone the constant-rigidity earthquake

scenarios were initially generated as detailed below,

with magnitudes ranging from 7:2; 7:3; . . .; 9:7; 9:8

for computational convenience. Magnitudes above a

source-zone specific Mw;max\9:8 will later be

assigned a rate of zero (Sect. 3.1), while in practice

Mw7:2 earthquakes will only generate small waves

near Australia.

To understand how the hazard is affected by the

earthquake representation, three different kinds of

constant-rigidity scenarios were created (Fig. 1c–h):

• Fixed-area-uniform-slip (FAUS) scenarios have

uniform-slip, with magnitude-dependent length

and width based on the scaling relations of Strasser

et al. (2010) ignoring the predictive uncertainty

terms (Fig. 1c, d). For each magnitude the FAUS

scenarios include a fixed number of unit-sources

along-strike and down-dip (e.g. 16� 4 for the

examples in Fig. 1c, d, determined following

Davies et al. (2017)) and the set of unit-sources

is moved through all possible source-zone loca-

tions. By iterating over all magnitudes, the full set

of FAUS scenarios is produced.

• Variable-area-uniform-slip (VAUS) scenarios

also have uniform-slip, but account for � 2r
predictive uncertainties in the rupture length and

width using the scaling relations of Strasser et al.

(2010) (Fig. 1e, f). At least 15 VAUS scenarios

were generated for each FAUS scenario, all having

the same magnitude and a random length and width

(with independent residuals). The VAUS scenario

location is also random, but at least partially

overlaps the ‘parent’ FAUS scenario. The number

of ‘child’ VAUS scenarios per ‘parent’ FAUS

scenario was increased to more than 15 if neces-

sary, to ensure at least 200 VAUS scenarios on the

source-zone at each magnitude. These numbers

were found sufficient to obtain convergent hazard

results at a range of sites around Australia, which

was tested by splitting the scenario set into two

equal groups and graphically comparing the

tsunami maximum-stage vs return-period curves

(Davies and Griffin 2018).

• Heterogeneous-slip (HS) scenarios are generated

using the VAUS scenario’s rupture dimensions but

have spatially non-uniform slip (Fig. 1g, h). The

slip is randomly generated using a k�2 type model,

specifically the SNCF model of Davies et al. (2015).

The SNCF model was chosen because it had the best

performance among eight k�2 type models tested

by comparison with 66 finite-fault inversions

(Davies et al. 2015). One HS scenario is generated

per VAUS scenario. This implies a similar parent-

child relationship exists between the FAUS (par-

ent) scenarios and HS (child) scenarios, with 15 or

more ‘children’ for each parent. Multi-site conver-

gence tests indicate there are enough scenarios to

support our hazard calculations (Davies and Griffin

2018).

Further implementation details are provided else-

where (Davies and Griffin 2018; Davies 2019). A key

concept is the parent-child relation between FAUS

scenarios and the other scenario types, which will be

exploited when assigning occurrence-rates to scenar-

ios (Sect. 3.2) and for model testing (Sect. 2.3).

The effect of depth-varying rigidity is simulated

by re-labelling the constant-rigidity scenario magni-

tudes, without otherwise changing their slip or area.

Each unit-source is assigned a depth-dependent

rigidity (Fig. 1b), assuming for simplicity the trench

is 4 km below mean-sea-level, and these rigidities are

used to re-compute each scenario’s magnitude. Sce-

narios in shallow, low-rigidity regions thus behave

like constant-rigidity earthquakes with higher mag-

nitude, and conversely for high-rigidity regions. It is

necessary to adjust the scenario rate computations

Vol. 177, (2020) Sensitivity of Probabilistic Tsunami Hazard Assessment 1525



with depth-varying rigidity to maintain consistency

with instrumental magnitude observations and tec-

tonic constraints (Sect. 3.3), which affects the

resulting hazard. This is not specific to our magni-

tude-relabelling approach; for example, Scala et al.

(2019) propose a completely different treatment of

depth-varying rigidity for PTHA which also requires

scenario rate modifications.

2.3. Biases in Tsunami Scenarios

Scenario generation methods were tested by

comparing random database scenarios with 18 earth-

quake-generated tsunamis observed at DART buoys

in 2006–2016 (see two examples in Fig. 2a, b). Full

details are reported elsewhere (Davies 2019); below

we summarise key results that affect the scenario

occurrence-rate modelling in this study. For each

Figure 2
a Example good-fitting database scenarios for the 2014/04/01 Mw8:2 Iquique (Chile) earthquake-generated tsunami using the constant l
FAUS, VAUS and HS models. Each panel compares the tsunami observed at a DART buoy with the same three database scenarios (see Fig. 1

for DART locations). Vertical scale in meters. Modelled time-series are temporally offset by the optimum value determined in the goodness-

of-fit calculation; b same as panel-A for the 2011/03/11Mw9:1 Tohoku tsunami, using the depth-varying l scenarios. For brevity only 7 of the

DART observations are shown; c magnitude vs mean-slip for the 5 best-fitting database scenarios for all 18 test events (constant l case). The

scaling relation mean-slip is inferred from the Strasser et al. (2010) length and width scaling relations assuming uncorrelated residuals. The

‘compact-uniform-slip’ curve was derived from the area scaling relation of An et al. (2018), A ¼ 2:89� 10�11M
2=3
0 , assuming l ¼ 44 GPa

because they used PREM rigidities; d probability density for the maximum-slip percentile of good-fitting events. This is not applied to FAUS

scenarios because by construction they have little variability

1526 G. Davies and J. Griffin Pure Appl. Geophys.



scenario generation method, each of the 18 observed

tsunamis was compared with all database scenarios

having ‘similar earthquake location and magnitude’.

Scenarios are defined as having ‘similar earthquake

location and magnitude’ as an observed event if their

Mw is within � 0:15 of the GCMT catalogue value,

and their parent FAUS scenario includes unit-sources

within half a scaling-relation length and width of the

GCMT hypocenter (Davies 2019). This approach to

testing was applied because in PTHA, scenario

occurrence-rates are generally modelled as a function

of the earthquake location and magnitude (e.g. Selva

et al. 2016; Power et al. 2017; Davies et al. 2017);

thus to avoid biases in the hazard, the ‘randomly

generated tsunami waveforms’ should represent real

tsunamis generated by earthquakes with similar

location and magnitude. For each observed event, a

weighted least-squares goodness-of-fit statistic was

used to measure the agreement between the observed

tsunami at DART buoys and all aforementioned

scenarios (Davies 2019). The goodness-of-fit statistic

includes an optimal time-offset (Lorito et al. 2008;

Romano et al. 2016; Ho et al. 2019) to account for

processes that can delay wave-propagation, but are

not treated in our linear shallow water model (Watada

et al. 2014; Allgeyer and Cummins 2014; Baba et al.

2017).

Figure 2a, b illustrates the best-fit FAUS, VAUS

and HS database scenarios identified with the above

procedure for 2 of the 18 test events; the 2014 Mw8:2

Iquique (Chile) tsunami and the 2011 Mw9:1 Tohoku

tsunami (see Davies and Griffin 2018; Davies 2019

for other examples). For the 2014 event a reasonable

agreement is obtained between observations and the

best database scenario for every model type (FAUS,

VAUS, HS) (Fig. 2a). In contrast, for the Tohoku

event all FAUS scenarios produced long-period low-

amplitude waves which poorly matched observations

both near and far from the earthquake source,

whereas the best VAUS and HS scenarios performed

well (Fig. 2b). These visual observations are consis-

tent with quantitative goodness-of-fit results (Davies

2019).

Analysis of the good-fitting earthquake scenarios

was used to further assess model biases (Fig. 2c, d;

Davies (2019)). If a model gives an unbiased

representation of random tsunamis, then the

properties of good-fitting earthquake scenarios should

not differ systematically from random scenarios with

similar location and magnitude, when considered

over all 18 test events. Conversely if a model has

some bias (e.g. producing too many low-slip, high-

area scenarios), we may see statistical differences

between good-fitting and random earthquake scenar-

ios. Figure 2c, d suggests the good-fitting VAUS

model scenarios most often have high slip relative to

the scaling-relation used to construct them, which

indicates bias in the VAUS model. In contrast, the

good-fitting HS scenarios exhibit mean-slip variabil-

ity within the expected � 2r range of random

scenarios, without any strong preference for high or

low values (Fig. 2c, d). The FAUS scenarios have

little variability by construction and so their biases

cannot be usefully quantified with this approach, but

we emphasise that some historical events are not well

modelled with FAUS scenarios (e.g. Tohoku,

Fig. 2b).

The VAUS model biases are qualitatively consis-

tent with the results of An et al. (2018). They

simulated near-field tidal gauge and DART buoy

observations for six tsunamis using both heteroge-

neous and uniform slip models, and found near-

optimal results could consistently be obtained using

compact uniform-slip earthquakes with a low aspect

ratio (L ¼ W) and high-slip (Fig. 2c). We infer the

compact nature of good-fitting VAUS scenarios

allows representation of rupture asperities, which

have a dominant influence on the resulting tsunami.

The HS model can simulate those asperities directly

and so avoids similar biases (Davies 2019).

3. Scenario Rates

The scenario rate modelling methodology was

designed to meet the following objectives:

1. Applicable to all earthquake-slip and rigidity

models in Sect. 2.2.

2. On each source-zone the modelled magnitude-

frequency distribution should be reasonably con-

sistent with plate convergence rates and

instrumental seismicity.
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3. The method should treat uncertainties in the

seismic coupling, maximum magnitudes and the

Gutenberg-Richter b value.

4. Spatial variations in the scenario rates should

reflect variations in plate convergence.

Our approach generalises that of Davies et al. (2017),

because the latter is only applicable to FAUS type

scenarios with constant rigidity (violating objective

1) and has some weaknesses regarding spatial

variations in scenario rates (objective 4) that are

addressed herein. Our new approach also makes more

efficient use of earthquake catalogue data to constrain

uncertainties (objective 3). The approach involves

firstly modelling each source-zone’s magnitude-fre-

quency distribution (Sect. 3.1), and secondly

partitioning these rates among individual scenarios

(Sect. 3.2). Possible segmentation of large source-

zones (boundaries in Fig. 1) is treated by applying the

model separately to: (A) the unsegmented source-

zone, and; (B) the union of individual segments; with

50% weight on each interpretation. Ruptures are

allowed to cross segment boundaries in any case (as

occurred e.g. for the 2007 Solomons earthquake,

Lorito et al. (2015a)) so the primary effect of

segmentation is to enhance spatial variations in the

source-zone’s magnitude-frequency distribution. The

use of depth-varying-rigidity introduces additional

complications which are addressed in Sect. 3.3. The

results are tested in Sect. 3.4. The calculations which

convert magnitude exceedance-rates to tsunami haz-

ard metrics are described in Sect. 3.5.

3.1. Source-Zone Integrated Magnitude Exceedance-

Rates

Seismicity on each source-zone is assumed to

follow one of two Gutenberg-Richter (GR) type

relations with different tail behaviour; a characteristic

GR model (Kagan 2002):

GRðxÞ ¼ 10a�bx for x�Mw;max

¼ 0 for x[Mw;max

ð1Þ

and a truncated GR model (Kagan 2002):

GRðxÞ ¼ 10a�bx � 10a�bMw;max for x�Mw;max

¼ 0 for x[Mw;max

ð2Þ

For both models GR(x) gives the rate of earthquakes

(events/year) with magnitude � x as a function of

three unknown parameters: a, b, and the maximum

magnitude Mw;max.

Uncertainty in each source-zone’s magnitude-

frequency distribution is represented using a logic-

tree (Annaka et al. 2007). The logic-tree includes

every combination of the GR model type and the

parameters b, Mw;max, and the seismic coupling

fraction c. The Gutenberg-Richter a value is derived

from these via moment conservation arguments (Bird

and Kagan 2004; Bird and Liu 2007; Davies et al.

2017). The individual parameters vary through a

source-zone specific set of values with ‘prior weights’

described below. The prior weight of each parameter

combination is defined as the product of its individual

parameter prior weights. Some parameter combina-

tions will predict unrealistic magnitude-frequency

distributions compared with historical seismicity and

this is dealt with by using earthquake catalogue data

to update the weights via Bayes theorem (Davies

et al. 2017).

The two GR models (Eqs. 1, 2) are assigned prior

weights of 30% (characteristic) and 70% (truncated).

The b parameter is assigned twenty equally spaced

values between 0.7 and 1.2 (Berryman et al. 2015;

Davies et al. 2017) with uniform prior weights. The

coupling prior weights are a 50:50 combination of

two different distributions. The first takes the lower,

preferred and upper coupling values from Berryman

et al. (2015) (with default values of 0.3, 0.5, 0.7

where no information is available) and assumes they

define the lower limit, median and upper-limit of the

prior coupling cumulative distribution function, with

linear interpolation between these values. The second

is a uniform distribution assigned to 20 coupling

values in [0.1, 1.3]. This latter distribution is

deliberately uninformative. The lower coupling limit

(c ¼ 0:1) is conservative, to prevent source-zones

with rapid convergence and limited historical seis-

micity from being assigned a very low coupling after

the Bayesian weight-update. Considering the model

herein cannot treat non-stationary seismicity, which
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could allow for longer time intervals between large

earthquakes than expected under stationarity, such

conservatism is warranted (Stirling and Gersten-

berger 2018). The upper coupling limit (c ¼ 1:3) is

also conservative and deliberately exceeds the phys-

ical limit (c� 1). This was done because modelled

seismicity depends on the product of c, the fault area

AT , and the mean horizontal tectonic convergence

rate _s, but uncertainties in the geometry and conver-

gence are not directly treated in our methodology.

The _s values are defined using the models of Bird

(2003), Koulali et al. (2015, 2016) and Griffin and

Davies (2018), averaged over the source-zone. If the

convergence direction is oblique to the trench at any

point then the component of convergence that

maximises _s is used, up to a maximum of 50� away

from pure thrust. This allows oblique subduction as

suggested for the Puysegur source-zone (Hayes and

Furlong 2010). Although potentially enabling over-

estimation of seismicity, this is counteracted by the

Bayesian update which will down-weight high c val-

ues when inconsistent with observed seismicity (e.g.

on ‘quiet’ source-zones with substantial conver-

gence). By partially weighting the Berryman et al.

(2015) coupling values the model can reflect the

results of paleoseismic and geodetic analyses, which

are informative for some source-zones (e.g. Cascadia)

but not otherwise straightforward to include.

The maximum magnitude Mw;max ranges between

lower and upper limits. The lower limit reflects the

largest earthquake thought to have occurred on the

source-zone (based on Ekstrom et al. 2012; Storchak

et al. 2012; Berryman et al. 2015), plus a small

perturbation (0.05) to ensure it has non-zero rate

according to the truncated GR model (Eq. 2). On the

South-American trench, a lower limit Mw;max ¼ 9:2 is

used to represent the 1960 Chile earthquake for

consistency with tsunami and geodetic inversions

(Moreno et al. 2009; Fujii and Satake 2013), even

though seismic wave inversions suggest a higher

magnitude (’ 9:5; Kanamori 1977; Engdahl and

Villasenor 2002). The upper limit Mw;max is defined

using the minimum of two scaling-relation based

constraints. Firstly Mw;max is less than the magnitude

of a ‘compact’ earthquake that fills the source zone

according to the Mw-vs-area scaling relation of

Strasser et al. (2010), where the area is evaluated at

- 1 prediction standard-deviation to represent a

‘compact’ event. Secondly Mw;max is less than the

magnitude of a ‘narrow’ earthquake which fills the

down-dip width of the source-zone, using the Mw-vs-

width scaling relation of Strasser et al. (2010) with

width evaluated at - 2 prediction standard deviations

(representing a ‘narrow’ earthquake). Forty Mw;max

values are initially created with equal spacing

between these lower and upper limits, and uniform

prior weights. Finally all Mw;max values are subse-

quently clipped to a maximum of 9.6, because

scaling-relation based Mw;max limits can be very high

on large source-zones (Berryman et al. 2015; Davies

et al. 2017).

The GR parameter a is derived from the above

parameters using a fault-based seismic-moment con-

servation approach (Bird and Kagan 2004; Bird and

Liu 2007; Davies et al. 2017). The relation between

earthquake scenarios and tectonic convergence is:

X

e2E
reðSAÞe ¼

ATðc _sÞn
cosðdÞ ð3Þ

Here e denotes an individual earthquake scenario

within the set of modelled scenarios E, re is its rate

(events/year), and ðSAÞe is its spatially integrated slip

(m3). The full source-zone fault area is AT (m2) with

average coupled horizontal convergence rate ðc _sÞ (m/

year) and cosine of mean dip cosðdÞ. See Meade and

Loveless (2009) for justification of the latter factor in

Eq. 3, which is not universally applied in moment

balance approaches (e.g. Kagan and Jackson 2013);

irrespective for our analysis its influence is largely

offset when constraining the coupling coefficient

(below). The factor n 2 ½0� 1� accounts for the

convergence due to earthquakes with magnitude

\Mw;min, which are not represented among the

modelled events E. For the current study

Mw;min ¼ 7:2, but given our scenario discretization

this represents a bin of magnitudes 7:2 � D=2 where

D ¼ 0:1 (Sect. 2.2). Assuming constant rigidity, the

proportion of integrated slip due to the modelled

scenarios is:

n ¼
RMw;max

ðMw;min�D=2Þ grðxÞM0ðxÞdx
RMw;max

�1 grðxÞM0ðxÞdx
ð4Þ
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where M0ðxÞ is the seismic moment as a function of

the magnitude x, and grðxÞ ¼ � dGR
dx

(technically we

assume infinitesimal smoothing is applied to the GR

models near x ¼ Mw;max so the derivative is well

defined). Due to cancellation Eq. 4 is independent of

a. Assuming constant rigidity, the a parameter can be

derived from Eqs. 3 and 4 using c; _s;AT ; d; b and

Mw;max (known for each logic-tree branch). It is not

necessary to know the individual scenario rates re
because with constant rigidity the spatially integrated

slip ðSAÞe is a function of magnitude alone. This

reasoning fails with depth-varying rigidity, necessi-

tating a special treatment of that case (Sect. 3.3).

An extremely wide range of Gutenberg–Richter

type models GRi result from these priors, as illus-

trated on the unsegmented Kermadec–Tonga source-

zone (Fig. 3a). Both individual logic-tree branches

and the prior-mean curve itself may deviate substan-

tially from the observed seismicity rates. On all

source-zones the observed seismicity is taken from

the GCMT catalogue including events with

Mw [ ðMw;min � D=2Þ ¼ 7:15, hypocenter within

0.4� of the unit-sources, depth \71 km, having at

least one nodal plane with rake within 50� of pure

thrust and strike within 50� of the nearest unit-

source’s strike.

To obtain better agreement between the rate

models and aforementioned data, the prior weights

are updated using Bayes theorem:

wi ¼
w0
iLðdatajiÞP
i w

0
iLðdatajiÞ

ð5Þ

Here wi is the posterior weight of the i’th logic-tree

branch, w0
i is the prior weight, and LðdatajiÞ is the

likelihood of the data if the i’th logic-tree branch is

true. The likelihood is calculated from the rate model

and the assumption of stationary seismicity:

LðdatajiÞ ¼ LcountðdatajiÞLmagnitudeðdatajiÞ ð6Þ

LcountðdatajiÞ ¼
expð�kiÞðkiÞn

n!
ð7Þ

Figure 3
Source-zone magnitude-frequency modelling, using the unsegmented Kermadec-Tonga source as an example. a Magnitude-frequency curves

prior to weight update. Note the individual logic-tree branches (thin grey curves) appear as a grey shading in much of the plot because there

are many; b magnitude-frequency curves after weight update; c prior and posterior c weights; d prior and posteriorMw;max weights; e prior and

posterior b-value weights
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LmagnitudeðdatajiÞ ¼
T

ki

� �nYn

l¼1

� dGRi

dx
ðMw;lÞ

� �
ð8Þ

Equation 7 is a standard model for observed counts

from a Poisson process, where n is the number of

events in the data which spans an observation time T

(years), and ki ¼ GRiðMw;min � D=2ÞT gives the

mean number of events predicted by the i’th logic-

tree branch in time T. Equation 8 was derived by

converting GRi to a probability density for a random

magnitude, with the likelihood being the product of

the density at each observed magnitude Mw;l. The

approach improves upon that of Davies et al. (2017)

which ignored the observed magnitude distribution

(i.e. Lmagnitude ¼ 1). In the special case with no

observed events (n ¼ 0), the current study also

assumes Lmagnitude ¼ 1. The observation of zero

events is nonetheless informative because it suggests

logic-tree branches which predict frequent events are

unlikely to be correct, and Eq. 7 will down-weight

such branches accordingly.

Bayesian updating has a dramatic impact on the

modelled earthquake rates and their uncertainties

(Fig. 3a, b). In general the mean rate becomes more

consistent with historical observations, and uncer-

tainties at low magnitudes are reduced (Fig. 3b). On

the unsegmented Kermadec–Tonga source-zone, the

results reflect that historical seismicity was relatively

low compared to the prior model (Fig. 3a). In

principle this could indicate low coupling, and/or

that significant slip is released in higher magnitude

earthquakes (in which case frequent low-magnitude

earthquakes are not required to balance tectonic

convergence). However the observations are unlikely

if c is high and Mw;max is low, because in this case

more frequent low-magnitude earthquakes are

required to balance tectonic convergence. As a result

the Bayesian update shifts more weight onto lower c

values, and higher Mw;max values (Fig. 3c, d).

3.2. Partitioning the Source-Zone Integrated

Exceedance-Rates Among Scenarios

For each logic-tree branch i, the individual

scenario occurrence-rate re;i (events/year) for any

scenario e with magnitude Mw;e must be consistent

with the source-zone integrated exceedance-rate

function GRi. Supposing all scenarios have magni-

tudes arranged as Mw;min;Mw;min þ D;Mw;minþ2D; . . .
representing bins of width D (as for our constant

rigidity scenarios where D ¼ 0:1), this implies:

re;i ¼ PrðejMw ¼ Mw;eÞ GRiðMw;e � D=2Þ
�

�GRiðMw;e þ D=2ÞÞ
ð9Þ

Here PrðejMw ¼ Mw;eÞ is the conditional probability

that scenario e occurs, assuming some random sce-

nario with the same magnitude occurs on the same

source-zone. This will be modelled as independent of

the logic-tree branch i.

Many studies assume uniform scenario condi-

tional probabilities (e.g. Horspool et al. 2014;

Løvholt et al. 2014; Lorito et al. 2015b):

PrðejMw ¼ Mw;eÞ / 1: ð10Þ

Alternatively, the scenario conditional probability

may be manipulated to make earthquakes more likely

to occur on rapidly converging, wider parts of the

source-zone. For the case of FAUS scenarios with

constant rigidity Davies et al. (2017) proposed to

represent this via:

PrðejMw ¼ Mw;eÞ / _se=Seð Þ ð11Þ

where Se is the scenario’s mean slip, and _se is the

average horizontal convergence rate where e occurs

on the source-zone.

A problem with both Eqs. 10 and 11 is they

artificially concentrate the time-integrated slip in the

middle of the source zone (along-strike), even when

the tectonic convergence and source-geometry is

uniform. For illustration, consider a FAUS earth-

quake with 3� 2 unit-sources which occurs on a

uniform source-zone with 7� 2 unit-sources

(Fig. 4a). An earthquake of this size can occur in

five different positions on the source-zone. Among

those five scenarios, unit-sources at the along-strike

edges will be included in only one, whereas unit-

sources in the middle of the source-zone will be

included in three scenarios (Fig. 4a). If all five

scenarios have the same slip and occurrence-rate, the

time-integrated slip rate would be 3 times greater in

the interior of the source-zone than at the along-strike

edges. This conflicts with the assumed uniform
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horizontal convergence and illustrates the ‘edge-

effect’ bias.

The same edge-effect bias occurs in realistic

applications which integrate over all scenarios.

Figure 4b–e demonstrates this on the Kurils-Japan

subduction-zone. All examples use constant rigidity

FAUS scenarios, and GRi in Eq. 9 is replaced with

the posterior mean magnitude exceedance-rate over

all GRi in the logic-tree. Although the input tectonic

convergence does not vary strongly in space

(Fig. 4b), the time-integrated slip rate is concentrated

in the middle of the source-zone using either Eq. 10

(Fig. 4e) or Eq. 11 (Fig. 4d) as the scenario condi-

tional probability model. The results of these two

approaches would differ more substantially if the

source-zone had greater spatial variations in conver-

gence, but clearly both approaches suffer the edge-

effect bias.

To approximately correct for the edge-effect,

FAUS scenarios which touch an along-strike edge

unit-source should have a higher occurrence-rate.

Herein this is achieved by modifying Eq. 11 to:

PrðejMw ¼ Mw;eÞ / _se=Seð Þð1þ kIeÞ: ð12Þ

Here Ie ¼ 1 for FAUS scenarios e which include unit-

sources on the along-strike edge of the unsegmented

source-zone (and Ie ¼ 0 otherwise), and k is a source-

zone specific constant. For each unsegmented source-

zone, k is determined numerically to give the smallest

least-squares difference between the spatial distribu-

tion of the horizontal tectonic convergence rate and

the model’s time-integrated slip rate (using the pos-

terior mean over all logic-tree branches). To account

for the seismic coupling, which may lead to modelled

slip rates being a fraction of the convergence rate, the

variables are normalised (divided by their mean over

all unit-sources) before computing k; thus only the

Figure 4
Edge-effect biases in time-integrated slip rates. a If a 3� 2 earthquake is moved through all possible locations on a source-zone, then fewer

scenarios will touch unit-sources at the along-strike extremities. If not explicitly treated, this concentrates time-integrated slip in the source-

zone interior; b spatial distribution of the tectonic convergence rate prescribed for the Kurils–Japan source-zone. The modelled time-

integrated slip rate should be similar to this; c modelled time-integrated slip rates using Eq. 12 to correct for edge-effects; d modelled time-

integrated slip rates using Eq. 11, which does not include an edge-effect correction; e Modelled time-integrated slip rates using the ‘equal

conditional probability’ approach without any edge-effect correction (Eq. 10)
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spatial pattern of slip is considered. This approxi-

mation implies the conditional probability does not

vary among logic-tree branches, a property shared by

Eqs. 10 and 11. This simplifies some calculations and

reduces the file-storage required for our analysis,

although in-principle a more complex treatment of

k could be developed. When modelling segmented

source-zones the corresponding unsegmented k value

is used, because scenarios can span multiple seg-

ments and receive a partial weight from each based

on the fraction of their moment that occurs there.

Equation 12 leads to better agreement between the

spatial patterns of convergence in the input data and

the model (Fig. 4b, c), as compared with the use of

Eq. 10 (Fig. 4e) or Eq. 11 (Fig. 4d).

When source-zones include three or more unit-

sources down-dip, a related edge-effect occurs in the

down-dip direction. This reduces time-integrated slip

rates in the deepest and shallowest row of unit-

sources relative to the mid-depth unit-sources, which

are included in more scenarios. The down-dip edge-

effect is relatively small compared with the along-

strike variant discussed above; for instance in Fig. 4c

the shallow and deep unit-sources have modelled

time-integrated slip rate on average 81% of the mid-

depth sources. An approximate correction could be

developed by adapting the above approach, but no

attempt was made to do this in the current study

because subduction-zone coupling is likely to be

genuinely higher at mid-depths (e.g. Bilek and Lay

2018).

The arguments in this section thus far apply only

to FAUS scenarios, because justification of Eqs. 11

and 12 requires that rupture area is a deterministic

function of magnitude (Davies et al. 2017). To extend

the approach to non-FAUS scenarios (Fig. 5) the

occurrence-rate of each individual FAUS scenario is

partitioned among its ‘child’ scenarios. Recall each

FAUS scenario has at least 15 ‘child’ HS scenarios

(and similarly for VAUS), all with the same magni-

tude and partial location overlap with their parent

(Sect. 2.2). The simplest occurrence-rate partitioning

method is to equally split the parent FAUS scenario’s

occurrence-rate among its children. However an

unequal partition is preferable to partially correct

known model biases, such as those established earlier

(most significantly for the VAUS model, Sect. 2.3).

Thus in the current study an unequal partition is

Figure 5
Comparison of modelled time-integrated slip rates (posterior mean over all logic-tree branches) on the Kermadec-Tonga source-zone,

computed using the FAUS, VAUS and HS slip models
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applied to each group of N child scenarios (N� 15),

separately for VAUS and HS. Each scenario is

assigned a local slip percentile (100r=ðN þ 1Þ where
r is its maximum-slip rank among the other N sce-

narios), and the curves in Fig. 2d are applied to this

percentile to define the unequal partition weights.

Thus significantly more weight is placed on higher-

slip VAUS scenarios, which show good-fit to obser-

vations more often (Sect. 2.3). In contrast the HS

scenarios have relatively uniform weights (Fig. 2d)

because good-fitting HS scenarios do not show strong

preference for high or low slip.

The occurrence-rate partitioning procedure does

not affect the source-zone’s integrated magnitude-

frequency distribution, so there is no difference in the

frequency of earthquakes with FAUS, VAUS or HS.

However the use of different earthquake slip models

can lead to slight changes to the modelled spatial

distribution of time-integrated slip on unit-sources,

because the slip on a single FAUS scenario will not

be spatially identical to the integrated slip on its child

HS or VAUS scenarios. In practice these differences

average out and are small enough to be ignored

(Fig. 5). For instance at 95% of unit-sources in Fig. 5

the time-integrated slip rate of the HS and VAUS

models differs by \10% from the FAUS result.

3.3. Extension to Depth-Varying Rigidity

The arguments in Sects. 3.1 and 3.2 do not

directly extend to the depth-varying rigidity case,

because there is no longer a one-to-one relation

between a scenario’s magnitude and its spatially

integrated slip ðSAÞe. This complicates the previously

simple relation between magnitude and convergence,

invalidating Eq. 4 and the associated a parameter

calculation. It is also not obvious how to apply the

scenario conditional probability model (Eqs. 9 and

12) to scenarios with variable-rigidity magnitudes,

considering the latter are not arranged in a small set

of discrete values ð7:2; 7:3; . . .Þ.
A key component of our solution to these

problems is to parameterise the source-zone’s mag-

nitude-frequency distribution as a function of the

earthquake’s ‘constant rigidity magnitude’, even

when the rigidity is modelled as depth-varying.

Obviously the constant-rigidity magnitude then

differs from the ‘true magnitude’. The difference

between these quantities may be treated as a ‘pertur-

bation of the magnitude’ (Fig. 6) and is explicitly

treated below. The key point is that Eqs. 1, 2 are

applied using the constant-rigidity magnitude for x,

although the posterior logic-tree weights will differ in

the constant and variable-rigidity cases. This GR re-

parameterisation is reasonable given that the constant

and variable rigidity magnitudes are heavily corre-

lated (Fig. 6). Considering the modelled events are

rare, we are unlikely to have sufficient data in the

near future to distinguish the goodness-of-fit of either

parameterisation.

The great benefit of the GR re-parameterisation is

that most reasoning in Sects. 3.1 and 3.2 can be

applied directly to variable-rigidity scenarios, using

constant rigidity magnitudes in Eqs. 1, 2, 3, 4, 9

and 12. The prior logic-tree weights are applied

without modification, noting they are in any case very

diffuse. However, adjustments are necessary when

using magnitude observations to update the logic-tree

weights (Eqs. 7, 8), because the GRi magnitude-

frequency distribution now gives the exceedance-rate

in terms of the ‘constant-rigidity’ magnitude Mc
w

rather than the ‘depth-varying-rigidity magnitude’

Mv
w which is represented by observations. To enable

the logic-tree weight update, the exceedance-rate

function of Mv
w (denoted KiðMv

wÞ) is derived as

detailed below, and then used in place of GRi in

Eqs. 7 and 8. This ensures the logic-tree weight

update treats the observed magnitudes as representing

depth-varying rigidity earthquakes.

Figure 6
Constant rigidity magnitude vs depth-varying rigidity magnitude

for HS scenarios on the Kermadec-Tonga source-zone
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To derive Ki, consider the magnitude perturbation

m0 due to depth-varying rigidity:

m0 ¼ Mv
w �Mc

w: ð13Þ

For a random observed event e, we can consider m0
e

as a random variable with distribution conditional on

its unknown constant-rigidity magnitude (Fig. 6):

Prðm0
e �XÞ ¼ FðXjMc

w;eÞ ð14Þ

where FðXjMc
w;eÞ is the cumulative distribution

function of m0
e for a random scenario e with constant-

rigidity magnitude Mc
w;e. Figure 6 highlights that for

scenarios in our database, the variability of m0 is

magnitude dependent, with less variance at higher

magnitudes because ruptures cover a larger area,

averaging out the effect of rigidity variation. In the

current study F is modelled empirically on each

source-zone using the differences between Mv
w and

Mc
w in the scenario database. It will be necessary to

evaluate F at a continuous set of Mc
w values, so

interpolation is used in between the discrete scenario

values ð7:2; 7:3; . . .9:8Þ, while extrapolation outside

this range uses the nearest boundary Mc
w value (7.2 or

9.8). Finally, supposing that GRiðxÞ gives the source-
zone’s exceedance-rate for Mc

w on a particular logic-

tree branch, the associated exceedance-rate for the

variable-rigidity magnitudes is:

KiðMv
wÞ ¼

Z 1

�1
1� FðMv

w � xjxÞ
� �

griðxÞdx ð15Þ

where gri ¼ � dGRi

dx
(technically we assume infinites-

imal smoothing of the GR models near Mw;max so the

derivative is well-defined). Notice the term in large

parenthesis in the integrand gives the probability that

the magnitude perturbation is large enough for the

variable rigidity magnitude to exceed Mv
w when the

constant rigidity magnitude is x.

The Ki exceedance-rate model is computed

numerically from Eq. 15 and used in place of GRi

for all calculations associated with Eqs. 7 and 8, thus

treating the observed magnitudes as having depth-

varying rigidity when defining the logic-tree weights.

The individual scenario occurrence-rates are then

computed as in the constant-rigidity case (Sect. 3.2),

but using revised logic-tree weights.

3.4. Testing the Modelled Magnitude Exceedance-

Rates

As a first test the modelled and observed

seismicity are compared at the global scale (Fig. 7).

Although this data was used to update the logic-tree

weights and is thus not independent of the model, the

comparison is useful because it may make model

biases more obvious than tests at the individual

source-zone level, where data sparsity permits a wide

range of plausible magnitude-frequency curves (e.g.

Fig. 3). The modelled mean magnitude exceedance-

rates are in reasonable agreement with the GCMT

observations using both constant and depth-varying l
(Fig. 7). The models give slightly higher exceedance-

rates than empirical estimates, but are within 95%

confidence intervals for the true exceedance-rate

inferred from the data (Garwood 1936). At magni-

tudes J8:4 the depth-varying l model predicts

slightly greater exceedance-rates than the constant l
model (Fig. 7) because large earthquakes occur

predominantly on wide, deep source-zones, where

depth-varying rigidities on average exceed the con-

stant value (30 GPa). For a fixed magnitude, higher

rigidity implies less average slip, thus exceedance-

rates should increase to produce the same horizontal

Figure 7
Comparison of globally integrated magnitude exceedance-rates

model and the GCMT catalogue. The catalogue data combines all

earthquakes used to update the source-zone logic-tree weights. The

modelled exceedance-rates were derived by summing the mean

scenario occurrence-rates. This leads to some artefacts in the depth-

varying-rigidity curve at low magnitudes (around Mw;min), due to

the use of a minimum magnitude combined magnitude-relabelling

technique. However this is inconsequential for the hazard and is

properly accounted for in the logic-tree weight update (Sect. 3.3)
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convergence. This effect is partially offset by the

Bayesian update of logic-tree weights using earth-

quake catalogue data, which constrains the

exceedance-rates at commonly occurring magnitudes

irrespective of the rigidity and convergence. Thus the

globally-integrated exceedance-rates do not differ

much at magnitudes . 8:4, irrespective of the rigidity

model (Fig. 7).

To compare the models herein with other pub-

lished magnitude exceedance-rates it is useful to

restrict the analysis to some prescribed region (i.e. a

subset of unit-sources that matches the region con-

sidered in other studies, Table 1). To do this, the

modelled occurrence-rates for HS scenarios inside the

prescribed region are summed to create a ‘local’

magnitude exceedance-rate curve. To account for the

magnitude discretization, the local exceedance-rates

are computed directly at magnitude bin-boundaries

(i.e. Mw � 7:15; 7:25; . . .9:75), and linear interpola-

tion of Mw vs log10ðexceedance-rateÞ is used to

evaluate the ‘local’ exceedance-rate at other magni-

tudes. When HS scenarios have only part of their

integrated slip in the prescribed region, they are

included with proportionately down-weighted occur-

rence-rate. Credible intervals are derived by

partitioning the full source-zones percentile uncer-

tainties, using the same approach applied to the mean

curve.

The constant and depth-varying l models usually

give similar magnitude exceedance-rates on subsets

of subduction zones (Table 1). Differences reflect the

source-zone’s maximum depth below the trench, as

specified using the upper estimates of Berryman et al.

(2015). On source-zones with relatively deep seis-

micity (Alaska, Chile, Japan, Sumatra—with

modelled depths extending 45–55 km below the

trench) the constant rigidity model predicts slightly

lower exceedance-rates, as was observed for global

seismicity due to the trade-off between higher

rigidities and exceedance-rates under moment con-

servation constraints (Fig. 7). The converse applies

for relatively shallow source-zones (Nankai and

Cascadia, with modelled depths extending 25–30

km below the trench).

The modelled ARIs are generally comparable to

the range of estimates in other studies using longer-

term historical or paleo data, and/or alternative

moment conservation techniques (Table 1). The

credible intervals are wide, but this is also true of

95% intervals reported elsewhere (Table 1, Rong

et al. 2014; Butler et al. 2016). The uncertainty is

further emphasised by comparing ARIs from differ-

ent studies at the same site (Table 1). For example on

the relatively well studied Alaska megathrust (Kodiak

to Prince William Sound), Wesson et al. (2007, 2008)

drew on multi-site Holocene stratigraphy to infer an

ARI ’ 650 years for earthquakes like the 1964 event

(which had Mw9:2), whereas Butler et al. (2016)

estimated Mw � 9 ARI ’ 1403 (447–9800) years

using an expanded set of paleo data. Recently

Shennan et al. (2018) inferred the 1964 earthquake

was the only event in the last 2000 years to rupture

the entire region, by combining paleoseismic results

at 22 sites. Our model’s results near Alaska are most

similar to Butler et al. (2016), although the Wesson

et al. (2007, 2008) ARI’s are within the 95% interval

(Table 1). Wesson et al. (2007, 2008) assumed

Mw � 9 earthquakes never occur further west (Semidi

and Shumagin segments) whereas our model does not

represent such fine-scale variations in seismicity.

Thus if the latter segments are included in the

prescribed region, our modelled Mw � 9 ARIs con-

tinue to reduce (Table 1).

Table 1 also highlights the diversity of ARIs

estimated from moment-conservation type arguments

(including our model). For example in the Tohoku

region of Japan, Kagan and Jackson (2013) estimated

that Mw � 9 events have ARI ’ 300–400 years by

constraining the parameters of a tapered Gutenberg-

Richter type model with tectonic convergence rates

and earthquake catalogue data. In the same region

Butler et al. (2016) obtained an ARI of 1148

(490–3448) using the ‘regionally scaled global

moment rate’ (RSGR) method, whereas our method

suggests ARIs intermediate between these two esti-

mates (Table 1).

Systematic differences are expected between our

model and the RSGR method used by Butler et al.

(2016). The latter partitions global subduction seis-

micity among source-zones in proportion to their

length and trench-normal convergence rate (Burbidge

et al. 2008). It thus ignores variability in Mw;max,

coupling, and the source-zone width, whereas these

factors are included in our model, albeit with
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significant uncertainty (e.g. Fig. 3). Therefore com-

pared with our model the RSGR method should

predict more frequent earthquakes on narrow source-

zones with apparently low coupling (e.g. Marianas

trench), and conversely on wide source-zones with

apparently high coupling (e.g. South America). This

seems consistent with predictions of each model near

Chile, Japan, Kamchatka and Sumatra (Table 1).

However the relationship does not extend to the wide

Alaskan megathrust, where both approaches give

similar results (Table 1). This is because the Alaskan

segment of our Alaska–Aleutian source-zone does

not feature GCMT thrust earthquakes with

Mw [ 7:15, causing the Bayesian weight update to

prefer moderately low coupling (prior mean

c ¼ 0:75; posterior mean c ¼ 0:35). The effect is

moderated by the 50% weight assigned to the

unsegmented Alaska-Aleutians source which exhibits

more GCMT seismicity (prior mean c ¼ 0:64; pos-

terior mean c ¼ 0:49). Nonetheless the lower overall

coupling in our model effectively offsets the high

width on the Alaskan megathrust, ultimately leading

to results similar to the RSGR method.

Considering our model makes limited use of site-

specific long-term data (to facilitate global applica-

tion), our ARIs are not assumed to be more accurate

than others in Table 1 at any particular site. However

the fact that our results are comparable to a range of

other studies, many of which employ much longer

term observational data, gives some support to the

method.

3.5. Maximum-Stage Exceedance-Rates at Hazard

Points

For each earthquake-tsunami scenario, the max-

imum-stage (i.e. maximum simulated water-level

above ambient sea level) is used to describe the

tsunami size at any given location. In practice the

tsunami model time-series are not stored at every grid

cell due to file storage limitations; instead they are

stored at a set of around 20,000 locations (termed

‘hazard points’) which are globally distributed but

have much higher density near Australia (Davies and

Griffin 2018). For each hazard point the tsunami

maximum-stage exceedance-rates are derived from

the earthquake magnitude-frequency models as

described below.

First consider a single unsegmented source-zone

(or an individual segment of a segmented source-

zone). If the earthquake-slip and rigidity models are

specified then each individual earthquake-tsunami

scenario e on the source has an associated family of

occurrence-rates re;i which are derived by partitioning

each logic-tree GRi curve among all scenarios on the

source (Eqs. 9, 12). Each GRi and re;i also have an

associated Bayesian posterior weight wi (Sects. 3.2

and 3.3). For a given hazard point p and scenario e,

denote the tsunami maximum-stage as ge;p. Then for

each GRi there is an associated maximum-stage

exceedance-rate curve at p, given by:

!p
i ðxÞ ¼

X

e

re;iIðge;p[xÞ

¼
X

e

GRi Mw;e �
D
2

� �
�GRi Mw;e þ

D
2

� �� ��

PrðejMw ¼Mw;eÞIðge;p[xÞ
�

ð16Þ

where the second step simply expands re;i using Eq. 9

and is useful below. Here !p
i ðxÞ gives the rate (av-

erage number of events per year) of earthquake-

tsunamis with maximum-stage greater than x at point

p, assuming that GRi is correct. The indicator func-

tion IðÞ is defined to be unity if its argument is true,

and zero otherwise. Equation 16 leads to a family of

maximum-stage exceedance-rate curves at each haz-

ard point for each unsegmented source-zone (or

individual segment). To summarise the results it is

natural to define the logic-tree-mean maximum-stage

exceedance-rate curve !pðxÞ (events/year) as:

!pðxÞ ¼
X

i

wi!
p
i ðxÞ

¼
X

e

GRðMw;e �
D
2
Þ � GRðMw;e þ

D
2
Þ

� ��

PrðejMw ¼ Mw;eÞIðge;p [ xÞ
�

ð17Þ

where GR is the posterior-mean magnitude excee-

dance-rate curve over all logic-tree branches. The

second step follows from Eq. 16 and highlights that

1538 G. Davies and J. Griffin Pure Appl. Geophys.



individual !p
i ðxÞ do not need to be calculated. This

facilitates efficient computation, and is a benefit of

the scenario conditional probability model being

independent of i (Sect. 3.2). This logic-tree-mean

maximum-stage exceedance-rate can be straightfor-

wardly generalised to multiple source-zones by

summation of their !pðxÞ values. On source-zones

with segmentation 50% weight is placed on the

union-of-segments interpretation, and the remainder

on the unsegmented interpretation (as was done for

the magnitude exceedance-rates).

Percentile maximum-stage exceedance-rate

curves are also useful to indicate the uncertainty in

the tsunami hazard (Power et al. 2017). For example,

consider the 84th percentile maximum-stage excee-

dance-rate at point p, denoted !p;84ðxÞ with units

(events/year) which is a function of the desired

maximum-stage x. For the case of an unsegmented

source-zone or single segment, !p;84ðxÞ is defined as

the smallest number such that:
X

i

wiI !p
i ðxÞ�!p;84ðxÞ

� �� �
� 84=100 ð18Þ

For a given maximum-stage x, this implies 84% of

the logic-tree weight is assigned to maximum-stage

exceedance-rates �!p;84ðxÞ. Eq. 18 directly gener-

alises to other percentiles in the open interval

(0, 100). Note a different definition was used in

Davies and Griffin (2018) for computational expedi-

ence; in comparison Eq. 18 is more rigorous but

relatively expensive to compute because all !p
i ðxÞ are

required. Although Eq. 18 is used herein, the impact

on our percentile uncertainty calculations is small; for

instance the 84th percentile results in Sect. 4.2 differ

from those of Davies and Griffin (2018) by less than

5% at 90% of hazard points.

The generalisation of exceedance-rate percentiles

(Eq. 18) to multiple source-zones is more complex

than for the logic-tree-mean (Eq. 17) because it

depends on assumptions about the dependence of

uncertainties between source-zones; we defer full

discussion of this to Sect. 4.2. However note that for

a possibly segmented source-zone, the maximum-

stage exceedance-rate for a given percentile and

maximum-stage is computed by summing the results

of Eq. 18 on each individual segment (which pre-

vents cancellation of uncertainties due to

segmentation, and is consistent with the co-mono-

tonic treatment discussed in Sect. 4.2). Given a 50%

weight on both the ‘union-of-segments’ and ’unseg-

mented’ interpretations, the combined distribution of

exceedance-rates for a given maximum-stage is a

50:50 mixture of the ‘union-of-segments’ and ‘un-

segmented’ exceedance-rate distributions. The latter

two distributions can be computed individually from

their percentiles; it is then straightforward to derive

the full mixture distribution and compute any desired

percentiles directly.

4. Results

4.1. Sensitivity of Offshore Hazard to the Chosen

Slip and Rigidity Model

The sensitivity analysis focusses on the ARI = 500

year tsunami maximum-stage at sites offshore of

Australia (Fig. 8a). To compute this, for every

source-zone the logic-tree-mean maximum-stage

exceedance-rate (Eq. 17) is calculated at 100 maxi-

mum-stage values logarithmically spaced from 0.02

to 20 m; then for each maximum-stage the excee-

dance-rates are summed over all source-zones, and

finally the ‘ARI = 500 year maximum-stage’ is

defined as the maximum-stage that results in this

summed exceedance-rate being 1/500, interpolating

as required. Irrespective of the chosen slip or rigidity

model, wave shoaling over the continental shelf leads

to strong shore-normal gradients in tsunami size

(Fig. 8a). This complicates interpretation at the

continental scale, and so for subsequent analysis the

results are normalised to 100 m depth using Green’s

law (i.e. multiplied by ðdepth=100Þ1=4). Normalisa-

tion greatly reduces the depth-dependence of the

results and emphasises regional patterns in the

offshore tsunami size (Fig. 8b).

For each combination of earthquake slip and

rigidity model, the normalised ARI = 500 maximum-

stage is depicted in Fig. 9. Comparison of models

with constant l (top row) and depth-varying l
(bottom row) indicates the choice of rigidity model

has a minor effect on the results when the earthquake-

slip model is fixed (Fig. 9). Switching between

rigidity models typically leads to point-wise changes

Vol. 177, (2020) Sensitivity of Probabilistic Tsunami Hazard Assessment 1539



of a few percent, and while the difference varies from

site to site it is always less than 10%.

The choice of earthquake slip model has a more

substantial impact on the results (Fig. 9). The FAUS

model produces smaller ARI = 500 tsunamis than

both the VAUS and HS models (Fig. 9); for example

the FAUS/VAUS ARI = 500 maximum-stage ratio is

around 0.67 (median over all sites), with 90% of sites

in (0.6–0.84) irrespective of the rigidity. Differences

between the VAUS and HS models are much smaller

Figure 8
a Maximum-stage at ARI = 500 years, using the HS model with constant l for illustration. b The same data normalised to a depth of 100 m

using Green’s law (i.e. multiplied by ðdepth=100Þ0:25), to reduce the effect of depth variations

Figure 9
Maximum-stage at ARI = 500 years with Green’s law normalisation to 100 m depth, for all slip and rigidity models

1540 G. Davies and J. Griffin Pure Appl. Geophys.



(Fig. 9), with the VAUS/HS ARI=500 maximum-

stage ratio ’ 0:91 (median over all sites), with 90%

of sites in (0.85–0.96).

These differences reflect both the varying capac-

ity of the earthquake slip models to produce large

tsunamis, and our application of bias-adjustment via a

non-uniform partition of the parent FAUS scenario

occurrence-rates (Sect. 3.2). Recall bias-adjustment

was not applied to the FAUS model because its

scenarios have little variability by construction, so

even though they poorly represent some observed

tsunamis (Fig. 2b) no improvement can be obtained

by preferentially weighting some subset of scenarios.

Conversely, both the HS and VAUS models produce

more variable scenarios that are amenable to bias

adjustment. For the VAUS model this resulted in a

strong preference for compact, high-slip scenarios

(Fig. 2d), which tend to produce larger tsunamis than

uniform-slip scenarios with similar magnitude but

low or median slip. This is the key driver of

differences between the VAUS and FAUS hazard

results (Fig. 9). While the HS model was subject to a

much smaller bias-adjustment, the similarity of the

HS and VAUS results reflects that HS scenarios can

simulate slip asperities directly without recourse to

compact rupture area. Considering the VAUS model

completely ignores earthquake slip heterogeneity, it

is remarkable that the difference with a heteroge-

neous-slip model is only around 10% once a

preference for compact ruptures is accounted for

(Fig. 9).

4.2. Sensitivity of Offshore Hazard to Epistemic

Uncertainty in the Magnitude-Frequency

Distributions

Uncertainties in PTHA also result from the

uncertain frequency of large-magnitude earthquakes

(e.g. Fig. 3). It is important to understand the relative

significance of this compared with the choice of slip

and rigidity model, to help guide future improve-

ments to PTHA methodologies (Sepúlveda et al.

2019). A complication arises because the site-specific

hazard is often affected by multiple source-zones.

Thus we must determine whether the uncertain

earthquake frequencies on these source-zones are

independent, or exhibit some kind of epistemic-

uncertainty dependence. For example, the frequency

of Mw [ 9 earthquakes on the Kermadec-Tonga

trench is highly uncertain due to poor constraints on

Mw;max (Fig. 3), but if future research demonstrated

that Mw;max [ 9 on the Tonga segment, we ask if this

would influence our belief that Mw;max [ 9 elsewhere

(e.g. on the nearby Kermadec segment, or other

source-zones)? If the answer to such questions is

always ‘no’ then the uncertainties are independent,

and otherwise they are dependent.

Dependence does not affect the mean hazard

(because the mean of the sum of random variables is

always equal to the sum of their means), but does

affect percentile uncertainty calculations. If two

source-zones show positive dependence in the mag-

nitude-frequency epistemic-uncertainty, then the

hazard uncertainty will increase at coastal sites

affected by both. Although it is unclear how to best

specify inter-source-zone epistemic-uncertainty

dependence, in many situations independence seems

unlikely. Source-zone parameters such as Mw;max,

coupling coefficients and GR b-values are often

hypothesised to be related to other physical properties

of the source-zone (e.g. McCaffrey 1997; Scholz and

Campos 2012; Nishikawa and Ide 2014; Bilek and

Lay 2018), and if correct such theories imply

epistemic-uncertainty dependence, because source-

zones with similar properties will deviate similarly

from the model (assuming those properties are not

already accounted for). For example it has been

hypothesised that subduction-zones with high down-

dip curvature are less likely to host large earthquakes

due to heterogeneities in shear strength (Bletery et al.

2016). This may or may not be correct, but if true it

suggests the relatively high-curvature Solomon, New

Hebrides, Kermadec-Tonga, Philippines, Marianas

and Scotia subduction zones may host high-magni-

tude earthquakes infrequently compared with our

model (which does not explicitly consider curvature).

This possibility implies some epistemic-uncertainty

dependence between these source-zones. A conflict-

ing hypothesis is that Mw;max is limited only by the

source-zone size (McCaffrey 2008). This may or may

not be correct, but if correct implies the true

frequency of high magnitude earthquakes will be

high relative to the model on most source-zones (i.e.

wherever the model places significant weight on
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smaller Mw;max values). The key point is that our

model may have structural errors. This suggests some

inter-source-zone epistemic-uncertainty dependence,

albeit difficult to specify.

To robustly account for the unknown epistemic-

uncertainty dependence structure, herein the multi-

source-zone maximum-stage exceedance-rate per-

centile curves are computed assuming every source-

zone simultaneously attains the same percentile

(Fig. 10). This is termed ‘co-monotonic’ dependence

(Deelstra et al. 2009). For instance the 16th-per-

centile panel in Fig. 10 is computed assuming that at

each hazard point, the 16th percentile maximum-

stage exceedance-rate curve is ‘true’ for all source-

zones simultaneously, so for any maximum-stage

these exceedance-rates may be summed to derive the

multi-source-zone exceedance-rate (and similarly for

the other percentiles). Co-monotonicity is widely

used to robustly model dependence in economic

theories of decision under risk and uncertainty

(Deelstra et al. 2009) and prevents uncertainties on

multiple source-zones from partially cancelling, as

would occur under independence. Because most

coastal sites are significantly affected by only a few

source-zones, the site-specific maximum-stage excee-

dance-rate uncertainties are not reliant on the global

correctness of the co-monotonic assumption, but

rather that it describes the dependence of locally

significant source-zones (Davies et al. 2017). The co-

monotonic approach bypasses the need to fully

describe this dependence structure, albeit at the

expense of some conservatism.

Compared with the choice of slip and rigidity

model, epistemic uncertainty in the magnitude-fre-

quency distributions leads to large uncertainty in the

ARI = 500 maximum-stage (Fig. 10). Taking the HS

model with constant l for illustration, the 16th, 50th

and 84th percentile values in Fig. 10 are respectively

’ 50%, 87% and 126% of the mean discussed earlier

(top right-panel of Fig. 9). The latter ratios vary

spatially, but mostly within � 10%. The dominance

of magnitude-frequency related uncertainties in our

model is qualitatively consistent with results of recent

tsunami hazard assessments in the South China Sea

(Li et al. 2016; Sepúlveda et al. 2019). They found

the maximum-stage at ARIs ’ 100–1000 years

changed by well over 100% due to the choice of

magnitude-frequency model, as compared with

changes ’ 20� 60% due to the earthquake slip

representation.

4.3. Global Scale Results

Although our study is focussed on Australia, some

results were stored globally to facilitate model testing

and interpretation (Fig. 11). At the global level the

model suggests large waves are most likely around

major subduction zones. The South America and

Kurils-Japan subduction-zones are particularly

prominent because they are wide, converging rela-

tively rapidly, definitely have Mw;max [ 9, and their

GCMT earthquake history leads the model to favour

reasonably high coupling (posterior mean c ’ 0:77 in

both cases). The model also predicts substantial

Figure 10
Percentile uncertainties in maximum-stage at ARI = 500 years with Green’s law normalisation to 100 m depth, due to epistemic-uncertainty in

magnitude-frequency distributions. Results use the HS model with constant l
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penetration of large waves into the central Pacific

Ocean (Fig. 11). Noting that both the 1946 Aleutian

and 1960 Chile earthquakes led to large far-field

tsunami runup at central Pacific sites such as Hawaii,

the Marquesas and Easter Island (NGDC 2018), this

result seems qualitatively reasonable. Compared with

the global results the hazard in Australia is moderate

overall, except on the northwest coast which is

directly exposed to tsunamis generated on the eastern

Sunda Arc (Fig. 11).

It is illuminating to assess the FAUS, VAUS and

HS model return periods corresponding to larger

offshore waves observed near Japan during the 2011

Tohoku tsunami. During this event two GPS gauges

near Iwate in Japan recorded maximum-stage values

exceeding 6 m. They were located about 12 km

offshore in 200 m depth and separated by 40 km

(termed ‘Iwate M’ and ‘Iwate S’ in Satake et al.

2013, see the latter study for locations and observed

time-series). Our nearest model point falls between

these gauges but slightly further offshore (395 m

depth). If the wave shoaling follows Green’s law then

the corresponding maximum-stage is around 5.1 m at

the model point, which has a modelled ARI of 970

years (HS), 1208 years (VAUS), and never occurs

with the FAUS model (ARI ¼ 1). This further

highlights the potential for FAUS scenarios to

underestimate offshore wave-heights, and the ten-

dency for comparable results to be obtained using

either the (bias-adjusted) VAUS or HS scenarios.

5. Conclusions

The framework in this paper facilitates a consis-

tent treatment of earthquake-scenario rates for PTHA

using different slip and rigidity models, while main-

taining reasonable consistency with the historical

earthquake record and tectonic constraints. It features

a number of improvements relative to previous

approaches for large-scale PTHA (e.g. Power et al.

2017; Davies et al. 2017):

• The edge-effect adjustment leads to a better match

between modelled time-integrated slip rates and

spatial variations in tectonic convergence

• Earthquake catalogue data is more efficiently used

to control the logic-tree weights, in a manner that

also accounts for the choice of rigidity model.

• Non-uniform scenario weights are used to partially

offset biases in the earthquake slip models.

This provides a suitable basis to study the sensitivity

of PTHA results to the choice of earthquake slip and

rigidity model.

Figure 11
Maximum-stage (m) at ARI = 500 years, normalised to 100 m depth using a Green’s law factor ððdepth=100Þ0:25Þ to reduce the effect of depth

variations. The HS model with constant l was used
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Within our framework the choice of rigidity

model has a small effect on the offshore hazard.

Although shallow low rigidity zones may permit

surprisingly large tsunamis for their magnitude, tec-

tonic constraints imply such events should occur less

often than higher-rigidity events with similar mag-

nitude and lower slip. A similar trade-off was

identified by Scala et al. (2019) who used a com-

pletely different ‘slip-amplification’ approach to

represent the effect of depth-varying rigidity on

earthquake slip. Our ‘magnitude-relabelling’

approach implies the rigidity model affects the hazard

by changing our interpretation of the integrated slip

released by historical earthquakes (which in turn

affects the logic-tree weights for the magnitude-fre-

quency distributions). Compared with slip-

amplification (Scala et al. 2019), the magnitude-re-

labelling approach has the practical advantage of not

requiring any re-computation of tsunami waveforms.

However it is not obvious whether one-or-other

approach should be preferred on theoretical grounds,

or the extent to which their results differ. This should

be considered in future research.

Our results confirm that the representation of

earthquake slip has a significant effect on PTHA,

even in the far-field (Li et al. 2016). This is signifi-

cant because PTHAs often employ FAUS-like

uniform-slip scenarios with magnitude-dependent

length and width based on a scaling relation (e.g.

Løvholt et al. 2014; Roshan et al. 2016; Davies et al.

2017; Kalligeris et al. 2017). In our study some his-

torical tsunamis were poorly represented with the

FAUS approach, and it predicted significantly lower

tsunami hazard in Australia than the other approa-

ches. Thus we suggest the FAUS approach should not

be used, even in the far-field. While the HS and

VAUS scenarios showed better performance, there

was a clear tendency for good-fitting VAUS scenarios

to be ‘compact’ relative to the scaling-relation pre-

dictions. Once accounted for via bias-adjustment, the

VAUS and HS scenarios produced similar ARI=500

maximum-stage estimates for Australia. This sug-

gests both HS and VAUS can usefully represent

earthquake-generated tsunamis for PTHA. For some

hazard modelling applications the use of both sce-

nario types could be beneficial to represent epistemic

uncertainties in tsunami generation. In other cases the

fewer degrees-of-freedom of VAUS scenarios may be

exploited to reduce computational effort, as noted by

An et al. (2018) in the context of tsunami early

warning.

Although the representation of earthquake size

and slip is important for producing realistic tsunami

wave-forms, in this study the largest source of

uncertainty remains the earthquake magnitude-fre-

quency relations. Future work may reduce these

uncertainties by more efficiently using paleo-seismic

and long-term historical observations, coupled with

appropriate treatment of the data uncertainties (Grif-

fin et al. 2018). Refinements of the model’s structure

should simultaneously be considered (e.g. allowing

for non-Poissonion event times, Geist 2014; Moer-

naut et al. 2018) and are likely to become more

important when additional data is used to constrain

the model. In addition, the development of more

refined representations of inter-source-zone epis-

temic-uncertainty dependence may allow the tsunami

hazard uncertainty to be reduced at some sites

affected by multiple source-zones, as compared with

the co-monotonic treatment applied herein.
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