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Abstract—For seismic waveform simulation in tilted trans-

versely isotropic (TTI) media, we derive explicitly the numerical

dispersion relation and the stability condition for the computation

of a 2D pseudo-acoustic wave equation. The numerical dispersion

relation indicates that the number of sampling points per wave-

length has the greatest influence on the dispersion, while the

anisotropic parameters of the TTI media and the mesh rotation

angle have little influence on the dispersion. Given an appropriate

spatial sampling, the stability condition is for the selection of the

time step for the implementation of the TTI wave equation. We

partition a numerical model using quadrangle grids in Cartesian

coordinates, and map it to a computing model in which any non-

rectangular meshes in Cartesian coordinates become rectangular

meshes. Then we reformulate the pseudo-acoustic wave equation

for the TTI media accordingly in the computational space. We

implement seismic waveform simulation using the second-order

finite-difference method straightforwardly, and show examples

with a desirable accuracy using a model with non-rectangular

meshes in Cartesian coordinates along a curved surface and fluc-

tuating interfaces in the TTI media.

Key words: Anisotropy, dispersion, finite difference, stabil-

ity, TTI, wave equation.

1. Introduction

Seismic anisotropy commonly exists in the

Earth’s subsurface media (Tsvankin et al. 2010;

Takanashi and Tsvankin 2012). Accurate waveform

simulation in tilted transversely isotropic (TTI) media

is of importance for seismic waveform inversion. The

latter reconstructs the subsurface velocity model

quantitatively based on seismic waveform data.

Seismic waveform data routinely recorded by

hydrocarbon explorations comprise of mainly P-wave

reflection data. Therefore, we use an acoustic wave

equation in this paper for waveform simulation

through TTI media containing a curved surface and

fluctuating interfaces. This waveform simulation

scheme is a core engine employed by the iterative

inversion of seismic P-wave reflection data (Wang

2003; Wang and Rao 2009).

Although the P-wave and S-wave are coupled in

the elastic wave equation in TTI media, we can have

a pseudo-acoustic wave equation if the S-wave

velocity is fixed along the axis of symmetry

(Alkhalifah 1998; Fletcher et al. 2009). This acoustic

wave equation is defined by two anisotropic param-

eters e and d measuring the difference between two

axes of the elliptic wavefront and the deviation from

a perfect elliptical shape, respectively (Thomsen

1986). In the context of seismic waveform inversion,

Pratt and Shipp (1999) and Rao and Wang (2011) use

an acoustic wave equation defined by a single ani-

sotropic parameter e. Rao et al. (2016) provide the

derivation of this wave equation with a single ani-

sotropic parameter. In this paper, we adopt the

acoustic wave equation with two anisotropic param-

eters. That is the pseudo-acoustic wave equation.

We also consider the models with a curved sur-

face and fluctuating interfaces in the subsurface. We

use quadrangle grids to partition every individual

layer, confined by two fluctuating interfaces, based on

a body-fitting scheme. By solving Poisson’s equation,

these grids also satisfy the pseudo-orthogonal con-

dition (Rao and Wang 2013) in which grids should

have the acute angles[ 67� (90� for completely

orthogonal grids). We transform non-rectangular

meshes in Cartesian coordinates into rectangular ones

through conformal mapping. These grids, as struc-

tured, keep the similar neighborhood relationships as

they do in Cartesian coordinates. We reformulate the
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pseudo-acoustic wave equation accordingly in the

computational space. For the reformulated TTI wave

equation, we analytically derive the corresponding

numerical dispersion relation and stability condition,

which provide the basis of finite-difference parameter

selection of the TTI media waveform simulation.

2. Wave Equation

The pseudo-acoustic wave equation in TTI media

is (Fletcher et al. 2009)

o2

ot2
p

q

� �
¼ v2pxHx þ v2szHz ðv2pz � v2szÞHz

ðv2pn � v2szÞHx v2szHx þ v2pzHz

� �
p

q

� �
;

ð1Þ

where p is the P wavefield, q is an auxiliary wave-

field, vpz is the P-wave velocity along the TTI

symmetry axis, vpx is the P-wave velocity perpen-

dicular to the symmetry axis, vpn is the P-wave

normal-moveout velocity, vsz is the SV-wave velocity

along the TTI symmetry axis, and Hx and Hz are two

2D differential operators, Hx � o2=ox̂2 and

Hz � o2=oẑ2, with respect to the rotated coordinate

system (x̂, ẑ). Denoting the anticlockwise rotation

angle of the TTI symmetry axis ẑ by / (Fig. 1), we

can present the two 2D differential operators as

Hx ¼
o2

ox2
þ o2

oz2
� Hz;

Hz ¼ sin2 /
o2

ox2
þ cos2 /

o2

oz2
þ sin 2/

o2

oxoz
;

ð2Þ

where (x, z) are Cartesian coordinates. Note that we

use Hx and Hz here to present differentials with

respect to x̂ and ẑ, respectively. Fletcher et al. (2009)

used H1 and H2 to present the two differentials with

respect to ẑ and x̂, respectively. For the completeness,

we summarize the derivation of this pseudo-acoustic

wave equation in the appendix.

In the pseudo-acoustic wave equation [Eq. (1)],

the two anisotropic velocities (vpx, vpn) are related to

the TTI anisotropy parameters by vpx ¼ vpz

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2e

p

and vpn ¼ vpz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2d

p
, where e and d are two aniso-

tropy parameters (Thomsen, 1986). Note that the SV-

wave velocity vsz in Eq. (1) does not have a signifi-

cant effect on the P wavefront. It would have an

effect on the SV-wave wavefront and in turn on the

P–S converted wave imaging. However, from the P–P

wave imaging/gradient calculation point of view, the

SV-wave wavefront (traveling slowly) is simply an

unwanted artefact and does not significantly affect

the P-wave image.

We use body-fitted grids initially to partition the

numerical model (Rao and Wang 2013). Because of the

curved surface and fluctuating interfaces in the model,

there must be non-rectangular meshes along the surface

and the interfaces (Fig. 2a). Then, we map this initial

Cartesian model into a computing model with a flat

surface and flat interfaces (Fig. 2b). After this conformal

mapping, the non-rectangular meshes in the Cartesian

model become rectangular meshes in the computational

space. Thus, we can adopt a simple finite-difference

scheme straightforwardly for wave simulation.

Here, we transform the pseudo-acoustic wave

equation from Cartesian coordinates (x, z) to the

computational space (n; g). In the computational

space, the first-order spatial derivatives become

o

ox
¼ o

on
_nx þ

o

og
_gx ;

o

oz
¼ o

on
_nz þ

o

og
_gz ;

ð3Þ

Figure 1
In homogeneous TTI media, the anticlockwise rotation angle of the

symmetry axis of the wavefront is /: The ray vector points from

the source to the receiver, and the corresponding wave (phase

velocity) vector is normal to the wavefront. The wave angle with

respect to the symmetry axis ẑ is h: The angle between the wave

vector and the positive direction of the g -axis in the computational

space is c. The rotation angle of a local mesh from the conventional

finite-difference mesh, which is parallel and perpendicular to the

Cartesian coordinates, is u
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where _nx � on=ox, _gx � og=ox, and so on. These

derivatives are known parameters, because of the

relationship between the model coordinates and the

computational coordinates. The second-order spatial

derivatives are

o2

ox2
¼ o

on
_n2x

o

on

� �
þ o

on
_nx _gx

o

og

� �
þ o

og
_nx _gx

o

on

� �

þ o

og
_g2x

o

og

� �
;

o2

oz2
¼ o

on
_n2z

o

on

� �
þ o

on
_nz _gz

o

og

� �
þ o

og
_nz _gz

o

on

� �

þ o

og
_g2z

o

og

� �
;

o2

oxoz
¼ o

on
_nx
_nz

o

on

� �
þ o

on
_nx _gz

o

og

� �
þ o

og
_nz _gx

o

on

� �

þ o

og
_gx _gz

o

og

� �
:

ð4Þ

Substituting these spatial derivatives into the 2D

differential operators Hx and Hz, we rewrite wave

equation [Eq. (1)] in the computational space (n; g).

We numerically solve this time-space domain wave

equation in the computational space using a second-

order finite-difference method.

3. Numerical Dispersion

We analyze the numerical dispersion in this section,

for the finite-difference implementation of the spatial

derivatives in the pseudo-acoustic wave equation.

When e ¼ d; the P wavefield p is approximately

equal to the auxiliary wavefield q; and we can use any

of the two expressions in Eq. (1) for the dispersion

analysis. We rewrite the first expression as

o2p

ot2
¼ v2pz½ð1þ 2eÞHx þ Hz�p; ð5Þ

for which we exploit the relation of v2px ¼ ð1þ 2eÞv2pz.

Assuming that the grids fully satisfy the orthogonal-

ity, and that the local mesh has a rotation of angle u
from the conventional finite-difference mesh:

_nx ¼ cosu; _nz ¼ sinu; _gx ¼ � sinu;
_gz ¼ cosu:

ð6Þ

We can express the spatial derivatives in Eq. (4)

as

o2

ox2
¼ cos2 u

o2

on2
� sin 2u

o2

onog
þ sin2 u

o2

og2
;

o2

oz2
¼ sin2 u

o2

on2
þ sin 2u

o2

onog
þ cos2 u

o2

og2
;

o2

oxoz
¼ 1

2
sin 2u

o2

on2
� o2

og2

� �
þ cos 2u

o2

onog
:

ð7Þ

Substituting these expressions into the differential

operators Hx and Hz in Eq. (2), then we rewrite

Eq. (5) as

o2p

ot2
¼ v2pz A

o2

on2
þ B

o2

onog
þ C

o2

og2

� �
p; ð8Þ

where

A ¼ ð1þ 2e cos2 /Þ cos2 uþ ð1þ 2e sin2 /Þ sin2 u
� e sin 2/ sin 2u ;

B ¼ �2e sinð2/þ 2uÞ;
C ¼ ð1þ 2e cos2 /Þ sin2 uþ ð1þ 2e sin2 /Þ cos2 u

þ e sin 2/ sin 2u :

ð9Þ

Figure 2
a Body-fitted grids in the physical space (x, z). b Non-rectangular

meshes in the Cartesian coordinates are transformed into rectan-

gular ones in the computational space (n; g) through conformal

mapping
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We can approximate the temporal and spatial

derivatives in Eq. (8) by finite differencing. Follow-

ing the procedure of von Neumann stability analysis,

we insert a plane wave pðn; g; tÞ ¼ p0e
�iðknnþkggÞeixt

into the finite-difference operators (Nilsson et al.

2007). For instance,

o2p

ot2
� pðt þ DtÞ þ pðt � DtÞ � 2pðtÞ

Dt2

¼ eixDt þ e�ixDt � 2

Dt2
pðtÞ ð10Þ

Then, we approximate the four derivatives in

Eq. (8) as harmonic functions:

o2

ot2
� eixDt þ e�ixDt � 2

Dt2
¼ �4

Dt2
sin2

xDt

2
;

o2

on2
� eiknDn þ e�iknDn � 2

Dn2
¼ �4

Dn2
sin2

knDn
2

;

o2

og2
� eikgDg þ e�ikgDg � 2

Dg2
¼ �4

Dg2
sin2

kgDg
2

;

o2

onog
� � sinðknDnÞ sinðkgDgÞ

DnDg
:

ð11Þ

Now, assuming Dn ¼ Dg; we express Eq. (8) as

A

Dn2
sin2

knDn
2

� �
þ B

4Dn2
sinðknDnÞ sinðkgDgÞ

þ C

Dn2
sin2

kgDg
2

� �
¼ 1

v2pzDt2
sin2

xDt

2

� �
;

ð12Þ

where x ¼ 2pvhs=Dn is the angular frequency with

velocity of wave propagation vh; following De

Basabe and Sen (2007), s ¼ Dn=k represents the

reciprocal number of sampling points per wavelength

k; kn ¼ 2p sin c=k and kg ¼ 2p cos c=k are

wavenumbers, and c is the angle between the wave

vector and the positive direction of the g-axis in the

computational space (Fig. 1).

Defining the Courant number as

Q ¼ vpz

Dt

Dn
; ð13Þ

we rewrite Eq. (12) as

1

Q2
sin2

psQvh

vpz

� �
¼ K; ð14Þ

where

K ¼ A sin2ðps sin cÞ þ B

4
sinð2ps sin cÞ sinð2ps cos cÞ

þ C sin2ðps cos cÞ:
ð15Þ

Therefore, we have

vh

vpz

¼ sin�1ðQ
ffiffiffiffi
K

p
Þ

psQ
: ð16Þ

In the appendix, we have derived the P-wave phase

velocity vðhÞ as

v2ðhÞ
v2pz

¼ 1� L

2
þ e sin2 hþ L

2
1þ 4e2 sin4 h

L2

�

þ 4 sin2 h
L

ð2d cos2 h� e cos 2hÞ
�1=2

;

ð17Þ

where L ¼ 1� v2sz=v2pz, and h is the angle between the

wave vector and the TTI symmetry axis (Fig. 1).

As we assume e ¼ d, and assuming L ¼ 1, the

maximum possible value of L, we can simplify

Eq. (17) to be

vpz ¼
vðhÞffiffiffiffi

D
p ; ð18Þ

where

D ¼ 1

2
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4e sin2 hþ 4e2 sin4 h

p� �
þ e sin2 h:

ð19Þ

Therefore, we obtain the following dispersion

relation:

vh

vðhÞ ¼
sin�1ðQ

ffiffiffiffi
K

p
Þ

psQ
ffiffiffiffi
D

p : ð20Þ

Figure 3 shows that the dispersion increases with the

increase of the sampling rate s, which is the recip-

rocal number of sampling points per wavelength. In

this test, the Courant number Q ¼ 0:1, the anisotropy

parameter e ¼ 0:1, the angle between the symmetry

axis and the vertical direction of the TTI medium is

/ ¼ 30�; and the meshing rotation angle u ¼ 30�:

Numerical tests indicate that the dispersion is

weakest when the propagation direction is perpen-

dicular to the axis of TTI media (h ¼ 90�). The

dispersion is slightly increased when the propagation

direction is close to the axis of symmetry (h ! 0�).

1552 Y. Rao and Y. Wang Pure Appl. Geophys.



As it is well known, a general requirement for

forward modeling in the isotropic media with the

second-order finite-difference simulations is 10 grids

per wavelength (Kreiss and Oliger 1972; Wu et al.

1996). Figure 3 indicates that satisfying the condition

s� 0:1, that is � 10 grids per wavelength, means

that the dispersion is less than 1% in wavefield sim-

ulation through anisotropic media. The smallest

dispersion ratio is 0.99, for the anisotropic parameters

e and d between �0:25 and 0:25 and for the mesh

rotation angle u between 0 and 90o. These numerical

tests confirm that, as long as s ¼ 0:1, the dispersion

requirement of forward modeling is still satisfied.

Note that the points per wavelength quoted above

is for wave propagation within one wavelength.

Because of the error accumulation, the number of

points required for a given tolerance depends on the

number of wavelengths the wave is to propagate.

According to Kreiss and Petersson (2012), a typical

scaling is ðk=lÞ1=n
, where (k, l) here are the Lame

parameters, and n is the order of accuracy of the

method.

4. Numerical Stability

We derive the stability condition in this section,

for the numerical implementation of the time

derivatives in the wave equation, given appropriate

sampling in the spatial domain. We investigate this

numerical stability when the spatial grids are dis-

cretized in Cartesian coordinates.

Assuming e ¼ d; a similar procedure to that in the

previous section, we approximate the auxiliary

wavefield q by the P wavefield p, and obtain the

condition of numerical stability from the implemen-

tation of Eq. (5). Using the second-order finite-

differencing operator to present the time-domain

derivative, we express Eq. (5) as

pðnþ1Þ ¼ f 2þ Dt2v2pz½ð1þ 2eÞHx þ Hz� gpðnÞ

� pðn�1Þ; ð21Þ

where n is the time step. After Fourier transformation,

it becomes

~pðnþ1Þ ¼ f 2� v2pzDt2½ð1þ 2eÞ ~Hx þ ~Hz� g~pðnÞ

� ~pðn�1Þ; ð22Þ

where ~Hx and ~Hz are the wavenumber-domain 2D

differential operators, and ~p is the wavenumber-do-

main P wavefield. Now, we rewrite Eq. (22) in the

form of a growth matrix as

~pðnþ1Þ

~pðnÞ

" #
¼ 2� v2pzDt2½ð1þ 2eÞ ~Hx þ ~Hz� �1

1 0

" #

~pðnÞ

~pðn�1Þ

" #
:

ð23Þ

Denoting the 2	 2 growth matrix by A, the sta-

bility condition of this differential equation is that the

maximum absolute eigenvalue of matrix A is not

greater than one. This maximum value defines the

spectral radius of the matrix. Thus, the stability

condition is

RðAÞ ¼ maxfjk1j; jk2jg� 1: ð24Þ

The eigen-equation of matrix A is

2� v2pzDt2½ð1þ 2eÞ ~Hx þ ~Hz� � k �1

1 �k

				
				 ¼ 0;

ð25Þ

which has two eigenvalues:

k1;2 ¼
1

2
�f v2pzDt2½ð1þ 2eÞ ~Hx þ ~Hz� � 2 g 


ffiffiffiffi
D

pn o

ð26Þ

Figure 3
Numerical dispersion versus the reciprocal number of sampling

points per wavelength. In the legend, h is the angle between the

wave vector and the symmetry axis of the TTI media
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with

D ¼ f v2pzDt2½ð1þ 2eÞ ~Hx þ ~Hz� � 2 g2 � 4: ð27Þ

When D[ 0; both eigenvalues are real valued,

and RðAÞ is larger than one. When D� 0, both

solutions k1;2 are complex valued. The moduli of both

the complex eigenvalues k1;2 are identically equal to

one. Therefore, to guarantee a stable iteration, the

condition of D� 0 must be satisfied. That is,

0� v2pzDt2½ð1þ 2eÞ ~Hx þ ~Hz� � 4: ð28Þ

According to Eq. (2), the wavenumber-domain 2D

differential operators ~Hx and ~Hz may be expressed as

~Hx ¼ k2x cos
2 /þ k2z sin

2 /� kxkz sin 2/;

~Hz ¼ k2x sin
2 /þ k2z cos

2 /þ kxkz sin 2/:
ð29Þ

The wavenumbers in Eq. (29) can be approxi-

mated as harmonic functions in the wavenumber

domains, similarly to Eq. (11). Denoting the

wavenumber-domain wavefield as

~pð‘;m; tÞ ! ~p0ðkx; kz; tÞ;
~pð‘þ 1;m; tÞ ! ~p0ðkx; kz; tÞe�ikxDx;

~pð‘;m þ 1; tÞ ! ~p0ðkx; kz; tÞe�ikzDz;

ð30Þ

the wavenumber factors can be approximated by

second-order finite-differencing as

k2x ¼ � o2

ox2
¼ 2� e�ikxDx � eikxDx

Dx2
¼ 4

Dx2
sin2

kxDx

2

� �
;

k2z ¼ � o2

oz2
¼ 4

Dz2
sin2

kzDz

2

� �
;

kxkz ¼ � o

ox

o

oz
¼ 1

DxDz
sinðkxDxÞ sinðkzDzÞ :

ð31Þ

Then, the 2D differential operators ~Hx and ~Hz are

rewritten as

~Hx ¼
4 cos2 /
Dx2

sin2
kxDx

2

� �
þ 4 sin2 /

Dz2
sin2

kzDz

2

� �

� sin 2/
DxDz

sinðkxDxÞ sinðkzDzÞ ;

~Hz ¼
4 sin2 /
Dx2

sin2
kxDx

2

� �
þ 4 cos2 /

Dz2
sin2

kzDz

2

� �

þ sin 2/
DxDz

sinðkxDxÞ sinðkzDzÞ :

ð32Þ

Substituting Eq. (32) into Eq. (28) and setting

Dx ¼ Dz ¼ h, the stability condition becomes

Dt2 � 2h2

v2pz
1þe

e sin 2/ � cosðkhhÞ
� �2

� 1þe
e sin 2/ � 1

� �2
� �

e sin 2/
;

ð33Þ

where sin 2/[ 0 is assumed, and kh is either kx or kz,

whichever Dx or Dz is the smallest ð¼ hÞ. The

denominator will be maximal only when cosðkhhÞ ¼
�1: Hence, setting kh ¼ 
p=h; the Nyquist wave

number, and replacing vpz with vmax, we express the

stability condition finally as

Dt� h

vmax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ eÞ

p ; ð34Þ

where vmax is the maximum value of the P-wave

velocity along the symmetry axis. Note that the

condition of e� d commonly exists and expression

(34) is also applicable to parameter d:
Expression (34) is the stability condition for the

OðDt2; h2Þ scheme, the second-order finite-differ-

encing in both time and space. For selecting the time

step using this expression, we set h as the smallest

cell size of non-rectangular grids generated by body

fitting. It is worth mentioning that, setting e ¼ 0, the

stability condition will reduce to the well-known

formula of an OðDt2; h2Þ scheme in isotropic media

(Lines et al. 1999).

5. Waveform Simulation in TTI Media

Figure 4 demonstrates the waveform simulation

in TTI media. This is a homogeneous model (Fig. 4a)

with a constant P-wave velocity and constant aniso-

tropy parameters. The objective here is to show that

the wave simulation method is able to generate an

accurate wavefield, even for a model discretized with

non-rectangular grids. The P-wave velocity is

vpz ¼ 2000 m/s, the S-wave velocity is

vsz ¼ vpz=
ffiffiffi
3

p
m/s, the dip angle of the symmetry axis

is / ¼ 45�; and the two anisotropy parameters are

e ¼ 0:24 and d ¼ 0:1.

Figure 4a shows that the body-fitted grids coin-

cide well with the curved surface and a fluctuating

interface at the middle of the model, and, meanwhile,

1554 Y. Rao and Y. Wang Pure Appl. Geophys.



there are non-rectangular meshes unavoidably exist-

ing on either side of the interface. As long as the

media are discretized by body-fitted grids, there is no

explicit enforcement of the normal stress and dis-

placement continuity conditions at the interface. In

order to avoid any instability caused by the low

meshing precision, we adapt a summation-by-parts

(SBP) finite-difference method (Kreiss and Scherer

1974; Nilsson et al. 2007) to the case here with the

cell size variation of body-fitted grids. We use the

finite-difference operators with the second-order

accuracy in both temporal and spatial directions.

According to Sjögreen and Petersson (2012), the SBP

method is automatically stable for partial differential

equations with the second-order spatial derivatives.

The pseudo-acoustic wave equation is a system of

partial differential equations with an initial condition

which defines the source signature. For the absorbing

boundary, we use the perfectly matched layer

method, presented in the computational space, and

discretized by finite differencing with a second-order

accuracy (Rao and Wang 2013).

The snapshots (Fig. 4b, c) indicate that the non-

rectangularity in the mesh does not have visible effect

deteriorating wavefield simulation, once the numeri-

cal dispersion relation and the stability condition are

satisfied. This example demonstrates that this

numerical simulation method for a model with such

irregular grids is able to produce an accurate wave-

field, without any artificial reflections from the

interface. In contrast, if using a standard finite-dif-

ference method, there must be some artificial

reflections caused by strong variation in the cell sizes

of body-fitted grids, and even the two-layer velocities

are assumed to be constant.

We measure the amplitudes at a number of time

samples, and compare them to the theoretical

amplitudes as shown in Fig. 5. Measuring along the

directions parallel and perpendicular to the TTI

symmetry axis (/ ¼ 45�), the theoretical amplitude isffiffiffiffiffiffiffiffi
t0=t

p
, where t0 ¼ 100 ms is used in this example.

Normalized amplitudes measured at time steps t ¼
100, 150, 200, 250, 300 ms show minor errors, which

probably include picking errors.

Figure 6 demonstrates wave simulation in a two-

layer TTI media. The P-wave velocities of two layers

are 2500 and 3000 m/s. The S-wave velocity is

vsz ¼ vpz=
ffiffiffi
3

p
m/s. The rest of the parameters are the

same as that used in Fig. 4. The two anisotropy

parameters are constant for two layers, e ¼ 0:24 and

d ¼ 0:1. The dip angle of the symmetry axis is

/ ¼ 45�. The body-fitted grid, plotted by each set of

10 grids, is a well-coincided irregular surface and a

Figure 4
Wave simulation in TTI media. a A homogeneous model with

constant velocity and anisotropy parameters. The body-fitted grid,

plotted by each set of 10 grids, is a well-coincided irregular surface

and a curved interface at the middle of model (red curves). b, c The

snapshots of the wavefield at 200 ms and 450 ms, respectively,

demonstrate that the numerical simulation method with non-

rectangular grids is able to produce an accurate wavefield, without

any artificial reflections, by strong variation in the cell sizes of

body-fitted grids

Vol. 176, (2019) Dispersion and Stability Condition of Seismic Wave Simulation in TTI Media 1555



curved interface at the middle of the model. The

snapshots of the wavefield at 350 and 480 ms clearly

show reflections from the fluctuating interface.

Note that the geometrical configuration of

Figs. 4a and 6a is the same. In waveform simulation,

we always implement two steps. In the first step, we

use a model with a constant velocity for all layers,

such as Fig. 4a, to check the effectiveness of grids. In

the second step, we use the proper model with layered

velocities, such as Fig. 6a, to generate the desired

waveform.

6. Conclusions

For seismic waveform simulation with the TTI

wave equation, we have derived a numerical disper-

sion relation, and demonstrated that the number of

sampling points per wavelength has the greatest

influence on the dispersion, and both the anisotropic

parameters and the mesh rotation angle have little

influence on the dispersion. Further, we have derived

the condition for the numerical stability for the

selection of time step, given the spatial sampling is

appropriately selected in Cartesian coordinates. In the

derivation, we have used the second-order finite-dif-

ferencing operators in both time and space and

assumed an elliptical anisotropy.

Figure 5
Normalized waveform amplitudes. The red dots are measured

amplitudes along the directions parallel and perpendicular to the

TTI symmetry axis (/ ¼ 45�). The blue curves are theoretical

amplitudes

Figure 6
Wave simulation in TTI media. a A two-layer model with constant

velocity and anisotropy parameters. The body-fitted grid, plotted by

each set of 10 grids, is a well-coincided irregular surface and a

curved interface at the middle of the model. b, c Snapshots of the

wavefield at 350 and 480 ms, respectively. This example clearly

shows reflections from fluctuating interface
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Appendix A: P-wave Phase Velocity

The wave equation for the homogeneous aniso-

tropic media, following Newton’s second law, can be

represented as (Tsvankin 2001)

q
o2ui

ot2
¼ osij

oxj

; ðA1Þ

where sij are the elements of the stress tensor, xj are

Cartesian coordinates, ui are the components of the

displacement vector, t is time, and q is density.

According to the generalized Hooke’s law, the stress

tensor is linearly related to the strain tensor by

sij ¼ cijm‘em‘, where em‘ are the elements of the strain

tensor, and cijm‘ are the elastic constants in the stiff-

ness tensor. The elements of the strain tensor are

defined by em‘ ¼ 1
2
ðoum=ox‘ þ ou‘=oxmÞ. Assuming

the elastic constants cijm‘ are constant in the space,

equation (A1) can be written as

q
o2ui

ot2
� cijm‘

o2um

oxjox‘
¼ 0: ðA2Þ

In this wave equation, the media anisotropy

property is accounted for by the stiffness tensor cijm‘.

Let us present a harmonic plane wave as

u ¼ U expixðnjxj=v�tÞ; ðA3Þ

where nj is the direction vector of wave propagation

and is normal to the wavefront, v is phase velocity,x is

angular frequency, and U is the amplitude component

of the polarization vector U ¼ ½U1;U2;U3�T : The

relationship between the phase velocity v and the

polarization vector U can be obtained by inserting

equation (A3) into equation (A2), as

G11 � qv2 G12 G13

G21 G22 � qv2 G23

G31 G32 G33 � qv2

2
4

3
5 U1

U2

U3

2
4

3
5 ¼ 0:

ðA4Þ

This is the Christoffel equation (Musgrave, 1970), in

which the elements in theChristoffelmatrix are givenby

Gij ¼ cijm‘ninj: ðA5Þ

The particular TTI media we study here are the

coordinate-transformed VTI (transversely isotropy

with a vertical symmetry) media. The elements in the

Christoffel matrix of the standard VTI media are

G11 ¼ c11n2
1 þ c66n2

2 þ c55n2
3;

G12 ¼ C21 ¼ ðc11 � c66Þn1n2;

G13 ¼ C31 ¼ ðc13 þ c55Þn1n3;

G22 ¼ c66n2
1 þ c11n2

2 þ c55n2
3;

G23 ¼ C32 ¼ ðc13 þ c55Þn2n3;

G33 ¼ c55ðn2
1 þ n2

2Þ þ c33n2
3:

ðA6Þ

As only a single axis of rotational symmetry

exists in the isotropic medium, wave propagation can

be represented in the ðx1; x3Þ plane. That is, n2 ¼ 0:

Equation (A4), thus, is rewritten as

c11n2
1 þ c55n2

3 � qv2 ðc13 þ c55Þn1n3

ðc13 þ c55Þn1n3 c55n2
1 þ c33n2

3 � qv2

� �
U1

U3

� �

¼ 0:

ðA7Þ

This equation describes that ½U1;U3�T are the

eigenvectors corresponding to the two equal eigen-

values qv2 of the 2	 2 matrix. Solving the following

eigenvalue problem,

c11n2
1 þ c55n2

3 � qv2 ðc13 þ c55Þn1n3

ðc13 þ c55Þn1n3 c55n2
1 þ c33n2

3 � qv2

				
				 ¼ 0;

ðA8Þ

it produces the P- and SV-wave phase velocities,

2qv2 ¼ ðc11 þ c55Þn2
1 þ ðc33 þ c55Þn2

3


 f½ðc11 � c55Þn2
1 � ðc33 � c55Þn2

3�
2

þ 4ðc13 þ c55Þ2n2
1n2

3g
1=2:

ðA9Þ
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Sign ‘‘?’’ in front of the curved brackets represents

the P-wave phase velocity, while sign ‘‘–’’ in front of

the curved brackets represents the SV-wave phase

velocity. When n1 ¼ 0 and n3 ¼ 1, the P-wave and

SV-wave phase velocities along the z axis are vpz ¼ffiffiffiffiffiffiffiffiffiffiffi
c33=q

p
and vsz ¼

ffiffiffiffiffiffiffiffiffiffiffi
c55=q

p
, respectively.

Given n1 ¼ sin h and n3 ¼ cos h, where h is the

phase angle, and using Thomsen’s anisotropy

parameters,

e ¼ c11 � c33

2c33
; d ¼ ðc13 þ c55Þ2 � ðc33 � c55Þ2

2c33ðc33 � c55Þ
;

ðA10Þ

the P-wave phase velocity is presented as

v2ðhÞ
v2pz

¼ 1� L

2
þ e sin2 hþ L

2
1þ 4e2 sin4 h

L2

�

þ 4 sin2 h
L

ð2d cos2 h� e cos 2hÞ
�1=2

;

ðA11Þ

where L ¼ 1� v2sz

.
v2pz. This equation is used as

Eq. (17) in the main text.

Appendix B: The Pseudo-acoustic Wave Equation

Note that the phase angle h is the wave vector

with respect to the symmetry axis ẑ: Therefore, the

phase angle h and phase velocity vðhÞ are related to

the wavenumber components by

sin2 h ¼ k̂2x

k̂2x þ k̂2z
; cos2 h ¼ k̂2z

k̂2x þ k̂2z
;

v2ðhÞ ¼ x2

k̂2x þ k̂2z
;

ðB1Þ

where k̂x and k̂z are the wavenumber components

when the TTI symmetry axis is rotated (Fig. 1), and

x is the angular frequency. Equation (A11) then

becomes

x4 ¼ v2pz½ð2� LÞðk̂2x þ k̂2z Þ þ 2ek̂2x �x2

þ v4pzð1þ 2eÞðL � 1Þk̂4x þ v4pzðL � 1Þk̂4z
þ 2v4pz½ð1þ dÞL � ð1þ eÞ�k̂2x k̂2z

ðB2Þ

Substituting L into equation (B2), one obtains

x4 ¼ f½ð1þ 2eÞv2pz þ v2sz�k̂2x þ ðv2pz þ v2szÞk̂2z gx2

� ð1þ 2eÞv2pzv
2
szk̂

4
x � v2pzv

2
szk̂

4
z

þ 2v2pz½ðd� eÞv2pz � ð1þ dÞv2sz�k̂2x k̂2z :

ðB3Þ

Finally, denoting v2px ¼ ð1þ 2eÞv2pz and

v2pn ¼ ð1þ 2dÞv2pz, we present the dispersion relation

in TTI media as

x4 ¼ ½ðv2px þ v2szÞk̂2x þ ðv2pz þ v2szÞk̂2z �x2

� v2pxv2szk̂
4
x � v2pzv

2
szk̂

4
z

þ ½v2pzðv2pn � v2pxÞ � v2szðv2pn þ v2pzÞ�k̂2x k̂2z :

ðB4Þ

Assuming the rotation angle of the symmetry axis to

be /; the rotated wavenumber components are

k̂x ¼ kx cos/� kz sin/;

k̂z ¼ kx sin/þ kz cos/;
ðB5Þ

where kx and kz are the wavenumbers in Cartesian

coordinates.

Denoting fz ¼ k̂2z and fx ¼ k̂2x , we express equation

(B4) as

x4 ¼ ½ðv2px þ v2szÞfx þ ðv2pz þ v2szÞfz�x2

� v2pxv2szf
2
x � v2pzv

2
szf

2
z

þ ½v2pzðv2pn � v2pxÞ � v2szðv2pn þ v2pzÞ�fxfz ;

ðB6Þ

and the two f factors are

fx ¼ k2x þ k2z � fz;

fz ¼ k2x sin
2 /þ k2z cos

2 /þ kxkz sin 2/ :
ðB7Þ

Setting an auxiliary wavefield as

qðx; kx; kzÞ ¼
ðv2pn � v2szÞfx

x2 � v2szfx � v2pzfz

pðx; kx; kzÞ; ðB8Þ

equation (B6) can be rewritten after multiplying both

sides by the pressure wavefield

x2pðx; kx; kzÞ ¼ v2pxfxpðx; kx; kzÞ
þ v2szfzpðx; kx; kzÞ
þ ðv2pz � v2szÞfzqðx; kx; kzÞ:

ðB9Þ

Applying an inverse Fourier transform to equa-

tions (B8) and (B9), we obtain the pseudo-acoustic

1558 Y. Rao and Y. Wang Pure Appl. Geophys.



wave equation in TTI media [Eq. (1) in the main

text]:

o2

ot2
p

q

� �
¼

v2pxHx þ v2szHz ðv2pz � v2szÞHz

ðv2pn � v2szÞHx v2szHx þ v2pzHz

� �
p

q

� �
:

ðB10Þ

Applying an inverse Fourier transform to

Eq. (B7), we obtain the two differential operators Hx

and Hz presented as Eq. (2) in the main text.
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