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Abstract—Low-visibility conditions at airports can lead to

capacity reductions and therefore to delays or cancelations of

arriving and departing flights. Accurate visibility forecasts are

required to keep airport capacity as high as possible. We generate

probabilistic nowcasts of low-visibility procedure (lvp) states,

which determine the reduction of airport capacity due to low vis-

ibility. The nowcasts are generated with tree-based statistical

models based on highly resolved meteorological observations at the

airport. Short computation times of these models ensure the in-

stantaneous generation of new predictions when new observations

arrive. The tree-based ensemble method boosting provides the

highest benefit in forecast performance. For lvp forecasts with lead

times shorter than 1 h, variables with information of the current lvp

state, ceiling, and horizontal visibility are most important. With

longer lead times, visibility information of the airport’s vicinity and

standard meteorological variables, such as humidity, also become

relevant.

Key words: Aviation meteorology, visibility, nowcast, deci-

sion tree, bagging, random forest, boosting.

Due to the copy editing process, a couple of mistakes

were included in the text. The full article, with all

corrections made, is republished below.

1. Introduction

Low-visibility conditions reduce the operational

capacity of airports. At peak hours, capacity reduc-

tions may lead to flight delays or even cancelations.

Consequently, costs for airports and airlines as well as

the environmental impact increase. These effects grow

considerably when low visibility is predicted incor-

rectly. Pessimistic visibility predictions may cause

overly strong reduction of the airport capacity. Hence,

scheduled short-distance flightsmay be kept on ground

at their airport of departure to ensure flight safety. This

action results in costs for airlines as well as decreased

revenues from landing fees for airports. On the other

hand, if visibility is predicted too optimistically, the

number of arriving aircraft might exceed the remain-

ing capacity of an airport. Consequently, many

en route flights have to circle into stacks until landing

is possible. Results are increased costs for airlines

through crew scheduling, fuel consumption, and

emissions. The costs for delays depend on the type of

aircraft and the type of delay (tactical or strategic

delay; delays at taxi, en route, or at gate) and therefore

vary over a wide range (University of Westminster

2015). Accurate predictions of low-visibility states,

however, can help to reduce such supplemental costs.

Precise forecasts can be used by air-traffic controllers

to plan the number of arriving and departing aircraft in

a safe and economical way.

The reduction of aircraft movements due to low

visibility depends on different safety operations,

which decelerate air traffic and increase the distance

between successive arrivals and departures. The

execution of these operations is defined by low-visi-

bility procedure (lvp) states. Upcoming available

capacity is therefore directly connected to lvp fore-

casts at airports. Typically, lvp states are determined

by particular thresholds of horizontal and vertical

visibility. The exact thresholds and resulting capacity

reductions, however, vary for each airport. In this

study, lvp forecasts were investigated for Vienna
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International Airport (VIE). Nowcasts with lead

times up to 2 h are of main interest. Currently, human

forecasters generate lvp predictions at VIE by using

observations at the airport and information from

numerical weather prediction (NWP) models. Pro-

viding probabilistic predictions of lvp states,

however, would support forecasters in producing

their predictions.

Two different types of approaches are typically

employed for automatic predictions of meteorological

variables. The first is based on numerical modeling

and uses all relevant physical equations to compute

forecasts. Many physically based models for visibil-

ity and fog forecasts have been developed in the past,

e.g., High-Resolution Rapid Refresh (HRRR, Ben-

jamin et al. 2016), The London Model (Boutle et al.

2016), and PArameterised FOG model (PAFOG, -

Bott and Trautmann 2002). Generally, these models

are computationally expensive and special end-user-

related variables, such as lvp, have to be derived

afterwards from their output.

The second approach uses historical data to train a

statistical model and produces probabilistic forecasts

of variables, such as lvp, directly. This approach is

generally computationally cheaper so that new pre-

dictions are available instantaneously with new input

information. In the past, various statistical methods

have been tested to generate visibility forecasts.

Vislocky and Fritsch (1997), for example, used

multiple linear regression to generate visibility fore-

casts from observations. Their forecasting system was

later improved by Leyton and Fritsch (2003, 2004) by

increasing the density and frequency of surface

observations. An operational visibility forecasting

system for several lead times and locations was

developed by Ghirardelli and Glahn (2010), again

using multiple linear regression. Glahn et al. (2017)

combined this system with the physically-based

forecasts of Benjamin et al. (2016) to improve the

performance. Other statistical techniques to forecast

visibility are, for example, neural networks (e.g.,

Pasini et al. 2001; Marzban et al. 2007), Bayesian

model averaging (e.g., Roquelaure et al. 2009), or

decision trees (e.g., Bartoková et al. 2015; Dutta and

Chaudhuri 2015). Herman and Schumacher (2016)

compared various statistical methods for visibility

predictions at airports and found that no specific

model performed best overall.

The first investigation of lvp, which is the relevant

variable for airport operations, was conducted in a

companion paper by Kneringer et al. (2018). They

used ordered logistic regression (OLR) models to

produce lvp nowcasts at VIE for the cold season

(September to March) with lead times up to 2 h and

30-min resolution. To provide decision makers with

more detailed information, we increase the temporal

resolution of the predictions to 10 min and extend the

predictor variable setup of Kneringer et al. (2018)

with temporally lagged and spatially averaged visi-

bility information. During the cold season, the peak

of lvp is in the early morning hours, coinciding with

the airport’s rush hours (Kneringer et al. 2018). Since

low visibility has most impact during these times, we

generate lvp predictions in this paper only from

September to March during 6–9 UTC. Tree-based

statistical methods are used as a flexible nonpara-

metric alternative to the parametric OLR for

generating the forecasts. The predictions of these

models are compared with each other and with the

forecasts of the OLR models of Kneringer et al.

(2018). Furthermore, the impact of the predictors on

the forecasts is analyzed to provide information

regarding the most important inputs for statistically-

based lvp nowcasts.

2. Data

In this section, the predictand and the predictors

used for lvp nowcasts are described. The first part is

about the determination of lvp, which has to be

derived from horizontal and vertical visibility mea-

surements. In the second part, the predictor variables

are described. These variables contain observations at

VIE and its vicinity from September 2012 to March

2017 during 6–9 UTC.

2.1. Low-Visibility Procedure (lvp) States

The lvp state is an ordered categorical variable

that specifies the application of safety procedures at

airports due to low visibility. Generally, lvp states are

determined by nonlinear, threshold-bounded
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combinations of horizontal and vertical visibility.

Naturally, the exact thresholds and associated capac-

ity reductions vary for each airport. At VIE, three lvp

states are specified (Table 1). The horizontal visibil-

ity used for lvp determination is runway visual range

(rvr), which is defined as the distance over which the

pilot of an aircraft on the centerline of the runway can

see the runway surface markings or the lights

delineating the runway or identifying its center line

(International Civil Aviation Organization 2005). The

vertical visibility threshold is determined by ceiling

(cei), the altitude of the cloud base with at least five

octa coverage.

Each touchdown point at VIE is equipped to

quantify rvr and cei. While rvr is measured directly

by transmissometers, cei has to be derived from

ceilometer measurements. Typically, this procedure

is conducted by human forecasters, who determine an

airport-averaged cei every 30 min by comparing the

backscatter profiles of several ceilometers at the

airport. To obtain an lvp state at a 10-min resolution,

however, cei is required also at 10-min resolution.

Hence, we developed a fully automatic algorithm,

which uses measurements of the altitude of lowest

cloud height and vertical visibility from the ceilome-

ter during the previous 10 min to compute the total

cloud coverage at each touchdown point. The most

recent measurements are weighted more strongly.

Ceiling is computed only if the coverage exceeds five

octa. The output of this algorithm closely follows the

altitudes identified by human forecasters in the

meteorological reports of Vienna Airport. The pre-

dictand lvp is computed afterwards from the 10-min

values of cei and rvr at each touchdown point. In this

study, we focus on forecasts at the touchdown point

with the highest climatological lvp state occurrence.

2.2. Predictor Variables

All meteorological variables used as predictors

are available with 10-min output frequency. More-

over, most of them are measured at multiple locations

within the vicinity of VIE; For example, wind speed

is observed at nine different locations within an area

of about 8 km2. These measurements are highly

correlated and thus the forecast performance of the

statistical models would not increase when using all

wind speed measurements. To this end, we conducted

manual preselection of the observations at VIE to

generate a highly informative predictor setup. This

predictor setup consists of single point measure-

ments, derived observations, and climatological

information. Some variables occur several times

through spatial averaging and temporal lagging

(Table 2, large setup).

The point measurements included in this predictor

setup are rvr, horizontal visibility (vis), air temper-

ature (tl), relative humidity (rh), wind direction (dir),

and wind speed (ff). Postprocessed information from

the observations are lvp, cei, dew point depression

(dpd), temperature difference between 5 cm above

the surface and 2 m (dts), wind speed difference

between the height of 100 m and 2 m (ffd), and

pressure difference from the forecast initial time to

3 h before (pdiff). All locations of the point measure-

ments are close to the touchdown point, with the

exception of vis, which is observed at a distance of

about 7 km northeast of the touchdown point. This

location is well-known to the forecasters, since

radiation fog often forms there first.

Originally, rvr is censored at 2000 m, because

visibility above this range is not relevant for the

landing approach. For possible fog advection,

Table 1

Definition of lvp states with their thresholds in runway visual range (rvr) and ceiling (cei), their occurrence probabilities for the forecast

period (cold seasons and early morning hours from 2012 to 2017), and the resulting capacities at VIE

lvp state rvr (m) cei (m) Occurrence (%) Capacity (%)

0 90.4 100

1 \ 1200 or \ 90 2.5 75

2 \ 600 or \ 60 5.8 60

3 \ 350 1.3 40
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however, visibility information from ranges above

2000 m is required. Hence, we replace all censored

rvr values with visibility information measured next

to the transmissometers.

Since lvp is a combination of rvr and cei, these

variables may have the strongest influence on lvp

nowcasts. We therefore generate spatially averaged

and temporally lagged predictors from these vari-

ables. Spatially averaged observations are averages at

the runway and from the complete airport. Runway

averages only contain information directly from the

runway. In the case of rvr, three sensors are used for

averaging (located at both touchdown points and the

midpoint); cei averages at the runway contain infor-

mation from two ceilometers (located at both ends of

the runway). Airport averages, however, contain all

observations of one variable available in the airport

area and therefore cover an area of about 8 km2.

Averaged lvp information for the runway and airport

are computed by using runway and airport averaged

values of rvr and cei, respectively. The temporally

lagged information used is lvp, rvr, and cei observa-

tions at the touchdown point from 10 min before

forecast initialization.

Additionally, we include a conditional 31-day

lvp0 state climatology (cc) for each day of the year,

containing the lvp0 proportion of the actual day plus/

minus 15 days around this day from September 2012

to March 2017 between 6 and 9 UTC.

3. Methods

The generation of statistical-based lvp state fore-

casts requires ordered response models, which can be

easily accommodated in decision trees. Such decision

trees have a flowchart-type structure and are therefore

easy to understand and interpret. Typically, the

forecast performance of decision trees can be

improved by aggregating an ensemble of trees using

methods such as bagging, random forest, or boosting

(James et al. 2014). While such an ensemble usually

improves the predictive performance, the interpreta-

tion is no longer straightforward anymore due to the

more complex structure. However, the computation

of variable importance measures still allows the de-

termination of the predictors with the highest benefit

for the forecast. In the following, an overview is

provided of the tree-based forecasting methods along

with details for validation and interpretation.

3.1. Decision Tree

Decision trees are composed of a recursive

partitioning algorithm, which splits the training

Table 2

Predictor variables used in the statistical models

Variable Unit Description Variable Unit Description

lvp (0, 1, 2, 3) Low-visibility procedure dir (�) Wind direction

rvr (m) Runway visual range tl (�C) Air temperature

cei (m) Ceiling ff (m s�1) Wind speed

vis (m) Visibility ffd (m s�1) Wind speed difference 100 m–2 m

dts (�C) Temperature difference 2 m–5 cm pdiff (hPa) Pressure differenceinitial-3 h

dpd (�C) Dew point depression cc (0–1) Conditional climatology

rh (0–100) Relative humidity

dirN (no, yes) Wind direction from northbinary
dirSE (no, yes) Wind direction from southeastbinary
rr (no, yes) Rain in the last 12 hbinary
sza (�) Solar zenith angle

The variables on the left are used in the ‘‘standard setup,’’ while the ‘‘large setup’’ additionally considers the variables on the right. Variables

available in the standard setup contain information at forecast initialization and at the touchdown point. In the large setup, lvp, cei, and rvr

information is available also 10-min lags to forecast initialization and averaged for runway and airport, respectively. The variables dirN, dirSE,

rr, and sza used in the standard setup are not included in the large setup (for more details regarding the standard predictor setup, see Kneringer

et al. 2018)
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sample into different cells, depending on the associ-

ation between the forecast variable and its predictors.

After the splitting procedure, a constant model is

usually computed for each terminal cell.

Classic decision trees, such as Classification And

Regression Tree (CART, Breiman et al. 1984) and

C4.5 (Quinlan 1993), select their split variables by

maximizing an information measure of node impurity

for all possible splits. Such variable selection criteria,

however, prefer split variables with many possible

splits or missing values and tend to overfit the data

(Hothorn et al. 2006b). The decision trees developed

in this study are based on the unified conditional

inference framework of Hothorn et al. (2006b). These

trees separate the variable selection and splitting

procedure into two steps and do not suffer from a

systematic tendency towards split variables with

many possible splits or many missing values

(Hothorn et al. 2006b).

In the first step of the tree growing process, the

association between the response and each of the

covariates is computed by deriving the p value for

each association. In case of ordinal variables, such as

lvp, the p values are derived by a v2-test (Hothorn
et al. 2006a). If the minimum p value is below a

prespecified nominal level a, the covariate with

lowest p value is selected as split variable. Otherwise,

no split is computed. Hence, a can be seen as a

statistical stopping criterion to avoid overfitting.

For the chosen split variable, the optimal split

point is computed by applying a second test statistic

over all subsets which can result from possible splits.

The split point is set where the discrepancy between

two subsets is maximized. In case of lvp forecasts,

the v2-test is used again as the test statistic (Hothorn

et al. 2006a). Both steps, i.e., variable selection and

split point determination, are repeated recursively

until a stopping criterion is reached (e.g., all p values

exceed a or a maximum growth depth is reached).

The conditional distribution of the response in the

particular terminal cells represents the probabilistic

forecast of the tree.

An illustration of how the described algorithm

works for a 30-min lvp forecast at VIE is shown in

Fig. 1. Moving through the split points until a

terminal cell is reached, a probabilistic forecast can

be generated (histograms in Fig. 1). Note that the

optimal selection of split variables and their respec-

tive thresholds is done by the algorithm.

In the example marked by the gray path in Fig. 1,

the observed lvp states are lvp2 at the touchdown

point (first split) and lvp2 at the runway (second

split). The resulting forecast is 4 % lvp0, 10 % lvp1,

78 % lvp2, and 8 % lvp3. This prediction is the most

frequent one for prevailing lvp. In the tree building

process, 1057 observations drop into this terminal

cell.

3.2. Tree-Based Ensemble Approaches

A well-known weakness of single decision trees is

their high variance; i.e., the tree structure may change
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Figure 1
Illustration of the algorithm-selected decision tree for half-hourly lvp state forecasts at Vienna International Airport. The subscripts refer to: at

touchdown point (td), averaged over runway (rw), or airport (ap), 10 min prior (-10); dpd is dew point depression, n is the number of

observations in the terminal cell encountered in training that tree. The highlighted gray path leads to the lvp prediction discussed in the text
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considerably when learning it on randomly perturbed

(sub)samples from the same dataset. Growing an

ensemble of decision trees and aggregating them into

one model typically reduces the variance and

improves the forecast accuracy (James et al. 2014).

Hence, the ensemble methods bagging, random

forest, and boosting are employed subsequently.

3.2.1 Bagging

In bagging, multiple trees are grown and their

predictions are merged to reduce the variance over

single decision trees (Strobl et al. 2009; Bühlmann

and Yu 2002). In the first part of bagging, multiple

training samples of the size of the original training

sample are generated by randomly drawing observa-

tions from the original training sample with

replacement (bootstrapping). Afterwards, an individ-

ual tree is fit to each new sample and the predictions

of the individual trees are merged. We use the

aggregation pattern developed by Hothorn et al.

(2004), which collects all observations contained in

the obtained terminal cells of the particular trees. The

forecast of bagging is then just the distribution of the

collected observations.

3.2.2 Random Forest

While bagging considers all predictor variables for

splitting at any stage of any tree, a random forest only

considers a different randomly drawn subset of

predictors at each stage. Thus, bagging is a special

case of random forests (Strobl et al. 2009), but the

latter leads to trees that are less correlated with each

other.

The principle of including additional randomness

into the single trees can often improve the prediction

accuracy of an ensemble. Commonly, one predictor

has potentially stronger power than the other covari-

ates. Most of the bagged trees will therefore select

this predictor as first split variable, so that the

predictions of the individual trees will have a strong

correlation, with consequently only a small variance

reduction over a single tree when aggregating these

trees (James et al. 2014). Trees grown in a random

forest, on the contrary, are quite diverse with respect

to each other. Through the random preselection of

possible split variables in random forests, weaker

predictors have the chance to be selected first and

may reveal interaction effects with other variables

that would otherwise have been missed (Strobl et al.

2009).

3.2.3 Boosting

The third method that is used to combine an ensemble

of decision trees is boosting. With boosting, new

decision trees always grow on forecast information of

previously grown trees, since the new tree is fit to

residuals of the previous ones. In this study, the

residual information is computed with the compo-

nentwise gradient boosting algorithm of Bühlmann

and Hothorn (2007), using the negative gradient

vector of the loss-function from the current model.

For ordinal response variables, such as lvp, the loss

function is defined by the log likelihood of the

proportional odds model of Agresti (2003; Schmid

et al. 2011). After the fitting of the new tree, its paths

are aggregated to the paths of the previously grown

ones, albeit with a shrinkage parameter in order to

grow the model slowly, which improves the fit

relative to single trees (James et al. 2014). Comput-

ing new residuals, fitting a tree to them, and

combining the new tree with the previous ones

continues until a stopping criterion is reached (e.g.,

maximum number of iterations; see Sect. 3.3).

The trees used in the boosting algorithm are the

conditional inference trees of Hothorn et al. (2006b,

Sect. 3.1). Since boosting is able to project additive

data structures, and decision trees can model nonlin-

ear data features, boosting trees can project both

additive and nonlinear data features. The branch

depth of the individual trees can be used to control

whether boosting captures rather additive or nonlin-

ear structures.

3.3. Computational Implementation

3.3.1 Decision Tree

The conditional inference trees used are imple-

mented in the R package party (Hothorn et al.

2017b). Each tree developed in this investigation

can grow until the p value between the response and

2650 S. J. Dietz et al. Pure Appl. Geophys.



its most associated predictor exceeds the default a
value of 0.05.

3.3.2 Bagging and Random Forest

Bagging and random forest models used in this investi-

gation are also implemented in the R package party

(Hothorn et al. 2017b). Both models contain 500 single

decision trees, which turned out to be a reasonable

number to ensure short computation times with good

forecast performance. The settings of the individual trees

in bagging and random forest are default. In random

forests, the number of randomly preselected split

variables is set to five, which is approximately the square

root of the number of predictors (as typically recom-

mended in literature; see James et al. 2014).

3.3.3 Boosting

The boosting method used in this study is imple-

mented in the R package mboost (Hothorn et al.

2017a). Each boosting model consists of 1500 trees,

which is a reasonable number to guarantee high

forecast performance with low computational cost.

The shrinkage parameter for tree aggregation is set to

the default value of 0.1. Each tree in the boosting can

grow to a maximum branch depth of three, because

we rather combine several small trees instead of a

few large ones. Using this adjustment, we are able to

model both additive and nonlinear data structures.

3.4. Reference Model

To analyze the benefit of the different tree-based

models, we compare their forecast performance with

that of an ordered logistic regression model (OLR),

which was shown to outperform climatology, persis-

tence, and predictions of human forecasters at VIE

(Kneringer et al. 2018).

For consistency in model comparison, we change

the half-hourly averages of cei and lvp used by

Kneringer et al. (2018) to the 10-min resolved values

described in Sect. 2.1. Furthermore, the size of the

training sample is reduced to five cold seasons instead

of the original nine cold seasons.

3.5. Forecast Verification

The forecast performance of the models is ana-

lyzed using the ranked probability score (RPS;

Epstein 1969; Murphy 1971) and the Brier score

(BS; Brier 1950). Both scores are well-known

validation metrics for probabilistic forecasts. The

RPS is used to assess the overall model performance

of ordered response variables, such as lvp states

(Wilks 2011). It is computed by the squared errors of

the cumulative distribution function of the forecast

probabilities with respect to the observations. For a

single forecast–observation pair i, the RPS is defined

as

RPSi ¼
1

J � 1

XJ

s¼1

Xs

j¼1

yij � oij

" #2

;

with the forecast probabilities yij and observations oij

for each category j ¼ 1; . . .; J. A perfect forecast

results in an RPS of 0; the worst possible forecast has

an RPS of 1.

The BS, on the other hand, is used for binary

responses. In case of lvp forecasts, this score can be

used to assess the model performance for one

particular lvp state. For a single forecast–observation

pair i, it is simply defined as

BSi ¼ ðyi � oiÞ2:

For model comparison, we average the scores of all

forecast–observation pairs produced from one model.

Moreover, the forecast performance of one model

relative to a reference model is compared with the

respective skill score:

Ranked probability skill score (RPSS):

RPSS ¼ 1� RPS

RPSreference
;

Brier skill score (BSS):

BSS ¼ 1� BS

BSreference
:

All scores are computed out-of-sample by applying a

seasonwise fivefold cross-validation for each model,

where the dataset is subdivided into five samples,

each of which contains one cold season. Afterwards,

the models are trained on four samples and validated

on the remaining one. This training and validating
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procedure is repeated five times, always with another

sample for validation.

For computation of model uncertainty, we addi-

tionally bootstrap the scores calculated in the cross-

validation algorithm above (bootstrapping is

described in Sect. 3.2—bagging). Mean scores are

computed for 2000 bootstrapped samples. The distri-

bution of the mean scores describes the model

uncertainty.

3.6. Variable Importance Measurement

To identify the variables with the greatest impact

on the forecasts, we apply variable permutation tests

in which the true information of a particular predictor

is replaced by randomly drawn information from the

predictor’s true distribution. The information of a

predictor is thus intermingled randomly. Stronger

decrease in forecast performance shows higher

impact of the permuted variable.

To conduct the variable permutation test, we

again use fivefold cross-validation. Therefore, we

always fit the models to four cold seasons and test

them on the remaining one. After generating predic-

tions on the original test sample, we randomly

permute one predictor variable and produce with

the same model forecasts on the modified sample.

This procedure is repeated for each predictor variable

in the test sample. The performance of the predictions

from each modified sample is computed by the RPS

(Sect. 3.5). It should be mentioned that permuting

predictors with strong associations to others can lead

to discrepancies in the model and therefore to strong

effects on the forecast performance (for example,

lvptd to ceitd and rvrtd). Nevertheless, the variables

with the highest impact on the forecast performance

can be effectively identified using this analysis.

4. Results

4.1. Model Comparison

The comparison of the tree-based models and the

OLR model (olr) of Kneringer et al. (2018) for lvp

nowcasts is shown in Fig. 2. All models established

for this comparison are based on the standard

predictor setup described in Table 2 and tested for

lead time þ 30, þ 60, þ 90, and þ 120 min.

OLR outperforms decision trees (tree) at each

lead time. The benefit varies between 2.5 % and 11 %

and is largest at þ120 min. Tree-based ensemble

methods (bagging, forest, boosting), however, per-

form similarly to OLR at most lead times. Boosting is

best overall, but its advantage over OLR varies on

average between only 1 % and 4 % (not statistically

significant).

These results show that aggregating multiple trees

substantially improves the forecast performance of a

single decision tree. The most efficient aggregation

method concerning lvp forecasts is boosting. Random

forests perform best at þ120 min lead time when the
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forecast depends on multiple predictors instead of

only a few with very high importance. If, however,

only a few of the available predictors control the

forecast, as at short lead times, where the forecast is

strongly related to persistence, the performance of

random forests is worse. In such cases, bagging leads

to better results.

4.2. Impact of More Predictors

To improve the forecast performance of the

models established in Sect. 4.1, we provide them

with a large number of predictors (specified in

Sect. 2.2). Figure 3 shows the performance of the

tree-based models with the large predictor setup

relative to the boosting model from Sect. 4.1, which

is the best-performing model with the standard

predictor setup (reference). In the model validation

with the ranked probability score (RPSS, Fig. 3a),

single decision trees with the large predictor setup

underperform the reference at each lead time. The

difference in forecast performance becomes even

bigger at longer lead times. In contrast, the benefit of

the tree-based ensemble models random forest,

bagging, and boosting compared with the reference

increases slightly at longer lead times. Random forest

has advantages only for the longest lead times.

Bagging outperforms the reference after þ20 min,

and boosting after a lead time of þ10 min. At lead

time þ120 min, the benefit over the reference is

approximately 5 % for bagging and 7 % for boosting.

Again, boosting performs best.

At the shortest lead time, boosting with the large

predictor setup performs almost equally to the

reference. The other models again perform somewhat

worse, especially random forest, which shows a
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decrease in forecast performance of about 50 %

compared with the reference. The reason therefore is

the reduced set of randomly drawn split variables in

the tree building process. Since the models mainly try

to reproduce the persistence at the shortest lead times,

the single trees strongly require information on the

current lvp. If this predictor is not included in the

randomly selected split variable setup, the single trees

perform badly. Aggregating many poorly performing

trees again results in worse forecast performance.

To assess model performance for two classes

only, we combine forecasts into a no/light capacity

reduction category (lvp0/1) and a severe one (lvp2/3)

and verify them using the Brier skill score (BSS).

Figure 3b shows the BSS performance of the models

with the large predictor setup relative to the

reference.

Random forests perform better when verifying on

the combined categories. The reduced set of available

split variables in the forests leads to reduced forecast

sharpness due to the frequently occurring lvp0 states.

The combination lvp0 with lvp1 increases the sharp-

ness of the random forest predictions and therefore

also the performance relative to the reference. For

lead times shorter than 1 h, bagging performs much

better as measured with the RPSS, whereas boosting

worsens. The performance of decision trees fit on

different training samples varies considerably due to

lvp1, since this category is a transition state with low

climatological occurrence. The averaged predictions

from multiple similar decision trees therefore per-

form well on combined lvp0/1, but not for lvp1

separately, which is taken into account in the RPS.

Boosting with the large predictor setup, on the other

hand, predicts lvp1 well, especially at short lead

times. This benefit disappears when validating com-

bined lvp0/1 states.

4.3. Case Study

For better understanding and interpretation of the

forecasts and their scores, a case study of a typical

fog event is analyzed, as shown in Fig. 4. The

statistical models used for forecast generation are the

boosting trees with the large predictor setup.

The lvp event starts at 04:50 in the early morning

of 2013-11-16 and lasts through 10:10 UTC with lvp

categories varying between lvp1 and lvp3. Shortly

before its start, the air temperature decreases to dew

point. Before the event and during its first half, the

wind has northwesterly direction with velocities

between 4 and 5 m s�1. Afterwards, the wind speed

weakens and the direction turns to south and east.

With the end of the event, the velocity rises slightly

and the direction turns to southwest.

The lvp event starts with a fast decrease of the

runway visual range from 2000 to 650 m within 10

min. It then decreases even further and oscillates

between 200 and 600 m. The event ends with a slow

increase of runway visual range and ceiling.

First signs of a possible lvp1 state are already

visible in the þ60 min forecast for 03:40, with an

increase in probability for 04:50 when lvp actually

occurred. Even the þ120 min forecast has an

increased probability for lvp1 and lvp2 starting half

an hour before the actual onset. Changes between lvp

categories are sometimes but not always captured by

forecasts of various lead times. For example, the first

return from lvp2 to lvp1 at 05:20 is not captured, but

the change from lvp3 to lvp2 at 07:00 is.

All forecasts except for the þ120 min show a

steady decrease of lvp probabilities before the event

ends but still lag after the observed end at 10:10 UTC

due to the importance of persistence for the forecasts.

4.4. Impact of Predictor Variables

The analysis of the variables with highest impact

on the forecasts is conducted by variable permutation

tests (Sect. 3.6). Therefore, the forecast performance

from a test sample with randomly permuted infor-

mation of a particular predictor is computed and

compared with the forecast performance of the

original test sample. Figure 5 shows the fractional

changes in RPS for predictions on permuted test

samples relative to the original sample for bagging

(Fig. 5a) and boosting (Fig. 5b). The permuted

variables with strongest decrease in forecast perfor-

mance are plotted for lead time þ 10;þ 60, and

þ 120 min.

The highest impact on lvp nowcasts with a lead

time of þ 10 min is found for the current lvp state at

the touchdown point (lvptd). Permuting this variable

decreases the forecast performance of bagging on
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average more than eight times, and of boosting more

than three times. Additional variables with impact

on the forecasts are the averaged lvp state of the

airport (lvpap) and runway (lvprw) for bagging, and

cei information at touchdown (ceitd), as well as the

lvp state at touchdown 10 min before forecast

initialization (lvptd�10
) for boosting. With growing

lead times, the strong dependence on lvp

information at the touchdown point decreases. For

the lead time þ60 min, lvptd still has the high-

est impact on the forecasts. However, lvprw also has

a strong influence in bagging at þ 60 min lead time.

Additional important variables are the visibility

outside the airport area (visext) and the airport-

averaged lvpap and rvr (rvrap). Their influence is

stronger in boosting models than in bagging. At the
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Figure 4
Case study of an lvp event at Vienna International Airport on 2013-11-16. The first panel shows the general meteorological conditions (wind,

temperature, dew point) before, during, and after the lvp event. The second panel shows observed runway visual range, ceiling, and lvp

(bottom). Panels 3–6 show the cumulative lvp probabilities for forecasts issued 10, 30, 60, and 120 min previously
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lead time þ 120 min, lvpap has the strongest influ-

ence in bagging. Standard meteorological

information of humidity (rh) and temperature (tl),

as well as lvptd, lvprw, and visext, have further

influence. For boosting, lvpap, rvrap, and visext have

the strongest impact, with lvp information at touch-

down and runway having additional impact.

These results confirm the predictor selection

analysis for the OLR model of Kneringer et al.

(2018), which also showed the strongest contribution

from current lvp information at short lead times, but

from standard meteorological variables at longer lead

times. Altogether, the variables with the strongest in-

fluence are similar for both models for each lead

time. At short lead times, point measurements at

touchdown have the strongest influence, whereas

averaged airport information becomes more impor-

tant with increasing lead time. In bagging, the

dependency on lvp information is stronger, while

horizontal visibility information has higher impact in

boosting.

5. Discussion and Conclusions

Nowcasts of low-visibility procedure (lvp) states

at Vienna International Airport are produced in a high

temporal resolution using different tree-based models.

The various models are compared with each other and

with the ordered logistic regression (OLR) model of

Kneringer et al. (2018). Tree-based boosting leads to

the best forecasts, outperforming bagging, random

forests, and OLR—all three of which perform simi-

larly—while single decision trees show the lowest

predictive performance for all lead times.

To improve the forecast performance of lvp

nowcasts, we enlarge the set of predictor variables

and increase the output resolution from 30 to 10 min

compared with the investigation of Kneringer et al.

(2018). Increasing the number of potential predictors

improve the forecasting performance most for lead

times longer than 30 min. Boosting trees are best

overall, followed by bagging. However, bagging

show an advantage over boosting for forecasts of the

combined most critical lvp2/3 states until 1 h lead

time. Random forests only perform well at longer
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lead times, while single decision trees are outper-

formed by all other models.

The underlying reason lies in the different work-

ing processes of the models. At very short lead times,

the predictions strongly depend on information of the

current lvp state at the touchdown point. Since this

predictor often occurs as split variable in the trees, all

the aggregated decision trees look similar. Hence, the

performance of the bagging and decision tree models

is similar at the shortest lead time. If most informa-

tion for the forecasts is contained in only one

predictor variable, random forests perform worse due

to their random preselection of potential split vari-

ables. With longer lead times, the strong dependence

on only one predictor variable decreases, thus the

benefit of the ensemble-merging models increases

strongly compared with single decision trees.

The impact of low visibility on flight activities at

airports will increase in the future. Although the

annual number of low-visibility events over Central

Europe has declined during the last 40 years (e.g.,

Egli et al. 2017; Vautard et al. 2009), the number of

delays has increased. The reason is the increased

number of flights (Federal Aviation Administration

2017), which exhaust the capacity utilization of air-

ports. Since weather contributes most to flight delays

(Federal Aviation Administration 2017), the impor-

tance of accurate low-visibility forecasts will increase

in the future.

In summary, this paper has shown that tree-based

methods are suitable tools for lvp state nowcasts.

Their computational costs are comparable to linear

regression methods, thus they are able to produce

instantaneous forecasts when new observations

arrive. Especially the tree-based ensemble methods

bagging and boosting perform well for lvp predic-

tions. The predictors with the highest impact on lvp

nowcasts contain information on the current lvp state

and the horizontal visibility at forecast initialization.
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