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The formulation of a real-world problem in mathe-

matical terms often leads to ordinary differential

equations, the foundations of which were laid by

Isaac Newton, who said: ‘‘It is useful to solve dif-

ferential equations’’ (Arnold V. I., Geometrical

Methods in the Theory of Ordinary Differential

Equations. Springer, 1988). An ordinary differential

equation (ODE) is an equation for a function of a

single variable that relates the values of the function

to the values of its derivatives. This book is con-

ceived to provide a bridge between theoretical and

applied aspects of ODEs.

The book consists of ten chapters, and three

appendices. Chapter 1, Introduction, presents a terse

survey of the standard topics encountered in an

introductory course of ODE. The following issues are

addressed: the intuitive notion of ODE and its solu-

tion, the order of ODEs, the notion of linearity, the

importance of numerical solutions, and the methods

for finding explicit solutions of certain ODEs. Also, a

few examples that illustrate the process of translating

scientific laws into physically based second-order

ODEs are demonstrated, together with some termi-

nology regarding systems of ODEs.

Chapter 2, Linear Systems with Constant Coeffi-

cients, concerns the basic theory for homogeneous

linear systems of ODEs. To study such systems, the

apparatus of linear algebra is used. A key concept in

matrix analysis, the matrix exponential, is discussed

first. Then, it is shown how it produces the solution to

ODEs with constant coefficients, dx/dt = Ax, x [ Rn

(*), where A is a real n 9 n (constant) matrix. In fact,

the problem of constructing a fundamental set of

solutions of ODEs is a problem to linear algebra, and

it is connected with the eigenvalues and eigenvectors

of the matrix A. The use of the Jordan form for

computing the exponential of a matrix is explained

and demonstrated. The remaining three sections

concern the asymptotic behavior of solutions of sys-

tems (*), the classification and phase portraits for

planar, homogeneous, autonomous systems with A a

constant 2 9 2 matrix, according to the character of

its stationary point (the origin), and the formulas for

solving an inhomogeneous linear system of ODEs

with constant coefficients.

Chapter 3, Nonlinear Systems: Local Theory, deals

with the issues regarding the initial value problem

(IVP) for systems of nonlinear ODEs, namely, the

existence of solutions, and the uniqueness of solu-

tions. The autonomous systems of the form x0 = F(x),

where F: Rn ? Rn is locally Lipschitz, are thor-

oughly analyzed. The proof of the existence of the

solutions based on the contraction-mapping principle

is presented, together with the construction of con-

verging Picard iterates. Next, the uniqueness of the

solution is proved, using the celebrated lemma of

Gronwall. The extensions of the theory to nonau-

tonomous systems are moved to exercises.

Chapter 4, Nonlinear Systems: Global Theory,

focuses on the problems of global existence of solu-

tions, the continuous dependence on the initial data,

and the differentiability properties of the solution.

Two sections concentrate on the maximal interval of

existence for a given solution to the IVP and two

sufficient conditions for global existence of solutions.
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The concept of trapping regions is introduced and

used to prove the global existence for Duffing’s

equation, the chemostat, and the torqued pendulum.

Next, the idea of nullclines and its usefulness in

finding trapping regions is explained and illustrated

by applying it to specific ODEs, including an acti-

vator–inhibitor system, Sel’kov’s model for

glycolysis, Van der Pol’s equation, and the Michae-

lis–Menten kinetics. The subsequent sections present

the results concerning the dependence of solutions on

the initial conditions and other parameters, using the

formalism from the dynamical systems theory. An

appendix provides the terse overview of the numeri-

cal scheme for the IVP for systems of ODEs, namely,

the simplest numerical method, known as Euler’s

method.

Dimensional analysis and scaling are most effec-

tive when the researcher already knows something

about a physical situation or process. Chapter 5,

Nondimensionalization and Scaling, discusses the

dimensional scaling concepts, and methods which

provide an auxiliary techniques for simplifying

ODEs, appearing in the various physical and natural

situations. The dimensional scaling techniques are

applied to the problems grouped into several subject

areas: mechanics, electrical sciences, biology, and

ecology (the bathtub models). The examples consid-

ered illustrate the possibilities and limitations of

dimensional analysis.

The qualitative study of ODEs is concerned with

how to predict the fundamental characteristics of the

solutions of ODEs without knowing explicit solu-

tions. Chapters 6–9 present a comprehensive

introduction to the theory of ODEs with a focus on

dynamical systems theory. Chapter 6, Trajectories

Near Equilibria, describes the linearization technique

for analyzing the behavior of a nonlinear system in a

neighborhood of an equilibrium point. The main

theorem concerning the asymptotic stability of solu-

tions of ODEs is formulated and proved, together

with the basic terminology for classifying equilibrium

points. The several interesting applications include:

the Lotka–Volterra system, the Turing instability, and

the classic control problem of the inverted pendulum.

The notion of Lyapunov function and the basic the-

orems on Lyapunov stability are introduced and

discussed, and then applied to the Duffing’s equation

through the Lasalle’s invariance principle. The

method of construction of Lyapunov functions for the

Lotka–Volterra equations is also demonstrated. In the

next section, the stable manifold theorem for ODEs is

formulated and illustrated for sketching phase por-

traits for several equations. Some important proofs

(e.g., the Hartman–Grobman theorem and the

stable manifold theorem) are moved to the exercises

and the appendices. Chapter 7, Oscillations in ODEs,

covers topics connected with the techniques that

predict and describe the oscillatory behavior of the

solutions of ODEs. The notion of the periodic solu-

tions of ODEs is introduced, together with the

illustrative examples. The topological structures of

two-dimensional systems of ODEs are studied, and

the celebrated Poincaré–Bendixson theorem and its

generalization are formulated and explained. The

applications of this theorem and of the Dulac’s cri-

terion, which refer to the problem of the existence

and nonexistence of periodic solutions and limit

cycles, are briefly discussed. The next section pre-

sents a number of results connected with the stability

of periodic solutions of ODEs. A very powerful

concept in the study of periodic orbits, the return map

(or the Poincaré map), is introduced and described.

Next, the Poincaré–Bendixson theorem is applied to

show that the torqued pendulum equation has a

periodic, asymptotically stable solution. Also, the

asymptotic perturbation theory is used to approximate

limit cycles of the van der Pol system, and the

Poincaré map technique is applied to prove the sta-

bility for the solutions of this equation. Some ideas

from Floquet theory to explain how vibration can

stabilize an inverted pendulum are presented and

placed in an appendix.

The notion of bifurcation of a dynamical system

refers to a qualitative change in its dynamics pro-

duced by varying parameters. Chapter 8, Bifurcation

from Equilibria, explores some of the basic philoso-

phies of the local bifurcation theory and discusses

how bifurcation problems arise in ODEs. The first

section illustrates, through the examples, the pitch-

fork bifurcations (supercritical and subcritical)

referring to the bead on a rotating wire hoop, the

Lorenz system, and the laterally supported inverted

pendulum. Several types of bifurcations, saddle node,

transcritical, hysteresis-point, isola-center, and Hopf
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are also discussed and explained. To supplement the

examples-oriented sections, the chapter is completed

by the theorem that unifies many steady-state bifur-

cation phenomena, and the important technique

called Lyapunov–Schmidt reduction. Chapter 9, Ex-

amples of Global Bifurcation, continues with

bifurcations of periodic motions of ODEs. The rep-

resentative examples of five different types of global

bifurcation are demonstrated and discussed. These

include: the homoclinic and heteroclinic bifurcations;

the saddle node bifurcation of limit cycles; the mutual

annihilation bifurcation of two limit cycles; the Nei-

mark–Sacker bifurcation; and the period-doubling

bifurcation. A brief theoretical background on the use

of the Poincaré maps technique to analyze these three

bifurcations is sketched. Also, in the two sections,

some applications of the theory to problems in which

global bifurcation plays a crucial role are presented.

First, the famous Lorenz system is described, and

then the bursting oscillations in the denatured Mor-

ris–Lecar equations, which are one of the simplest

models for the production of action potentials in

neuroscience.

Chapter 10, Epilogue, covers briefly a number of

issues connected with the ODEs which not presented

in the main body of the book. The first section shows

how to formulate and solve a boundary value prob-

lems (BVP) for ODEs. Typical BVPs problems are

considered, including a calculus-of-variations exam-

ples, and the eigenvalue problems. The next section

focuses on the use of stochastic differential equation

(SDE) models to describe a variety of population

growth dynamics. Subsequently, the standard

numerical approach, the backward Euler method, for

ODEs is discussed. To illustrate the significance of

periodic and aperiodic motions, the generic behavior

for ODEs on a torus is presented briefly. A large and

important class of dynamical systems generated by

the delay differential equations is also discussed. The

last section presents a gentle introduction to the main

aspects of the chaotic dynamics with the aid of

specific examples, namely, the quadratic map and the

Lorenz system.

Exercises are an essential part of this book. Some

of these are standard, while many others are the

materials written in the form of ‘‘exercise section’’.

The electronic material on the book website http://

www.math.duke.edu/ode-book is also provided to

complement and supplement the material in the text.

It is an important resource for the book. Thirteen

pertinent examples that use the freely available

XPPAUT software are on the website, in the form of

source files (.ode), along with auxiliary pdf files and

additional commentary on these examples. XPPAUT

is a powerful tool for simulating, animating, and

analyzing dynamical systems. The syntax of

XPPAUT program for setting up differential equa-

tions is amazingly simple compared to the other

programs and I strongly recommend the use of it! For

helping the reader to get an orientation in various

aspects of XPPAUT, I suggest reading the book by B.

Ermentrout, Simulating, Analyzing, and Animating

Dynamical Systems. A Guide to XPPAUT for

Researchers and Students, SIAM, 2002. There is also

some additional materials in the appendices, ranging

from background material on advanced calculus

(Appendix B) to linear algebra (Appendix C).

In sum, this book is very well written and to a

certain extent is self-contained. It is aimed at students

of applied mathematics, theoretical physics, geo-

physics, engineering, and information science, who

already possess a solid knowledge of calculus and a

sufficient knowledge of linear algebra. I would defi-

nitely use this book to teach an undergraduate and

graduate course! The book is also useful for Ph.D.

students, whose dissertation areas are related to

ODEs.
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